code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import unittest
from transformers import BertGenerationTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__snake_case ="""▁"""
__snake_case =get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
class UpperCAmelCase_ ( __lowercase , unittest.TestCase ):
lowerCamelCase : int = BertGenerationTokenizer
lowerCamelCase : Union[str, Any] = False
lowerCamelCase : Dict = True
def __UpperCAmelCase ( self : int ) -> int:
super().setUp()
lowerCAmelCase = BertGenerationTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def __UpperCAmelCase ( self : str ) -> List[Any]:
lowerCAmelCase = '<s>'
lowerCAmelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ )
def __UpperCAmelCase ( self : List[Any] ) -> Tuple:
lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<unk>' )
self.assertEqual(vocab_keys[1] , '<s>' )
self.assertEqual(vocab_keys[-1] , '<pad>' )
self.assertEqual(len(UpperCAmelCase__ ) , 1_0_0_2 )
def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 )
def __UpperCAmelCase ( self : str ) -> Optional[int]:
lowerCAmelCase = BertGenerationTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ )
lowerCAmelCase = tokenizer.tokenize('This is a test' )
self.assertListEqual(UpperCAmelCase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , )
lowerCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
UpperCAmelCase__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
lowerCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ )
self.assertListEqual(
UpperCAmelCase__ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , )
lowerCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ )
self.assertListEqual(
UpperCAmelCase__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
@cached_property
def __UpperCAmelCase ( self : Tuple ) -> int:
return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
@slow
def __UpperCAmelCase ( self : Tuple ) -> Optional[int]:
lowerCAmelCase = 'Hello World!'
lowerCAmelCase = [1_8_5_3_6, 2_2_6_0, 1_0_1]
self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) )
@slow
def __UpperCAmelCase ( self : Dict ) -> int:
lowerCAmelCase = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
lowerCAmelCase = [
8_7_1,
4_1_9,
3_5_8,
9_4_6,
9_9_1,
2_5_2_1,
4_5_2,
3_5_8,
1_3_5_7,
3_8_7,
7_7_5_1,
3_5_3_6,
1_1_2,
9_8_5,
4_5_6,
1_2_6,
8_6_5,
9_3_8,
5_4_0_0,
5_7_3_4,
4_5_8,
1_3_6_8,
4_6_7,
7_8_6,
2_4_6_2,
5_2_4_6,
1_1_5_9,
6_3_3,
8_6_5,
4_5_1_9,
4_5_7,
5_8_2,
8_5_2,
2_5_5_7,
4_2_7,
9_1_6,
5_0_8,
4_0_5,
3_4_3_2_4,
4_9_7,
3_9_1,
4_0_8,
1_1_3_4_2,
1_2_4_4,
3_8_5,
1_0_0,
9_3_8,
9_8_5,
4_5_6,
5_7_4,
3_6_2,
1_2_5_9_7,
3_2_0_0,
3_1_2_9,
1_1_7_2,
]
self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) )
@require_torch
@slow
def __UpperCAmelCase ( self : Tuple ) -> Optional[int]:
import torch
from transformers import BertGenerationConfig, BertGenerationEncoder
# Build sequence
lowerCAmelCase = list(self.big_tokenizer.get_vocab().keys() )[:1_0]
lowerCAmelCase = ' '.join(UpperCAmelCase__ )
lowerCAmelCase = self.big_tokenizer.encode_plus(UpperCAmelCase__ , return_tensors='pt' , return_token_type_ids=UpperCAmelCase__ )
lowerCAmelCase = self.big_tokenizer.batch_encode_plus(
[sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=UpperCAmelCase__ )
lowerCAmelCase = BertGenerationConfig()
lowerCAmelCase = BertGenerationEncoder(UpperCAmelCase__ )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**UpperCAmelCase__ )
model(**UpperCAmelCase__ )
@slow
def __UpperCAmelCase ( self : Dict ) -> List[str]:
# fmt: off
lowerCAmelCase = {'input_ids': [[3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4], [4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase__ , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
| 4 |
'''simple docstring'''
def lowercase ( __magic_name__ ):
'''simple docstring'''
if number > 0:
raise ValueError("input must be a negative integer" )
UpperCAmelCase : List[Any] = len(bin(__magic_name__ )[3:] )
UpperCAmelCase : Optional[Any] = bin(abs(__magic_name__ ) - (1 << binary_number_length) )[3:]
UpperCAmelCase : Tuple = (
(
"1"
+ "0" * (binary_number_length - len(__magic_name__ ))
+ twos_complement_number
)
if number < 0
else "0"
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311 | 0 |
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
| 262 |
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __A ( a , a , unittest.TestCase ):
__A = IFInpaintingSuperResolutionPipeline
__A = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""}
__A = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} )
__A = PipelineTesterMixin.required_optional_params - {"""latents"""}
def _snake_case ( self ):
return self._get_superresolution_dummy_components()
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_=0 ):
if str(UpperCAmelCase_ ).startswith("""mps""" ):
lowerCamelCase =torch.manual_seed(UpperCAmelCase_ )
else:
lowerCamelCase =torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
lowerCamelCase =floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
lowerCamelCase =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
lowerCamelCase =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
lowerCamelCase ={
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""original_image""": original_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def _snake_case ( self ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def _snake_case ( self ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def _snake_case ( self ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def _snake_case ( self ):
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def _snake_case ( self ):
self._test_save_load_local()
def _snake_case ( self ):
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 262 | 1 |
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
__UpperCAmelCase = False
class lowerCamelCase (unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self , _UpperCamelCase=3_2 ) -> List[str]:
set_seed(0 )
UpperCAmelCase_ : int = UNetaDModel(sample_size=__lowerCAmelCase , in_channels=3 , out_channels=3 )
UpperCAmelCase_ : Dict = torch.optim.SGD(model.parameters() , lr=0.00_01 )
return model, optimizer
@slow
def __UpperCAmelCase ( self ) -> List[str]:
UpperCAmelCase_ : Optional[Any] = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
UpperCAmelCase_ : List[str] = DDPMScheduler(
num_train_timesteps=1_0_0_0 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='linear' , clip_sample=__lowerCAmelCase , )
UpperCAmelCase_ : Optional[Any] = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='linear' , clip_sample=__lowerCAmelCase , )
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0 )
UpperCAmelCase_ : Tuple = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(__lowerCAmelCase ) for _ in range(4 )]
UpperCAmelCase_ : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(__lowerCAmelCase ) for _ in range(4 )]
UpperCAmelCase_ : str = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(__lowerCAmelCase ) for _ in range(4 )]
# train with a DDPM scheduler
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.get_model_optimizer(resolution=3_2 )
model.train().to(__lowerCAmelCase )
for i in range(4 ):
optimizer.zero_grad()
UpperCAmelCase_ : Any = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
UpperCAmelCase_ : List[Any] = model(__lowerCAmelCase , timesteps[i] ).sample
UpperCAmelCase_ : Union[str, Any] = torch.nn.functional.mse_loss(__lowerCAmelCase , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.get_model_optimizer(resolution=3_2 )
model.train().to(__lowerCAmelCase )
for i in range(4 ):
optimizer.zero_grad()
UpperCAmelCase_ : int = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
UpperCAmelCase_ : Optional[int] = model(__lowerCAmelCase , timesteps[i] ).sample
UpperCAmelCase_ : Union[str, Any] = torch.nn.functional.mse_loss(__lowerCAmelCase , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) )
self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) )
| 29 |
# This code is adapted from OpenAI's release
# https://github.com/openai/human-eval/blob/master/human_eval/execution.py
import contextlib
import faulthandler
import io
import multiprocessing
import os
import platform
import signal
import tempfile
def __lowerCamelCase ( __a :List[str] , __a :List[Any] , __a :Union[str, Any] , __a :List[Any] ) -> Dict:
"""simple docstring"""
A__ = multiprocessing.Manager()
A__ = manager.list()
A__ = multiprocessing.Process(target=__a , args=(check_program, result, timeout) )
p.start()
p.join(timeout=timeout + 1 )
if p.is_alive():
p.kill()
if not result:
result.append("""timed out""" )
return {
"task_id": task_id,
"passed": result[0] == "passed",
"result": result[0],
"completion_id": completion_id,
}
def __lowerCamelCase ( __a :Optional[Any] , __a :Any , __a :List[Any] ) -> Union[str, Any]:
"""simple docstring"""
with create_tempdir():
# These system calls are needed when cleaning up tempdir.
import os
import shutil
A__ = shutil.rmtree
A__ = os.rmdir
A__ = os.chdir
# Disable functionalities that can make destructive changes to the test.
reliability_guard()
# Run program.
try:
A__ = {}
with swallow_io():
with time_limit(__a ):
exec(__a , __a )
result.append("""passed""" )
except TimeoutException:
result.append("""timed out""" )
except BaseException as e:
result.append(F'failed: {e}' )
# Needed for cleaning up.
A__ = rmtree
A__ = rmdir
A__ = chdir
@contextlib.contextmanager
def __lowerCamelCase ( __a :List[str] ) -> Dict:
"""simple docstring"""
def signal_handler(__a :List[Any] , __a :Optional[Any] ):
raise TimeoutException("""Timed out!""" )
signal.setitimer(signal.ITIMER_REAL , __a )
signal.signal(signal.SIGALRM , __a )
try:
yield
finally:
signal.setitimer(signal.ITIMER_REAL , 0 )
@contextlib.contextmanager
def __lowerCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
A__ = WriteOnlyStringIO()
with contextlib.redirect_stdout(__a ):
with contextlib.redirect_stderr(__a ):
with redirect_stdin(__a ):
yield
@contextlib.contextmanager
def __lowerCamelCase ( ) -> Dict:
"""simple docstring"""
with tempfile.TemporaryDirectory() as dirname:
with chdir(__a ):
yield dirname
class A (SCREAMING_SNAKE_CASE ):
'''simple docstring'''
pass
class A (io.StringIO ):
'''simple docstring'''
def a_ ( self : Any , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : str ) -> Dict:
"""simple docstring"""
raise OSError
def a_ ( self : Optional[Any] , *__lowerCAmelCase : Any , **__lowerCAmelCase : Optional[int] ) -> str:
"""simple docstring"""
raise OSError
def a_ ( self : Optional[Any] , *__lowerCAmelCase : Any , **__lowerCAmelCase : Any ) -> int:
"""simple docstring"""
raise OSError
def a_ ( self : str , *__lowerCAmelCase : Any , **__lowerCAmelCase : Union[str, Any] ) -> int:
"""simple docstring"""
return False
class A (contextlib._RedirectStream ): # type: ignore
'''simple docstring'''
__lowerCamelCase : Union[str, Any] = '''stdin'''
@contextlib.contextmanager
def __lowerCamelCase ( __a :Union[str, Any] ) -> List[str]:
"""simple docstring"""
if root == ".":
yield
return
A__ = os.getcwd()
os.chdir(__a )
try:
yield
except BaseException as exc:
raise exc
finally:
os.chdir(__a )
def __lowerCamelCase ( __a :Union[str, Any]=None ) -> Dict:
"""simple docstring"""
if maximum_memory_bytes is not None:
import resource
resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) )
resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) )
if not platform.uname().system == "Darwin":
resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) )
faulthandler.disable()
import builtins
A__ = None
A__ = None
import os
A__ = """1"""
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
import shutil
A__ = None
A__ = None
A__ = None
import subprocess
A__ = None # type: ignore
A__ = None
import sys
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
| 274 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case__ : List[Any] = logging.get_logger(__name__)
snake_case__ : Dict = {
'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json',
# See all BioGPT models at https://huggingface.co/models?filter=biogpt
}
class A_ ( _lowerCamelCase ):
lowerCAmelCase__ = """biogpt"""
def __init__(self :str , _UpperCamelCase :int=4_2384 , _UpperCamelCase :Optional[Any]=1024 , _UpperCamelCase :List[str]=24 , _UpperCamelCase :str=16 , _UpperCamelCase :Union[str, Any]=4096 , _UpperCamelCase :List[Any]="gelu" , _UpperCamelCase :Tuple=0.1 , _UpperCamelCase :Tuple=0.1 , _UpperCamelCase :List[str]=1024 , _UpperCamelCase :Any=0.0_2 , _UpperCamelCase :List[str]=1e-12 , _UpperCamelCase :Optional[Any]=True , _UpperCamelCase :Dict=True , _UpperCamelCase :Union[str, Any]=0.0 , _UpperCamelCase :int=0.0 , _UpperCamelCase :Tuple=1 , _UpperCamelCase :Optional[Any]=0 , _UpperCamelCase :Any=2 , **_UpperCamelCase :Any , )-> Union[str, Any]:
__A = vocab_size
__A = max_position_embeddings
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = initializer_range
__A = layer_norm_eps
__A = scale_embedding
__A = use_cache
__A = layerdrop
__A = activation_dropout
super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
| 250 |
import sys
def _a ( lowerCamelCase: Tuple ) -> Tuple:
'''simple docstring'''
__A = len(lowerCamelCase )
__A = [[0 for x in range(lowerCamelCase )] for x in range(lowerCamelCase )]
__A = [[0 for x in range(lowerCamelCase )] for x in range(lowerCamelCase )]
for chain_length in range(2 , lowerCamelCase ):
for a in range(1 , n - chain_length + 1 ):
__A = a + chain_length - 1
__A = sys.maxsize
for c in range(lowerCamelCase , lowerCamelCase ):
__A = (
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
__A = cost
__A = c
return matrix, sol
def _a ( lowerCamelCase: Optional[int] , lowerCamelCase: Optional[Any] , lowerCamelCase: List[str] ) -> Tuple:
'''simple docstring'''
if i == j:
print('''A''' + str(lowerCamelCase ) , end=''' ''' )
else:
print('''(''' , end=''' ''' )
print_optiomal_solution(lowerCamelCase , lowerCamelCase , optimal_solution[i][j] )
print_optiomal_solution(lowerCamelCase , optimal_solution[i][j] + 1 , lowerCamelCase )
print(''')''' , end=''' ''' )
def _a ( ) -> List[str]:
'''simple docstring'''
__A = [30, 35, 15, 5, 10, 20, 25]
__A = len(lowerCamelCase )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
__A , __A = matrix_chain_order(lowerCamelCase )
print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) )
print_optiomal_solution(lowerCamelCase , 1 , n - 1 )
if __name__ == "__main__":
main()
| 250 | 1 |
"""simple docstring"""
from __future__ import annotations
def lowercase ( __snake_case : str , __snake_case : list[str] | None = None ):
lowercase_ : Dict = word_bank or []
# create a table
lowercase_ : int = len(__snake_case ) + 1
lowercase_ : list[list[list[str]]] = []
for _ in range(__snake_case ):
table.append([] )
# seed value
lowercase_ : str = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(__snake_case ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(__snake_case )] == word:
lowercase_ : list[list[str]] = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(__snake_case )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(__snake_case )]:
combination.reverse()
return table[len(__snake_case )]
if __name__ == "__main__":
print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa''']))
print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t''']))
print(
all_construct(
'''hexagonosaurus''',
['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''],
)
)
| 33 |
'''simple docstring'''
import unittest
from dataclasses import dataclass
import pytest
from accelerate.commands.config.config_args import SageMakerConfig
from accelerate.utils import ComputeEnvironment
from accelerate.utils.launch import _convert_nargs_to_dict
@dataclass
class lowercase ( A__ ):
"""simple docstring"""
_a = ComputeEnvironment.AMAZON_SAGEMAKER
_a = True
_a = 'ml.p3.2xlarge'
_a = 'accelerate_sagemaker_execution_role'
_a = 'hf-sm'
_a = 'us-east-1'
_a = 1
_a = 'accelerate-sagemaker-1'
_a = '1.6'
_a = '4.4'
_a = 'train.py'
_a = [
'--model_name_or_path',
'bert',
'--do_train',
'False',
'--epochs',
'3',
'--learning_rate',
'5e-5',
'--max_steps',
'50.5',
]
_a = [
'--model_name_or_path',
'bert',
'--do_train',
'--do_test',
'False',
'--do_predict',
'--epochs',
'3',
'--learning_rate',
'5e-5',
'--max_steps',
'50.5',
]
class lowercase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :Union[str, Any] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args )
assert isinstance(converted_args['''model_name_or_path'''] , UpperCamelCase_ )
assert isinstance(converted_args['''do_train'''] , UpperCamelCase_ )
assert isinstance(converted_args['''epochs'''] , UpperCamelCase_ )
assert isinstance(converted_args['''learning_rate'''] , UpperCamelCase_ )
assert isinstance(converted_args['''max_steps'''] , UpperCamelCase_ )
with pytest.raises(UpperCamelCase_ ):
_convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args ) | 97 | 0 |
import contextlib
from multiprocessing import Pool, RLock
from tqdm.auto import tqdm
from ..utils import experimental, logging
lowerCamelCase_ = logging.get_logger(__name__)
class __A:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = None
@experimental
def __magic_name__ ( __a : int , __a : List[str] , __a : Optional[int] , __a : List[str] , __a : List[str] , __a : Optional[Any] , __a : Union[str, Any] ):
'''simple docstring'''
if ParallelBackendConfig.backend_name is None:
return _map_with_multiprocessing_pool(
__a , __a , __a , __a , __a , __a , __a )
return _map_with_joblib(__a , __a , __a , __a , __a , __a , __a )
def __magic_name__ ( __a : Union[str, Any] , __a : Tuple , __a : List[Any] , __a : List[Any] , __a : Dict , __a : Tuple , __a : int ):
'''simple docstring'''
UpperCamelCase__ = num_proc if num_proc <= len(__a ) else len(__a )
UpperCamelCase__ = [] # We organize the splits ourselve (contiguous splits)
for index in range(__a ):
UpperCamelCase__ = len(__a ) // num_proc
UpperCamelCase__ = len(__a ) % num_proc
UpperCamelCase__ = div * index + min(__a , __a )
UpperCamelCase__ = start + div + (1 if index < mod else 0)
split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) )
if len(__a ) != sum(len(i[1] ) for i in split_kwds ):
raise ValueError(
f"Error dividing inputs iterable among processes. "
f"Total number of objects {len(__a )}, "
f"length: {sum(len(i[1] ) for i in split_kwds )}" )
logger.info(
f"Spawning {num_proc} processes for {len(__a )} objects in slices of {[len(i[1] ) for i in split_kwds]}" )
UpperCamelCase__ , UpperCamelCase__ = None, None
if not disable_tqdm:
UpperCamelCase__ , UpperCamelCase__ = (RLock(),), tqdm.set_lock
with Pool(__a , initargs=__a , initializer=__a ) as pool:
UpperCamelCase__ = pool.map(__a , __a )
logger.info(f"Finished {num_proc} processes" )
UpperCamelCase__ = [obj for proc_res in mapped for obj in proc_res]
logger.info(f"Unpacked {len(__a )} objects" )
return mapped
def __magic_name__ ( __a : str , __a : Optional[int] , __a : str , __a : Optional[int] , __a : Optional[Any] , __a : Any , __a : Optional[int] ):
'''simple docstring'''
import joblib
with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=__a ):
return joblib.Parallel()(
joblib.delayed(__a )((function, obj, types, None, True, None) ) for obj in iterable )
@experimental
@contextlib.contextmanager
def __magic_name__ ( __a : str ):
'''simple docstring'''
UpperCamelCase__ = backend_name
if backend_name == "spark":
from joblibspark import register_spark
register_spark()
# TODO: call create_cache_and_write_probe if "download" in steps
# TODO: raise NotImplementedError when Dataset.map etc is called
try:
yield
finally:
UpperCamelCase__ = None
| 361 |
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class __A:
"""simple docstring"""
@staticmethod
def UpperCAmelCase_ (*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
pass
def __magic_name__ ( __a : Image ):
'''simple docstring'''
UpperCamelCase__ = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def __magic_name__ ( __a : Image ):
'''simple docstring'''
UpperCamelCase__ = np.array(__a )
UpperCamelCase__ = npimg.shape
return {"hash": hashimage(__a ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class __A( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
SCREAMING_SNAKE_CASE__ = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = MaskGenerationPipeline(model=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
pass
@require_tf
@unittest.skip("""Image segmentation not implemented in TF""" )
def UpperCAmelCase_ (self ):
pass
@slow
@require_torch
def UpperCAmelCase_ (self ):
UpperCamelCase__ = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" )
UpperCamelCase__ = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=2_56 )
# Shortening by hashing
UpperCamelCase__ = []
for i, o in enumerate(outputs["""masks"""] ):
new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [
{"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_80, 6_40)}, """scores""": 1.0444},
{"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_80, 6_40)}, """scores""": 1.021},
{"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_80, 6_40)}, """scores""": 1.0167},
{"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_80, 6_40)}, """scores""": 1.0132},
{"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_80, 6_40)}, """scores""": 1.0053},
{"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (4_80, 6_40)}, """scores""": 0.9967},
{"""mask""": {"""hash""": """453c7844bd""", """shape""": (4_80, 6_40)}, """scores""": 0.993},
{"""mask""": {"""hash""": """3d44f2926d""", """shape""": (4_80, 6_40)}, """scores""": 0.9909},
{"""mask""": {"""hash""": """64033ddc3f""", """shape""": (4_80, 6_40)}, """scores""": 0.9879},
{"""mask""": {"""hash""": """801064ff79""", """shape""": (4_80, 6_40)}, """scores""": 0.9834},
{"""mask""": {"""hash""": """6172f276ef""", """shape""": (4_80, 6_40)}, """scores""": 0.9716},
{"""mask""": {"""hash""": """b49e60e084""", """shape""": (4_80, 6_40)}, """scores""": 0.9612},
{"""mask""": {"""hash""": """a811e775fd""", """shape""": (4_80, 6_40)}, """scores""": 0.9599},
{"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (4_80, 6_40)}, """scores""": 0.9552},
{"""mask""": {"""hash""": """9d8257e080""", """shape""": (4_80, 6_40)}, """scores""": 0.9532},
{"""mask""": {"""hash""": """32de6454a8""", """shape""": (4_80, 6_40)}, """scores""": 0.9516},
{"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (4_80, 6_40)}, """scores""": 0.9499},
{"""mask""": {"""hash""": """3c6db475fb""", """shape""": (4_80, 6_40)}, """scores""": 0.9483},
{"""mask""": {"""hash""": """c290813fb9""", """shape""": (4_80, 6_40)}, """scores""": 0.9464},
{"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (4_80, 6_40)}, """scores""": 0.943},
{"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (4_80, 6_40)}, """scores""": 0.943},
{"""mask""": {"""hash""": """c749b25868""", """shape""": (4_80, 6_40)}, """scores""": 0.9408},
{"""mask""": {"""hash""": """efb6cab859""", """shape""": (4_80, 6_40)}, """scores""": 0.9335},
{"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (4_80, 6_40)}, """scores""": 0.9326},
{"""mask""": {"""hash""": """788b798e24""", """shape""": (4_80, 6_40)}, """scores""": 0.9262},
{"""mask""": {"""hash""": """abea804f0e""", """shape""": (4_80, 6_40)}, """scores""": 0.8999},
{"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (4_80, 6_40)}, """scores""": 0.8986},
{"""mask""": {"""hash""": """cd24047c8a""", """shape""": (4_80, 6_40)}, """scores""": 0.8984},
{"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (4_80, 6_40)}, """scores""": 0.8873},
{"""mask""": {"""hash""": """b5f47c9191""", """shape""": (4_80, 6_40)}, """scores""": 0.8871}
] , )
# fmt: on
@require_torch
@slow
def UpperCAmelCase_ (self ):
UpperCamelCase__ = """facebook/sam-vit-huge"""
UpperCamelCase__ = pipeline("""mask-generation""" , model=SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = image_segmenter(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=2_56 )
# Shortening by hashing
UpperCamelCase__ = []
for i, o in enumerate(outputs["""masks"""] ):
new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [
{"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_80, 6_40)}, """scores""": 1.0444},
{"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_80, 6_40)}, """scores""": 1.0210},
{"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_80, 6_40)}, """scores""": 1.0167},
{"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_80, 6_40)}, """scores""": 1.0132},
{"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_80, 6_40)}, """scores""": 1.0053},
] , )
| 178 | 0 |
import argparse
from collections import defaultdict
import yaml
A__ = """docs/source/en/_toctree.yml"""
def _UpperCAmelCase ( snake_case ):
"""simple docstring"""
_lowerCAmelCase = defaultdict(snake_case )
_lowerCAmelCase = []
_lowerCAmelCase = []
for doc in doc_list:
if "local" in doc:
counts[doc["local"]] += 1
if doc["title"].lower() == "overview":
overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} )
else:
new_doc_list.append(snake_case )
_lowerCAmelCase = new_doc_list
_lowerCAmelCase = [key for key, value in counts.items() if value > 1]
_lowerCAmelCase = []
for duplicate_key in duplicates:
_lowerCAmelCase = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} )
if len(snake_case ) > 1:
raise ValueError(
F'{duplicate_key} is present several times in the documentation table of content at '
"""`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """
"""others.""" )
# Only add this once
new_doc.append({"""local""": duplicate_key, """title""": titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] )
_lowerCAmelCase = sorted(snake_case , key=lambda snake_case : s["title"].lower() )
# "overview" gets special treatment and is always first
if len(snake_case ) > 1:
raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" )
overview_doc.extend(snake_case )
# Sort
return overview_doc
def _UpperCAmelCase ( snake_case=False ):
"""simple docstring"""
with open(snake_case , encoding="""utf-8""" ) as f:
_lowerCAmelCase = yaml.safe_load(f.read() )
# Get to the API doc
_lowerCAmelCase = 0
while content[api_idx]["title"] != "API":
api_idx += 1
_lowerCAmelCase = content[api_idx]["""sections"""]
# Then to the model doc
_lowerCAmelCase = 0
while api_doc[scheduler_idx]["title"] != "Schedulers":
scheduler_idx += 1
_lowerCAmelCase = api_doc[scheduler_idx]["""sections"""]
_lowerCAmelCase = clean_doc_toc(snake_case )
_lowerCAmelCase = False
if new_scheduler_doc != scheduler_doc:
_lowerCAmelCase = True
if overwrite:
_lowerCAmelCase = new_scheduler_doc
if diff:
if overwrite:
_lowerCAmelCase = api_doc
with open(snake_case , """w""" , encoding="""utf-8""" ) as f:
f.write(yaml.dump(snake_case , allow_unicode=snake_case ) )
else:
raise ValueError(
"""The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" )
def _UpperCAmelCase ( snake_case=False ):
"""simple docstring"""
with open(snake_case , encoding="""utf-8""" ) as f:
_lowerCAmelCase = yaml.safe_load(f.read() )
# Get to the API doc
_lowerCAmelCase = 0
while content[api_idx]["title"] != "API":
api_idx += 1
_lowerCAmelCase = content[api_idx]["""sections"""]
# Then to the model doc
_lowerCAmelCase = 0
while api_doc[pipeline_idx]["title"] != "Pipelines":
pipeline_idx += 1
_lowerCAmelCase = False
_lowerCAmelCase = api_doc[pipeline_idx]["""sections"""]
_lowerCAmelCase = []
# sort sub pipeline docs
for pipeline_doc in pipeline_docs:
if "section" in pipeline_doc:
_lowerCAmelCase = pipeline_doc["""section"""]
_lowerCAmelCase = clean_doc_toc(snake_case )
if overwrite:
_lowerCAmelCase = new_sub_pipeline_doc
new_pipeline_docs.append(snake_case )
# sort overall pipeline doc
_lowerCAmelCase = clean_doc_toc(snake_case )
if new_pipeline_docs != pipeline_docs:
_lowerCAmelCase = True
if overwrite:
_lowerCAmelCase = new_pipeline_docs
if diff:
if overwrite:
_lowerCAmelCase = api_doc
with open(snake_case , """w""" , encoding="""utf-8""" ) as f:
f.write(yaml.dump(snake_case , allow_unicode=snake_case ) )
else:
raise ValueError(
"""The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" )
if __name__ == "__main__":
A__ = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
A__ = parser.parse_args()
check_scheduler_doc(args.fix_and_overwrite)
check_pipeline_doc(args.fix_and_overwrite)
| 82 |
'''simple docstring'''
# using dfs for finding eulerian path traversal
def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None )-> List[str]:
'''simple docstring'''
_UpperCAmelCase : Any = (path or []) + [u]
for v in graph[u]:
if visited_edge[u][v] is False:
_UpperCAmelCase ,_UpperCAmelCase : Tuple = True, True
_UpperCAmelCase : List[Any] = dfs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
return path
def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]:
'''simple docstring'''
_UpperCAmelCase : Optional[Any] = 0
_UpperCAmelCase : Optional[int] = -1
for i in range(lowerCAmelCase_ ):
if i not in graph.keys():
continue
if len(graph[i] ) % 2 == 1:
odd_degree_nodes += 1
_UpperCAmelCase : Optional[int] = i
if odd_degree_nodes == 0:
return 1, odd_node
if odd_degree_nodes == 2:
return 2, odd_node
return 3, odd_node
def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]:
'''simple docstring'''
_UpperCAmelCase : str = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )]
_UpperCAmelCase ,_UpperCAmelCase : int = check_circuit_or_path(lowerCAmelCase_ , lowerCAmelCase_ )
if check == 3:
print("""graph is not Eulerian""" )
print("""no path""" )
return
_UpperCAmelCase : Dict = 1
if check == 2:
_UpperCAmelCase : Dict = odd_node
print("""graph has a Euler path""" )
if check == 1:
print("""graph has a Euler cycle""" )
_UpperCAmelCase : Dict = dfs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
print(lowerCAmelCase_ )
def snake_case_ ( )-> Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : Any = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]}
_UpperCAmelCase : int = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]}
_UpperCAmelCase : Tuple = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]}
_UpperCAmelCase : List[Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]}
_UpperCAmelCase : List[str] = {
1: [],
2: []
# all degree is zero
}
_UpperCAmelCase : Union[str, Any] = 10
check_euler(lowerCAmelCase_ , lowerCAmelCase_ )
check_euler(lowerCAmelCase_ , lowerCAmelCase_ )
check_euler(lowerCAmelCase_ , lowerCAmelCase_ )
check_euler(lowerCAmelCase_ , lowerCAmelCase_ )
check_euler(lowerCAmelCase_ , lowerCAmelCase_ )
if __name__ == "__main__":
main()
| 215 | 0 |
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
_lowerCamelCase : str = logging.getLogger(__name__)
def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
'''simple docstring'''
if os.path.exists(SCREAMING_SNAKE_CASE__ ):
if os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , "config.json" ) ) and os.path.isfile(
os.path.join(SCREAMING_SNAKE_CASE__ , "config.json" ) ):
os.remove(os.path.join(SCREAMING_SNAKE_CASE__ , "config.json" ) )
if os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , "pytorch_model.bin" ) ) and os.path.isfile(
os.path.join(SCREAMING_SNAKE_CASE__ , "pytorch_model.bin" ) ):
os.remove(os.path.join(SCREAMING_SNAKE_CASE__ , "pytorch_model.bin" ) )
else:
os.makedirs(SCREAMING_SNAKE_CASE__ )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
def _a ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any]=False ) -> Dict:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str = 2
if unlogit:
SCREAMING_SNAKE_CASE__ : int = torch.pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : str = p * torch.log(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Tuple = 0
return -plogp.sum(dim=-1 )
def _a ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]:
'''simple docstring'''
logger.info("lv, h >\t" + "\t".join(f'''{x + 1}''' for x in range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
for row in range(len(SCREAMING_SNAKE_CASE__ ) ):
if tensor.dtype != torch.long:
logger.info(f'''layer {row + 1}:\t''' + "\t".join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) )
else:
logger.info(f'''layer {row + 1}:\t''' + "\t".join(f'''{x:d}''' for x in tensor[row].cpu().data ) )
def _a ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=False ) -> Tuple:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = model.config.num_hidden_layers, model.config.num_attention_heads
SCREAMING_SNAKE_CASE__ : List[Any] = torch.zeros(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).to(args.device )
SCREAMING_SNAKE_CASE__ : int = torch.zeros(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).to(args.device )
if head_mask is None:
SCREAMING_SNAKE_CASE__ : List[str] = torch.ones(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).to(args.device )
head_mask.requires_grad_(requires_grad=SCREAMING_SNAKE_CASE__ )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
SCREAMING_SNAKE_CASE__ : Optional[Any] = None
SCREAMING_SNAKE_CASE__ : Optional[int] = 0.0
SCREAMING_SNAKE_CASE__ : Dict = 0.0
for step, inputs in enumerate(tqdm(SCREAMING_SNAKE_CASE__ , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tuple(t.to(args.device ) for t in inputs )
((SCREAMING_SNAKE_CASE__) ,) : Union[str, Any] = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
SCREAMING_SNAKE_CASE__ : Tuple = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Any = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(SCREAMING_SNAKE_CASE__ ):
SCREAMING_SNAKE_CASE__ : List[str] = entropy(attn.detach() , SCREAMING_SNAKE_CASE__ )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(SCREAMING_SNAKE_CASE__ ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
SCREAMING_SNAKE_CASE__ : Optional[Any] = 2
SCREAMING_SNAKE_CASE__ : List[str] = torch.pow(torch.pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-2_0
if not args.dont_normalize_global_importance:
SCREAMING_SNAKE_CASE__ : str = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info("Attention entropies" )
print_ad_tensor(SCREAMING_SNAKE_CASE__ )
if compute_importance:
logger.info("Head importance scores" )
print_ad_tensor(SCREAMING_SNAKE_CASE__ )
logger.info("Head ranked by importance scores" )
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.arange(
head_importance.numel() , device=args.device )
SCREAMING_SNAKE_CASE__ : str = head_ranks.view_as(SCREAMING_SNAKE_CASE__ )
print_ad_tensor(SCREAMING_SNAKE_CASE__ )
return attn_entropy, head_importance, total_loss
def _a ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = compute_heads_importance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compute_entropy=SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : List[str] = 1 / loss # instead of downsteam score use the LM loss
logger.info("Pruning: original score: %f, threshold: %f" , SCREAMING_SNAKE_CASE__ , original_score * args.masking_threshold )
SCREAMING_SNAKE_CASE__ : List[str] = torch.ones_like(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Optional[int] = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
SCREAMING_SNAKE_CASE__ : Any = original_score
while current_score >= original_score * args.masking_threshold:
SCREAMING_SNAKE_CASE__ : str = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
SCREAMING_SNAKE_CASE__ : Optional[Any] = float("Inf" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = head_importance.view(-1 ).sort()[1]
if len(SCREAMING_SNAKE_CASE__ ) <= num_to_mask:
print("BREAK BY num_to_mask" )
break
# mask heads
SCREAMING_SNAKE_CASE__ : str = current_heads_to_mask[:num_to_mask]
logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) )
SCREAMING_SNAKE_CASE__ : str = new_head_mask.view(-1 )
SCREAMING_SNAKE_CASE__ : List[Any] = 0.0
SCREAMING_SNAKE_CASE__ : List[str] = new_head_mask.view_as(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = new_head_mask.clone().detach()
print_ad_tensor(SCREAMING_SNAKE_CASE__ )
# Compute metric and head importance again
SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = compute_heads_importance(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compute_entropy=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : int = 1 / loss
logger.info(
"Masking: current score: %f, remaining heads %d (%.1f percents)" , SCREAMING_SNAKE_CASE__ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , )
logger.info("Final head mask" )
print_ad_tensor(SCREAMING_SNAKE_CASE__ )
np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() )
return head_mask
def _a ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Union[str, Any] = datetime.now()
SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[Any] = compute_heads_importance(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compute_entropy=SCREAMING_SNAKE_CASE__ , compute_importance=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : int = 1 / loss
SCREAMING_SNAKE_CASE__ : Tuple = datetime.now() - before_time
SCREAMING_SNAKE_CASE__ : Union[str, Any] = sum(p.numel() for p in model.parameters() )
SCREAMING_SNAKE_CASE__ : Tuple = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(SCREAMING_SNAKE_CASE__ ) )
}
for k, v in heads_to_prune.items():
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
SCREAMING_SNAKE_CASE__ : Dict = [
v,
]
assert sum(len(SCREAMING_SNAKE_CASE__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : List[Any] = sum(p.numel() for p in model.parameters() )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = datetime.now()
SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[Any] = compute_heads_importance(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compute_entropy=SCREAMING_SNAKE_CASE__ , compute_importance=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ , actually_pruned=SCREAMING_SNAKE_CASE__ , )
SCREAMING_SNAKE_CASE__ : Tuple = 1 / loss
SCREAMING_SNAKE_CASE__ : Dict = datetime.now() - before_time
logger.info(
"Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , pruned_num_params / original_num_params * 1_00 , )
logger.info("Pruning: score with masking: %f score with pruning: %f" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 1_00 )
save_model(SCREAMING_SNAKE_CASE__ , args.output_dir )
def _a ( ) -> str:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--data_dir" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , )
parser.add_argument(
"--model_name_or_path" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="Path to pretrained model or model identifier from huggingface.co/models" , )
parser.add_argument(
"--output_dir" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="The output directory where the model predictions and checkpoints will be written." , )
# Other parameters
parser.add_argument(
"--config_name" , default="" , type=SCREAMING_SNAKE_CASE__ , help="Pretrained config name or path if not the same as model_name_or_path" , )
parser.add_argument(
"--tokenizer_name" , default="" , type=SCREAMING_SNAKE_CASE__ , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , )
parser.add_argument(
"--cache_dir" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="Where do you want to store the pre-trained models downloaded from s3" , )
parser.add_argument(
"--data_subset" , type=SCREAMING_SNAKE_CASE__ , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." )
parser.add_argument(
"--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" )
parser.add_argument(
"--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" )
parser.add_argument(
"--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" )
parser.add_argument(
"--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , )
parser.add_argument(
"--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." )
parser.add_argument(
"--masking_threshold" , default=0.9 , type=SCREAMING_SNAKE_CASE__ , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , )
parser.add_argument(
"--masking_amount" , default=0.1 , type=SCREAMING_SNAKE_CASE__ , help="Amount to heads to masking at each masking step." )
parser.add_argument("--metric_name" , default="acc" , type=SCREAMING_SNAKE_CASE__ , help="Metric to use for head masking." )
parser.add_argument(
"--max_seq_length" , default=1_28 , type=SCREAMING_SNAKE_CASE__ , help=(
"The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, sequences shorter padded."
) , )
parser.add_argument("--batch_size" , default=1 , type=SCREAMING_SNAKE_CASE__ , help="Batch size." )
parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE__ , default=42 )
parser.add_argument("--local_rank" , type=SCREAMING_SNAKE_CASE__ , default=-1 , help="local_rank for distributed training on gpus" )
parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" )
parser.add_argument("--server_ip" , type=SCREAMING_SNAKE_CASE__ , default="" , help="Can be used for distant debugging." )
parser.add_argument("--server_port" , type=SCREAMING_SNAKE_CASE__ , default="" , help="Can be used for distant debugging." )
SCREAMING_SNAKE_CASE__ : Tuple = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach" )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE__ )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" )
SCREAMING_SNAKE_CASE__ : Tuple = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
SCREAMING_SNAKE_CASE__ : Dict = torch.device("cuda" , args.local_rank )
SCREAMING_SNAKE_CASE__ : Optional[int] = 1
torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
SCREAMING_SNAKE_CASE__ : str = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
SCREAMING_SNAKE_CASE__ : Optional[Any] = nn.parallel.DistributedDataParallel(
SCREAMING_SNAKE_CASE__ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=SCREAMING_SNAKE_CASE__ )
elif args.n_gpu > 1:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = nn.DataParallel(SCREAMING_SNAKE_CASE__ )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ )
torch.save(SCREAMING_SNAKE_CASE__ , os.path.join(args.output_dir , "run_args.bin" ) )
logger.info("Training/evaluation parameters %s" , SCREAMING_SNAKE_CASE__ )
# Prepare dataset
SCREAMING_SNAKE_CASE__ : List[Any] = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
SCREAMING_SNAKE_CASE__ : str = (torch.from_numpy(SCREAMING_SNAKE_CASE__ ),)
SCREAMING_SNAKE_CASE__ : str = TensorDataset(*SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = RandomSampler(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
SCREAMING_SNAKE_CASE__ : Optional[int] = mask_heads(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
prune_heads(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 191 |
def _a ( SCREAMING_SNAKE_CASE__ : str ) -> str:
'''simple docstring'''
if not all(char in "01" for char in bin_string ):
raise ValueError("Non-binary value was passed to the function" )
if not bin_string:
raise ValueError("Empty string was passed to the function" )
SCREAMING_SNAKE_CASE__ : List[Any] = ""
while len(SCREAMING_SNAKE_CASE__ ) % 3 != 0:
SCREAMING_SNAKE_CASE__ : str = "0" + bin_string
SCREAMING_SNAKE_CASE__ : List[Any] = [
bin_string[index : index + 3]
for index in range(len(SCREAMING_SNAKE_CASE__ ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
SCREAMING_SNAKE_CASE__ : List[Any] = 0
for index, val in enumerate(SCREAMING_SNAKE_CASE__ ):
oct_val += int(2 ** (2 - index) * int(SCREAMING_SNAKE_CASE__ ) )
oct_string += str(SCREAMING_SNAKE_CASE__ )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 191 | 1 |
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def __UpperCAmelCase ( a_):
return (data["data"], data["target"])
def __UpperCAmelCase ( a_ , a_ , a_):
snake_case_ = XGBRegressor(verbosity=0 , random_state=42)
xgb.fit(a_ , a_)
# Predict target for test data
snake_case_ = xgb.predict(a_)
snake_case_ = predictions.reshape(len(a_) , 1)
return predictions
def __UpperCAmelCase ( ):
snake_case_ = fetch_california_housing()
snake_case_ , snake_case_ = data_handling(a_)
snake_case_ , snake_case_ , snake_case_ , snake_case_ = train_test_split(
a_ , a_ , test_size=0.25 , random_state=1)
snake_case_ = xgboost(a_ , a_ , a_)
# Error printing
print(f'''Mean Absolute Error : {mean_absolute_error(a_ , a_)}''')
print(f'''Mean Square Error : {mean_squared_error(a_ , a_)}''')
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 178 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowercase = logging.get_logger(__name__)
def __UpperCAmelCase ( a_ , a_=False):
snake_case_ = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith('head'):
snake_case_ = 'segformer.encoder.' + key
if key.startswith('backbone'):
snake_case_ = key.replace('backbone' , 'segformer.encoder')
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
snake_case_ = key[key.find('patch_embed') + len('patch_embed')]
snake_case_ = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(a_)-1}''')
if "norm" in key:
snake_case_ = key.replace('norm' , 'layer_norm')
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
snake_case_ = key[key.find('segformer.encoder.layer_norm') + len('segformer.encoder.layer_norm')]
snake_case_ = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(a_)-1}''')
if "layer_norm1" in key:
snake_case_ = key.replace('layer_norm1' , 'layer_norm_1')
if "layer_norm2" in key:
snake_case_ = key.replace('layer_norm2' , 'layer_norm_2')
if "block" in key:
# replace for example block1 by block.0
snake_case_ = key[key.find('block') + len('block')]
snake_case_ = key.replace(f'''block{idx}''' , f'''block.{int(a_)-1}''')
if "attn.q" in key:
snake_case_ = key.replace('attn.q' , 'attention.self.query')
if "attn.proj" in key:
snake_case_ = key.replace('attn.proj' , 'attention.output.dense')
if "attn" in key:
snake_case_ = key.replace('attn' , 'attention.self')
if "fc1" in key:
snake_case_ = key.replace('fc1' , 'dense1')
if "fc2" in key:
snake_case_ = key.replace('fc2' , 'dense2')
if "linear_pred" in key:
snake_case_ = key.replace('linear_pred' , 'classifier')
if "linear_fuse" in key:
snake_case_ = key.replace('linear_fuse.conv' , 'linear_fuse')
snake_case_ = key.replace('linear_fuse.bn' , 'batch_norm')
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
snake_case_ = key[key.find('linear_c') + len('linear_c')]
snake_case_ = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(a_)-1}''')
if key.startswith('head'):
snake_case_ = key.replace('head' , 'classifier')
snake_case_ = value
return new_state_dict
def __UpperCAmelCase ( a_ , a_):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks):
for j in range(config.depths[i]):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
snake_case_ = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''')
snake_case_ = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''')
# next, add keys and values (in that order) to the state dict
snake_case_ = kv_weight[
: config.hidden_sizes[i], :
]
snake_case_ = kv_bias[: config.hidden_sizes[i]]
snake_case_ = kv_weight[
config.hidden_sizes[i] :, :
]
snake_case_ = kv_bias[
config.hidden_sizes[i] :
]
def __UpperCAmelCase ( ):
snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
snake_case_ = Image.open(requests.get(a_ , stream=a_).raw)
return image
@torch.no_grad()
def __UpperCAmelCase ( a_ , a_ , a_):
snake_case_ = SegformerConfig()
snake_case_ = False
# set attributes based on model_name
snake_case_ = 'huggingface/label-files'
if "segformer" in model_name:
snake_case_ = model_name[len('segformer.') : len('segformer.') + 2]
if "ade" in model_name:
snake_case_ = 1_50
snake_case_ = 'ade20k-id2label.json'
snake_case_ = (1, 1_50, 1_28, 1_28)
elif "city" in model_name:
snake_case_ = 19
snake_case_ = 'cityscapes-id2label.json'
snake_case_ = (1, 19, 1_28, 1_28)
else:
raise ValueError(f'''Model {model_name} not supported''')
elif "mit" in model_name:
snake_case_ = True
snake_case_ = model_name[4:6]
snake_case_ = 10_00
snake_case_ = 'imagenet-1k-id2label.json'
snake_case_ = (1, 10_00)
else:
raise ValueError(f'''Model {model_name} not supported''')
# set config attributes
snake_case_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset') , 'r'))
snake_case_ = {int(a_): v for k, v in idalabel.items()}
snake_case_ = idalabel
snake_case_ = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
snake_case_ = [64, 1_28, 3_20, 5_12]
snake_case_ = 2_56
elif size == "b2":
snake_case_ = [64, 1_28, 3_20, 5_12]
snake_case_ = 7_68
snake_case_ = [3, 4, 6, 3]
elif size == "b3":
snake_case_ = [64, 1_28, 3_20, 5_12]
snake_case_ = 7_68
snake_case_ = [3, 4, 18, 3]
elif size == "b4":
snake_case_ = [64, 1_28, 3_20, 5_12]
snake_case_ = 7_68
snake_case_ = [3, 8, 27, 3]
elif size == "b5":
snake_case_ = [64, 1_28, 3_20, 5_12]
snake_case_ = 7_68
snake_case_ = [3, 6, 40, 3]
else:
raise ValueError(f'''Size {size} not supported''')
# load image processor (only resize + normalize)
snake_case_ = SegformerImageProcessor(
image_scale=(5_12, 5_12) , keep_ratio=a_ , align=a_ , do_random_crop=a_)
# prepare image
snake_case_ = prepare_img()
snake_case_ = image_processor(images=a_ , return_tensors='pt').pixel_values
logger.info(f'''Converting model {model_name}...''')
# load original state dict
if encoder_only:
snake_case_ = torch.load(a_ , map_location=torch.device('cpu'))
else:
snake_case_ = torch.load(a_ , map_location=torch.device('cpu'))['state_dict']
# rename keys
snake_case_ = rename_keys(a_ , encoder_only=a_)
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(a_ , a_)
# create HuggingFace model and load state dict
if encoder_only:
snake_case_ = False
snake_case_ = SegformerForImageClassification(a_)
else:
snake_case_ = SegformerForSemanticSegmentation(a_)
model.load_state_dict(a_)
model.eval()
# forward pass
snake_case_ = model(a_)
snake_case_ = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
snake_case_ = torch.tensor(
[
[[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]],
[[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]],
[[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]],
])
elif model_name == "segformer.b1.512x512.ade.160k":
snake_case_ = torch.tensor(
[
[[-7.58_20, -8.72_31, -8.32_15], [-8.06_00, -10.35_29, -10.03_04], [-7.52_08, -9.41_03, -9.62_39]],
[[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]],
[[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]],
])
elif model_name == "segformer.b2.512x512.ade.160k":
snake_case_ = torch.tensor(
[
[[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]],
[[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]],
[[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]],
])
elif model_name == "segformer.b3.512x512.ade.160k":
snake_case_ = torch.tensor(
[
[[-9.08_78, -10.20_81, -10.18_91], [-9.31_44, -10.79_41, -10.98_43], [-9.22_94, -10.38_55, -10.57_04]],
[[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]],
[[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]],
])
elif model_name == "segformer.b4.512x512.ade.160k":
snake_case_ = torch.tensor(
[
[[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]],
[[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]],
[[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]],
])
elif model_name == "segformer.b5.640x640.ade.160k":
snake_case_ = torch.tensor(
[
[[-9.55_24, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.58_42, -12.88_51, -13.94_14]],
[[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]],
[[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]],
])
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
snake_case_ = torch.tensor(
[
[[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]],
[[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]],
[[0.53_74, 0.10_67, -0.47_42], [0.11_41, -0.22_55, -0.70_99], [-0.30_00, -0.59_24, -1.31_05]],
])
elif model_name == "segformer.b0.512x1024.city.160k":
snake_case_ = torch.tensor(
[
[[-7.82_17, -9.87_67, -10.17_17], [-9.44_38, -10.90_58, -11.40_47], [-9.79_39, -12.34_95, -12.10_79]],
[[-7.15_14, -9.53_36, -10.08_60], [-9.77_76, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]],
[[0.30_21, 0.08_05, -0.23_10], [-0.03_28, -0.16_05, -0.27_14], [-0.14_08, -0.54_77, -0.69_76]],
])
elif model_name == "segformer.b0.640x1280.city.160k":
snake_case_ = torch.tensor(
[
[
[-1.1_372E01, -1.2_787E01, -1.3_477E01],
[-1.2_536E01, -1.4_194E01, -1.4_409E01],
[-1.3_217E01, -1.4_888E01, -1.5_327E01],
],
[
[-1.4_791E01, -1.7_122E01, -1.8_277E01],
[-1.7_163E01, -1.9_192E01, -1.9_533E01],
[-1.7_897E01, -1.9_991E01, -2.0_315E01],
],
[
[7.6_723E-01, 4.1_921E-01, -7.7_878E-02],
[4.7_772E-01, 9.5_557E-03, -2.8_082E-01],
[3.6_032E-01, -2.4_826E-01, -5.1_168E-01],
],
])
elif model_name == "segformer.b0.768x768.city.160k":
snake_case_ = torch.tensor(
[
[[-9.49_59, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]],
[[-9.89_05, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]],
[[0.22_13, 0.01_92, -0.24_66], [-0.17_31, -0.42_13, -0.48_74], [-0.31_26, -0.65_41, -1.13_89]],
])
elif model_name == "segformer.b1.1024x1024.city.160k":
snake_case_ = torch.tensor(
[
[[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]],
[[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]],
[[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]],
])
elif model_name == "segformer.b2.1024x1024.city.160k":
snake_case_ = torch.tensor(
[
[[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]],
[[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]],
[[-4.51_78, -5.50_37, -6.51_09], [-5.08_84, -7.21_74, -8.03_34], [-4.41_56, -5.81_17, -7.29_70]],
])
elif model_name == "segformer.b3.1024x1024.city.160k":
snake_case_ = torch.tensor(
[
[[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]],
[[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]],
[[-4.73_49, -4.95_88, -5.09_66], [-4.32_10, -6.93_25, -7.25_91], [-3.43_12, -4.74_84, -7.19_17]],
])
elif model_name == "segformer.b4.1024x1024.city.160k":
snake_case_ = torch.tensor(
[
[[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]],
[[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]],
[[1.04_91, 0.82_89, 1.03_10], [1.10_44, 0.52_19, 0.80_55], [1.08_99, 0.69_26, 0.55_90]],
])
elif model_name == "segformer.b5.1024x1024.city.160k":
snake_case_ = torch.tensor(
[
[[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]],
[[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]],
[[-1.79_90, -2.09_51, -1.77_84], [-2.63_97, -3.82_45, -3.96_86], [-1.52_64, -2.81_26, -2.93_16]],
])
else:
snake_case_ = logits.argmax(-1).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx])
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1E-2)
# finally, save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''')
Path(a_).mkdir(exist_ok=a_)
model.save_pretrained(a_)
image_processor.save_pretrained(a_)
if __name__ == "__main__":
lowercase = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="segformer.b0.512x512.ade.160k",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
lowercase = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 178 | 1 |
"""simple docstring"""
import importlib
import shutil
import threading
import warnings
from typing import List
import fsspec
import fsspec.asyn
from . import compression
from .hffilesystem import HfFileSystem
SCREAMING_SNAKE_CASE = importlib.util.find_spec("s3fs") is not None
if _has_safs:
from .safilesystem import SaFileSystem # noqa: F401
SCREAMING_SNAKE_CASE = [
compression.BzaFileSystem,
compression.GzipFileSystem,
compression.LzaFileSystem,
compression.XzFileSystem,
compression.ZstdFileSystem,
]
# Register custom filesystems
for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]:
if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class:
warnings.warn(f'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.')
fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True)
def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
if "://" in dataset_path:
A__ = dataset_path.split("://" )[1]
return dataset_path
def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool:
if fs is not None and fs.protocol != "file":
return True
else:
return False
def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
A__ = not is_remote_filesystem(lowercase_ )
if is_local:
# LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory
shutil.move(fs._strip_protocol(lowercase_ ) , fs._strip_protocol(lowercase_ ) )
else:
fs.mv(lowercase_ , lowercase_ , recursive=lowercase_ )
def _SCREAMING_SNAKE_CASE ( ) -> None:
if hasattr(fsspec.asyn , "reset_lock" ):
# for future fsspec>2022.05.0
fsspec.asyn.reset_lock()
else:
A__ = None
A__ = None
A__ = threading.Lock()
| 355 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {
"SCUT-DLVCLab/lilt-roberta-en-base": (
"https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json"
),
}
class UpperCAmelCase_ ( A_ ):
lowercase__ = '''lilt'''
def __init__( self : List[str] , snake_case_ : Any=30_522 , snake_case_ : Optional[Any]=768 , snake_case_ : Union[str, Any]=12 , snake_case_ : Union[str, Any]=12 , snake_case_ : Any=3_072 , snake_case_ : List[str]="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : List[Any]=0.1 , snake_case_ : Any=512 , snake_case_ : Optional[Any]=2 , snake_case_ : List[str]=0.02 , snake_case_ : Optional[Any]=1e-12 , snake_case_ : List[Any]=0 , snake_case_ : Any="absolute" , snake_case_ : str=None , snake_case_ : int=4 , snake_case_ : int=1_024 , **snake_case_ : Tuple , ) -> List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=snake_case_ , **snake_case_ )
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = intermediate_size
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = type_vocab_size
A__ = initializer_range
A__ = layer_norm_eps
A__ = position_embedding_type
A__ = classifier_dropout
A__ = channel_shrink_ratio
A__ = max_ad_position_embeddings
| 230 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase_ : Any = {
"""configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""],
"""configuration_data2vec_text""": [
"""DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""Data2VecTextConfig""",
"""Data2VecTextOnnxConfig""",
],
"""configuration_data2vec_vision""": [
"""DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""Data2VecVisionConfig""",
"""Data2VecVisionOnnxConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Optional[int] = [
"""DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Data2VecAudioForAudioFrameClassification""",
"""Data2VecAudioForCTC""",
"""Data2VecAudioForSequenceClassification""",
"""Data2VecAudioForXVector""",
"""Data2VecAudioModel""",
"""Data2VecAudioPreTrainedModel""",
]
UpperCAmelCase_ : Union[str, Any] = [
"""DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Data2VecTextForCausalLM""",
"""Data2VecTextForMaskedLM""",
"""Data2VecTextForMultipleChoice""",
"""Data2VecTextForQuestionAnswering""",
"""Data2VecTextForSequenceClassification""",
"""Data2VecTextForTokenClassification""",
"""Data2VecTextModel""",
"""Data2VecTextPreTrainedModel""",
]
UpperCAmelCase_ : Optional[Any] = [
"""DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Data2VecVisionForImageClassification""",
"""Data2VecVisionForMaskedImageModeling""",
"""Data2VecVisionForSemanticSegmentation""",
"""Data2VecVisionModel""",
"""Data2VecVisionPreTrainedModel""",
]
if is_tf_available():
UpperCAmelCase_ : Any = [
"""TFData2VecVisionForImageClassification""",
"""TFData2VecVisionForSemanticSegmentation""",
"""TFData2VecVisionModel""",
"""TFData2VecVisionPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig
from .configuration_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecTextConfig,
DataaVecTextOnnxConfig,
)
from .configuration_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecVisionConfig,
DataaVecVisionOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dataavec_audio import (
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecAudioForAudioFrameClassification,
DataaVecAudioForCTC,
DataaVecAudioForSequenceClassification,
DataaVecAudioForXVector,
DataaVecAudioModel,
DataaVecAudioPreTrainedModel,
)
from .modeling_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecTextForCausalLM,
DataaVecTextForMaskedLM,
DataaVecTextForMultipleChoice,
DataaVecTextForQuestionAnswering,
DataaVecTextForSequenceClassification,
DataaVecTextForTokenClassification,
DataaVecTextModel,
DataaVecTextPreTrainedModel,
)
from .modeling_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecVisionForImageClassification,
DataaVecVisionForMaskedImageModeling,
DataaVecVisionForSemanticSegmentation,
DataaVecVisionModel,
DataaVecVisionPreTrainedModel,
)
if is_tf_available():
from .modeling_tf_dataavec_vision import (
TFDataaVecVisionForImageClassification,
TFDataaVecVisionForSemanticSegmentation,
TFDataaVecVisionModel,
TFDataaVecVisionPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 91 |
"""simple docstring"""
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def _A (__a , __a , __a ) -> Dict:
"""simple docstring"""
if gpta_config_file == "":
SCREAMING_SNAKE_CASE_ : Optional[Any] = GPTaConfig()
else:
SCREAMING_SNAKE_CASE_ : Tuple = GPTaConfig.from_json_file(__a )
SCREAMING_SNAKE_CASE_ : Optional[int] = GPTaModel(__a )
# Load weights from numpy
load_tf_weights_in_gpta(__a , __a , __a )
# Save pytorch-model
SCREAMING_SNAKE_CASE_ : List[str] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME
SCREAMING_SNAKE_CASE_ : List[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
print(f'Save PyTorch model to {pytorch_weights_dump_path}' )
torch.save(model.state_dict() , __a )
print(f'Save configuration file to {pytorch_config_dump_path}' )
with open(__a , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
UpperCAmelCase_ : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--gpt2_config_file""",
default="""""",
type=str,
help=(
"""An optional config json file corresponding to the pre-trained OpenAI model. \n"""
"""This specifies the model architecture."""
),
)
UpperCAmelCase_ : Union[str, Any] = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 91 | 1 |
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def lowerCamelCase_ ( _a , _a , _a ):
"""simple docstring"""
lowerCAmelCase__ : Any = AlbertConfig.from_json_file(_a )
print(f'Building PyTorch model from configuration: {config}' )
lowerCAmelCase__ : List[str] = AlbertForPreTraining(_a )
# Load weights from tf checkpoint
load_tf_weights_in_albert(_a , _a , _a )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict() , _a )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--albert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained ALBERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
lowerCamelCase = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 211 |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowerCamelCase_ ( _a ):
"""simple docstring"""
lowerCAmelCase__ : Any = filter(lambda _a : p.requires_grad , model.parameters() )
lowerCAmelCase__ : str = sum([np.prod(p.size() ) for p in model_parameters] )
return params
lowerCamelCase = logging.getLogger(__name__)
def lowerCamelCase_ ( _a , _a ):
"""simple docstring"""
if metric == "rouge2":
lowerCAmelCase__ : Optional[int] = '''{val_avg_rouge2:.4f}-{step_count}'''
elif metric == "bleu":
lowerCAmelCase__ : Optional[int] = '''{val_avg_bleu:.4f}-{step_count}'''
elif metric == "em":
lowerCAmelCase__ : List[Any] = '''{val_avg_em:.4f}-{step_count}'''
else:
raise NotImplementedError(
f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'
''' function.''' )
lowerCAmelCase__ : Dict = ModelCheckpoint(
dirpath=_a , filename=_a , monitor=f'val_{metric}' , mode='''max''' , save_top_k=3 , every_n_epochs=1 , )
return checkpoint_callback
def lowerCamelCase_ ( _a , _a ):
"""simple docstring"""
return EarlyStopping(
monitor=f'val_{metric}' , mode='''min''' if '''loss''' in metric else '''max''' , patience=_a , verbose=_a , )
class _a ( pl.Callback):
def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Any )-> Optional[int]:
lowerCAmelCase__ : Dict = {F'lr_group_{i}': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_SCREAMING_SNAKE_CASE )
@rank_zero_only
def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : pl.Trainer , _SCREAMING_SNAKE_CASE : pl.LightningModule , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str]=True )-> None:
logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' )
lowerCAmelCase__ : List[Any] = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} )
# Log results
lowerCAmelCase__ : List[Any] = Path(pl_module.hparams.output_dir )
if type_path == "test":
lowerCAmelCase__ : Optional[int] = od / '''test_results.txt'''
lowerCAmelCase__ : Tuple = od / '''test_generations.txt'''
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
lowerCAmelCase__ : int = od / F'{type_path}_results/{trainer.global_step:05d}.txt'
lowerCAmelCase__ : int = od / F'{type_path}_generations/{trainer.global_step:05d}.txt'
results_file.parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
generations_file.parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(_SCREAMING_SNAKE_CASE , '''a+''' ) as writer:
for key in sorted(_SCREAMING_SNAKE_CASE ):
if key in ["log", "progress_bar", "preds"]:
continue
lowerCAmelCase__ : Optional[int] = metrics[key]
if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
lowerCAmelCase__ : List[str] = val.item()
lowerCAmelCase__ : List[str] = F'{key}: {val:.6f}\n'
writer.write(_SCREAMING_SNAKE_CASE )
if not save_generations:
return
if "preds" in metrics:
lowerCAmelCase__ : Dict = '''\n'''.join(metrics['''preds'''] )
generations_file.open('''w+''' ).write(_SCREAMING_SNAKE_CASE )
@rank_zero_only
def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] )-> Optional[int]:
try:
lowerCAmelCase__ : Tuple = pl_module.model.model.num_parameters()
except AttributeError:
lowerCAmelCase__ : Optional[Any] = pl_module.model.num_parameters()
lowerCAmelCase__ : Dict = count_trainable_parameters(_SCREAMING_SNAKE_CASE )
# mp stands for million parameters
trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6} )
@rank_zero_only
def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : pl.Trainer , _SCREAMING_SNAKE_CASE : pl.LightningModule )-> Optional[Any]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''test''' )
@rank_zero_only
def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : pl.Trainer , _SCREAMING_SNAKE_CASE : List[Any] )-> List[Any]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 211 | 1 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _a ( __a ):
__a : Optional[int] = ["""image_processor""", """tokenizer"""]
__a : str = """CLIPImageProcessor"""
__a : Optional[Any] = ("""CLIPTokenizer""", """CLIPTokenizerFast""")
def __init__( self : Optional[int] , lowercase : int=None , lowercase : Tuple=None , **lowercase : List[str] ):
'''simple docstring'''
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , lowercase , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(lowercase , lowercase )
def __call__( self : int , lowercase : List[str]=None , lowercase : Dict=None , lowercase : Tuple=None , **lowercase : int ):
'''simple docstring'''
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase )
if images is not None:
UpperCAmelCase = self.image_processor(lowercase , return_tensors=lowercase , **lowercase )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase )
def A ( self : int , *lowercase : Any , **lowercase : Union[str, Any] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*lowercase , **lowercase )
def A ( self : Optional[Any] , *lowercase : Any , **lowercase : Union[str, Any] ):
'''simple docstring'''
return self.tokenizer.decode(*lowercase , **lowercase )
@property
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def A ( self : List[Any] ):
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase , )
return self.image_processor_class
@property
def A ( self : Any ):
'''simple docstring'''
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase , )
return self.image_processor
| 34 |
import unittest
from transformers.testing_utils import CaptureStdout
from transformers.tools.python_interpreter import evaluate
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
return x + 2
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : Optional[Any] ) ->int:
snake_case_ = '''x = 3'''
snake_case_ = {}
snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase )
assert result == 3
self.assertDictEqual(_UpperCamelCase , {'''x''': 3} )
snake_case_ = '''x = y'''
snake_case_ = {'''y''': 5}
snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(_UpperCamelCase , {'''x''': 5, '''y''': 5} )
def snake_case__( self : Dict ) ->Optional[int]:
snake_case_ = '''y = add_two(x)'''
snake_case_ = {'''x''': 3}
snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase )
assert result == 5
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} )
# Won't work without the tool
with CaptureStdout() as out:
snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase )
assert result is None
assert "tried to execute add_two" in out.out
def snake_case__( self : Union[str, Any] ) ->Dict:
snake_case_ = '''x = 3'''
snake_case_ = {}
snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase )
assert result == 3
self.assertDictEqual(_UpperCamelCase , {'''x''': 3} )
def snake_case__( self : Optional[int] ) ->Optional[int]:
snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}'''
snake_case_ = {'''x''': 3}
snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase )
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} )
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} )
def snake_case__( self : Dict ) ->str:
snake_case_ = '''x = 3\ny = 5'''
snake_case_ = {}
snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} )
def snake_case__( self : str ) ->Tuple:
snake_case_ = '''text = f\'This is x: {x}.\''''
snake_case_ = {'''x''': 3}
snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase )
# evaluate returns the value of the last assignment.
assert result == "This is x: 3."
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''text''': '''This is x: 3.'''} )
def snake_case__( self : Optional[Any] ) ->List[str]:
snake_case_ = '''if x <= 3:\n y = 2\nelse:\n y = 5'''
snake_case_ = {'''x''': 3}
snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase )
# evaluate returns the value of the last assignment.
assert result == 2
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 2} )
snake_case_ = {'''x''': 8}
snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(_UpperCamelCase , {'''x''': 8, '''y''': 5} )
def snake_case__( self : str ) ->str:
snake_case_ = '''test_list = [x, add_two(x)]'''
snake_case_ = {'''x''': 3}
snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase )
self.assertListEqual(_UpperCamelCase , [3, 5] )
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} )
def snake_case__( self : Any ) ->List[Any]:
snake_case_ = '''y = x'''
snake_case_ = {'''x''': 3}
snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase )
assert result == 3
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 3} )
def snake_case__( self : Optional[int] ) ->Dict:
snake_case_ = '''test_list = [x, add_two(x)]\ntest_list[1]'''
snake_case_ = {'''x''': 3}
snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase )
assert result == 5
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} )
snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']'''
snake_case_ = {'''x''': 3}
snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase )
assert result == 5
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} )
def snake_case__( self : Optional[Any] ) ->int:
snake_case_ = '''x = 0\nfor i in range(3):\n x = i'''
snake_case_ = {}
snake_case_ = evaluate(_UpperCamelCase , {'''range''': range} , state=_UpperCamelCase )
assert result == 2
self.assertDictEqual(_UpperCamelCase , {'''x''': 2, '''i''': 2} ) | 8 | 0 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = GPTSanJapaneseTokenizer
_SCREAMING_SNAKE_CASE = False
_SCREAMING_SNAKE_CASE = {"""do_clean_text""": False, """add_prefix_space""": False}
def A ( self : Any ):
"""simple docstring"""
super().setUp()
# fmt: off
UpperCamelCase = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>']
# fmt: on
UpperCamelCase = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀
UpperCamelCase = {'unk_token': '<unk>'}
UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
with open(self.emoji_file , 'w' ) as emoji_writer:
emoji_writer.write(json.dumps(UpperCamelCase__ ) )
def A ( self : Optional[Any] , **UpperCamelCase__ : Dict ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ )
def A ( self : Optional[Any] , UpperCamelCase__ : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = 'こんにちは、世界。 \nこんばんは、㔺界。😀'
UpperCamelCase = 'こんにちは、世界。 \nこんばんは、世界。😀'
return input_text, output_text
def A ( self : Any , UpperCamelCase__ : List[Any] ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.get_input_output_texts(UpperCamelCase__ )
UpperCamelCase = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ )
UpperCamelCase = tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ )
return text, ids
def A ( self : Union[str, Any] ):
"""simple docstring"""
pass # TODO add if relevant
def A ( self : Optional[int] ):
"""simple docstring"""
pass # TODO add if relevant
def A ( self : Union[str, Any] ):
"""simple docstring"""
pass # TODO add if relevant
def A ( self : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase = self.get_tokenizer()
# Testing tokenization
UpperCamelCase = 'こんにちは、世界。 こんばんは、㔺界。'
UpperCamelCase = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。']
UpperCamelCase = tokenizer.tokenize(UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
# Testing conversion to ids without special tokens
UpperCamelCase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
UpperCamelCase = tokenizer.convert_tokens_to_ids(UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
# Testing conversion to ids with special tokens
UpperCamelCase = tokens + [tokenizer.unk_token]
UpperCamelCase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9]
UpperCamelCase = tokenizer.convert_tokens_to_ids(UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
def A ( self : str ):
"""simple docstring"""
UpperCamelCase = self.get_tokenizer()
# Testing tokenization
UpperCamelCase = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。'
UpperCamelCase = 'こんにちは、、、、世界。こんばんは、、、、世界。'
UpperCamelCase = tokenizer.encode(UpperCamelCase__ )
UpperCamelCase = tokenizer.decode(UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
@slow
def A ( self : List[Any] ):
"""simple docstring"""
UpperCamelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
# Testing tokenization
UpperCamelCase = 'こんにちは、世界。'
UpperCamelCase = 'こんばんは、㔺界。😀'
UpperCamelCase = 'こんにちは、世界。こんばんは、世界。😀'
UpperCamelCase = tokenizer.encode(prefix_text + input_text )
UpperCamelCase = tokenizer.encode('' , prefix_text=prefix_text + input_text )
UpperCamelCase = tokenizer.encode(UpperCamelCase__ , prefix_text=UpperCamelCase__ )
UpperCamelCase = tokenizer.decode(UpperCamelCase__ )
UpperCamelCase = tokenizer.decode(UpperCamelCase__ )
UpperCamelCase = tokenizer.decode(UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
@slow
def A ( self : List[Any] ):
"""simple docstring"""
UpperCamelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
# Testing tokenization
UpperCamelCase = 'こんにちは、世界。'
UpperCamelCase = 'こんばんは、㔺界。😀'
UpperCamelCase = len(tokenizer.encode(UpperCamelCase__ ) ) - 2
UpperCamelCase = len(tokenizer.encode(UpperCamelCase__ ) ) - 2
UpperCamelCase = [1] + [0] * (len_prefix + len_text + 1)
UpperCamelCase = [1] * (len_prefix + len_text + 1) + [0]
UpperCamelCase = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
UpperCamelCase = tokenizer(prefix_text + input_text ).token_type_ids
UpperCamelCase = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids
UpperCamelCase = tokenizer(UpperCamelCase__ , prefix_text=UpperCamelCase__ ).token_type_ids
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
@slow
def A ( self : Dict ):
"""simple docstring"""
UpperCamelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
UpperCamelCase = tokenizer.encode('あンいワ' )
UpperCamelCase = tokenizer.encode('' , prefix_text='あンいワ' )
UpperCamelCase = tokenizer.encode('いワ' , prefix_text='あン' )
self.assertEqual(tokenizer.decode(UpperCamelCase__ ) , tokenizer.decode(UpperCamelCase__ ) )
self.assertEqual(tokenizer.decode(UpperCamelCase__ ) , tokenizer.decode(UpperCamelCase__ ) )
self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token
@slow
def A ( self : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
UpperCamelCase = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']]
UpperCamelCase = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ )
UpperCamelCase = tokenizer.batch_encode_plus(UpperCamelCase__ , padding=UpperCamelCase__ )
# fmt: off
UpperCamelCase = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]]
UpperCamelCase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
UpperCamelCase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids , UpperCamelCase__ )
self.assertListEqual(x_token.token_type_ids , UpperCamelCase__ )
self.assertListEqual(x_token.attention_mask , UpperCamelCase__ )
self.assertListEqual(x_token_a.input_ids , UpperCamelCase__ )
self.assertListEqual(x_token_a.token_type_ids , UpperCamelCase__ )
self.assertListEqual(x_token_a.attention_mask , UpperCamelCase__ )
def A ( self : Dict ):
"""simple docstring"""
pass
def A ( self : Optional[int] ):
"""simple docstring"""
pass
| 249 |
'''simple docstring'''
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class SCREAMING_SNAKE_CASE ( _a ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = (UnCLIPScheduler,)
def A ( self : Union[str, Any] , **UpperCamelCase__ : Any ):
"""simple docstring"""
UpperCamelCase = {
'num_train_timesteps': 1_0_0_0,
'variance_type': 'fixed_small_log',
'clip_sample': True,
'clip_sample_range': 1.0,
'prediction_type': 'epsilon',
}
config.update(**UpperCamelCase__ )
return config
def A ( self : str ):
"""simple docstring"""
for timesteps in [1, 5, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=UpperCamelCase__ )
def A ( self : List[str] ):
"""simple docstring"""
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=UpperCamelCase__ )
def A ( self : List[Any] ):
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCamelCase__ )
def A ( self : Optional[int] ):
"""simple docstring"""
for clip_sample_range in [1, 5, 1_0, 2_0]:
self.check_over_configs(clip_sample_range=UpperCamelCase__ )
def A ( self : Tuple ):
"""simple docstring"""
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=UpperCamelCase__ )
def A ( self : Union[str, Any] ):
"""simple docstring"""
for time_step in [0, 5_0_0, 9_9_9]:
for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=UpperCamelCase__ , prev_timestep=UpperCamelCase__ )
def A ( self : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config(variance_type='fixed_small_log' )
UpperCamelCase = scheduler_class(**UpperCamelCase__ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0E-1_0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_5_4_9_6_2_5 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.9_9_9_4_9_8_7 ) ) < 1E-5
def A ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config(variance_type='learned_range' )
UpperCamelCase = scheduler_class(**UpperCamelCase__ )
UpperCamelCase = 0.5
assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase__ ) - -1_0.1_7_1_2_7_9_0 < 1E-5
assert scheduler._get_variance(4_8_7 , predicted_variance=UpperCamelCase__ ) - -5.7_9_9_8_0_5_2 < 1E-5
assert scheduler._get_variance(9_9_9 , predicted_variance=UpperCamelCase__ ) - -0.0_0_1_0_0_1_1 < 1E-5
def A ( self : int ):
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**UpperCamelCase__ )
UpperCamelCase = scheduler.timesteps
UpperCamelCase = self.dummy_model()
UpperCamelCase = self.dummy_sample_deter
UpperCamelCase = torch.manual_seed(0 )
for i, t in enumerate(UpperCamelCase__ ):
# 1. predict noise residual
UpperCamelCase = model(UpperCamelCase__ , UpperCamelCase__ )
# 2. predict previous mean of sample x_t-1
UpperCamelCase = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample
UpperCamelCase = pred_prev_sample
UpperCamelCase = torch.sum(torch.abs(UpperCamelCase__ ) )
UpperCamelCase = torch.mean(torch.abs(UpperCamelCase__ ) )
assert abs(result_sum.item() - 2_5_2.2_6_8_2_4_9_5 ) < 1E-2
assert abs(result_mean.item() - 0.3_2_8_4_7_4_3 ) < 1E-3
def A ( self : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**UpperCamelCase__ )
scheduler.set_timesteps(2_5 )
UpperCamelCase = scheduler.timesteps
UpperCamelCase = self.dummy_model()
UpperCamelCase = self.dummy_sample_deter
UpperCamelCase = torch.manual_seed(0 )
for i, t in enumerate(UpperCamelCase__ ):
# 1. predict noise residual
UpperCamelCase = model(UpperCamelCase__ , UpperCamelCase__ )
if i + 1 == timesteps.shape[0]:
UpperCamelCase = None
else:
UpperCamelCase = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
UpperCamelCase = scheduler.step(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , prev_timestep=UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample
UpperCamelCase = pred_prev_sample
UpperCamelCase = torch.sum(torch.abs(UpperCamelCase__ ) )
UpperCamelCase = torch.mean(torch.abs(UpperCamelCase__ ) )
assert abs(result_sum.item() - 2_5_8.2_0_4_4_9_8_3 ) < 1E-2
assert abs(result_mean.item() - 0.3_3_6_2_0_3_8 ) < 1E-3
def A ( self : Tuple ):
"""simple docstring"""
pass
def A ( self : Optional[int] ):
"""simple docstring"""
pass
| 249 | 1 |
"""simple docstring"""
from collections import deque
from math import floor
from random import random
from time import time
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : List[Any] ) -> str:
A = {}
def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Tuple ,A_ : List[Any] ,A_ : int=1 ) -> Optional[Any]:
if self.graph.get(A_ ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
A = [[w, v]]
if not self.graph.get(A_ ):
A = []
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]:
return list(self.graph )
def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Optional[Any] ,A_ : Dict ) -> Any:
if self.graph.get(A_ ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(A_ )
def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int=-2 ,A_ : Dict=-1 ) -> Any:
if s == d:
return []
A = []
A = []
if s == -2:
A = list(self.graph )[0]
stack.append(A_ )
visited.append(A_ )
A = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
A = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(A_ )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
A = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(A_ ) != 0:
A = stack[len(A_ ) - 1]
else:
A = ss
# check if se have reached the starting point
if len(A_ ) == 0:
return visited
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[str]=-1 ) -> Optional[int]:
if c == -1:
A = floor(random() * 1_0000 ) + 10
for i in range(A_ ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
A = floor(random() * c ) + 1
if n != i:
self.add_pair(A_ ,A_ ,1 )
def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : List[str]=-2 ) -> Tuple:
A = deque()
A = []
if s == -2:
A = list(self.graph )[0]
d.append(A_ )
visited.append(A_ )
while d:
A = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int] ) -> Dict:
A = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[str] ) -> List[str]:
return len(self.graph[u] )
def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : List[str]=-2 ) -> Optional[Any]:
A = []
A = []
if s == -2:
A = list(self.graph )[0]
stack.append(A_ )
visited.append(A_ )
A = s
A = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
A = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
A = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(A_ ) != 0:
A = stack[len(A_ ) - 1]
else:
A = ss
# check if se have reached the starting point
if len(A_ ) == 0:
return sorted_nodes
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple:
A = []
A = []
A = list(self.graph )[0]
stack.append(A_ )
visited.append(A_ )
A = -2
A = []
A = s
A = False
A = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
A = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
A = len(A_ ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
A = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
A = True
if len(A_ ) != 0:
A = stack[len(A_ ) - 1]
else:
A = False
indirect_parents.append(A_ )
A = s
A = ss
# check if se have reached the starting point
if len(A_ ) == 0:
return list(A_ )
def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]:
A = []
A = []
A = list(self.graph )[0]
stack.append(A_ )
visited.append(A_ )
A = -2
A = []
A = s
A = False
A = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
A = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
A = len(A_ ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
A = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
A = True
if len(A_ ) != 0:
A = stack[len(A_ ) - 1]
else:
A = False
indirect_parents.append(A_ )
A = s
A = ss
# check if se have reached the starting point
if len(A_ ) == 0:
return False
def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any]=-2 ,A_ : Union[str, Any]=-1 ) -> str:
A = time()
self.dfs(A_ ,A_ )
A = time()
return end - begin
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : str=-2 ) -> List[str]:
A = time()
self.bfs(A_ )
A = time()
return end - begin
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : int ) -> Dict:
A = {}
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : int=1 ) -> str:
# check if the u exists
if self.graph.get(A_ ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
A = [[w, v]]
# add the other way
if self.graph.get(A_ ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
A = [[w, u]]
def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Dict ,A_ : int ) -> int:
if self.graph.get(A_ ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(A_ )
# the other way round
if self.graph.get(A_ ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(A_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Any=-2 ,A_ : Optional[Any]=-1 ) -> Tuple:
if s == d:
return []
A = []
A = []
if s == -2:
A = list(self.graph )[0]
stack.append(A_ )
visited.append(A_ )
A = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
A = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(A_ )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
A = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(A_ ) != 0:
A = stack[len(A_ ) - 1]
else:
A = ss
# check if se have reached the starting point
if len(A_ ) == 0:
return visited
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Dict=-1 ) -> Tuple:
if c == -1:
A = floor(random() * 1_0000 ) + 10
for i in range(A_ ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
A = floor(random() * c ) + 1
if n != i:
self.add_pair(A_ ,A_ ,1 )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Union[str, Any]=-2 ) -> Union[str, Any]:
A = deque()
A = []
if s == -2:
A = list(self.graph )[0]
d.append(A_ )
visited.append(A_ )
while d:
A = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Tuple ) -> Any:
return len(self.graph[u] )
def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]:
A = []
A = []
A = list(self.graph )[0]
stack.append(A_ )
visited.append(A_ )
A = -2
A = []
A = s
A = False
A = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
A = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
A = len(A_ ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
A = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
A = True
if len(A_ ) != 0:
A = stack[len(A_ ) - 1]
else:
A = False
indirect_parents.append(A_ )
A = s
A = ss
# check if se have reached the starting point
if len(A_ ) == 0:
return list(A_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]:
A = []
A = []
A = list(self.graph )[0]
stack.append(A_ )
visited.append(A_ )
A = -2
A = []
A = s
A = False
A = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
A = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
A = len(A_ ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
A = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
A = True
if len(A_ ) != 0:
A = stack[len(A_ ) - 1]
else:
A = False
indirect_parents.append(A_ )
A = s
A = ss
# check if se have reached the starting point
if len(A_ ) == 0:
return False
def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]:
return list(self.graph )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple=-2 ,A_ : Any=-1 ) -> List[Any]:
A = time()
self.dfs(A_ ,A_ )
A = time()
return end - begin
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Union[str, Any]=-2 ) -> str:
A = time()
self.bfs(A_ )
A = time()
return end - begin | 74 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
'''facebook/deit-base-distilled-patch16-224''': (
'''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json'''
),
# See all DeiT models at https://huggingface.co/models?filter=deit
}
class lowerCAmelCase_ ( _lowercase ):
'''simple docstring'''
_lowerCamelCase: Optional[Any] = '''deit'''
def __init__( self : int ,A_ : Optional[Any]=768 ,A_ : Union[str, Any]=12 ,A_ : Dict=12 ,A_ : int=3072 ,A_ : Optional[Any]="gelu" ,A_ : Dict=0.0 ,A_ : Any=0.0 ,A_ : str=0.02 ,A_ : Tuple=1e-12 ,A_ : Union[str, Any]=224 ,A_ : Optional[Any]=16 ,A_ : List[Any]=3 ,A_ : Optional[Any]=True ,A_ : Optional[int]=16 ,**A_ : Union[str, Any] ,) -> Dict:
super().__init__(**A_ )
A = hidden_size
A = num_hidden_layers
A = num_attention_heads
A = intermediate_size
A = hidden_act
A = hidden_dropout_prob
A = attention_probs_dropout_prob
A = initializer_range
A = layer_norm_eps
A = image_size
A = patch_size
A = num_channels
A = qkv_bias
A = encoder_stride
class lowerCAmelCase_ ( _lowercase ):
'''simple docstring'''
_lowerCamelCase: int = version.parse('''1.11''' )
@property
def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> float:
return 1e-4 | 74 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a_ : List[str] = {
"""configuration_longformer""": [
"""LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""LongformerConfig""",
"""LongformerOnnxConfig""",
],
"""tokenization_longformer""": ["""LongformerTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Dict = ["""LongformerTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[str] = [
"""LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""LongformerForMaskedLM""",
"""LongformerForMultipleChoice""",
"""LongformerForQuestionAnswering""",
"""LongformerForSequenceClassification""",
"""LongformerForTokenClassification""",
"""LongformerModel""",
"""LongformerPreTrainedModel""",
"""LongformerSelfAttention""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : int = [
"""TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFLongformerForMaskedLM""",
"""TFLongformerForMultipleChoice""",
"""TFLongformerForQuestionAnswering""",
"""TFLongformerForSequenceClassification""",
"""TFLongformerForTokenClassification""",
"""TFLongformerModel""",
"""TFLongformerPreTrainedModel""",
"""TFLongformerSelfAttention""",
]
if TYPE_CHECKING:
from .configuration_longformer import (
LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
LongformerConfig,
LongformerOnnxConfig,
)
from .tokenization_longformer import LongformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_longformer_fast import LongformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longformer import (
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
LongformerForMaskedLM,
LongformerForMultipleChoice,
LongformerForQuestionAnswering,
LongformerForSequenceClassification,
LongformerForTokenClassification,
LongformerModel,
LongformerPreTrainedModel,
LongformerSelfAttention,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_longformer import (
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLongformerForMaskedLM,
TFLongformerForMultipleChoice,
TFLongformerForQuestionAnswering,
TFLongformerForSequenceClassification,
TFLongformerForTokenClassification,
TFLongformerModel,
TFLongformerPreTrainedModel,
TFLongformerSelfAttention,
)
else:
import sys
a_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 369 |
'''simple docstring'''
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def a_ ( __snake_case : Optional[int] ) -> List[str]:
"""simple docstring"""
lowerCamelCase_ =[
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(__snake_case , __snake_case )
def a_ ( __snake_case : List[Any] ) -> int:
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =emb.weight.shape
lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case )
lowerCamelCase_ =emb.weight.data
return lin_layer
def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict:
"""simple docstring"""
lowerCamelCase_ ={}
for old_key in state_dict.keys():
lowerCamelCase_ =old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' )
else:
lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' )
if "gate" in key:
lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' )
if "fc2" and "experts" not in key:
lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' )
if "fc1" and "experts" not in key:
lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' )
if ".encoder_attn." in key:
lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' )
if "encoder_attn_layer_norm" in key:
lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' )
if "final_layer_norm" in key:
lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' )
lowerCamelCase_ =state_dict[old_key]
return new_dict
def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =0
os.makedirs(__snake_case , exist_ok=__snake_case )
for expert in range(__snake_case ):
lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt'''
if os.path.isfile(__snake_case ):
lowerCamelCase_ =torch.load(__snake_case )['''model''']
remove_ignore_keys_(__snake_case )
lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case )
lowerCamelCase_ =os.path.join(
__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) )
torch.save(__snake_case , __snake_case )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(__snake_case )[0]].dtype )
# Add the last block
lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) )
lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model''']
remove_ignore_keys_(__snake_case )
lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case )
lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight''']
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(__snake_case ) == 1:
lowerCamelCase_ =os.path.join(__snake_case , __snake_case )
torch.save(__snake_case , __snake_case )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(__snake_case , __snake_case )
# Otherwise, let's build the index
lowerCamelCase_ ={}
for idx, shard in enumerate(__snake_case ):
lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' )
lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) )
os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) )
for key in shard:
lowerCamelCase_ =shard_file
# Add the metadata
lowerCamelCase_ ={'''total_size''': total_size}
lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f:
lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n'''
f.write(__snake_case )
return metadata, index
if __name__ == "__main__":
a_ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--nllb_moe_checkpoint_path""",
default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""",
type=str,
required=False,
help="""Path to a directory containing a folder per layer. Follows the original Google format.""",
)
parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""")
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""",
type=str,
required=False,
help="""Path to the output pytorch model.""",
)
a_ : Tuple = parser.parse_args()
a_ , a_ : int = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_28,
args.dtype,
)
a_ : Tuple = NllbMoeConfig.from_pretrained(
"""facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28
)
config.save_pretrained(args.pytorch_dump_folder_path)
a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print("""Done""")
model.save_pretrained(args.pytorch_dump_folder_path)
| 6 | 0 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
lowerCAmelCase_ = [
'small',
'small-base',
'medium',
'medium-base',
'intermediate',
'intermediate-base',
'large',
'large-base',
'xlarge',
'xlarge-base',
]
lowerCAmelCase_ = {
'vocab_file': {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt',
'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt',
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt',
'funnel-transformer/medium-base': (
'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt'
),
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt',
'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt',
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt',
'funnel-transformer/xlarge-base': (
'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json',
'funnel-transformer/small-base': (
'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json'
),
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json',
'funnel-transformer/medium-base': (
'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json'
),
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json',
'funnel-transformer/large-base': (
'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json'
),
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json',
'funnel-transformer/xlarge-base': (
'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json'
),
},
}
lowerCAmelCase_ = {F'''funnel-transformer/{name}''': 512 for name in _model_names}
lowerCAmelCase_ = {F'''funnel-transformer/{name}''': {'do_lower_case': True} for name in _model_names}
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : str = VOCAB_FILES_NAMES
lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase : int = PRETRAINED_INIT_CONFIGURATION
lowerCAmelCase : Dict = FunnelTokenizer
lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase : int = 2
def __init__( self : Optional[int] ,_snake_case : Dict=None ,_snake_case : List[str]=None ,_snake_case : Optional[Any]=True ,_snake_case : Optional[int]="<unk>" ,_snake_case : Dict="<sep>" ,_snake_case : Any="<pad>" ,_snake_case : str="<cls>" ,_snake_case : Optional[Any]="<mask>" ,_snake_case : int="<s>" ,_snake_case : Dict="</s>" ,_snake_case : Optional[int]=True ,_snake_case : List[str]=True ,_snake_case : Dict=None ,_snake_case : str="##" ,**_snake_case : Optional[Any] ,) -> Any:
"""simple docstring"""
super().__init__(
_snake_case ,tokenizer_file=_snake_case ,do_lower_case=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,pad_token=_snake_case ,cls_token=_snake_case ,mask_token=_snake_case ,bos_token=_snake_case ,eos_token=_snake_case ,clean_text=_snake_case ,tokenize_chinese_chars=_snake_case ,strip_accents=_snake_case ,wordpieces_prefix=_snake_case ,**_snake_case ,)
lowercase__ : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' ,_snake_case ) != do_lower_case
or normalizer_state.get('''strip_accents''' ,_snake_case ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' ,_snake_case ) != tokenize_chinese_chars
):
lowercase__ : List[str] = getattr(_snake_case ,normalizer_state.pop('''type''' ) )
lowercase__ : List[str] = do_lower_case
lowercase__ : Any = strip_accents
lowercase__ : Union[str, Any] = tokenize_chinese_chars
lowercase__ : Union[str, Any] = normalizer_class(**_snake_case )
lowercase__ : List[str] = do_lower_case
def UpperCAmelCase ( self : int ,_snake_case : Tuple ,_snake_case : Tuple=None ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase ( self : Tuple ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
lowercase__ : Optional[int] = [self.sep_token_id]
lowercase__ : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0]
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase ( self : Tuple ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
lowercase__ : str = self._tokenizer.model.save(_snake_case ,name=_snake_case )
return tuple(_snake_case )
| 16 |
"""simple docstring"""
_UpperCamelCase: Dict = [
9_9_9,
8_0_0,
7_9_9,
6_0_0,
5_9_9,
5_0_0,
4_0_0,
3_9_9,
3_7_7,
3_5_5,
3_3_3,
3_1_1,
2_8_8,
2_6_6,
2_4_4,
2_2_2,
2_0_0,
1_9_9,
1_7_7,
1_5_5,
1_3_3,
1_1_1,
8_8,
6_6,
4_4,
2_2,
0,
]
_UpperCamelCase: Optional[int] = [
9_9_9,
9_7_6,
9_5_2,
9_2_8,
9_0_5,
8_8_2,
8_5_8,
8_5_7,
8_1_0,
7_6_2,
7_1_5,
7_1_4,
5_7_2,
4_2_9,
4_2_8,
2_8_6,
2_8_5,
2_3_8,
1_9_0,
1_4_3,
1_4_2,
1_1_8,
9_5,
7_1,
4_7,
2_4,
0,
]
_UpperCamelCase: int = [
9_9_9,
9_8_8,
9_7_7,
9_6_6,
9_5_5,
9_4_4,
9_3_3,
9_2_2,
9_1_1,
9_0_0,
8_9_9,
8_7_9,
8_5_9,
8_4_0,
8_2_0,
8_0_0,
7_9_9,
7_6_6,
7_3_3,
7_0_0,
6_9_9,
6_5_0,
6_0_0,
5_9_9,
5_0_0,
4_9_9,
4_0_0,
3_9_9,
3_5_0,
3_0_0,
2_9_9,
2_6_6,
2_3_3,
2_0_0,
1_9_9,
1_7_9,
1_5_9,
1_4_0,
1_2_0,
1_0_0,
9_9,
8_8,
7_7,
6_6,
5_5,
4_4,
3_3,
2_2,
1_1,
0,
]
_UpperCamelCase: List[str] = [
9_9_9,
9_9_5,
9_9_2,
9_8_9,
9_8_5,
9_8_1,
9_7_8,
9_7_5,
9_7_1,
9_6_7,
9_6_4,
9_6_1,
9_5_7,
9_5_6,
9_5_1,
9_4_7,
9_4_2,
9_3_7,
9_3_3,
9_2_8,
9_2_3,
9_1_9,
9_1_4,
9_1_3,
9_0_8,
9_0_3,
8_9_7,
8_9_2,
8_8_7,
8_8_1,
8_7_6,
8_7_1,
8_7_0,
8_6_4,
8_5_8,
8_5_2,
8_4_6,
8_4_0,
8_3_4,
8_2_8,
8_2_7,
8_2_0,
8_1_3,
8_0_6,
7_9_9,
7_9_2,
7_8_5,
7_8_4,
7_7_7,
7_7_0,
7_6_3,
7_5_6,
7_4_9,
7_4_2,
7_4_1,
7_3_3,
7_2_4,
7_1_6,
7_0_7,
6_9_9,
6_9_8,
6_8_8,
6_7_7,
6_6_6,
6_5_6,
6_5_5,
6_4_5,
6_3_4,
6_2_3,
6_1_3,
6_1_2,
5_9_8,
5_8_4,
5_7_0,
5_6_9,
5_5_5,
5_4_1,
5_2_7,
5_2_6,
5_0_5,
4_8_4,
4_8_3,
4_6_2,
4_4_0,
4_3_9,
3_9_6,
3_9_5,
3_5_2,
3_5_1,
3_0_8,
3_0_7,
2_6_4,
2_6_3,
2_2_0,
2_1_9,
1_7_6,
1_3_2,
8_8,
4_4,
0,
]
_UpperCamelCase: Any = [
9_9_9,
9_9_7,
9_9_5,
9_9_2,
9_9_0,
9_8_8,
9_8_6,
9_8_4,
9_8_1,
9_7_9,
9_7_7,
9_7_5,
9_7_2,
9_7_0,
9_6_8,
9_6_6,
9_6_4,
9_6_1,
9_5_9,
9_5_7,
9_5_6,
9_5_4,
9_5_1,
9_4_9,
9_4_6,
9_4_4,
9_4_1,
9_3_9,
9_3_6,
9_3_4,
9_3_1,
9_2_9,
9_2_6,
9_2_4,
9_2_1,
9_1_9,
9_1_6,
9_1_4,
9_1_3,
9_1_0,
9_0_7,
9_0_5,
9_0_2,
8_9_9,
8_9_6,
8_9_3,
8_9_1,
8_8_8,
8_8_5,
8_8_2,
8_7_9,
8_7_7,
8_7_4,
8_7_1,
8_7_0,
8_6_7,
8_6_4,
8_6_1,
8_5_8,
8_5_5,
8_5_2,
8_4_9,
8_4_6,
8_4_3,
8_4_0,
8_3_7,
8_3_4,
8_3_1,
8_2_8,
8_2_7,
8_2_4,
8_2_1,
8_1_7,
8_1_4,
8_1_1,
8_0_8,
8_0_4,
8_0_1,
7_9_8,
7_9_5,
7_9_1,
7_8_8,
7_8_5,
7_8_4,
7_8_0,
7_7_7,
7_7_4,
7_7_0,
7_6_6,
7_6_3,
7_6_0,
7_5_6,
7_5_2,
7_4_9,
7_4_6,
7_4_2,
7_4_1,
7_3_7,
7_3_3,
7_3_0,
7_2_6,
7_2_2,
7_1_8,
7_1_4,
7_1_0,
7_0_7,
7_0_3,
6_9_9,
6_9_8,
6_9_4,
6_9_0,
6_8_5,
6_8_1,
6_7_7,
6_7_3,
6_6_9,
6_6_4,
6_6_0,
6_5_6,
6_5_5,
6_5_0,
6_4_6,
6_4_1,
6_3_6,
6_3_2,
6_2_7,
6_2_2,
6_1_8,
6_1_3,
6_1_2,
6_0_7,
6_0_2,
5_9_6,
5_9_1,
5_8_6,
5_8_0,
5_7_5,
5_7_0,
5_6_9,
5_6_3,
5_5_7,
5_5_1,
5_4_5,
5_3_9,
5_3_3,
5_2_7,
5_2_6,
5_1_9,
5_1_2,
5_0_5,
4_9_8,
4_9_1,
4_8_4,
4_8_3,
4_7_4,
4_6_6,
4_5_7,
4_4_9,
4_4_0,
4_3_9,
4_2_8,
4_1_8,
4_0_7,
3_9_6,
3_9_5,
3_8_1,
3_6_6,
3_5_2,
3_5_1,
3_3_0,
3_0_8,
3_0_7,
2_8_6,
2_6_4,
2_6_3,
2_4_2,
2_2_0,
2_1_9,
1_7_6,
1_7_5,
1_3_2,
1_3_1,
8_8,
4_4,
0,
]
_UpperCamelCase: str = [
9_9_9,
9_9_1,
9_8_2,
9_7_4,
9_6_6,
9_5_8,
9_5_0,
9_4_1,
9_3_3,
9_2_5,
9_1_6,
9_0_8,
9_0_0,
8_9_9,
8_7_4,
8_5_0,
8_2_5,
8_0_0,
7_9_9,
7_0_0,
6_0_0,
5_0_0,
4_0_0,
3_0_0,
2_0_0,
1_0_0,
0,
]
_UpperCamelCase: Optional[Any] = [
9_9_9,
9_9_2,
9_8_5,
9_7_8,
9_7_1,
9_6_4,
9_5_7,
9_4_9,
9_4_2,
9_3_5,
9_2_8,
9_2_1,
9_1_4,
9_0_7,
9_0_0,
8_9_9,
8_7_9,
8_5_9,
8_4_0,
8_2_0,
8_0_0,
7_9_9,
7_6_6,
7_3_3,
7_0_0,
6_9_9,
6_5_0,
6_0_0,
5_9_9,
5_0_0,
4_9_9,
4_0_0,
3_9_9,
3_0_0,
2_9_9,
2_0_0,
1_9_9,
1_0_0,
9_9,
0,
]
_UpperCamelCase: Optional[int] = [
9_9_9,
9_9_6,
9_9_2,
9_8_9,
9_8_5,
9_8_2,
9_7_9,
9_7_5,
9_7_2,
9_6_8,
9_6_5,
9_6_1,
9_5_8,
9_5_5,
9_5_1,
9_4_8,
9_4_4,
9_4_1,
9_3_8,
9_3_4,
9_3_1,
9_2_7,
9_2_4,
9_2_0,
9_1_7,
9_1_4,
9_1_0,
9_0_7,
9_0_3,
9_0_0,
8_9_9,
8_9_1,
8_8_4,
8_7_6,
8_6_9,
8_6_1,
8_5_3,
8_4_6,
8_3_8,
8_3_0,
8_2_3,
8_1_5,
8_0_8,
8_0_0,
7_9_9,
7_8_8,
7_7_7,
7_6_6,
7_5_5,
7_4_4,
7_3_3,
7_2_2,
7_1_1,
7_0_0,
6_9_9,
6_8_8,
6_7_7,
6_6_6,
6_5_5,
6_4_4,
6_3_3,
6_2_2,
6_1_1,
6_0_0,
5_9_9,
5_8_5,
5_7_1,
5_5_7,
5_4_2,
5_2_8,
5_1_4,
5_0_0,
4_9_9,
4_8_5,
4_7_1,
4_5_7,
4_4_2,
4_2_8,
4_1_4,
4_0_0,
3_9_9,
3_7_9,
3_5_9,
3_4_0,
3_2_0,
3_0_0,
2_9_9,
2_7_9,
2_5_9,
2_4_0,
2_2_0,
2_0_0,
1_9_9,
1_6_6,
1_3_3,
1_0_0,
9_9,
6_6,
3_3,
0,
]
| 255 | 0 |
import webbrowser
from sys import argv
from urllib.parse import parse_qs, quote
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
lowercase_ = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: ")))
print("Googling.....")
lowercase_ = F'''https://www.google.com/search?q={query}&num=100'''
lowercase_ = requests.get(
url,
headers={"User-Agent": str(UserAgent().random)},
)
try:
lowercase_ = (
BeautifulSoup(res.text, "html.parser")
.find("div", attrs={"class": "yuRUbf"})
.find("a")
.get("href")
)
except AttributeError:
lowercase_ = parse_qs(
BeautifulSoup(res.text, "html.parser")
.find("div", attrs={"class": "kCrYT"})
.find("a")
.get("href")
)["url"][0]
webbrowser.open(link)
| 20 | import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def __lowerCAmelCase ( *__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Union[Dict, Any]] = None , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : int=2 ):
'''simple docstring'''
from .. import __version__
__snake_case : List[Any] = take_from
__snake_case : List[Any] = ()
if not isinstance(args[0] , __SCREAMING_SNAKE_CASE ):
__snake_case : str = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(__SCREAMING_SNAKE_CASE ):
raise ValueError(
F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''''
F''' version {__version__} is >= {version_name}''' )
__snake_case : Optional[Any] = None
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__SCREAMING_SNAKE_CASE ),)
__snake_case : Optional[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''
elif hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
values += (getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),)
__snake_case : Any = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''
elif deprecated_kwargs is None:
__snake_case : Tuple = F'''`{attribute}` is deprecated and will be removed in version {version_name}.'''
if warning is not None:
__snake_case : Optional[Any] = warning + """ """ if standard_warn else """"""
warnings.warn(warning + message , __SCREAMING_SNAKE_CASE , stacklevel=__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) > 0:
__snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1]
__snake_case : int = call_frame.filename
__snake_case : int = call_frame.lineno
__snake_case : List[str] = call_frame.function
__snake_case , __snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' )
if len(__SCREAMING_SNAKE_CASE ) == 0:
return
elif len(__SCREAMING_SNAKE_CASE ) == 1:
return values[0]
return values
| 20 | 1 |
'''simple docstring'''
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
SCREAMING_SNAKE_CASE__ = '.'
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
SCREAMING_SNAKE_CASE__ = [
'Assert',
'AssignVariableOp',
'EmptyTensorList',
'MergeV2Checkpoints',
'ReadVariableOp',
'ResourceGather',
'RestoreV2',
'SaveV2',
'ShardedFilename',
'StatefulPartitionedCall',
'StaticRegexFullMatch',
'VarHandleOp',
]
def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[int]:
UpperCamelCase = SavedModel()
UpperCamelCase = []
with open(os.path.join(__UpperCamelCase , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f:
UpperCamelCase = json.load(__UpperCamelCase )["""opsets"""]
for i in range(1 , opset + 1 ):
onnx_ops.extend(onnx_opsets[str(__UpperCamelCase )] )
with open(__UpperCamelCase , """rb""" ) as f:
saved_model.ParseFromString(f.read() )
UpperCamelCase = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
UpperCamelCase = sorted(__UpperCamelCase )
UpperCamelCase = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(__UpperCamelCase )
if strict and len(__UpperCamelCase ) > 0:
raise Exception(F"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops )
elif len(__UpperCamelCase ) > 0:
print(F"Found the following incompatible ops for the opset {opset}:" )
print(*__UpperCamelCase , sep="""\n""" )
else:
print(F"The saved model {saved_model_path} can properly be converted with ONNX." )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).')
parser.add_argument(
'--opset', default=1_2, type=int, help='The ONNX opset against which the model has to be tested.'
)
parser.add_argument(
'--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.'
)
parser.add_argument(
'--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)'
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 321 |
'''simple docstring'''
import math
def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> float:
if initial_intensity < 0:
raise ValueError("""The value of intensity cannot be negative""" )
# handling of negative values of initial intensity
if angle < 0 or angle > 360:
raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" )
# handling of values out of allowed range
return initial_intensity * (math.cos(math.radians(__UpperCamelCase ) ) ** 2)
if __name__ == "__main__":
import doctest
doctest.testmod(name='malus_law')
| 321 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase_ : Optional[Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
lowerCAmelCase_ : Tuple = {
'''vocab_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''',
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json'''
),
},
'''merges_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''',
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt'''
),
},
'''tokenizer_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''',
'''roberta-base-openai-detector''': (
'''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json'''
),
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json'''
),
},
}
lowerCAmelCase_ : Tuple = {
'''roberta-base''': 512,
'''roberta-large''': 512,
'''roberta-large-mnli''': 512,
'''distilroberta-base''': 512,
'''roberta-base-openai-detector''': 512,
'''roberta-large-openai-detector''': 512,
}
class __lowerCAmelCase ( __a ):
snake_case : Optional[Any] = VOCAB_FILES_NAMES
snake_case : Dict = PRETRAINED_VOCAB_FILES_MAP
snake_case : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case : str = ["""input_ids""", """attention_mask"""]
snake_case : List[str] = RobertaTokenizer
def __init__(self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , lowerCAmelCase__=True , **lowerCAmelCase__ , ):
super().__init__(
lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase__ ) != add_prefix_space:
_UpperCAmelCase : Tuple = getattr(lowerCAmelCase__ , pre_tok_state.pop("""type""" ) )
_UpperCAmelCase : Any = add_prefix_space
_UpperCAmelCase : List[Any] = pre_tok_class(**lowerCAmelCase__ )
_UpperCAmelCase : Dict = add_prefix_space
_UpperCAmelCase : int = """post_processor"""
_UpperCAmelCase : Any = getattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ )
if tokenizer_component_instance:
_UpperCAmelCase : str = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
_UpperCAmelCase : Any = tuple(state["""sep"""] )
if "cls" in state:
_UpperCAmelCase : Tuple = tuple(state["""cls"""] )
_UpperCAmelCase : Dict = False
if state.get("""add_prefix_space""" , lowerCAmelCase__ ) != add_prefix_space:
_UpperCAmelCase : List[str] = add_prefix_space
_UpperCAmelCase : Dict = True
if state.get("""trim_offsets""" , lowerCAmelCase__ ) != trim_offsets:
_UpperCAmelCase : Tuple = trim_offsets
_UpperCAmelCase : List[str] = True
if changes_to_apply:
_UpperCAmelCase : Dict = getattr(lowerCAmelCase__ , state.pop("""type""" ) )
_UpperCAmelCase : Optional[Any] = component_class(**lowerCAmelCase__ )
setattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ )
@property
def snake_case_ (self ):
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def snake_case_ (self , lowerCAmelCase__ ):
_UpperCAmelCase : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else value
_UpperCAmelCase : int = value
def snake_case_ (self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
_UpperCAmelCase : Optional[Any] = kwargs.get("""is_split_into_words""" , lowerCAmelCase__ )
assert self.add_prefix_space or not is_split_into_words, (
F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case_ (self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
_UpperCAmelCase : Optional[int] = kwargs.get("""is_split_into_words""" , lowerCAmelCase__ )
assert self.add_prefix_space or not is_split_into_words, (
F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ):
_UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ )
return tuple(lowerCAmelCase__ )
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__=None ):
_UpperCAmelCase : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ):
_UpperCAmelCase : str = [self.sep_token_id]
_UpperCAmelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 170 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_barthez import BarthezTokenizer
else:
lowerCAmelCase_ : List[Any] = None
lowerCAmelCase_ : Any = logging.get_logger(__name__)
lowerCAmelCase_ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
lowerCAmelCase_ : List[str] = {
'''vocab_file''': {
'''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''',
'''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''',
'''moussaKam/barthez-orangesum-title''': (
'''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model'''
),
},
'''tokenizer_file''': {
'''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''',
'''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''',
'''moussaKam/barthez-orangesum-title''': (
'''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json'''
),
},
}
lowerCAmelCase_ : Tuple = {
'''moussaKam/mbarthez''': 1024,
'''moussaKam/barthez''': 1024,
'''moussaKam/barthez-orangesum-title''': 1024,
}
lowerCAmelCase_ : str = '''▁'''
class __lowerCAmelCase ( __a ):
snake_case : List[str] = VOCAB_FILES_NAMES
snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
snake_case : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case : str = ["""input_ids""", """attention_mask"""]
snake_case : List[Any] = BarthezTokenizer
def __init__(self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , **lowerCAmelCase__ , ):
# Mask token behave like a normal word, i.e. include the space before it
_UpperCAmelCase : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCAmelCase : List[str] = vocab_file
_UpperCAmelCase : Tuple = False if not self.vocab_file else True
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_UpperCAmelCase : int = [self.cls_token_id]
_UpperCAmelCase : Tuple = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ):
_UpperCAmelCase : str = [self.sep_token_id]
_UpperCAmelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
_UpperCAmelCase : Union[str, Any] = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ):
copyfile(self.vocab_file , lowerCAmelCase__ )
return (out_vocab_file,)
| 170 | 1 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mobilebert import MobileBertTokenizer
_UpperCAmelCase = logging.get_logger(__name__)
_UpperCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_UpperCAmelCase = {
"""vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""},
"""tokenizer_file""": {
"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json"""
},
}
_UpperCAmelCase = {"""mobilebert-uncased""": 5_1_2}
_UpperCAmelCase = {}
class a ( UpperCAmelCase__ ):
UpperCamelCase : Dict = VOCAB_FILES_NAMES
UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION
UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase : Union[str, Any] = MobileBertTokenizer
def __init__( self : List[Any] , lowerCAmelCase : Tuple=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[int]="[UNK]" , lowerCAmelCase : List[Any]="[SEP]" , lowerCAmelCase : str="[PAD]" , lowerCAmelCase : int="[CLS]" , lowerCAmelCase : Tuple="[MASK]" , lowerCAmelCase : Any=True , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] , ) -> Dict:
'''simple docstring'''
super().__init__(
lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , )
SCREAMING_SNAKE_CASE_: Tuple =json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , lowerCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , lowerCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE_: Union[str, Any] =getattr(lowerCAmelCase , normalizer_state.pop("""type""" ) )
SCREAMING_SNAKE_CASE_: List[Any] =do_lower_case
SCREAMING_SNAKE_CASE_: Union[str, Any] =strip_accents
SCREAMING_SNAKE_CASE_: List[Any] =tokenize_chinese_chars
SCREAMING_SNAKE_CASE_: Optional[Any] =normalizer_class(**lowerCAmelCase )
SCREAMING_SNAKE_CASE_: str =do_lower_case
def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any=None ) -> List[Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: Any =[self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: Union[str, Any] =[self.sep_token_id]
SCREAMING_SNAKE_CASE_: List[str] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
SCREAMING_SNAKE_CASE_: Dict =self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase )
return tuple(lowerCAmelCase )
| 173 |
"""simple docstring"""
import functools
import gc
import inspect
import torch
from .imports import is_npu_available, is_xpu_available
def __magic_name__ ( *lowercase ):
if not isinstance(lowercase , lowercase ):
SCREAMING_SNAKE_CASE_: Optional[Any] =list(lowercase )
for i in range(len(lowercase ) ):
SCREAMING_SNAKE_CASE_: Optional[Any] =None
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
return objects
def __magic_name__ ( lowercase ):
SCREAMING_SNAKE_CASE_: List[Any] =[
"""CUDA out of memory.""", # CUDA OOM
"""cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU
"""DefaultCPUAllocator: can't allocate memory""", # CPU OOM
]
if isinstance(lowercase , lowercase ) and len(exception.args ) == 1:
return any(err in exception.args[0] for err in _statements )
return False
def __magic_name__ ( lowercase = None , lowercase = 128 ):
if function is None:
return functools.partial(lowercase , starting_batch_size=lowercase )
SCREAMING_SNAKE_CASE_: str =starting_batch_size
def decorator(*lowercase , **lowercase ):
nonlocal batch_size
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
SCREAMING_SNAKE_CASE_: Optional[int] =list(inspect.signature(lowercase ).parameters.keys() )
# Guard against user error
if len(lowercase ) < (len(lowercase ) + 1):
SCREAMING_SNAKE_CASE_: List[Any] =""", """.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] )
raise TypeError(
f'''Batch size was passed into `{function.__name__}` as the first argument when called.'''
f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' )
while True:
if batch_size == 0:
raise RuntimeError("""No executable batch size found, reached zero.""" )
try:
return function(lowercase , *lowercase , **lowercase )
except Exception as e:
if should_reduce_batch_size(lowercase ):
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
batch_size //= 2
else:
raise
return decorator
| 173 | 1 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case :
def __init__( self , a , a=3 , a=32 , a=3 , a=10 , a=[10, 20, 30, 40] , a=[1, 1, 2, 1] , a=True , a=True , a="relu" , a=3 , a=None , ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = embeddings_size
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = num_labels
SCREAMING_SNAKE_CASE = scope
SCREAMING_SNAKE_CASE = len(a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels)
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Any:
SCREAMING_SNAKE_CASE = TFResNetModel(config=a)
SCREAMING_SNAKE_CASE = model(a)
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> int:
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = TFResNetForImageClassification(a)
SCREAMING_SNAKE_CASE = model(a , labels=a)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class _snake_case ( A__ , A__ , unittest.TestCase ):
_lowercase : List[Any] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
_lowercase : Dict = (
{'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification}
if is_tf_available()
else {}
)
_lowercase : Union[str, Any] = False
_lowercase : Any = False
_lowercase : List[str] = False
_lowercase : str = False
_lowercase : int = False
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = TFResNetModelTester(self)
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=a , has_text_modality=a)
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
return
@unittest.skip(reason='ResNet does not use inputs_embeds')
def SCREAMING_SNAKE_CASE__ ( self) -> int:
pass
@unittest.skip(reason='ResNet does not support input and output embeddings')
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
pass
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(a)
SCREAMING_SNAKE_CASE = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ['pixel_values']
self.assertListEqual(arg_names[:1] , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
def check_hidden_states_output(a , a , a):
SCREAMING_SNAKE_CASE = model_class(a)
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(a , a))
SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE = self.model_tester.num_stages
self.assertEqual(len(a) , expected_num_stages + 1)
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = ['basic', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
SCREAMING_SNAKE_CASE = layer_type
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(a , a , a)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(a , a , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> str:
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = TFResNetModel.from_pretrained(a)
self.assertIsNotNone(a)
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_tf
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=a , return_tensors='tf')
# forward pass
SCREAMING_SNAKE_CASE = model(**a)
# verify the logits
SCREAMING_SNAKE_CASE = tf.TensorShape((1, 1000))
self.assertEqual(outputs.logits.shape , a)
SCREAMING_SNAKE_CASE = tf.constant([-11.10_69, -9.78_77, -8.37_77])
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , a , atol=1E-4))
| 327 |
from math import isqrt
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = [True] * max_number
for i in range(2 , isqrt(max_number - 1) + 1):
if is_prime[i]:
for j in range(i**2 , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = False
return [i for i in range(2 , _UpperCAmelCase) if is_prime[i]]
def lowerCamelCase__ (_UpperCAmelCase = 10**8):
SCREAMING_SNAKE_CASE = calculate_prime_numbers(max_number // 2)
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(f"""{solution() = }""")
| 327 | 1 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE :Tuple = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class A_ ( lowerCAmelCase_ ):
_lowerCamelCase : List[str] = """sew-d"""
def __init__( self : Optional[Any] , snake_case_ : Tuple=3_2 , snake_case_ : Optional[Any]=7_6_8 , snake_case_ : Tuple=1_2 , snake_case_ : Union[str, Any]=1_2 , snake_case_ : Tuple=3_0_7_2 , snake_case_ : Tuple=2 , snake_case_ : int=5_1_2 , snake_case_ : Optional[int]=2_5_6 , snake_case_ : Union[str, Any]=True , snake_case_ : Any=True , snake_case_ : str=("p2c", "c2p") , snake_case_ : Dict="layer_norm" , snake_case_ : str="gelu_python" , snake_case_ : Dict=0.1 , snake_case_ : List[str]=0.1 , snake_case_ : Tuple=0.1 , snake_case_ : Any=0.0 , snake_case_ : Tuple=0.1 , snake_case_ : Union[str, Any]=0.0_2 , snake_case_ : str=1e-7 , snake_case_ : Optional[Any]=1e-5 , snake_case_ : Optional[Any]="group" , snake_case_ : Tuple="gelu" , snake_case_ : Tuple=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_ : Dict=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case_ : Dict=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case_ : int=False , snake_case_ : Union[str, Any]=1_2_8 , snake_case_ : int=1_6 , snake_case_ : Any=True , snake_case_ : Tuple=0.0_5 , snake_case_ : Tuple=1_0 , snake_case_ : Dict=2 , snake_case_ : Tuple=0.0 , snake_case_ : List[Any]=1_0 , snake_case_ : Union[str, Any]=0 , snake_case_ : Any="mean" , snake_case_ : Optional[Any]=False , snake_case_ : Any=False , snake_case_ : Tuple=2_5_6 , snake_case_ : int=0 , snake_case_ : Optional[Any]=1 , snake_case_ : List[str]=2 , **snake_case_ : List[str] , ):
super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ )
_UpperCAmelCase = hidden_size
_UpperCAmelCase = feat_extract_norm
_UpperCAmelCase = feat_extract_activation
_UpperCAmelCase = list(snake_case_ )
_UpperCAmelCase = list(snake_case_ )
_UpperCAmelCase = list(snake_case_ )
_UpperCAmelCase = conv_bias
_UpperCAmelCase = num_conv_pos_embeddings
_UpperCAmelCase = num_conv_pos_embedding_groups
_UpperCAmelCase = len(self.conv_dim )
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = squeeze_factor
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = position_buckets
_UpperCAmelCase = share_att_key
_UpperCAmelCase = relative_attention
_UpperCAmelCase = norm_rel_ebd
_UpperCAmelCase = list(snake_case_ )
_UpperCAmelCase = hidden_act
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = hidden_dropout
_UpperCAmelCase = attention_dropout
_UpperCAmelCase = activation_dropout
_UpperCAmelCase = feat_proj_dropout
_UpperCAmelCase = final_dropout
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = feature_layer_norm_eps
_UpperCAmelCase = initializer_range
_UpperCAmelCase = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect."
"It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"
f'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'
f'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_UpperCAmelCase = apply_spec_augment
_UpperCAmelCase = mask_time_prob
_UpperCAmelCase = mask_time_length
_UpperCAmelCase = mask_time_min_masks
_UpperCAmelCase = mask_feature_prob
_UpperCAmelCase = mask_feature_length
_UpperCAmelCase = mask_feature_min_masks
# ctc loss
_UpperCAmelCase = ctc_loss_reduction
_UpperCAmelCase = ctc_zero_infinity
# sequence classification
_UpperCAmelCase = use_weighted_layer_sum
_UpperCAmelCase = classifier_proj_size
@property
def lowercase ( self : Any ):
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 22 |
from pathlib import Path
import fire
def UpperCamelCase( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : int ):
lowerCAmelCase_ : List[str] = Path(__UpperCamelCase )
lowerCAmelCase_ : Union[str, Any] = Path(__UpperCamelCase )
dest_dir.mkdir(exist_ok=__UpperCamelCase )
for path in src_dir.iterdir():
lowerCAmelCase_ : Optional[Any] = [x.rstrip() for x in list(path.open().readlines() )][:n]
lowerCAmelCase_ : List[str] = dest_dir.joinpath(path.name )
print(__UpperCamelCase )
dest_path.open('''w''' ).write('''\n'''.join(__UpperCamelCase ) )
if __name__ == "__main__":
fire.Fire(minify)
| 103 | 0 |
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__):
_UpperCamelCase:Union[str, Any] = (DDPMParallelScheduler,)
def _snake_case ( self , **_SCREAMING_SNAKE_CASE )-> List[str]:
lowerCamelCase_ ={
"""num_train_timesteps""": 1000,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**_SCREAMING_SNAKE_CASE )
return config
def _snake_case ( self )-> List[Any]:
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE )
def _snake_case ( self )-> Dict:
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE )
def _snake_case ( self )-> Dict:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE )
def _snake_case ( self )-> Optional[Any]:
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE )
def _snake_case ( self )-> Tuple:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE )
def _snake_case ( self )-> int:
self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , )
def _snake_case ( self )-> Optional[int]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE )
def _snake_case ( self )-> List[Any]:
for t in [0, 500, 999]:
self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE )
def _snake_case ( self )-> Union[str, Any]:
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5
def _snake_case ( self )-> List[Any]:
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =len(_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =self.dummy_model()
lowerCamelCase_ =self.dummy_sample_deter
lowerCamelCase_ =self.dummy_sample_deter + 0.1
lowerCamelCase_ =self.dummy_sample_deter - 0.1
lowerCamelCase_ =samplea.shape[0]
lowerCamelCase_ =torch.stack([samplea, samplea, samplea] , dim=0 )
lowerCamelCase_ =torch.arange(_SCREAMING_SNAKE_CASE )[0:3, None].repeat(1 , _SCREAMING_SNAKE_CASE )
lowerCamelCase_ =model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
lowerCamelCase_ =scheduler.batch_step_no_noise(_SCREAMING_SNAKE_CASE , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) )
lowerCamelCase_ =torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) )
lowerCamelCase_ =torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1E-2
assert abs(result_mean.item() - 0.5_0_0_5 ) < 1E-3
def _snake_case ( self )-> int:
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =len(_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =self.dummy_model()
lowerCamelCase_ =self.dummy_sample_deter
lowerCamelCase_ =torch.manual_seed(0 )
for t in reversed(range(_SCREAMING_SNAKE_CASE ) ):
# 1. predict noise residual
lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# 2. predict previous mean of sample x_t-1
lowerCamelCase_ =scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample
lowerCamelCase_ =pred_prev_sample
lowerCamelCase_ =torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) )
lowerCamelCase_ =torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3
def _snake_case ( self )-> str:
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config(prediction_type="""v_prediction""" )
lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =len(_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =self.dummy_model()
lowerCamelCase_ =self.dummy_sample_deter
lowerCamelCase_ =torch.manual_seed(0 )
for t in reversed(range(_SCREAMING_SNAKE_CASE ) ):
# 1. predict noise residual
lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# 2. predict previous mean of sample x_t-1
lowerCamelCase_ =scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample
lowerCamelCase_ =pred_prev_sample
lowerCamelCase_ =torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) )
lowerCamelCase_ =torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3
def _snake_case ( self )-> str:
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =[100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =scheduler.timesteps
for i, timestep in enumerate(_SCREAMING_SNAKE_CASE ):
if i == len(_SCREAMING_SNAKE_CASE ) - 1:
lowerCamelCase_ =-1
else:
lowerCamelCase_ =timesteps[i + 1]
lowerCamelCase_ =scheduler.previous_timestep(_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =prev_t.item()
self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def _snake_case ( self )-> int:
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =[100, 87, 50, 51, 0]
with self.assertRaises(_SCREAMING_SNAKE_CASE , msg="""`custom_timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
def _snake_case ( self )-> Union[str, Any]:
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =[100, 87, 50, 1, 0]
lowerCamelCase_ =len(_SCREAMING_SNAKE_CASE )
with self.assertRaises(_SCREAMING_SNAKE_CASE , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE )
def _snake_case ( self )-> Optional[int]:
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =scheduler_class(**_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =[scheduler.config.num_train_timesteps]
with self.assertRaises(
_SCREAMING_SNAKE_CASE , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
| 49 |
from __future__ import annotations
def __UpperCamelCase ( _A : list[int | str] ) ->None:
"""simple docstring"""
create_state_space_tree(_A , [] , 0 , [0 for i in range(len(_A ) )] )
def __UpperCamelCase ( _A : list[int | str] , _A : list[int | str] , _A : int , _A : list[int] , ) ->None:
"""simple docstring"""
if index == len(_A ):
print(_A )
return
for i in range(len(_A ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
lowerCamelCase_ =True
create_state_space_tree(_A , _A , index + 1 , _A )
current_sequence.pop()
lowerCamelCase_ =False
__A : list[int | str] = [3, 1, 2, 4]
generate_all_permutations(sequence)
__A : list[int | str] = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 49 | 1 |
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class lowerCamelCase :
'''simple docstring'''
def __init__( self , _UpperCamelCase , _UpperCamelCase=1_3 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=9_9 , _UpperCamelCase=3_2 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=3_7 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=5_0 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=None , ) -> List[str]:
UpperCAmelCase_ : Union[str, Any] = parent
UpperCAmelCase_ : Any = batch_size
UpperCAmelCase_ : str = seq_length
UpperCAmelCase_ : Optional[int] = is_training
UpperCAmelCase_ : Optional[int] = use_input_mask
UpperCAmelCase_ : str = vocab_size
UpperCAmelCase_ : int = hidden_size
UpperCAmelCase_ : Tuple = num_hidden_layers
UpperCAmelCase_ : str = num_attention_heads
UpperCAmelCase_ : List[str] = intermediate_size
UpperCAmelCase_ : List[str] = hidden_act
UpperCAmelCase_ : Optional[int] = hidden_dropout_prob
UpperCAmelCase_ : str = attention_probs_dropout_prob
UpperCAmelCase_ : Optional[int] = max_position_embeddings
UpperCAmelCase_ : Optional[int] = initializer_range
UpperCAmelCase_ : Optional[Any] = use_labels
UpperCAmelCase_ : str = scope
def __UpperCAmelCase ( self ) -> Optional[int]:
UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Optional[Any] = None
if self.use_input_mask:
UpperCAmelCase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : List[Any] = self.get_config()
return config, input_ids, input_mask, token_labels
def __UpperCAmelCase ( self ) -> Dict:
return BertGenerationConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , )
def __UpperCAmelCase ( self ) -> Tuple:
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Union[str, Any] = self.prepare_config_and_inputs()
UpperCAmelCase_ : Optional[Any] = True
UpperCAmelCase_ : Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ) -> Optional[Any]:
UpperCAmelCase_ : List[Any] = BertGenerationEncoder(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
UpperCAmelCase_ : Tuple = model(_UpperCamelCase , attention_mask=_UpperCamelCase )
UpperCAmelCase_ : str = model(_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ) -> Tuple:
UpperCAmelCase_ : Union[str, Any] = True
UpperCAmelCase_ : Optional[Any] = BertGenerationEncoder(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
UpperCAmelCase_ : Tuple = model(
_UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , )
UpperCAmelCase_ : str = model(
_UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ) -> Any:
UpperCAmelCase_ : List[str] = True
UpperCAmelCase_ : Union[str, Any] = True
UpperCAmelCase_ : Optional[int] = BertGenerationDecoder(config=_UpperCamelCase ).to(_UpperCamelCase ).eval()
# first forward pass
UpperCAmelCase_ : List[str] = model(
_UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase , )
UpperCAmelCase_ : List[str] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ : int = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCAmelCase_ : Dict = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : Optional[Any] = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCAmelCase_ : List[str] = model(
_UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , output_hidden_states=_UpperCamelCase , )['hidden_states'][0]
UpperCAmelCase_ : List[Any] = model(
_UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , output_hidden_states=_UpperCamelCase , )['hidden_states'][0]
# select random slice
UpperCAmelCase_ : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ : Any = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ) )
def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase , ) -> Union[str, Any]:
UpperCAmelCase_ : int = BertGenerationDecoder(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
UpperCAmelCase_ : Tuple = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCAmelCase ( self ) -> Tuple:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs()
UpperCAmelCase_ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase (_snake_case , _snake_case , _snake_case , unittest.TestCase ):
'''simple docstring'''
_snake_case : str = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
_snake_case : List[Any] = (BertGenerationDecoder,) if is_torch_available() else ()
_snake_case : int = (
{'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder}
if is_torch_available()
else {}
)
def __UpperCAmelCase ( self ) -> Dict:
UpperCAmelCase_ : Tuple = BertGenerationEncoderTester(self )
UpperCAmelCase_ : Tuple = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 )
def __UpperCAmelCase ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self ) -> List[str]:
UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def __UpperCAmelCase ( self ) -> Tuple:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
UpperCAmelCase_ : Tuple = 'bert'
self.model_tester.create_and_check_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
def __UpperCAmelCase ( self ) -> Optional[Any]:
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*_UpperCamelCase )
def __UpperCAmelCase ( self ) -> List[Any]:
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*_UpperCamelCase )
def __UpperCAmelCase ( self ) -> Union[str, Any]:
# This regression test was failing with PyTorch < 1.3
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder()
UpperCAmelCase_ : str = None
self.model_tester.create_and_check_model_as_decoder(
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , )
def __UpperCAmelCase ( self ) -> int:
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*_UpperCamelCase )
@slow
def __UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCAmelCase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
self.assertIsNotNone(_UpperCamelCase )
@require_torch
class lowerCamelCase (unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self ) -> List[str]:
UpperCAmelCase_ : Any = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
UpperCAmelCase_ : Optional[int] = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] )
with torch.no_grad():
UpperCAmelCase_ : Dict = model(_UpperCamelCase )[0]
UpperCAmelCase_ : Dict = torch.Size([1, 8, 1_0_2_4] )
self.assertEqual(output.shape , _UpperCamelCase )
UpperCAmelCase_ : Dict = torch.tensor(
[[[0.17_75, 0.00_83, -0.03_21], [1.60_02, 0.12_87, 0.39_12], [2.14_73, 0.57_91, 0.60_66]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 ) )
@require_torch
class lowerCamelCase (unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self ) -> Optional[int]:
UpperCAmelCase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
UpperCAmelCase_ : Union[str, Any] = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] )
with torch.no_grad():
UpperCAmelCase_ : str = model(_UpperCamelCase )[0]
UpperCAmelCase_ : str = torch.Size([1, 8, 5_0_3_5_8] )
self.assertEqual(output.shape , _UpperCamelCase )
UpperCAmelCase_ : Dict = torch.tensor(
[[[-0.57_88, -2.59_94, -3.70_54], [0.04_38, 4.79_97, 1.87_95], [1.58_62, 6.64_09, 4.46_38]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 ) )
| 29 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def lowercase ( __magic_name__ , __magic_name__=10 ):
'''simple docstring'''
UpperCAmelCase : Tuple = []
for _ in range(__magic_name__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def lowercase ( __magic_name__ , __magic_name__=10 ):
'''simple docstring'''
UpperCAmelCase : List[str] = []
for step in range(__magic_name__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase : Any = os.path.join(__magic_name__ , "schedule.bin" )
torch.save(scheduler.state_dict() , __magic_name__ )
UpperCAmelCase : Any = torch.load(__magic_name__ )
scheduler.load_state_dict(__magic_name__ )
return lrs
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
self.assertEqual(len(snake_case ) , len(snake_case ) )
for a, b in zip(snake_case , snake_case ):
self.assertAlmostEqual(snake_case , snake_case , delta=snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case )
UpperCAmelCase : Any = torch.tensor([0.4, 0.2, -0.5] )
UpperCAmelCase : Any = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
UpperCAmelCase : List[str] = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 )
for _ in range(1_0_0 ):
UpperCAmelCase : List[Any] = criterion(snake_case , snake_case )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case )
UpperCAmelCase : int = torch.tensor([0.4, 0.2, -0.5] )
UpperCAmelCase : str = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
UpperCAmelCase : str = Adafactor(
params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=snake_case , weight_decay=0.0 , relative_step=snake_case , scale_parameter=snake_case , warmup_init=snake_case , )
for _ in range(1_0_0_0 ):
UpperCAmelCase : str = criterion(snake_case , snake_case )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = nn.Linear(50 , 50 ) if is_torch_available() else None
SCREAMING_SNAKE_CASE__ : List[Any] = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
SCREAMING_SNAKE_CASE__ : Optional[int] = 10
def A_ ( self , snake_case , snake_case , snake_case , snake_case=None ):
'''simple docstring'''
self.assertEqual(len(snake_case ) , len(snake_case ) )
for a, b in zip(snake_case , snake_case ):
self.assertAlmostEqual(snake_case , snake_case , delta=snake_case , msg=snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = {"num_warmup_steps": 2, "num_training_steps": 1_0}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
UpperCAmelCase : int = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1e-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
UpperCAmelCase , UpperCAmelCase : Any = data
UpperCAmelCase : Tuple = scheduler_func(self.optimizer , **snake_case )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
UpperCAmelCase : List[str] = unwrap_schedule(snake_case , self.num_steps )
self.assertListAlmostEqual(
snake_case , snake_case , tol=1e-2 , msg=f"failed for {scheduler_func} in normal scheduler" , )
UpperCAmelCase : Optional[Any] = scheduler_func(self.optimizer , **snake_case )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(snake_case ) # wrap to test picklability of the schedule
UpperCAmelCase : Tuple = unwrap_and_save_reload_schedule(snake_case , self.num_steps )
self.assertListEqual(snake_case , snake_case , msg=f"failed for {scheduler_func} in save and reload" )
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : List[str] = fn
def __call__( self , *snake_case , **snake_case ):
'''simple docstring'''
return self.fn(*snake_case , **snake_case )
@classmethod
def A_ ( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = list(map(self , scheduler.lr_lambdas ) )
| 311 | 0 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
A_ :List[str] = {
'''facebook/mask2former-swin-small-coco-instance''': (
'''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json'''
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
A_ :int = logging.get_logger(__name__)
class __A ( a ):
"""simple docstring"""
UpperCamelCase__ : Union[str, Any] ="""mask2former"""
UpperCamelCase__ : Tuple =["""swin"""]
UpperCamelCase__ : Dict ={"""hidden_size""": """hidden_dim"""}
def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 1024 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 6 , lowerCamelCase__ = 10 , lowerCamelCase__ = 8 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 2048 , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 4 , lowerCamelCase__ = 255 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 12544 , lowerCamelCase__ = 3.0 , lowerCamelCase__ = 0.75 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = True , lowerCamelCase__ = [4, 8, 16, 32] , lowerCamelCase__ = None , **lowerCamelCase__ , ):
"""simple docstring"""
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' )
__UpperCamelCase : Optional[int] =CONFIG_MAPPING['swin'](
image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
__UpperCamelCase : List[str] =backbone_config.pop('model_type' )
__UpperCamelCase : str =CONFIG_MAPPING[backbone_model_type]
__UpperCamelCase : List[Any] =config_class.from_dict(lowerCamelCase__ )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. '
f'Supported model types: {",".join(self.backbones_supported )}' )
__UpperCamelCase : Dict =backbone_config
__UpperCamelCase : Optional[int] =feature_size
__UpperCamelCase : Union[str, Any] =mask_feature_size
__UpperCamelCase : Tuple =hidden_dim
__UpperCamelCase : Optional[int] =encoder_feedforward_dim
__UpperCamelCase : Optional[int] =activation_function
__UpperCamelCase : Dict =encoder_layers
__UpperCamelCase : List[Any] =decoder_layers
__UpperCamelCase : int =num_attention_heads
__UpperCamelCase : Optional[Any] =dropout
__UpperCamelCase : int =dim_feedforward
__UpperCamelCase : Any =pre_norm
__UpperCamelCase : Union[str, Any] =enforce_input_projection
__UpperCamelCase : str =common_stride
__UpperCamelCase : List[str] =ignore_value
__UpperCamelCase : Optional[int] =num_queries
__UpperCamelCase : Any =no_object_weight
__UpperCamelCase : int =class_weight
__UpperCamelCase : str =mask_weight
__UpperCamelCase : Dict =dice_weight
__UpperCamelCase : str =train_num_points
__UpperCamelCase : str =oversample_ratio
__UpperCamelCase : int =importance_sample_ratio
__UpperCamelCase : List[str] =init_std
__UpperCamelCase : Union[str, Any] =init_xavier_std
__UpperCamelCase : Any =use_auxiliary_loss
__UpperCamelCase : Tuple =feature_strides
__UpperCamelCase : Dict =output_auxiliary_logits
__UpperCamelCase : Union[str, Any] =decoder_layers
super().__init__(**lowerCamelCase__ )
@classmethod
def __lowercase ( cls , lowerCamelCase__ , **lowerCamelCase__ ):
"""simple docstring"""
return cls(
backbone_config=lowerCamelCase__ , **lowerCamelCase__ , )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Any =copy.deepcopy(self.__dict__ )
__UpperCamelCase : List[Any] =self.backbone_config.to_dict()
__UpperCamelCase : Union[str, Any] =self.__class__.model_type
return output
| 357 |
import gc
import unittest
from parameterized import parameterized
from diffusers import FlaxUNetaDConditionModel
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
@slow
@require_flax
class __A ( unittest.TestCase ):
"""simple docstring"""
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
return f'gaussian_noise_s={seed}_shape={"_".join([str(lowerCamelCase__ ) for s in shape] )}.npy'
def __lowercase ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
def __lowercase ( self , lowerCamelCase__=0 , lowerCamelCase__=(4, 4, 64, 64) , lowerCamelCase__=False ):
"""simple docstring"""
__UpperCamelCase : str =jnp.bfloataa if fpaa else jnp.floataa
__UpperCamelCase : Optional[Any] =jnp.array(load_hf_numpy(self.get_file_format(lowerCamelCase__ , lowerCamelCase__ ) ) , dtype=lowerCamelCase__ )
return image
def __lowercase ( self , lowerCamelCase__=False , lowerCamelCase__="CompVis/stable-diffusion-v1-4" ):
"""simple docstring"""
__UpperCamelCase : List[Any] =jnp.bfloataa if fpaa else jnp.floataa
__UpperCamelCase : Optional[int] ='bf16' if fpaa else None
__UpperCamelCase , __UpperCamelCase : Any =FlaxUNetaDConditionModel.from_pretrained(
lowerCamelCase__ , subfolder='unet' , dtype=lowerCamelCase__ , revision=lowerCamelCase__ )
return model, params
def __lowercase ( self , lowerCamelCase__=0 , lowerCamelCase__=(4, 77, 768) , lowerCamelCase__=False ):
"""simple docstring"""
__UpperCamelCase : str =jnp.bfloataa if fpaa else jnp.floataa
__UpperCamelCase : Optional[int] =jnp.array(load_hf_numpy(self.get_file_format(lowerCamelCase__ , lowerCamelCase__ ) ) , dtype=lowerCamelCase__ )
return hidden_states
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]],
[17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]],
[8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]],
[3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]],
# fmt: on
] )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase , __UpperCamelCase : Dict =self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowerCamelCase__ )
__UpperCamelCase : Dict =self.get_latents(lowerCamelCase__ , fpaa=lowerCamelCase__ )
__UpperCamelCase : Optional[int] =self.get_encoder_hidden_states(lowerCamelCase__ , fpaa=lowerCamelCase__ )
__UpperCamelCase : List[str] =model.apply(
{'params': params} , lowerCamelCase__ , jnp.array(lowerCamelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCamelCase__ , ).sample
assert sample.shape == latents.shape
__UpperCamelCase : List[str] =jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
__UpperCamelCase : int =jnp.array(lowerCamelCase__ , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware
assert jnp.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]],
[17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]],
[8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]],
[3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]],
# fmt: on
] )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase , __UpperCamelCase : Dict =self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowerCamelCase__ )
__UpperCamelCase : Optional[Any] =self.get_latents(lowerCamelCase__ , shape=(4, 4, 96, 96) , fpaa=lowerCamelCase__ )
__UpperCamelCase : int =self.get_encoder_hidden_states(lowerCamelCase__ , shape=(4, 77, 1024) , fpaa=lowerCamelCase__ )
__UpperCamelCase : str =model.apply(
{'params': params} , lowerCamelCase__ , jnp.array(lowerCamelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCamelCase__ , ).sample
assert sample.shape == latents.shape
__UpperCamelCase : int =jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
__UpperCamelCase : Optional[Any] =jnp.array(lowerCamelCase__ , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware
assert jnp.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-2 )
| 245 | 0 |
'''simple docstring'''
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
lowercase_ = "src/transformers"
lowercase_ = "docs/source/en"
lowercase_ = "."
def lowerCAmelCase (__A , __A , __A):
"""simple docstring"""
with open(__A , '''r''' , encoding='''utf-8''' , newline='''\n''') as f:
_a = f.readlines()
# Find the start prompt.
_a = 0
while not lines[start_index].startswith(__A):
start_index += 1
start_index += 1
_a = start_index
while not lines[end_index].startswith(__A):
end_index += 1
end_index -= 1
while len(lines[start_index]) <= 1:
start_index += 1
while len(lines[end_index]) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index]), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
lowercase_ = "Model|Encoder|Decoder|ForConditionalGeneration"
# Regexes that match TF/Flax/PT model names.
lowercase_ = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
lowercase_ = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
lowercase_ = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# This is to make sure the transformers module imported is the one in the repo.
lowercase_ = direct_transformers_import(TRANSFORMERS_PATH)
def lowerCAmelCase (__A):
"""simple docstring"""
_a = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , __A)
return [m.group(0) for m in matches]
def lowerCAmelCase (__A , __A):
"""simple docstring"""
_a = 2 if text == '''✅''' or text == '''❌''' else len(__A)
_a = (width - text_length) // 2
_a = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def lowerCAmelCase ():
"""simple docstring"""
_a = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
_a = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
_a = {name: config.replace('''Config''' , '''''') for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
_a = collections.defaultdict(__A)
_a = collections.defaultdict(__A)
_a = collections.defaultdict(__A)
_a = collections.defaultdict(__A)
_a = collections.defaultdict(__A)
# Let's lookup through all transformers object (once).
for attr_name in dir(__A):
_a = None
if attr_name.endswith('''Tokenizer'''):
_a = slow_tokenizers
_a = attr_name[:-9]
elif attr_name.endswith('''TokenizerFast'''):
_a = fast_tokenizers
_a = attr_name[:-13]
elif _re_tf_models.match(__A) is not None:
_a = tf_models
_a = _re_tf_models.match(__A).groups()[0]
elif _re_flax_models.match(__A) is not None:
_a = flax_models
_a = _re_flax_models.match(__A).groups()[0]
elif _re_pt_models.match(__A) is not None:
_a = pt_models
_a = _re_pt_models.match(__A).groups()[0]
if lookup_dict is not None:
while len(__A) > 0:
if attr_name in model_name_to_prefix.values():
_a = True
break
# Try again after removing the last word in the name
_a = ''''''.join(camel_case_split(__A)[:-1])
# Let's build that table!
_a = list(model_name_to_config.keys())
model_names.sort(key=str.lower)
_a = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support''']
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
_a = [len(__A) + 2 for c in columns]
_a = max([len(__A) for name in model_names]) + 2
# Build the table per se
_a = '''|''' + '''|'''.join([_center_text(__A , __A) for c, w in zip(__A , __A)]) + '''|\n'''
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths]) + "|\n"
_a = {True: '''✅''', False: '''❌'''}
for name in model_names:
_a = model_name_to_prefix[name]
_a = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(__A , __A) for l, w in zip(__A , __A)]) + "|\n"
return table
def lowerCAmelCase (__A=False):
"""simple docstring"""
_a , _a , _a , _a = _find_text_in_file(
filename=os.path.join(__A , '''index.md''') , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , )
_a = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(__A , '''index.md''') , '''w''' , encoding='''utf-8''' , newline='''\n''') as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:])
else:
raise ValueError(
'''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''')
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowercase_ = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 211 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def lowerCAmelCase (__A):
"""simple docstring"""
if len(__A) != 32:
raise ValueError('''Input must be of length 32''')
_a = b''''''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def lowerCAmelCase (__A):
"""simple docstring"""
if i < 0:
raise ValueError('''Input must be non-negative''')
_a = format(__A , '''08x''')[-8:]
_a = b''''''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''')
return little_endian_hex
def lowerCAmelCase (__A):
"""simple docstring"""
_a = b''''''
for char in message:
bit_string += format(__A , '''08b''').encode('''utf-8''')
_a = format(len(__A) , '''064b''').encode('''utf-8''')
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(__A) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:]) + to_little_endian(start_len[:32])
return bit_string
def lowerCAmelCase (__A):
"""simple docstring"""
if len(__A) % 512 != 0:
raise ValueError('''Input must have length that\'s a multiple of 512''')
for pos in range(0 , len(__A) , 512):
_a = bit_string[pos : pos + 512]
_a = []
for i in range(0 , 512 , 32):
block_words.append(int(to_little_endian(block[i : i + 32]) , 2))
yield block_words
def lowerCAmelCase (__A):
"""simple docstring"""
if i < 0:
raise ValueError('''Input must be non-negative''')
_a = format(__A , '''032b''')
_a = ''''''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(__A , 2)
def lowerCAmelCase (__A , __A):
"""simple docstring"""
return (a + b) % 2**32
def lowerCAmelCase (__A , __A):
"""simple docstring"""
if i < 0:
raise ValueError('''Input must be non-negative''')
if shift < 0:
raise ValueError('''Shift must be non-negative''')
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def lowerCAmelCase (__A):
"""simple docstring"""
_a = preprocess(__A)
_a = [int(2**32 * abs(sin(i + 1))) for i in range(64)]
# Starting states
_a = 0x67_452_301
_a = 0xEF_CDA_B89
_a = 0x98_BAD_CFE
_a = 0x10_325_476
_a = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(__A):
_a = aa
_a = ba
_a = ca
_a = da
# Hash current chunk
for i in range(64):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
_a = d ^ (b & (c ^ d))
_a = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
_a = c ^ (d & (b ^ c))
_a = (5 * i + 1) % 16
elif i <= 47:
_a = b ^ c ^ d
_a = (3 * i + 5) % 16
else:
_a = c ^ (b | not_aa(__A))
_a = (7 * i) % 16
_a = (f + a + added_consts[i] + block_words[g]) % 2**32
_a = d
_a = c
_a = b
_a = sum_aa(__A , left_rotate_aa(__A , shift_amounts[i]))
# Add hashed chunk to running total
_a = sum_aa(__A , __A)
_a = sum_aa(__A , __A)
_a = sum_aa(__A , __A)
_a = sum_aa(__A , __A)
_a = reformat_hex(__A) + reformat_hex(__A) + reformat_hex(__A) + reformat_hex(__A)
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 211 | 1 |
"""simple docstring"""
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : list[str]) -> str:
'''simple docstring'''
__lowercase = ""
for word_or_phrase in separated:
if not isinstance(UpperCamelCase_, UpperCamelCase_):
raise Exception("join() accepts only strings to be joined")
joined += word_or_phrase + separator
return joined.strip(UpperCamelCase_)
if __name__ == "__main__":
from doctest import testmod
testmod()
| 144 |
"""simple docstring"""
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
_a = pytest.mark.integration
_a = {'comet'}
_a = importlib.util.find_spec('fairseq') is not None
_a = {'code_eval'}
_a = os.name == 'nt'
_a = {'bertscore', 'frugalscore', 'perplexity'}
_a = importlib.util.find_spec('transformers') is not None
def _A ( UpperCamelCase_ : Dict) -> Any:
'''simple docstring'''
@wraps(UpperCamelCase_)
def wrapper(self : Dict, UpperCamelCase_ : Dict):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest("\"test requires Fairseq\"")
else:
test_case(self, UpperCamelCase_)
return wrapper
def _A ( UpperCamelCase_ : Dict) -> int:
'''simple docstring'''
@wraps(UpperCamelCase_)
def wrapper(self : int, UpperCamelCase_ : str):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest("\"test requires transformers\"")
else:
test_case(self, UpperCamelCase_)
return wrapper
def _A ( UpperCamelCase_ : Tuple) -> str:
'''simple docstring'''
@wraps(UpperCamelCase_)
def wrapper(self : Optional[int], UpperCamelCase_ : Optional[Any]):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest("\"test not supported on Windows\"")
else:
test_case(self, UpperCamelCase_)
return wrapper
def _A ( ) -> str:
'''simple docstring'''
__lowercase = [metric_dir.split(os.sep)[-2] for metric_dir in glob.glob("./metrics/*/")]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
lowercase ,lowercase ,lowercase )
@local
class _lowerCAmelCase ( parameterized.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = {}
__UpperCAmelCase : Tuple = None
@pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" )
@pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" )
def _lowercase ( self : Dict, UpperCAmelCase__ : int ):
__lowercase = "[...]"
__lowercase = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics", UpperCAmelCase__ ) ).module_path )
__lowercase = datasets.load.import_main_class(metric_module.__name__, dataset=UpperCAmelCase__ )
# check parameters
__lowercase = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(UpperCAmelCase__, metric_module.__name__ ):
with self.use_local_metrics():
try:
__lowercase = doctest.testmod(UpperCAmelCase__, verbose=UpperCAmelCase__, raise_on_error=UpperCAmelCase__ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed, 0 )
self.assertGreater(results.attempted, 1 )
@slow
def _lowercase ( self : List[Any], UpperCAmelCase__ : Optional[Any] ):
__lowercase = "[...]"
__lowercase = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics", UpperCAmelCase__ ) ).module_path )
# run doctest
with self.use_local_metrics():
__lowercase = doctest.testmod(UpperCAmelCase__, verbose=UpperCAmelCase__, raise_on_error=UpperCAmelCase__ )
self.assertEqual(results.failed, 0 )
self.assertGreater(results.attempted, 1 )
@contextmanager
def _lowercase ( self : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Tuple ):
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](UpperCAmelCase__ ):
yield
else:
yield
@contextmanager
def _lowercase ( self : List[Any] ):
def load_local_metric(UpperCAmelCase__ : Any, *UpperCAmelCase__ : List[Any], **UpperCAmelCase__ : Any ):
return load_metric(os.path.join("metrics", UpperCAmelCase__ ), *UpperCAmelCase__, **UpperCAmelCase__ )
with patch("datasets.load_metric" ) as mock_load_metric:
__lowercase = load_local_metric
yield
@classmethod
def _lowercase ( cls : Optional[Any], UpperCAmelCase__ : List[Any] ):
def wrapper(UpperCAmelCase__ : Tuple ):
__lowercase = contextmanager(UpperCAmelCase__ )
__lowercase = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher("bleurt")
def _A ( UpperCamelCase_ : Any) -> Optional[Any]:
'''simple docstring'''
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string("sv", "", "") # handle pytest cli flags
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def _lowercase ( self : Tuple, UpperCAmelCase__ : Tuple ):
assert len(input_dict["input_ids"] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch("bleurt.score._create_predictor") as mock_create_predictor:
__lowercase = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher("bertscore")
def _A ( UpperCamelCase_ : Tuple) -> int:
'''simple docstring'''
import torch
def bert_cos_score_idf(UpperCamelCase_ : Tuple, UpperCamelCase_ : str, *UpperCamelCase_ : Optional[Any], **UpperCamelCase_ : Dict):
return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase_))
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch("bert_score.scorer.get_model"), patch(
"bert_score.scorer.bert_cos_score_idf") as mock_bert_cos_score_idf:
__lowercase = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher("comet")
def _A ( UpperCamelCase_ : Tuple) -> List[Any]:
'''simple docstring'''
def load_from_checkpoint(UpperCamelCase_ : Tuple):
class _lowerCAmelCase :
"""simple docstring"""
def _lowercase ( self : str, UpperCAmelCase__ : int, *UpperCAmelCase__ : Dict, **UpperCAmelCase__ : Dict ):
assert len(UpperCAmelCase__ ) == 2
__lowercase = [0.19, 0.92]
return scores, sum(UpperCAmelCase__ ) / len(UpperCAmelCase__ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch("comet.download_model") as mock_download_model:
__lowercase = None
with patch("comet.load_from_checkpoint") as mock_load_from_checkpoint:
__lowercase = load_from_checkpoint
yield
def _A ( ) -> Tuple:
'''simple docstring'''
__lowercase = load_metric(os.path.join("metrics", "seqeval"))
__lowercase = "ERROR"
__lowercase = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}"""
with pytest.raises(UpperCamelCase_, match=re.escape(UpperCamelCase_)):
metric.compute(predictions=[], references=[], scheme=UpperCamelCase_)
| 144 | 1 |
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class __lowerCAmelCase ( unittest.TestCase ):
__lowerCamelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
__lowerCamelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def snake_case ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
_lowerCAmelCase = TextaTextGenerationPipeline(model=_snake_case , tokenizer=_snake_case )
return generator, ["Something to write", "Something else"]
def snake_case ( self , _snake_case , _snake_case ):
"""simple docstring"""
_lowerCAmelCase = generator("""Something there""" )
self.assertEqual(_snake_case , [{"""generated_text""": ANY(_snake_case )}] )
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) )
_lowerCAmelCase = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_snake_case )
self.assertEqual(
_snake_case , [
[{"""generated_text""": ANY(_snake_case )}, {"""generated_text""": ANY(_snake_case )}],
[{"""generated_text""": ANY(_snake_case )}, {"""generated_text""": ANY(_snake_case )}],
] , )
_lowerCAmelCase = generator(
["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_snake_case )
self.assertEqual(
_snake_case , [
[{"""generated_text""": ANY(_snake_case )}, {"""generated_text""": ANY(_snake_case )}],
[{"""generated_text""": ANY(_snake_case )}, {"""generated_text""": ANY(_snake_case )}],
] , )
with self.assertRaises(_snake_case ):
generator(4 )
@require_torch
def snake_case ( self ):
"""simple docstring"""
_lowerCAmelCase = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" )
# do_sample=False necessary for reproducibility
_lowerCAmelCase = generator("""Something there""" , do_sample=_snake_case )
self.assertEqual(_snake_case , [{"""generated_text""": """"""}] )
_lowerCAmelCase = 3
_lowerCAmelCase = generator(
"""Something there""" , num_return_sequences=_snake_case , num_beams=_snake_case , )
_lowerCAmelCase = [
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """"""},
]
self.assertEqual(_snake_case , _snake_case )
_lowerCAmelCase = generator("""This is a test""" , do_sample=_snake_case , num_return_sequences=2 , return_tensors=_snake_case )
self.assertEqual(
_snake_case , [
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
] , )
_lowerCAmelCase = generator.model.config.eos_token_id
_lowerCAmelCase = """<pad>"""
_lowerCAmelCase = generator(
["""This is a test""", """This is a second test"""] , do_sample=_snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=_snake_case , )
self.assertEqual(
_snake_case , [
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
] , )
@require_tf
def snake_case ( self ):
"""simple docstring"""
_lowerCAmelCase = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" )
# do_sample=False necessary for reproducibility
_lowerCAmelCase = generator("""Something there""" , do_sample=_snake_case )
self.assertEqual(_snake_case , [{"""generated_text""": """"""}] )
| 82 |
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
class SCREAMING_SNAKE_CASE__ :
def __init__( self , a , a=13 , a=7 , a=False , a=True , a=False , a=False , a=19 , a=32 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=512 , a=16 , a=2 , a=0.02 , a=3 , a=4 , a=None , ):
lowercase__ : Optional[Any] = parent
lowercase__ : Dict = batch_size
lowercase__ : Union[str, Any] = seq_length
lowercase__ : Optional[Any] = is_training
lowercase__ : Tuple = use_input_mask
lowercase__ : List[str] = use_token_type_ids
lowercase__ : Optional[Any] = use_labels
lowercase__ : List[str] = vocab_size
lowercase__ : Optional[int] = hidden_size
lowercase__ : List[str] = num_hidden_layers
lowercase__ : Any = num_attention_heads
lowercase__ : int = intermediate_size
lowercase__ : Any = hidden_act
lowercase__ : Any = hidden_dropout_prob
lowercase__ : str = attention_probs_dropout_prob
lowercase__ : List[Any] = max_position_embeddings
lowercase__ : int = type_vocab_size
lowercase__ : List[Any] = type_sequence_label_size
lowercase__ : str = initializer_range
lowercase__ : List[str] = num_labels
lowercase__ : Union[str, Any] = num_choices
lowercase__ : Optional[int] = scope
def snake_case_ ( self):
lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : List[Any] = None
if self.use_input_mask:
lowercase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ : int = None
lowercase__ : Optional[int] = None
lowercase__ : Optional[int] = None
if self.use_labels:
lowercase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowercase__ : str = ids_tensor([self.batch_size] , self.num_choices)
lowercase__ : int = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case_ ( self):
lowercase__ : str = EsmConfig(
vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=a , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , )
return config
def snake_case_ ( self , a , a , a , a , a , a):
lowercase__ : Dict = EsmForProteinFolding(config=a).float()
model.to(a)
model.eval()
lowercase__ : Union[str, Any] = model(a , attention_mask=a)
lowercase__ : Dict = model(a)
lowercase__ : int = model(a)
self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3))
self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2))
def snake_case_ ( self):
lowercase__ : List[str] = self.prepare_config_and_inputs()
(
(
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) ,
) : int = config_and_inputs
lowercase__ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ (__snake_case , __snake_case , unittest.TestCase ):
__lowerCamelCase : Dict = False
__lowerCamelCase : Dict = (EsmForProteinFolding,) if is_torch_available() else ()
__lowerCamelCase : Union[str, Any] = ()
__lowerCamelCase : List[Any] = {} if is_torch_available() else {}
__lowerCamelCase : Optional[Any] = False
def snake_case_ ( self):
lowercase__ : Tuple = EsmFoldModelTester(self)
lowercase__ : List[Any] = ConfigTester(self , config_class=a , hidden_size=37)
def snake_case_ ( self):
self.config_tester.run_common_tests()
def snake_case_ ( self):
lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a)
@unittest.skip('Does not support attention outputs')
def snake_case_ ( self):
pass
@unittest.skip
def snake_case_ ( self):
pass
@unittest.skip('Esm does not support embedding resizing')
def snake_case_ ( self):
pass
@unittest.skip('Esm does not support embedding resizing')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold does not support passing input embeds!')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold does not support head pruning.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold does not support head pruning.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold does not support head pruning.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold does not support head pruning.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold does not support head pruning.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold does not output hidden states in the normal way.')
def snake_case_ ( self):
pass
@unittest.skip('ESMfold does not output hidden states in the normal way.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold only has one output format.')
def snake_case_ ( self):
pass
@unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold does not support input chunking.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold doesn\'t support torchscript compilation.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold doesn\'t support torchscript compilation.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold doesn\'t support torchscript compilation.')
def snake_case_ ( self):
pass
@unittest.skip('ESMFold doesn\'t support data parallel.')
def snake_case_ ( self):
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.')
def snake_case_ ( self):
pass
@require_torch
class SCREAMING_SNAKE_CASE__ (__snake_case ):
@slow
def snake_case_ ( self):
lowercase__ : Dict = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1').float()
model.eval()
lowercase__ : Optional[Any] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]])
lowercase__ : Optional[int] = model(a)['positions']
lowercase__ : Dict = torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa)
self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , a , atol=1e-4))
| 214 | 0 |
"""simple docstring"""
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
SCREAMING_SNAKE_CASE : Any = """src/transformers"""
SCREAMING_SNAKE_CASE : Dict = """docs/source/en"""
SCREAMING_SNAKE_CASE : List[str] = """."""
def lowercase ( _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Tuple ) ->Optional[Any]:
"""simple docstring"""
with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__snake_case : List[Any] = f.readlines()
# Find the start prompt.
__snake_case : Dict = 0
while not lines[start_index].startswith(_snake_case ):
start_index += 1
start_index += 1
__snake_case : Optional[int] = start_index
while not lines[end_index].startswith(_snake_case ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
SCREAMING_SNAKE_CASE : Optional[int] = """Model|Encoder|Decoder|ForConditionalGeneration"""
# Regexes that match TF/Flax/PT model names.
SCREAMING_SNAKE_CASE : List[Any] = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""")
SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
SCREAMING_SNAKE_CASE : Optional[int] = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""")
# This is to make sure the transformers module imported is the one in the repo.
SCREAMING_SNAKE_CASE : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH)
def lowercase ( _snake_case : Any ) ->Optional[int]:
"""simple docstring"""
__snake_case : str = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , _snake_case )
return [m.group(0 ) for m in matches]
def lowercase ( _snake_case : Dict , _snake_case : List[str] ) ->List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = 2 if text == '''✅''' or text == '''❌''' else len(_snake_case )
__snake_case : str = (width - text_length) // 2
__snake_case : List[str] = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def lowercase ( ) ->List[str]:
"""simple docstring"""
__snake_case : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
__snake_case : Optional[int] = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
__snake_case : Union[str, Any] = {name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
__snake_case : List[Any] = collections.defaultdict(_snake_case )
__snake_case : List[Any] = collections.defaultdict(_snake_case )
__snake_case : Optional[Any] = collections.defaultdict(_snake_case )
__snake_case : Optional[int] = collections.defaultdict(_snake_case )
__snake_case : Any = collections.defaultdict(_snake_case )
# Let's lookup through all transformers object (once).
for attr_name in dir(_snake_case ):
__snake_case : List[str] = None
if attr_name.endswith('''Tokenizer''' ):
__snake_case : Tuple = slow_tokenizers
__snake_case : Union[str, Any] = attr_name[:-9]
elif attr_name.endswith('''TokenizerFast''' ):
__snake_case : List[Any] = fast_tokenizers
__snake_case : Optional[int] = attr_name[:-13]
elif _re_tf_models.match(_snake_case ) is not None:
__snake_case : List[Any] = tf_models
__snake_case : int = _re_tf_models.match(_snake_case ).groups()[0]
elif _re_flax_models.match(_snake_case ) is not None:
__snake_case : Tuple = flax_models
__snake_case : Optional[int] = _re_flax_models.match(_snake_case ).groups()[0]
elif _re_pt_models.match(_snake_case ) is not None:
__snake_case : Optional[Any] = pt_models
__snake_case : List[Any] = _re_pt_models.match(_snake_case ).groups()[0]
if lookup_dict is not None:
while len(_snake_case ) > 0:
if attr_name in model_name_to_prefix.values():
__snake_case : Optional[int] = True
break
# Try again after removing the last word in the name
__snake_case : Dict = ''''''.join(camel_case_split(_snake_case )[:-1] )
# Let's build that table!
__snake_case : int = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
__snake_case : List[Any] = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support''']
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
__snake_case : int = [len(_snake_case ) + 2 for c in columns]
__snake_case : List[Any] = max([len(_snake_case ) for name in model_names] ) + 2
# Build the table per se
__snake_case : Optional[int] = '''|''' + '''|'''.join([_center_text(_snake_case , _snake_case ) for c, w in zip(_snake_case , _snake_case )] ) + '''|\n'''
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n"
__snake_case : Optional[int] = {True: '''✅''', False: '''❌'''}
for name in model_names:
__snake_case : Optional[Any] = model_name_to_prefix[name]
__snake_case : Optional[Any] = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(_snake_case , _snake_case ) for l, w in zip(_snake_case , _snake_case )] ) + "|\n"
return table
def lowercase ( _snake_case : List[str]=False ) ->Dict:
"""simple docstring"""
__snake_case , __snake_case , __snake_case , __snake_case : int = _find_text_in_file(
filename=os.path.join(_snake_case , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , )
__snake_case : Optional[Any] = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(_snake_case , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
'''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
SCREAMING_SNAKE_CASE : List[str] = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 24 |
"""simple docstring"""
from collections.abc import Callable
def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float:
"""simple docstring"""
__snake_case : float = a
__snake_case : float = b
if function(_snake_case ) == 0: # one of the a or b is a root for the function
return a
elif function(_snake_case ) == 0:
return b
elif (
function(_snake_case ) * function(_snake_case ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('''could not find root in given interval.''' )
else:
__snake_case : float = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(_snake_case ) == 0:
return mid
elif function(_snake_case ) * function(_snake_case ) < 0:
__snake_case : List[str] = mid
else:
__snake_case : str = mid
__snake_case : str = start + (end - start) / 2.0
return mid
def lowercase ( _snake_case : float ) ->float:
"""simple docstring"""
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 24 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
A_ = None
A_ = logging.get_logger(__name__)
A_ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
A_ = {
'''vocab_file''': {
'''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/spiece.model''',
'''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/spiece.model''',
},
'''tokenizer_file''': {
'''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json''',
'''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json''',
},
}
A_ = {
'''google/fnet-base''': 5_12,
'''google/fnet-large''': 5_12,
}
A_ = '''▁'''
class lowercase( __a ):
'''simple docstring'''
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = ["input_ids", "token_type_ids"]
lowercase__ = FNetTokenizer
def __init__( self: List[str], a_: str=None, a_: Optional[Any]=None, a_: Tuple=False, a_: Any=True, a_: List[str]=True, a_: List[Any]="<unk>", a_: Optional[Any]="[SEP]", a_: Optional[int]="<pad>", a_: Optional[Any]="[CLS]", a_: int="[MASK]", **a_: Optional[Any], ):
'''simple docstring'''
_snake_case : str = (
AddedToken(a_, lstrip=a_, rstrip=a_, normalized=a_ )
if isinstance(a_, a_ )
else mask_token
)
super().__init__(
a_, tokenizer_file=a_, do_lower_case=a_, remove_space=a_, keep_accents=a_, unk_token=a_, sep_token=a_, pad_token=a_, cls_token=a_, mask_token=a_, **a_, )
_snake_case : Union[str, Any] = do_lower_case
_snake_case : Dict = remove_space
_snake_case : int = keep_accents
_snake_case : Dict = vocab_file
_snake_case : str = False if not self.vocab_file else True
def UpperCamelCase_ ( self: Optional[Any], a_: List[int], a_: Optional[List[int]] = None ):
'''simple docstring'''
_snake_case : List[Any] = [self.sep_token_id]
_snake_case : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCamelCase_ ( self: Union[str, Any], a_: List[int], a_: Optional[List[int]] = None ):
'''simple docstring'''
_snake_case : Any = [self.sep_token_id]
_snake_case : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self: List[str], a_: str, a_: Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(a_ ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
_snake_case : List[Any] = os.path.join(
a_, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ):
copyfile(self.vocab_file, a_ )
return (out_vocab_file,)
| 64 |
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __A( a , a , unittest.TestCase ):
snake_case_ = AutoencoderKL
snake_case_ = '''sample'''
snake_case_ = 1E-2
@property
def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]:
'''simple docstring'''
__a = 4
__a = 3
__a = (32, 32)
__a = floats_tensor((batch_size, num_channels) + sizes ).to(_snake_case )
return {"sample": image}
@property
def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]:
'''simple docstring'''
return (3, 32, 32)
@property
def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]:
'''simple docstring'''
return (3, 32, 32)
def SCREAMING_SNAKE_CASE_ ( self ) -> Dict:
'''simple docstring'''
__a = {
'''block_out_channels''': [32, 64],
'''in_channels''': 3,
'''out_channels''': 3,
'''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],
'''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],
'''latent_channels''': 4,
}
__a = self.dummy_input
return init_dict, inputs_dict
def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]:
'''simple docstring'''
pass
@unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' )
def SCREAMING_SNAKE_CASE_ ( self ) -> int:
'''simple docstring'''
__a , __a = self.prepare_init_args_and_inputs_for_common()
__a = self.model_class(**_snake_case )
model.to(_snake_case )
assert not model.is_gradient_checkpointing and model.training
__a = model(**_snake_case ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
__a = torch.randn_like(_snake_case )
__a = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
__a = self.model_class(**_snake_case )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(_snake_case )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
__a = model_a(**_snake_case ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
__a = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1E-5 )
__a = dict(model.named_parameters() )
__a = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) )
def SCREAMING_SNAKE_CASE_ ( self ) -> Dict:
'''simple docstring'''
__a , __a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 )
model.to(_snake_case )
__a = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]:
'''simple docstring'''
__a = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' )
__a = model.to(_snake_case )
model.eval()
if torch_device == "mps":
__a = torch.manual_seed(0 )
else:
__a = torch.Generator(device=_snake_case ).manual_seed(0 )
__a = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
__a = image.to(_snake_case )
with torch.no_grad():
__a = model(_snake_case , sample_posterior=_snake_case , generator=_snake_case ).sample
__a = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
__a = torch.tensor(
[
-4.0_078E-01,
-3.8_323E-04,
-1.2_681E-01,
-1.1_462E-01,
2.0_095E-01,
1.0_893E-01,
-8.8_247E-02,
-3.0_361E-01,
-9.8_644E-03,
] )
elif torch_device == "cpu":
__a = torch.tensor(
[-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] )
else:
__a = torch.tensor(
[-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] )
self.assertTrue(torch_all_close(_snake_case , _snake_case , rtol=1E-2 ) )
@slow
class __A( unittest.TestCase ):
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]:
'''simple docstring'''
return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_snake_case ) for s in shape] )}.npy"""
def SCREAMING_SNAKE_CASE_ ( self ) -> Dict:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 , _snake_case=(4, 3, 512, 512) , _snake_case=False ) -> Any:
'''simple docstring'''
__a = torch.floataa if fpaa else torch.floataa
__a = torch.from_numpy(load_hf_numpy(self.get_file_format(_snake_case , _snake_case ) ) ).to(_snake_case ).to(_snake_case )
return image
def SCREAMING_SNAKE_CASE_ ( self , _snake_case="CompVis/stable-diffusion-v1-4" , _snake_case=False ) -> Optional[Any]:
'''simple docstring'''
__a = '''fp16''' if fpaa else None
__a = torch.floataa if fpaa else torch.floataa
__a = AutoencoderKL.from_pretrained(
_snake_case , subfolder='''vae''' , torch_dtype=_snake_case , revision=_snake_case , )
model.to(_snake_case ).eval()
return model
def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 ) -> Tuple:
'''simple docstring'''
if torch_device == "mps":
return torch.manual_seed(_snake_case )
return torch.Generator(device=_snake_case ).manual_seed(_snake_case )
@parameterized.expand(
[
# fmt: off
[33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[Any]:
'''simple docstring'''
__a = self.get_sd_vae_model()
__a = self.get_sd_image(_snake_case )
__a = self.get_generator(_snake_case )
with torch.no_grad():
__a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample
assert sample.shape == image.shape
__a = sample[-1, -2:, -2:, :2].flatten().float().cpu()
__a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice )
assert torch_all_close(_snake_case , _snake_case , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
[47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
# fmt: on
] )
@require_torch_gpu
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Tuple:
'''simple docstring'''
__a = self.get_sd_vae_model(fpaa=_snake_case )
__a = self.get_sd_image(_snake_case , fpaa=_snake_case )
__a = self.get_generator(_snake_case )
with torch.no_grad():
__a = model(_snake_case , generator=_snake_case , sample_posterior=_snake_case ).sample
assert sample.shape == image.shape
__a = sample[-1, -2:, :2, -2:].flatten().float().cpu()
__a = torch.tensor(_snake_case )
assert torch_all_close(_snake_case , _snake_case , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]:
'''simple docstring'''
__a = self.get_sd_vae_model()
__a = self.get_sd_image(_snake_case )
with torch.no_grad():
__a = model(_snake_case ).sample
assert sample.shape == image.shape
__a = sample[-1, -2:, -2:, :2].flatten().float().cpu()
__a = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice )
assert torch_all_close(_snake_case , _snake_case , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
[37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
# fmt: on
] )
@require_torch_gpu
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]:
'''simple docstring'''
__a = self.get_sd_vae_model()
__a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) )
with torch.no_grad():
__a = model.decode(_snake_case ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
__a = sample[-1, -2:, :2, -2:].flatten().cpu()
__a = torch.tensor(_snake_case )
assert torch_all_close(_snake_case , _snake_case , atol=1E-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
[16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
# fmt: on
] )
@require_torch_gpu
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[Any]:
'''simple docstring'''
__a = self.get_sd_vae_model(fpaa=_snake_case )
__a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case )
with torch.no_grad():
__a = model.decode(_snake_case ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
__a = sample[-1, -2:, :2, -2:].flatten().float().cpu()
__a = torch.tensor(_snake_case )
assert torch_all_close(_snake_case , _snake_case , atol=5E-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]:
'''simple docstring'''
__a = self.get_sd_vae_model(fpaa=_snake_case )
__a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) , fpaa=_snake_case )
with torch.no_grad():
__a = model.decode(_snake_case ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
__a = model.decode(_snake_case ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(_snake_case , _snake_case , atol=1E-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]:
'''simple docstring'''
__a = self.get_sd_vae_model()
__a = self.get_sd_image(_snake_case , shape=(3, 4, 64, 64) )
with torch.no_grad():
__a = model.decode(_snake_case ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
__a = model.decode(_snake_case ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(_snake_case , _snake_case , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
# fmt: on
] )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]:
'''simple docstring'''
__a = self.get_sd_vae_model()
__a = self.get_sd_image(_snake_case )
__a = self.get_generator(_snake_case )
with torch.no_grad():
__a = model.encode(_snake_case ).latent_dist
__a = dist.sample(generator=_snake_case )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
__a = sample[0, -1, -3:, -3:].flatten().cpu()
__a = torch.tensor(_snake_case )
__a = 3E-3 if torch_device != '''mps''' else 1E-2
assert torch_all_close(_snake_case , _snake_case , atol=_snake_case ) | 6 | 0 |
"""simple docstring"""
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class UpperCamelCase ( unittest.TestCase ):
def a_ ( self) -> Optional[Any]:
snake_case_ = inspect.getfile(accelerate.test_utils)
snake_case_ = os.path.sep.join(
mod_file.split(os.path.sep)[:-1] + ['scripts', 'external_deps', 'test_metrics.py'])
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
snake_case_ = test_metrics
@require_cpu
def a_ ( self) -> Any:
debug_launcher(self.test_metrics.main, num_processes=1)
@require_cpu
def a_ ( self) -> List[Any]:
debug_launcher(self.test_metrics.main)
@require_single_gpu
def a_ ( self) -> int:
self.test_metrics.main()
@require_multi_gpu
def a_ ( self) -> Optional[int]:
print(f'Found {torch.cuda.device_count()} devices.')
snake_case_ = ['torchrun', f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path]
with patch_environment(omp_num_threads=1):
execute_subprocess_async(lowerCAmelCase__, env=os.environ.copy())
| 312 | """simple docstring"""
from ..utils import DummyObject, requires_backends
class UpperCamelCase ( metaclass=lowerCAmelCase__ ):
SCREAMING_SNAKE_CASE_ = ["keras_nlp"]
def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> int:
requires_backends(self, ['keras_nlp'])
| 312 | 1 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
UpperCAmelCase_ : int = logging.get_logger(__name__)
UpperCAmelCase_ : Dict = {
'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': (
'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json'
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class lowercase__ ( _snake_case ):
'''simple docstring'''
A_ : Optional[Any] = """trajectory_transformer"""
A_ : Optional[Any] = ["""past_key_values"""]
A_ : str = {
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , __snake_case=100 , __snake_case=5 , __snake_case=1 , __snake_case=1 , __snake_case=249 , __snake_case=6 , __snake_case=17 , __snake_case=25 , __snake_case=4 , __snake_case=4 , __snake_case=128 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=0.0006 , __snake_case=512 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=1 , __snake_case=True , __snake_case=1 , __snake_case=5_0256 , __snake_case=5_0256 , **__snake_case , ):
_SCREAMING_SNAKE_CASE : str = vocab_size
_SCREAMING_SNAKE_CASE : List[Any] = action_weight
_SCREAMING_SNAKE_CASE : List[str] = reward_weight
_SCREAMING_SNAKE_CASE : List[str] = value_weight
_SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings
_SCREAMING_SNAKE_CASE : List[str] = block_size
_SCREAMING_SNAKE_CASE : str = action_dim
_SCREAMING_SNAKE_CASE : str = observation_dim
_SCREAMING_SNAKE_CASE : Union[str, Any] = transition_dim
_SCREAMING_SNAKE_CASE : int = learning_rate
_SCREAMING_SNAKE_CASE : int = n_layer
_SCREAMING_SNAKE_CASE : Optional[int] = n_head
_SCREAMING_SNAKE_CASE : int = n_embd
_SCREAMING_SNAKE_CASE : List[str] = embd_pdrop
_SCREAMING_SNAKE_CASE : List[Any] = attn_pdrop
_SCREAMING_SNAKE_CASE : List[Any] = resid_pdrop
_SCREAMING_SNAKE_CASE : Optional[int] = initializer_range
_SCREAMING_SNAKE_CASE : Dict = layer_norm_eps
_SCREAMING_SNAKE_CASE : str = kaiming_initializer_range
_SCREAMING_SNAKE_CASE : Optional[int] = use_cache
super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
| 200 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
UpperCAmelCase_ : Optional[int] = {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json',
'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json',
'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json',
# See all BigBird models at https://huggingface.co/models?filter=big_bird
}
class lowercase__ ( _snake_case ):
'''simple docstring'''
A_ : str = """big_bird"""
def __init__( self , __snake_case=5_0358 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu_new" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=4096 , __snake_case=2 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=True , __snake_case=0 , __snake_case=1 , __snake_case=2 , __snake_case=66 , __snake_case="block_sparse" , __snake_case=True , __snake_case=False , __snake_case=64 , __snake_case=3 , __snake_case=None , **__snake_case , ):
super().__init__(
pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , sep_token_id=__snake_case , **__snake_case , )
_SCREAMING_SNAKE_CASE : str = vocab_size
_SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings
_SCREAMING_SNAKE_CASE : List[str] = hidden_size
_SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers
_SCREAMING_SNAKE_CASE : Any = num_attention_heads
_SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size
_SCREAMING_SNAKE_CASE : List[Any] = hidden_act
_SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob
_SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob
_SCREAMING_SNAKE_CASE : Tuple = initializer_range
_SCREAMING_SNAKE_CASE : Any = type_vocab_size
_SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps
_SCREAMING_SNAKE_CASE : List[Any] = use_cache
_SCREAMING_SNAKE_CASE : List[Any] = rescale_embeddings
_SCREAMING_SNAKE_CASE : Union[str, Any] = attention_type
_SCREAMING_SNAKE_CASE : Union[str, Any] = use_bias
_SCREAMING_SNAKE_CASE : int = block_size
_SCREAMING_SNAKE_CASE : Any = num_random_blocks
_SCREAMING_SNAKE_CASE : List[str] = classifier_dropout
class lowercase__ ( _snake_case ):
'''simple docstring'''
@property
def UpperCAmelCase_ ( self ):
if self.task == "multiple-choice":
_SCREAMING_SNAKE_CASE : int = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_SCREAMING_SNAKE_CASE : Optional[int] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 200 | 1 |
"""simple docstring"""
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
lowerCAmelCase : List[Any] = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase__ )
class __magic_name__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self , **_a ):
"""simple docstring"""
super().__init__(**_a )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self , _a , **_a ):
"""simple docstring"""
return super().__call__(_a , **_a )
def _lowerCAmelCase ( self , **_a ):
"""simple docstring"""
lowerCamelCase = {}
if "candidate_labels" in kwargs:
lowerCamelCase = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
lowerCamelCase = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def _lowerCAmelCase ( self , _a , _a=None , _a="This is a photo of {}." ):
"""simple docstring"""
lowerCamelCase = load_image(_a )
lowerCamelCase = self.image_processor(images=[image] , return_tensors=self.framework )
lowerCamelCase = candidate_labels
lowerCamelCase = [hypothesis_template.format(_a ) for x in candidate_labels]
lowerCamelCase = self.tokenizer(_a , return_tensors=self.framework , padding=_a )
lowerCamelCase = [text_inputs]
return inputs
def _lowerCAmelCase ( self , _a ):
"""simple docstring"""
lowerCamelCase = model_inputs.pop("""candidate_labels""" )
lowerCamelCase = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , _a ):
lowerCamelCase = text_inputs[0]
else:
# Batching case.
lowerCamelCase = text_inputs[0][0]
lowerCamelCase = self.model(**_a , **_a )
lowerCamelCase = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_image,
}
return model_outputs
def _lowerCAmelCase ( self , _a ):
"""simple docstring"""
lowerCamelCase = model_outputs.pop("""candidate_labels""" )
lowerCamelCase = model_outputs["""logits"""][0]
if self.framework == "pt":
lowerCamelCase = logits.softmax(dim=-1 ).squeeze(-1 )
lowerCamelCase = probs.tolist()
if not isinstance(_a , _a ):
lowerCamelCase = [scores]
elif self.framework == "tf":
lowerCamelCase = stable_softmax(_a , axis=-1 )
lowerCamelCase = probs.numpy().tolist()
else:
raise ValueError(f'Unsupported framework: {self.framework}' )
lowerCamelCase = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(_a , _a ) , key=lambda _a : -x[0] )
]
return result
| 361 |
"""simple docstring"""
import argparse
import gc
import json
import os
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
lowerCAmelCase : Dict = 16
lowerCAmelCase : int = 32
def a__ ( snake_case__ ) -> Optional[Any]:
return int(x / 2**20 )
class __magic_name__ :
'''simple docstring'''
def __enter__( self ):
"""simple docstring"""
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
lowerCamelCase = torch.cuda.memory_allocated()
return self
def __exit__( self , *_a ):
"""simple docstring"""
gc.collect()
torch.cuda.empty_cache()
lowerCamelCase = torch.cuda.memory_allocated()
lowerCamelCase = torch.cuda.max_memory_allocated()
lowerCamelCase = bamb(self.end - self.begin )
lowerCamelCase = bamb(self.peak - self.begin )
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
def a__ ( snake_case__ , snake_case__ = 16 , snake_case__ = "bert-base-cased" , snake_case__ = 3_20 , snake_case__ = 1_60 , ) -> List[str]:
lowerCamelCase = AutoTokenizer.from_pretrained(snake_case__ )
lowerCamelCase = load_dataset(
"""glue""" , """mrpc""" , split={"""train""": F'train[:{n_train}]', """validation""": F'validation[:{n_val}]'} )
def tokenize_function(snake_case__ ):
# max_length=None => use the model max length (it's actually the default)
lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case__ , max_length=snake_case__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
lowerCamelCase = datasets.map(
snake_case__ , batched=snake_case__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=snake_case__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(snake_case__ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(snake_case__ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" )
return tokenizer.pad(snake_case__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
lowerCamelCase = DataLoader(
tokenized_datasets["""train"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ )
lowerCamelCase = DataLoader(
tokenized_datasets["""validation"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ )
return train_dataloader, eval_dataloader
def a__ ( snake_case__ , snake_case__ ) -> Any:
# Initialize accelerator
lowerCamelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCamelCase = config["""lr"""]
lowerCamelCase = int(config["""num_epochs"""] )
lowerCamelCase = int(config["""seed"""] )
lowerCamelCase = int(config["""batch_size"""] )
lowerCamelCase = args.model_name_or_path
set_seed(snake_case__ )
lowerCamelCase , lowerCamelCase = get_dataloaders(snake_case__ , snake_case__ , snake_case__ , args.n_train , args.n_val )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(snake_case__ , return_dict=snake_case__ )
# Instantiate optimizer
lowerCamelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
lowerCamelCase = optimizer_cls(params=model.parameters() , lr=snake_case__ )
if accelerator.state.deepspeed_plugin is not None:
lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
"""gradient_accumulation_steps"""
]
else:
lowerCamelCase = 1
lowerCamelCase = (len(snake_case__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
lowerCamelCase = get_linear_schedule_with_warmup(
optimizer=snake_case__ , num_warmup_steps=0 , num_training_steps=snake_case__ , )
else:
lowerCamelCase = DummyScheduler(snake_case__ , total_num_steps=snake_case__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = accelerator.prepare(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# We need to keep track of how many total steps we have iterated over
lowerCamelCase = 0
# We also need to keep track of the stating epoch so files are named properly
lowerCamelCase = 0
# Now we train the model
lowerCamelCase = {}
for epoch in range(snake_case__ , snake_case__ ):
with TorchTracemalloc() as tracemalloc:
model.train()
for step, batch in enumerate(snake_case__ ):
lowerCamelCase = model(**snake_case__ )
lowerCamelCase = outputs.loss
lowerCamelCase = loss / gradient_accumulation_steps
accelerator.backward(snake_case__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) )
accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) )
accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) )
accelerator.print(
"""Total Peak Memory consumed during the train (max): {}""".format(
tracemalloc.peaked + bamb(tracemalloc.begin ) ) )
lowerCamelCase = tracemalloc.peaked + bamb(tracemalloc.begin )
if args.peak_memory_upper_bound is not None:
assert (
train_total_peak_memory[F'epoch-{epoch}'] <= args.peak_memory_upper_bound
), "Peak memory usage exceeded the upper bound"
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f:
json.dump(snake_case__ , snake_case__ )
def a__ ( ) -> str:
lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" )
parser.add_argument(
"""--model_name_or_path""" , type=snake_case__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=snake_case__ , )
parser.add_argument(
"""--output_dir""" , type=snake_case__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , )
parser.add_argument(
"""--peak_memory_upper_bound""" , type=snake_case__ , default=snake_case__ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , )
parser.add_argument(
"""--n_train""" , type=snake_case__ , default=3_20 , help="""Number of training examples to use.""" , )
parser.add_argument(
"""--n_val""" , type=snake_case__ , default=1_60 , help="""Number of validation examples to use.""" , )
parser.add_argument(
"""--num_epochs""" , type=snake_case__ , default=1 , help="""Number of train epochs.""" , )
lowerCamelCase = parser.parse_args()
lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16}
training_function(snake_case__ , snake_case__ )
if __name__ == "__main__":
main()
| 168 | 0 |
'''simple docstring'''
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
a : Dict = logging.get_logger(__name__)
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : str = MobileNetVaConfig(layer_norm_eps=0.0_0_1 )
if "_quant" in model_name:
raise ValueError("Quantized models are not supported." )
UpperCAmelCase : Tuple = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , __magic_name__ )
if matches:
UpperCAmelCase : int = float(matches[1] )
UpperCAmelCase : Union[str, Any] = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
UpperCAmelCase : str = 1001
UpperCAmelCase : int = "imagenet-1k-id2label.json"
UpperCAmelCase : Tuple = "huggingface/label-files"
UpperCAmelCase : List[str] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase : Optional[int] = {int(__magic_name__ ) + 1: v for k, v in idalabel.items()}
UpperCAmelCase : Optional[int] = "background"
UpperCAmelCase : int = idalabel
UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
return config
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : str = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase : Union[str, Any] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw )
return im
@torch.no_grad()
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=False ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = get_mobilenet_va_config(__magic_name__ )
# Load 🤗 model
UpperCAmelCase : Tuple = MobileNetVaForImageClassification(__magic_name__ ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(__magic_name__ , __magic_name__ , __magic_name__ )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
UpperCAmelCase : Optional[int] = MobileNetVaImageProcessor(
crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , )
UpperCAmelCase : Optional[Any] = image_processor(images=prepare_img() , return_tensors="pt" )
UpperCAmelCase : Union[str, Any] = model(**__magic_name__ )
UpperCAmelCase : Tuple = outputs.logits
assert logits.shape == (1, 1001)
if model_name == "mobilenet_v1_1.0_224":
UpperCAmelCase : int = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] )
elif model_name == "mobilenet_v1_0.75_192":
UpperCAmelCase : Tuple = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] )
else:
UpperCAmelCase : Optional[int] = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] , __magic_name__ , atol=1e-4 )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
print(F"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__magic_name__ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__magic_name__ )
if push_to_hub:
print("Pushing to the hub..." )
UpperCAmelCase : Tuple = "google/" + model_name
image_processor.push_to_hub(__magic_name__ )
model.push_to_hub(__magic_name__ )
if __name__ == "__main__":
a : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="mobilenet_v1_1.0_224",
type=str,
help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.",
)
parser.add_argument(
"--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
a : Optional[Any] = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 311 |
'''simple docstring'''
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
a : Optional[int] = _symbol_database.Default()
a : Any = _descriptor_pool.Default().AddSerializedFile(
B"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"
)
a : Tuple = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
a : str = None
a : Optional[Any] = B"H\003"
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
a : str = 45
a : Any = 15_81
a : List[Any] = 15_17
a : Union[str, Any] = 15_70
a : Optional[Any] = 15_84
a : List[str] = 17_93
a : Optional[Any] = 17_95
a : Tuple = 19_16
a : Optional[Any] = 18_64
a : int = 19_05
a : Optional[Any] = 19_19
a : Union[str, Any] = 24_29
a : List[Any] = 22_08
a : Dict = 24_18
a : Optional[int] = 23_23
a : str = 24_07
# @@protoc_insertion_point(module_scope)
| 311 | 1 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
lowerCamelCase : List[str] = logging.get_logger(__name__)
lowerCamelCase : List[Any] = {
'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json',
# See all Marian models at https://huggingface.co/models?filter=marian
}
class __lowercase (UpperCamelCase__ ):
"""simple docstring"""
_snake_case = """marian"""
_snake_case = ["""past_key_values"""]
_snake_case = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self , A=5_8_1_0_1 , A=None , A=1_0_2_4 , A=1_2 , A=4_0_9_6 , A=1_6 , A=1_2 , A=4_0_9_6 , A=1_6 , A=0.0 , A=0.0 , A=True , A=True , A="gelu" , A=1_0_2_4 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=5_8_1_0_0 , A=False , A=5_8_1_0_0 , A=0 , A=0 , A=True , **A , ) -> Optional[int]:
snake_case : str = vocab_size
snake_case : Optional[int] = decoder_vocab_size or vocab_size
snake_case : Optional[Any] = max_position_embeddings
snake_case : Optional[Any] = d_model
snake_case : Optional[Any] = encoder_ffn_dim
snake_case : int = encoder_layers
snake_case : Tuple = encoder_attention_heads
snake_case : str = decoder_ffn_dim
snake_case : Tuple = decoder_layers
snake_case : str = decoder_attention_heads
snake_case : List[Any] = dropout
snake_case : str = attention_dropout
snake_case : Union[str, Any] = activation_dropout
snake_case : str = activation_function
snake_case : Optional[int] = init_std
snake_case : List[str] = encoder_layerdrop
snake_case : Optional[int] = decoder_layerdrop
snake_case : Dict = use_cache
snake_case : Dict = encoder_layers
snake_case : Dict = scale_embedding # scale factor will be sqrt(d_model) if True
snake_case : Dict = share_encoder_decoder_embeddings
super().__init__(
pad_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , forced_eos_token_id=A , **A , )
class __lowercase (UpperCamelCase__ ):
"""simple docstring"""
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs
def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
snake_case : Optional[Any] = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
snake_case : str = {0: """batch"""}
snake_case : Optional[Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
else:
snake_case : Optional[Any] = {0: """batch""", 1: """decoder_sequence"""}
snake_case : List[Any] = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(A , direction="""inputs""" )
elif self.task == "causal-lm":
# TODO: figure this case out.
snake_case : Tuple = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
snake_case , snake_case : Any = self.num_layers
for i in range(A ):
snake_case : Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""}
snake_case : List[Any] = {0: """batch""", 2: """past_sequence + sequence"""}
else:
snake_case : Optional[int] = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}),
("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}),
] )
return common_inputs
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
snake_case : Optional[Any] = super().outputs
else:
snake_case : Any = super(A , self ).outputs
if self.use_past:
snake_case , snake_case : Any = self.num_layers
for i in range(A ):
snake_case : List[str] = {0: """batch""", 2: """past_sequence + sequence"""}
snake_case : Union[str, Any] = {0: """batch""", 2: """past_sequence + sequence"""}
return common_outputs
def UpperCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]:
snake_case : Union[str, Any] = self._generate_dummy_inputs_for_encoder_and_decoder(
A , A , A , A , A )
# Generate decoder inputs
snake_case : Union[str, Any] = seq_length if not self.use_past else 1
snake_case : Union[str, Any] = self._generate_dummy_inputs_for_encoder_and_decoder(
A , A , A , A , A )
snake_case : str = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()}
snake_case : Tuple = dict(**A , **A )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
snake_case , snake_case : Optional[Any] = common_inputs["""input_ids"""].shape
snake_case : str = common_inputs["""decoder_input_ids"""].shape[1]
snake_case , snake_case : Union[str, Any] = self.num_attention_heads
snake_case : Optional[int] = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
snake_case : Union[str, Any] = decoder_seq_length + 3
snake_case : Optional[int] = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
snake_case : Tuple = torch.cat(
[common_inputs["""decoder_attention_mask"""], torch.ones(A , A )] , dim=1 )
snake_case : Optional[Any] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
snake_case , snake_case : str = self.num_layers
snake_case : Tuple = min(A , A )
snake_case : Tuple = max(A , A ) - min_num_layers
snake_case : Optional[int] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder"""
for _ in range(A ):
common_inputs["past_key_values"].append(
(
torch.zeros(A ),
torch.zeros(A ),
torch.zeros(A ),
torch.zeros(A ),
) )
# TODO: test this.
snake_case : Optional[Any] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape
for _ in range(A , A ):
common_inputs["past_key_values"].append((torch.zeros(A ), torch.zeros(A )) )
return common_inputs
def UpperCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]:
snake_case : Optional[int] = self._generate_dummy_inputs_for_encoder_and_decoder(
A , A , A , A , A )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
snake_case , snake_case : Tuple = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
snake_case : Optional[Any] = seqlen + 2
snake_case , snake_case : int = self.num_layers
snake_case , snake_case : Optional[Any] = self.num_attention_heads
snake_case : Optional[int] = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
snake_case : Dict = common_inputs["""attention_mask"""].dtype
snake_case : Union[str, Any] = torch.cat(
[common_inputs["""attention_mask"""], torch.ones(A , A , dtype=A )] , dim=1 )
snake_case : int = [
(torch.zeros(A ), torch.zeros(A )) for _ in range(A )
]
return common_inputs
def UpperCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
snake_case : Tuple = compute_effective_axis_dimension(
A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
snake_case : Any = tokenizer.num_special_tokens_to_add(A )
snake_case : Any = compute_effective_axis_dimension(
A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A )
# Generate dummy inputs according to compute batch and sequence
snake_case : Optional[Any] = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size
snake_case : Union[str, Any] = dict(tokenizer(A , return_tensors=A ) )
return common_inputs
def UpperCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
snake_case : int = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
A , batch_size=A , seq_length=A , is_pair=A , framework=A )
else:
snake_case : List[Any] = self._generate_dummy_inputs_for_causal_lm(
A , batch_size=A , seq_length=A , is_pair=A , framework=A )
return common_inputs
def UpperCAmelCase ( self , A , A , A , A ) -> List[Any]:
if self.task in ["default", "seq2seq-lm"]:
snake_case : str = super()._flatten_past_key_values_(A , A , A , A )
else:
snake_case : Optional[int] = super(A , self )._flatten_past_key_values_(
A , A , A , A )
@property
def UpperCAmelCase ( self ) -> float:
return 1e-4
| 176 |
import warnings
from functools import wraps
from typing import Callable
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Callable:
@wraps(lowercase )
def _inner_fn(*lowercase ,**lowercase ):
warnings.warn(
(f"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") ,lowercase ,)
return fn(*lowercase ,**lowercase )
return _inner_fn
| 176 | 1 |
"""simple docstring"""
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
_lowerCAmelCase :int = ['small', 'medium', 'large']
_lowerCAmelCase :int = 'lm_head.decoder.weight'
_lowerCAmelCase :Dict = 'lm_head.weight'
def lowerCamelCase_ (UpperCamelCase__ : str , UpperCamelCase__ : str ):
_UpperCAmelCase : List[Any] = torch.load(UpperCamelCase__ )
_UpperCAmelCase : List[str] = d.pop(UpperCamelCase__ )
os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ )
torch.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) )
if __name__ == "__main__":
_lowerCAmelCase :Dict = argparse.ArgumentParser()
parser.add_argument('--dialogpt_path', default='.', type=str)
_lowerCAmelCase :str = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
_lowerCAmelCase :Tuple = os.path.join(args.dialogpt_path, f"{MODEL}_ft.pkl")
_lowerCAmelCase :int = f"./DialoGPT-{MODEL}"
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 263 |
"""simple docstring"""
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
_lowerCAmelCase :str = object()
# For specifying empty leaf dict `{}`
_lowerCAmelCase :str = object()
def lowerCamelCase_ (UpperCamelCase__ : List[str] , UpperCamelCase__ : int ):
_UpperCAmelCase : Dict = tuple((re.compile(x + '''$''' ) for x in qs) )
for i in range(len(UpperCamelCase__ ) - len(UpperCamelCase__ ) + 1 ):
_UpperCAmelCase : str = [x.match(UpperCamelCase__ ) for x, y in zip(UpperCamelCase__ , ks[i:] )]
if matches and all(UpperCamelCase__ ):
return True
return False
def lowerCamelCase_ (UpperCamelCase__ : List[str] ):
def replace(UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple ):
for rule, replacement in rules:
if _match(UpperCamelCase__ , UpperCamelCase__ ):
return replacement
return val
return replace
def lowerCamelCase_ ():
return [
# embeddings
(("transformer", "wpe", "embedding"), P('''mp''' , UpperCamelCase__ )),
(("transformer", "wte", "embedding"), P('''mp''' , UpperCamelCase__ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase__ , '''mp''' )),
(("attention", "out_proj", "kernel"), P('''mp''' , UpperCamelCase__ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(UpperCamelCase__ , '''mp''' )),
(("mlp", "c_fc", "bias"), P('''mp''' )),
(("mlp", "c_proj", "kernel"), P('''mp''' , UpperCamelCase__ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def lowerCamelCase_ (UpperCamelCase__ : str ):
_UpperCAmelCase : List[str] = _get_partition_rules()
_UpperCAmelCase : List[str] = _replacement_rules(UpperCamelCase__ )
_UpperCAmelCase : List[Any] = {k: _unmatched for k in flatten_dict(UpperCamelCase__ )}
_UpperCAmelCase : int = {k: replace(UpperCamelCase__ , UpperCamelCase__ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(UpperCamelCase__ ) )
| 263 | 1 |
"""simple docstring"""
from typing import Any
def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ):
_validation(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , )
# Creates data structures and fill initial step
UpperCAmelCase = {}
UpperCAmelCase = {}
for state in states_space:
UpperCAmelCase = observations_space[0]
UpperCAmelCase = (
initial_probabilities[state] * emission_probabilities[state][observation]
)
UpperCAmelCase = None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(lowercase_ ) ):
UpperCAmelCase = observations_space[o]
UpperCAmelCase = observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
UpperCAmelCase = ''
UpperCAmelCase = -1
for k_state in states_space:
UpperCAmelCase = (
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
UpperCAmelCase = probability
UpperCAmelCase = k_state
# Update probabilities and pointers dicts
UpperCAmelCase = (
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
UpperCAmelCase = arg_max
# The final observation
UpperCAmelCase = observations_space[len(lowercase_ ) - 1]
# argmax for given final observation
UpperCAmelCase = ''
UpperCAmelCase = -1
for k_state in states_space:
UpperCAmelCase = probabilities[(k_state, final_observation)]
if probability > max_probability:
UpperCAmelCase = probability
UpperCAmelCase = k_state
UpperCAmelCase = arg_max
# Process pointers backwards
UpperCAmelCase = last_state
UpperCAmelCase = []
for o in range(len(lowercase_ ) - 1 , -1 , -1 ):
result.append(lowercase_ )
UpperCAmelCase = pointers[previous, observations_space[o]]
result.reverse()
return result
def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ):
_validate_not_empty(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , )
_validate_lists(lowercase_ , lowercase_ )
_validate_dicts(
lowercase_ , lowercase_ , lowercase_ )
def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ):
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError('There\'s an empty parameter' )
def _lowerCAmelCase ( lowercase_ , lowercase_ ):
_validate_list(lowercase_ , 'observations_space' )
_validate_list(lowercase_ , 'states_space' )
def _lowerCAmelCase ( lowercase_ , lowercase_ ):
if not isinstance(_object , lowercase_ ):
UpperCAmelCase = F"""{var_name} must be a list"""
raise ValueError(lowercase_ )
else:
for x in _object:
if not isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase = F"""{var_name} must be a list of strings"""
raise ValueError(lowercase_ )
def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , ):
_validate_dict(lowercase_ , 'initial_probabilities' , lowercase_ )
_validate_nested_dict(lowercase_ , 'transition_probabilities' )
_validate_nested_dict(lowercase_ , 'emission_probabilities' )
def _lowerCAmelCase ( lowercase_ , lowercase_ ):
_validate_dict(_object , lowercase_ , lowercase_ )
for x in _object.values():
_validate_dict(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ = False ):
if not isinstance(_object , lowercase_ ):
UpperCAmelCase = F"""{var_name} must be a dict"""
raise ValueError(lowercase_ )
if not all(isinstance(lowercase_ , lowercase_ ) for x in _object ):
UpperCAmelCase = F"""{var_name} all keys must be strings"""
raise ValueError(lowercase_ )
if not all(isinstance(lowercase_ , lowercase_ ) for x in _object.values() ):
UpperCAmelCase = 'nested dictionary ' if nested else ''
UpperCAmelCase = F"""{var_name} {nested_text}all values must be {value_type.__name__}"""
raise ValueError(lowercase_ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 181 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
snake_case_ = {
"""configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""],
"""tokenization_cpmant""": ["""CpmAntTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ = [
"""CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""CpmAntForCausalLM""",
"""CpmAntModel""",
"""CpmAntPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 181 | 1 |
'''simple docstring'''
import json
import os
import re
import sys
import urllib.request
import requests
from bsa import BeautifulSoup
_lowerCAmelCase = {
'''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'''
''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582'''
}
def _SCREAMING_SNAKE_CASE ( UpperCamelCase = "dhaka" , UpperCamelCase = 5 ):
"""simple docstring"""
lowerCAmelCase__ : Tuple = min(UpperCamelCase , 50 ) # Prevent abuse!
lowerCAmelCase__ : List[Any] = {
"""q""": query,
"""tbm""": """isch""",
"""hl""": """en""",
"""ijn""": """0""",
}
lowerCAmelCase__ : List[Any] = requests.get("""https://www.google.com/search""" , params=UpperCamelCase , headers=UpperCamelCase )
lowerCAmelCase__ : List[Any] = BeautifulSoup(html.text , """html.parser""" )
lowerCAmelCase__ : int = """""".join(
re.findall(R"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""" ) ) ) )
lowerCAmelCase__ : Dict = json.dumps(UpperCamelCase )
lowerCAmelCase__ : Union[str, Any] = json.loads(UpperCamelCase )
lowerCAmelCase__ : Dict = re.findall(
R"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , UpperCamelCase , )
if not matched_google_image_data:
return 0
lowerCAmelCase__ : Tuple = re.sub(
R"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(UpperCamelCase ) , )
lowerCAmelCase__ : Union[str, Any] = re.findall(
R"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , UpperCamelCase , )
for index, fixed_full_res_image in enumerate(UpperCamelCase ):
if index >= max_images:
return index
lowerCAmelCase__ : Optional[int] = bytes(UpperCamelCase , """ascii""" ).decode(
"""unicode-escape""" )
lowerCAmelCase__ : Optional[Any] = bytes(UpperCamelCase , """ascii""" ).decode(
"""unicode-escape""" )
lowerCAmelCase__ : Tuple = urllib.request.build_opener()
lowerCAmelCase__ : int = [
(
"""User-Agent""",
"""Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"""
""" (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""",
)
]
urllib.request.install_opener(UpperCamelCase )
lowerCAmelCase__ : List[Any] = f"""query_{query.replace(' ' , '_' )}"""
if not os.path.exists(UpperCamelCase ):
os.makedirs(UpperCamelCase )
urllib.request.urlretrieve( # noqa: S310
UpperCamelCase , f"""{path_name}/original_size_img_{index}.jpg""" )
return index
if __name__ == "__main__":
try:
_lowerCAmelCase = download_images_from_google_query(sys.argv[1])
print(F"""{image_count} images were downloaded to disk.""")
except IndexError:
print('''Please provide a search term.''')
raise
| 37 |
'''simple docstring'''
from __future__ import annotations
def snake_case ( UpperCAmelCase )-> list[int]:
"""simple docstring"""
__A = 2
__A = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(UpperCAmelCase )
if n > 1:
factors.append(UpperCAmelCase )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 161 | 0 |
import os
from bleurt import score # From: git+https://github.com/google-research/bleurt.git
import datasets
__A = datasets.logging.get_logger(__name__)
__A = '''\
@inproceedings{bleurt,
title={BLEURT: Learning Robust Metrics for Text Generation},
author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},
booktitle={ACL},
year={2020},
url={https://arxiv.org/abs/2004.04696}
}
'''
__A = '''\
BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)
and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune
it for your specific application (the latter is expected to perform better).
See the project\'s README at https://github.com/google-research/bleurt#readme for more information.
'''
__A = '''
BLEURT score.
Args:
`predictions` (list of str): prediction/candidate sentences
`references` (list of str): reference sentences
`checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.
Returns:
\'scores\': List of scores.
Examples:
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> bleurt = datasets.load_metric("bleurt")
>>> results = bleurt.compute(predictions=predictions, references=references)
>>> print([round(v, 2) for v in results["scores"]])
[1.03, 1.04]
'''
__A = {
'''bleurt-tiny-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip''',
'''bleurt-tiny-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip''',
'''bleurt-base-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip''',
'''bleurt-base-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip''',
'''bleurt-large-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip''',
'''bleurt-large-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip''',
'''BLEURT-20-D3''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip''',
'''BLEURT-20-D6''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip''',
'''BLEURT-20-D12''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip''',
'''BLEURT-20''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip''',
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class lowercase ( datasets.Metric):
"""simple docstring"""
def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , )
def _SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Dict ) -> List[Any]:
# check that config name specifies a valid BLEURT model
if self.config_name == "default":
logger.warning(
"""Using default BLEURT-Base checkpoint for sequence maximum length 128. """
"""You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').""" )
UpperCAmelCase_= """bleurt-base-128"""
if self.config_name.lower() in CHECKPOINT_URLS:
UpperCAmelCase_= self.config_name.lower()
elif self.config_name.upper() in CHECKPOINT_URLS:
UpperCAmelCase_= self.config_name.upper()
else:
raise KeyError(
F"""{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}""" )
# download the model checkpoint specified by self.config_name and set up the scorer
UpperCAmelCase_= dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] )
UpperCAmelCase_= score.BleurtScorer(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] ) -> str:
UpperCAmelCase_= self.scorer.score(references=__UpperCAmelCase , candidates=__UpperCAmelCase )
return {"scores": scores}
| 277 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__A = datasets.utils.logging.get_logger(__name__)
__A = ['''names''', '''prefix''']
__A = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols''']
__A = ['''encoding_errors''', '''on_bad_lines''']
__A = ['''date_format''']
@dataclass
class lowercase ( datasets.BuilderConfig):
"""simple docstring"""
a__ : str = ","
a__ : Optional[str] = None
a__ : Optional[Union[int, List[int], str]] = "infer"
a__ : Optional[List[str]] = None
a__ : Optional[List[str]] = None
a__ : Optional[Union[int, str, List[int], List[str]]] = None
a__ : Optional[Union[List[int], List[str]]] = None
a__ : Optional[str] = None
a__ : bool = True
a__ : Optional[Literal["c", "python", "pyarrow"]] = None
a__ : Dict[Union[int, str], Callable[[Any], Any]] = None
a__ : Optional[list] = None
a__ : Optional[list] = None
a__ : bool = False
a__ : Optional[Union[int, List[int]]] = None
a__ : Optional[int] = None
a__ : Optional[Union[str, List[str]]] = None
a__ : bool = True
a__ : bool = True
a__ : bool = False
a__ : bool = True
a__ : Optional[str] = None
a__ : str = "."
a__ : Optional[str] = None
a__ : str = '"'
a__ : int = 0
a__ : Optional[str] = None
a__ : Optional[str] = None
a__ : Optional[str] = None
a__ : Optional[str] = None
a__ : bool = True
a__ : bool = True
a__ : int = 0
a__ : bool = True
a__ : bool = False
a__ : Optional[str] = None
a__ : int = 1_0000
a__ : Optional[datasets.Features] = None
a__ : Optional[str] = "strict"
a__ : Literal["error", "warn", "skip"] = "error"
a__ : Optional[str] = None
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
if self.delimiter is not None:
UpperCAmelCase_= self.delimiter
if self.column_names is not None:
UpperCAmelCase_= self.column_names
@property
def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple:
UpperCAmelCase_= {
"""sep""": self.sep,
"""header""": self.header,
"""names""": self.names,
"""index_col""": self.index_col,
"""usecols""": self.usecols,
"""prefix""": self.prefix,
"""mangle_dupe_cols""": self.mangle_dupe_cols,
"""engine""": self.engine,
"""converters""": self.converters,
"""true_values""": self.true_values,
"""false_values""": self.false_values,
"""skipinitialspace""": self.skipinitialspace,
"""skiprows""": self.skiprows,
"""nrows""": self.nrows,
"""na_values""": self.na_values,
"""keep_default_na""": self.keep_default_na,
"""na_filter""": self.na_filter,
"""verbose""": self.verbose,
"""skip_blank_lines""": self.skip_blank_lines,
"""thousands""": self.thousands,
"""decimal""": self.decimal,
"""lineterminator""": self.lineterminator,
"""quotechar""": self.quotechar,
"""quoting""": self.quoting,
"""escapechar""": self.escapechar,
"""comment""": self.comment,
"""encoding""": self.encoding,
"""dialect""": self.dialect,
"""error_bad_lines""": self.error_bad_lines,
"""warn_bad_lines""": self.warn_bad_lines,
"""skipfooter""": self.skipfooter,
"""doublequote""": self.doublequote,
"""memory_map""": self.memory_map,
"""float_precision""": self.float_precision,
"""chunksize""": self.chunksize,
"""encoding_errors""": self.encoding_errors,
"""on_bad_lines""": self.on_bad_lines,
"""date_format""": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __UpperCAmelCase ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class lowercase ( datasets.ArrowBasedBuilder):
"""simple docstring"""
a__ : int = CsvConfig
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any:
return datasets.DatasetInfo(features=self.config.features )
def _SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Dict ) -> Optional[int]:
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
UpperCAmelCase_= dl_manager.download_and_extract(self.config.data_files )
if isinstance(__UpperCAmelCase , (str, list, tuple) ):
UpperCAmelCase_= data_files
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
UpperCAmelCase_= [files]
UpperCAmelCase_= [dl_manager.iter_files(__UpperCAmelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
UpperCAmelCase_= []
for split_name, files in data_files.items():
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
UpperCAmelCase_= [files]
UpperCAmelCase_= [dl_manager.iter_files(__UpperCAmelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=__UpperCAmelCase , gen_kwargs={"""files""": files} ) )
return splits
def _SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : pa.Table ) -> pa.Table:
if self.config.features is not None:
UpperCAmelCase_= self.config.features.arrow_schema
if all(not require_storage_cast(__UpperCAmelCase ) for feature in self.config.features.values() ):
# cheaper cast
UpperCAmelCase_= pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__UpperCAmelCase )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
UpperCAmelCase_= table_cast(__UpperCAmelCase , __UpperCAmelCase )
return pa_table
def _SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : List[Any] ) -> List[str]:
UpperCAmelCase_= self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
UpperCAmelCase_= (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(__UpperCAmelCase ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(__UpperCAmelCase ) ):
UpperCAmelCase_= pd.read_csv(__UpperCAmelCase , iterator=__UpperCAmelCase , dtype=__UpperCAmelCase , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(__UpperCAmelCase ):
UpperCAmelCase_= pa.Table.from_pandas(__UpperCAmelCase )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(__UpperCAmelCase )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(__UpperCAmelCase )}: {e}""" )
raise
| 277 | 1 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : Optional[Any] = logging.get_logger(__name__)
a : str = {
"google/pix2struct-textcaps-base": (
"https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json"
),
}
class a ( lowercase__ ):
"""simple docstring"""
a : Optional[Any] = 'pix2struct_text_model'
a : Union[str, Any] = ['past_key_values']
a : Optional[Any] = {
'hidden_size': 'hidden_size',
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self : str , __lowercase : List[str]=50244 , __lowercase : Optional[int]=768 , __lowercase : Tuple=64 , __lowercase : Union[str, Any]=2048 , __lowercase : List[Any]=12 , __lowercase : Optional[Any]=12 , __lowercase : Union[str, Any]=32 , __lowercase : Tuple=128 , __lowercase : Any=0.1 , __lowercase : Optional[int]=1e-6 , __lowercase : Tuple=1.0 , __lowercase : str="gelu_new" , __lowercase : Optional[Any]=0 , __lowercase : Any=False , __lowercase : Any=0 , __lowercase : Tuple=1 , __lowercase : Dict=False , __lowercase : Optional[int]=True , **__lowercase : List[str] , ) -> Tuple:
__UpperCAmelCase : Union[str, Any] = vocab_size
__UpperCAmelCase : List[Any] = hidden_size
__UpperCAmelCase : List[Any] = d_kv
__UpperCAmelCase : Optional[Any] = d_ff
__UpperCAmelCase : Any = num_layers
__UpperCAmelCase : int = num_heads
__UpperCAmelCase : Optional[Any] = relative_attention_num_buckets
__UpperCAmelCase : List[str] = relative_attention_max_distance
__UpperCAmelCase : int = dropout_rate
__UpperCAmelCase : List[Any] = layer_norm_epsilon
__UpperCAmelCase : Dict = initializer_factor
__UpperCAmelCase : Any = use_cache
__UpperCAmelCase : Tuple = eos_token_id
__UpperCAmelCase : int = decoder_start_token_id
# for backwards compatibility
__UpperCAmelCase : str = dense_act_fn
super().__init__(
pad_token_id=__lowercase , eos_token_id=__lowercase , decoder_start_token_id=__lowercase , tie_word_embeddings=__lowercase , is_decoder=__lowercase , **__lowercase , )
@classmethod
def UpperCAmelCase ( cls : List[Any] , __lowercase : Union[str, os.PathLike] , **__lowercase : Tuple ) -> "PretrainedConfig":
cls._set_token_in_kwargs(__lowercase )
__UpperCAmelCase , __UpperCAmelCase : List[str] = cls.get_config_dict(__lowercase , **__lowercase )
# get the text config dict if we are loading from Pix2StructConfig
if config_dict.get("""model_type""" ) == "pix2struct":
__UpperCAmelCase : Union[str, Any] = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(__lowercase , **__lowercase )
class a ( lowercase__ ):
"""simple docstring"""
a : str = 'pix2struct_vision_model'
def __init__( self : Tuple , __lowercase : Tuple=768 , __lowercase : Union[str, Any]=768 , __lowercase : List[Any]=2048 , __lowercase : Dict=64 , __lowercase : Tuple=12 , __lowercase : Union[str, Any]=12 , __lowercase : List[Any]="gelu_new" , __lowercase : Tuple=1e-6 , __lowercase : Any=0.0 , __lowercase : Dict=0.0 , __lowercase : int=1e-1_0 , __lowercase : List[Any]=1.0 , __lowercase : Optional[int]=4096 , __lowercase : str=32 , __lowercase : str=128 , **__lowercase : Any , ) -> Optional[Any]:
super().__init__(**__lowercase )
__UpperCAmelCase : List[Any] = hidden_size
__UpperCAmelCase : Dict = patch_embed_hidden_size
__UpperCAmelCase : Optional[int] = d_ff
__UpperCAmelCase : Optional[int] = dropout_rate
__UpperCAmelCase : int = num_hidden_layers
__UpperCAmelCase : Tuple = num_attention_heads
__UpperCAmelCase : int = initializer_range
__UpperCAmelCase : Dict = initializer_factor
__UpperCAmelCase : int = attention_dropout
__UpperCAmelCase : Any = layer_norm_eps
__UpperCAmelCase : Union[str, Any] = dense_act_fn
__UpperCAmelCase : str = seq_len
__UpperCAmelCase : List[str] = relative_attention_num_buckets
__UpperCAmelCase : str = relative_attention_max_distance
__UpperCAmelCase : Tuple = d_kv
@classmethod
def UpperCAmelCase ( cls : Optional[int] , __lowercase : Union[str, os.PathLike] , **__lowercase : int ) -> "PretrainedConfig":
cls._set_token_in_kwargs(__lowercase )
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = cls.get_config_dict(__lowercase , **__lowercase )
# get the vision config dict if we are loading from Pix2StructConfig
if config_dict.get("""model_type""" ) == "pix2struct":
__UpperCAmelCase : Tuple = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(__lowercase , **__lowercase )
class a ( lowercase__ ):
"""simple docstring"""
a : List[Any] = 'pix2struct'
a : Optional[int] = True
def __init__( self : List[Any] , __lowercase : Dict=None , __lowercase : Dict=None , __lowercase : Dict=1.0 , __lowercase : Optional[int]=0.02 , __lowercase : Dict=False , __lowercase : int=False , __lowercase : List[Any]=True , **__lowercase : Dict , ) -> Dict:
super().__init__(tie_word_embeddings=__lowercase , is_encoder_decoder=__lowercase , **__lowercase )
if text_config is None:
__UpperCAmelCase : str = {}
logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" )
if vision_config is None:
__UpperCAmelCase : str = {}
logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" )
__UpperCAmelCase : str = PixaStructTextConfig(**__lowercase )
__UpperCAmelCase : Any = PixaStructVisionConfig(**__lowercase )
__UpperCAmelCase : List[str] = self.text_config.decoder_start_token_id
__UpperCAmelCase : Tuple = self.text_config.pad_token_id
__UpperCAmelCase : str = self.text_config.eos_token_id
__UpperCAmelCase : str = initializer_factor
__UpperCAmelCase : List[str] = initializer_range
__UpperCAmelCase : Tuple = self.initializer_range
__UpperCAmelCase : Optional[Any] = self.initializer_range
__UpperCAmelCase : Dict = is_vqa
@classmethod
def UpperCAmelCase ( cls : Tuple , __lowercase : PixaStructTextConfig , __lowercase : PixaStructVisionConfig , **__lowercase : Optional[Any] ) -> Optional[Any]:
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowercase )
def UpperCAmelCase ( self : Tuple ) -> List[str]:
__UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ )
__UpperCAmelCase : int = self.text_config.to_dict()
__UpperCAmelCase : Optional[int] = self.vision_config.to_dict()
__UpperCAmelCase : int = self.__class__.model_type
return output
| 114 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
a : Union[str, Any] = logging.get_logger(__name__)
class a ( lowercase__ ):
"""simple docstring"""
a : Any = ['pixel_values']
def __init__( self : Optional[int] , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : int = 0.9 , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : Union[int, float] = 1 / 255 , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Any , ) -> None:
super().__init__(**__lowercase )
__UpperCAmelCase : Tuple = size if size is not None else {"""shortest_edge""": 224}
__UpperCAmelCase : Union[str, Any] = get_size_dict(__lowercase , default_to_square=__lowercase )
__UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : Any = get_size_dict(__lowercase , param_name="""crop_size""" )
__UpperCAmelCase : Dict = do_resize
__UpperCAmelCase : Dict = size
__UpperCAmelCase : Tuple = crop_pct
__UpperCAmelCase : List[Any] = resample
__UpperCAmelCase : List[Any] = do_center_crop
__UpperCAmelCase : List[Any] = crop_size
__UpperCAmelCase : Any = do_rescale
__UpperCAmelCase : Tuple = rescale_factor
__UpperCAmelCase : int = do_normalize
__UpperCAmelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__UpperCAmelCase : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCAmelCase ( self : Tuple , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[float] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[int] , ) -> np.ndarray:
__UpperCAmelCase : Tuple = get_size_dict(__lowercase , default_to_square=__lowercase )
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
if crop_pct is not None:
if "shortest_edge" in size:
__UpperCAmelCase : Union[str, Any] = int(size["""shortest_edge"""] / crop_pct )
elif "height" in size and "width" in size:
if size["height"] == size["width"]:
__UpperCAmelCase : Tuple = int(size["""height"""] / crop_pct )
else:
__UpperCAmelCase : str = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct ))
else:
raise ValueError("""Invalid size for resize: {}""".format(__lowercase ) )
__UpperCAmelCase : str = get_resize_output_image_size(__lowercase , size=__lowercase , default_to_square=__lowercase )
else:
if "shortest_edge" in size:
__UpperCAmelCase : List[str] = get_resize_output_image_size(__lowercase , size=size["""shortest_edge"""] , default_to_square=__lowercase )
elif "height" in size and "width" in size:
__UpperCAmelCase : int = (size["""height"""], size["""width"""])
else:
raise ValueError("""Invalid size for resize: {}""".format(__lowercase ) )
return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase )
def UpperCAmelCase ( self : Dict , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Union[str, Any] , ) -> np.ndarray:
__UpperCAmelCase : Optional[Any] = get_size_dict(__lowercase )
if "height" not in size or "width" not in size:
raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase )
def UpperCAmelCase ( self : List[str] , __lowercase : np.ndarray , __lowercase : Union[int, float] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : int , ) -> int:
return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase )
def UpperCAmelCase ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ) -> np.ndarray:
return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase )
def UpperCAmelCase ( self : Any , __lowercase : ImageInput , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : int = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : bool = None , __lowercase : float = None , __lowercase : bool = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : ChannelDimension = ChannelDimension.FIRST , **__lowercase : List[str] , ) -> PIL.Image.Image:
__UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct
__UpperCAmelCase : Optional[Any] = resample if resample is not None else self.resample
__UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Tuple = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : Any = image_std if image_std is not None else self.image_std
__UpperCAmelCase : Optional[int] = size if size is not None else self.size
__UpperCAmelCase : Dict = get_size_dict(__lowercase , default_to_square=__lowercase )
__UpperCAmelCase : Tuple = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : Tuple = get_size_dict(__lowercase , param_name="""crop_size""" )
__UpperCAmelCase : Dict = make_list_of_images(__lowercase )
if not valid_images(__lowercase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_pct is None:
raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
__UpperCAmelCase : str = [to_numpy_array(__lowercase ) for image in images]
if do_resize:
__UpperCAmelCase : str = [self.resize(image=__lowercase , size=__lowercase , crop_pct=__lowercase , resample=__lowercase ) for image in images]
if do_center_crop:
__UpperCAmelCase : Any = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images]
if do_rescale:
__UpperCAmelCase : List[str] = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images]
if do_normalize:
__UpperCAmelCase : str = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images]
__UpperCAmelCase : List[str] = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images]
__UpperCAmelCase : Any = {"""pixel_values""": images}
return BatchFeature(data=__lowercase , tensor_type=__lowercase )
| 114 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_lowerCamelCase : Dict = {
"configuration_efficientformer": [
"EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EfficientFormerConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : int = ["EfficientFormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Tuple = [
"EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"EfficientFormerForImageClassification",
"EfficientFormerForImageClassificationWithTeacher",
"EfficientFormerModel",
"EfficientFormerPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Dict = [
"TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFEfficientFormerForImageClassification",
"TFEfficientFormerForImageClassificationWithTeacher",
"TFEfficientFormerModel",
"TFEfficientFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientformer import EfficientFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientformer import (
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientFormerForImageClassification,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerModel,
EfficientFormerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
TFEfficientFormerPreTrainedModel,
)
else:
import sys
_lowerCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 356 |
'''simple docstring'''
def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ , A__ ) -> int:
"""simple docstring"""
if index == r:
for j in range(A__ ):
print(data[j] , end=' ' )
print(' ' )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
UpperCamelCase = arr[i]
combination_util(A__ , A__ , A__ , index + 1 , A__ , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(A__ , A__ , A__ , A__ , A__ , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def __lowerCamelCase ( A__ , A__ , A__ ) -> Union[str, Any]:
"""simple docstring"""
# A temporary array to store all combination one by one
UpperCamelCase = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(A__ , A__ , A__ , 0 , A__ , 0 )
if __name__ == "__main__":
# Driver code to check the function above
_lowerCamelCase : Optional[Any] = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 249 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
a__ : Optional[int] = logging.get_logger(__name__)
class lowercase_ ( a__ ):
def __init__( self , *a , **a ):
warnings.warn(
"The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use DPTImageProcessor instead." , a , )
super().__init__(*a , **a )
| 80 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(lowercase ) , """Tatoeba directory does not exist.""" )
class lowercase__ ( unittest.TestCase ):
@cached_property
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
_UpperCamelCase : str = tempfile.mkdtemp()
return TatoebaConverter(save_dir=lowerCamelCase__ )
@slow
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
self.resolver.convert_models(['heb-eng'] )
@slow
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase : Dict = self.resolver.write_model_card('opus-mt-he-en' ,dry_run=lowerCamelCase__ )
assert mmeta["long_pair"] == "heb-eng"
| 83 | 0 |
"""simple docstring"""
import random
def __lowerCamelCase ( a_ : Union[str, Any] , a_ : str , a_ : Optional[int] ) -> List[Any]:
__SCREAMING_SNAKE_CASE :Any = a[left_index]
__SCREAMING_SNAKE_CASE :Tuple = left_index + 1
for j in range(left_index + 1 , a_ ):
if a[j] < pivot:
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :List[Any] = a[i], a[j]
i += 1
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Union[str, Any] = a[i - 1], a[left_index]
return i - 1
def __lowerCamelCase ( a_ : str , a_ : int , a_ : Any ) -> List[str]:
if left < right:
__SCREAMING_SNAKE_CASE :Optional[Any] = random.randint(a_ , right - 1 )
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[int] = (
a[left],
a[pivot],
) # switches the pivot with the left most bound
__SCREAMING_SNAKE_CASE :Union[str, Any] = partition(a_ , a_ , a_ )
quick_sort_random(
a_ , a_ , a_ ) # recursive quicksort to the left of the pivot point
quick_sort_random(
a_ , pivot_index + 1 , a_ ) # recursive quicksort to the right of the pivot point
def __lowerCamelCase ( ) -> Any:
__SCREAMING_SNAKE_CASE :Dict = input('''Enter numbers separated by a comma:\n''' ).strip()
__SCREAMING_SNAKE_CASE :Optional[int] = [int(a_ ) for item in user_input.split(''',''' )]
quick_sort_random(a_ , 0 , len(a_ ) )
print(a_ )
if __name__ == "__main__":
main() | 239 |
"""simple docstring"""
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
lowerCamelCase_ = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow("", "|", "|"),
datarow=DataRow("", "|", "|"),
padding=1,
with_header_hide=None,
)
lowerCamelCase_ = []
lowerCamelCase_ = []
lowerCamelCase_ = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}}
lowerCamelCase_ = [
{
"type": "header",
"text": {
"type": "plain_text",
"text": f'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results',
"emoji": True,
},
}
]
lowerCamelCase_ = 0
for log in Path().glob("*.log"):
lowerCamelCase_ = 0
with open(log, "r") as f:
for line in f:
lowerCamelCase_ = json.loads(line)
if line.get("nodeid", "") != "":
lowerCamelCase_ = line["nodeid"]
if line.get("duration", None) is not None:
lowerCamelCase_ = f'{line["duration"]:.4f}'
if line.get("outcome", "") == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split("_")[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
lowerCamelCase_ = []
log.unlink()
lowerCamelCase_ = ""
lowerCamelCase_ = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += f"*{name[1:]}: {num_failed} failed test*\n"
else:
message += f"*{name[1:]}: {num_failed} failed tests*\n"
lowerCamelCase_ = []
lowerCamelCase_ = {}
for test in failed_tests:
lowerCamelCase_ = test[0].split("::")
lowerCamelCase_ = data[0].split("/")[-1]
if data[0] not in filesafailed:
lowerCamelCase_ = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
lowerCamelCase_ = [test[0] for test in failed_table]
lowerCamelCase_ = list(set(files))
# Count number of instances in failed_tests
lowerCamelCase_ = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
lowerCamelCase_ = tabulate(
table,
headers=["Test Location", "Num Failed"],
tablefmt=hf_table_format,
stralign="right",
)
message += f"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3_0_0_0:
lowerCamelCase_ = "Too many failed tests, please see the full report in the Action results."
lowerCamelCase_ = len(err) + 1_0
lowerCamelCase_ = message[: 3_0_0_0 - offset] + f'\n...\n```\n{err}'
print(f'### {message}')
else:
lowerCamelCase_ = "No failed tests! 🤗"
print(f'## {message}')
payload.append(no_error_payload)
if os.environ.get("TEST_TYPE", "") != "":
from slack_sdk import WebClient
lowerCamelCase_ = WebClient(token=os.environ["SLACK_API_TOKEN"])
if message != "No failed tests! 🤗":
lowerCamelCase_ = {
"type": "section",
"text": {
"type": "mrkdwn",
"text": message,
},
}
payload.append(md_report)
lowerCamelCase_ = {
"type": "section",
"text": {
"type": "mrkdwn",
"text": "*For more details:*",
},
"accessory": {
"type": "button",
"text": {
"type": "plain_text",
"text": "Check Action results",
"emoji": True,
},
"url": f'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
payload.append(action_button)
lowerCamelCase_ = {
"type": "context",
"elements": [
{
"type": "plain_text",
"text": f'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}',
}
],
}
payload.append(date_report)
lowerCamelCase_ = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload)
lowerCamelCase_ = response.data["ts"]
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
lowerCamelCase_ = ""
for i, row in enumerate(test_failures):
if row[0] != test_class:
lowerCamelCase_ = row[0]
else:
lowerCamelCase_ = ""
lowerCamelCase_ = {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```',
},
}
client.chat_postMessage(
channel="#accelerate-ci-daily",
thread_ts=ts,
blocks=[payload],
) | 239 | 1 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def _snake_case( SCREAMING_SNAKE_CASE__ : BertModel , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]:
'''simple docstring'''
A__ = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value')
A__ = (
('layer.', 'layer_'),
('word_embeddings.weight', 'word_embeddings'),
('position_embeddings.weight', 'position_embeddings'),
('token_type_embeddings.weight', 'token_type_embeddings'),
('.', '/'),
('LayerNorm/weight', 'LayerNorm/gamma'),
('LayerNorm/bias', 'LayerNorm/beta'),
('weight', 'kernel'),
)
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
os.makedirs(SCREAMING_SNAKE_CASE__ )
A__ = model.state_dict()
def to_tf_var_name(SCREAMING_SNAKE_CASE__ : str ):
for patt, repl in iter(SCREAMING_SNAKE_CASE__ ):
A__ = name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return f'bert/{name}'
def create_tf_var(SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : tf.Session ):
A__ = tf.dtypes.as_dtype(tensor.dtype )
A__ = tf.get_variable(dtype=SCREAMING_SNAKE_CASE__ , shape=tensor.shape , name=SCREAMING_SNAKE_CASE__ , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(SCREAMING_SNAKE_CASE__ )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
A__ = to_tf_var_name(SCREAMING_SNAKE_CASE__ )
A__ = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
A__ = torch_tensor.T
A__ = create_tf_var(tensor=SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ , session=SCREAMING_SNAKE_CASE__ )
tf.keras.backend.set_value(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A__ = session.run(SCREAMING_SNAKE_CASE__ )
print(f'Successfully created {tf_name}: {np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}' )
A__ = tf.train.Saver(tf.trainable_variables() )
saver.save(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , model_name.replace('-' , '_' ) + '.ckpt' ) )
def _snake_case( SCREAMING_SNAKE_CASE__ : Any=None ) -> Any:
'''simple docstring'''
A__ = argparse.ArgumentParser()
parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='model name e.g. bert-base-uncased' )
parser.add_argument(
'--cache_dir' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='Directory containing pytorch model' )
parser.add_argument('--pytorch_model_path' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='/path/to/<pytorch-model-name>.bin' )
parser.add_argument('--tf_cache_dir' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='Directory in which to save tensorflow model' )
A__ = parser.parse_args(SCREAMING_SNAKE_CASE__ )
A__ = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=SCREAMING_SNAKE_CASE__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 7 |
def UpperCamelCase ( lowerCAmelCase__ ):
'''simple docstring'''
if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError('''Length must be a positive.''' )
return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2)
def UpperCamelCase ( lowerCAmelCase__ ):
'''simple docstring'''
if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError('''Length must be a positive.''' )
return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 101 | 0 |
from math import ceil, sqrt
def _a ( UpperCAmelCase = 1000000 ) -> int:
"""simple docstring"""
lowerCamelCase__ : Any = 0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
lowerCamelCase__ : List[Any] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
lowerCamelCase__ : Union[str, Any] = 1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(F'''{solution() = }''')
| 353 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_A : Any = logging.get_logger(__name__)
_A : int = {
'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json',
}
class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ):
_UpperCAmelCase : Dict = "timesformer"
def __init__( self : List[str] , A : int=2_2_4 , A : Optional[Any]=1_6 , A : str=3 , A : str=8 , A : Any=7_6_8 , A : Dict=1_2 , A : Optional[Any]=1_2 , A : Any=3_0_7_2 , A : str="gelu" , A : Optional[int]=0.0 , A : Union[str, Any]=0.0 , A : List[Any]=0.02 , A : int=1e-6 , A : Tuple=True , A : Any="divided_space_time" , A : Optional[Any]=0 , **A : Tuple , ) ->str:
super().__init__(**A )
lowerCamelCase__ : Optional[Any] = image_size
lowerCamelCase__ : int = patch_size
lowerCamelCase__ : Any = num_channels
lowerCamelCase__ : Optional[int] = num_frames
lowerCamelCase__ : Optional[Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : Optional[int] = num_attention_heads
lowerCamelCase__ : Dict = intermediate_size
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob
lowerCamelCase__ : Dict = attention_probs_dropout_prob
lowerCamelCase__ : List[Any] = initializer_range
lowerCamelCase__ : str = layer_norm_eps
lowerCamelCase__ : Union[str, Any] = qkv_bias
lowerCamelCase__ : str = attention_type
lowerCamelCase__ : List[str] = drop_path_rate
| 265 | 0 |
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
A : Dict = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
A : Union[str, Any] = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
A : Dict = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __A( datasets.Metric ):
def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ),
'''references''': datasets.Sequence(
datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case=4 , _snake_case=False ) -> Any:
'''simple docstring'''
__a = compute_bleu(
reference_corpus=_snake_case , translation_corpus=_snake_case , max_order=_snake_case , smooth=_snake_case )
((__a) , (__a) , (__a) , (__a) , (__a) , (__a)) = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
} | 6 |
"""simple docstring"""
from typing import Any
def __lowerCamelCase ( a_ : list ) -> list[Any]:
if not input_list:
return []
__SCREAMING_SNAKE_CASE :int = [input_list.count(a_ ) for value in input_list]
__SCREAMING_SNAKE_CASE :str = max(a_ ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(a_ ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod() | 191 | 0 |
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class _SCREAMING_SNAKE_CASE ( A__ ):
def __init__( self , __A , __A=None , __A=None , __A=0 ) -> List[str]:
lowerCAmelCase_ :Tuple = 1.0 if scale is None else scale
lowerCAmelCase_ :str = 0.0 if loc is None else loc
super().__init__(__A , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__A )] )
@property
def __lowerCAmelCase ( self ) -> Tuple:
return self.base_dist.mean * self.scale + self.loc
@property
def __lowerCAmelCase ( self ) -> Tuple:
return self.base_dist.variance * self.scale**2
@property
def __lowerCAmelCase ( self ) -> Tuple:
return self.variance.sqrt()
class _SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self , __A , __A , __A , **__A ) -> None:
super().__init__(**__A )
lowerCAmelCase_ :Any = args_dim
lowerCAmelCase_ :Dict = nn.ModuleList([nn.Linear(__A , __A ) for dim in args_dim.values()] )
lowerCAmelCase_ :Any = domain_map
def __lowerCAmelCase ( self , __A ) -> Tuple[torch.Tensor]:
lowerCAmelCase_ :str = [proj(__A ) for proj in self.proj]
return self.domain_map(*__A )
class _SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self , __A ) -> List[Any]:
super().__init__()
lowerCAmelCase_ :str = function
def __lowerCAmelCase ( self , __A , *__A ) -> Optional[Any]:
return self.function(__A , *__A )
class _SCREAMING_SNAKE_CASE :
UpperCAmelCase_ :type
UpperCAmelCase_ :int
UpperCAmelCase_ :Dict[str, int]
def __init__( self , __A = 1 ) -> None:
lowerCAmelCase_ :List[str] = dim
lowerCAmelCase_ :Optional[int] = {k: dim * self.args_dim[k] for k in self.args_dim}
def __lowerCAmelCase ( self , __A ) -> List[str]:
if self.dim == 1:
return self.distribution_class(*__A )
else:
return Independent(self.distribution_class(*__A ) , 1 )
def __lowerCAmelCase ( self , __A , __A = None , __A = None , ) -> Distribution:
lowerCAmelCase_ :Optional[Any] = self._base_distribution(__A )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(__A , loc=__A , scale=__A , event_dim=self.event_dim )
@property
def __lowerCAmelCase ( self ) -> Tuple:
return () if self.dim == 1 else (self.dim,)
@property
def __lowerCAmelCase ( self ) -> int:
return len(self.event_shape )
@property
def __lowerCAmelCase ( self ) -> float:
return 0.0
def __lowerCAmelCase ( self , __A ) -> nn.Module:
return ParameterProjection(
in_features=__A , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def __lowerCAmelCase ( self , *__A ) -> Dict:
raise NotImplementedError()
@staticmethod
def __lowerCAmelCase ( __A ) -> torch.Tensor:
return (x + torch.sqrt(torch.square(__A ) + 4.0 )) / 2.0
class _SCREAMING_SNAKE_CASE ( A__ ):
UpperCAmelCase_ :Dict[str, int] = {"df": 1, "loc": 1, "scale": 1}
UpperCAmelCase_ :type = StudentT
@classmethod
def __lowerCAmelCase ( cls , __A , __A , __A ) -> Dict:
lowerCAmelCase_ :List[str] = cls.squareplus(__A ).clamp_min(torch.finfo(scale.dtype ).eps )
lowerCAmelCase_ :Dict = 2.0 + cls.squareplus(__A )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class _SCREAMING_SNAKE_CASE ( A__ ):
UpperCAmelCase_ :Dict[str, int] = {"loc": 1, "scale": 1}
UpperCAmelCase_ :type = Normal
@classmethod
def __lowerCAmelCase ( cls , __A , __A ) -> Optional[int]:
lowerCAmelCase_ :Optional[int] = cls.squareplus(__A ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class _SCREAMING_SNAKE_CASE ( A__ ):
UpperCAmelCase_ :Dict[str, int] = {"total_count": 1, "logits": 1}
UpperCAmelCase_ :type = NegativeBinomial
@classmethod
def __lowerCAmelCase ( cls , __A , __A ) -> Optional[Any]:
lowerCAmelCase_ :List[str] = cls.squareplus(__A )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def __lowerCAmelCase ( self , __A ) -> Distribution:
lowerCAmelCase_ :Optional[int] = distr_args
if self.dim == 1:
return self.distribution_class(total_count=__A , logits=__A )
else:
return Independent(self.distribution_class(total_count=__A , logits=__A ) , 1 )
def __lowerCAmelCase ( self , __A , __A = None , __A = None ) -> Distribution:
lowerCAmelCase_ :Optional[Any] = distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 359 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_clip import CLIPImageProcessor
__UpperCAmelCase = logging.get_logger(__name__)
class _SCREAMING_SNAKE_CASE ( A__ ):
def __init__( self , *__A , **__A ) -> None:
warnings.warn(
"""The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use CLIPImageProcessor instead.""" , __A , )
super().__init__(*__A , **__A )
| 1 | 0 |
from functools import reduce
snake_case : Optional[int] = (
'''73167176531330624919225119674426574742355349194934'''
'''96983520312774506326239578318016984801869478851843'''
'''85861560789112949495459501737958331952853208805511'''
'''12540698747158523863050715693290963295227443043557'''
'''66896648950445244523161731856403098711121722383113'''
'''62229893423380308135336276614282806444486645238749'''
'''30358907296290491560440772390713810515859307960866'''
'''70172427121883998797908792274921901699720888093776'''
'''65727333001053367881220235421809751254540594752243'''
'''52584907711670556013604839586446706324415722155397'''
'''53697817977846174064955149290862569321978468622482'''
'''83972241375657056057490261407972968652414535100474'''
'''82166370484403199890008895243450658541227588666881'''
'''16427171479924442928230863465674813919123162824586'''
'''17866458359124566529476545682848912883142607690042'''
'''24219022671055626321111109370544217506941658960408'''
'''07198403850962455444362981230987879927244284909188'''
'''84580156166097919133875499200524063689912560717606'''
'''05886116467109405077541002256983155200055935729725'''
'''71636269561882670428252483600823257530420752963450'''
)
def __lowercase ( __lowerCAmelCase : str = N ):
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda __lowerCAmelCase , __lowerCAmelCase : str(int(__lowerCAmelCase ) * int(__lowerCAmelCase ) ) , n[i : i + 1_3] ) )
for i in range(len(__lowerCAmelCase ) - 1_2 ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 240 |
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
snake_case : List[str] = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append('''dataclasses''')
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append('''importlib_metadata''')
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""")
def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple=None ):
require_version(deps[pkg] , __lowerCAmelCase )
| 240 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPVisionModel
from ...models import PriorTransformer
from ...pipelines import DiffusionPipeline
from ...schedulers import HeunDiscreteScheduler
from ...utils import (
BaseOutput,
is_accelerate_available,
logging,
randn_tensor,
replace_example_docstring,
)
from .renderer import ShapERenderer
__SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) # pylint: disable=invalid-name
__SCREAMING_SNAKE_CASE :List[str] = '''
Examples:
```py
>>> from PIL import Image
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from diffusers.utils import export_to_gif, load_image
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
>>> repo = "openai/shap-e-img2img"
>>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)
>>> pipe = pipe.to(device)
>>> guidance_scale = 3.0
>>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"
>>> image = load_image(image_url).convert("RGB")
>>> images = pipe(
... image,
... guidance_scale=guidance_scale,
... num_inference_steps=64,
... frame_size=256,
... ).images
>>> gif_path = export_to_gif(images[0], "corgi_3d.gif")
```
'''
@dataclass
class A_ ( lowerCAmelCase_ ):
_lowerCamelCase : Union[PIL.Image.Image, np.ndarray]
class A_ ( lowerCAmelCase_ ):
def __init__( self : Any , snake_case_ : PriorTransformer , snake_case_ : CLIPVisionModel , snake_case_ : CLIPImageProcessor , snake_case_ : HeunDiscreteScheduler , snake_case_ : ShapERenderer , ):
super().__init__()
self.register_modules(
prior=snake_case_ , image_encoder=snake_case_ , image_processor=snake_case_ , scheduler=snake_case_ , renderer=snake_case_ , )
def lowercase ( self : List[Any] , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] ):
if latents is None:
_UpperCAmelCase = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ , dtype=snake_case_ )
else:
if latents.shape != shape:
raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' )
_UpperCAmelCase = latents.to(snake_case_ )
_UpperCAmelCase = latents * scheduler.init_noise_sigma
return latents
def lowercase ( self : Optional[Any] , snake_case_ : Union[str, Any]=0 ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
_UpperCAmelCase = torch.device(f'cuda:{gpu_id}' )
_UpperCAmelCase = [self.image_encoder, self.prior]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(snake_case_ , snake_case_ )
@property
def lowercase ( self : List[Any] ):
if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ):
return self.device
for module in self.image_encoder.modules():
if (
hasattr(snake_case_ , "_hf_hook" )
and hasattr(module._hf_hook , "execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
def lowercase ( self : Optional[Any] , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : int , snake_case_ : List[str] , ):
if isinstance(snake_case_ , snake_case_ ) and isinstance(image[0] , torch.Tensor ):
_UpperCAmelCase = torch.cat(snake_case_ , axis=0 ) if image[0].ndim == 4 else torch.stack(snake_case_ , axis=0 )
if not isinstance(snake_case_ , torch.Tensor ):
_UpperCAmelCase = self.image_processor(snake_case_ , return_tensors="pt" ).pixel_values[0].unsqueeze(0 )
_UpperCAmelCase = image.to(dtype=self.image_encoder.dtype , device=snake_case_ )
_UpperCAmelCase = self.image_encoder(snake_case_ )["last_hidden_state"]
_UpperCAmelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256
_UpperCAmelCase = image_embeds.repeat_interleave(snake_case_ , dim=0 )
if do_classifier_free_guidance:
_UpperCAmelCase = torch.zeros_like(snake_case_ )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] )
return image_embeds
@torch.no_grad()
@replace_example_docstring(snake_case_ )
def __call__( self : str , snake_case_ : Union[PIL.Image.Image, List[PIL.Image.Image]] , snake_case_ : int = 1 , snake_case_ : int = 2_5 , snake_case_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case_ : Optional[torch.FloatTensor] = None , snake_case_ : float = 4.0 , snake_case_ : int = 6_4 , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , ):
if isinstance(snake_case_ , PIL.Image.Image ):
_UpperCAmelCase = 1
elif isinstance(snake_case_ , torch.Tensor ):
_UpperCAmelCase = image.shape[0]
elif isinstance(snake_case_ , snake_case_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ):
_UpperCAmelCase = len(snake_case_ )
else:
raise ValueError(
f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(snake_case_ )}' )
_UpperCAmelCase = self._execution_device
_UpperCAmelCase = batch_size * num_images_per_prompt
_UpperCAmelCase = guidance_scale > 1.0
_UpperCAmelCase = self._encode_image(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
# prior
self.scheduler.set_timesteps(snake_case_ , device=snake_case_ )
_UpperCAmelCase = self.scheduler.timesteps
_UpperCAmelCase = self.prior.config.num_embeddings
_UpperCAmelCase = self.prior.config.embedding_dim
_UpperCAmelCase = self.prepare_latents(
(batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , snake_case_ , snake_case_ , snake_case_ , self.scheduler , )
# YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim
_UpperCAmelCase = latents.reshape(latents.shape[0] , snake_case_ , snake_case_ )
for i, t in enumerate(self.progress_bar(snake_case_ ) ):
# expand the latents if we are doing classifier free guidance
_UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_UpperCAmelCase = self.scheduler.scale_model_input(snake_case_ , snake_case_ )
_UpperCAmelCase = self.prior(
snake_case_ , timestep=snake_case_ , proj_embedding=snake_case_ , ).predicted_image_embedding
# remove the variance
_UpperCAmelCase , _UpperCAmelCase = noise_pred.split(
scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim
if do_classifier_free_guidance is not None:
_UpperCAmelCase , _UpperCAmelCase = noise_pred.chunk(2 )
_UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
_UpperCAmelCase = self.scheduler.step(
snake_case_ , timestep=snake_case_ , sample=snake_case_ , ).prev_sample
if output_type == "latent":
return ShapEPipelineOutput(images=snake_case_ )
_UpperCAmelCase = []
for i, latent in enumerate(snake_case_ ):
print()
_UpperCAmelCase = self.renderer.decode(
latent[None, :] , snake_case_ , size=snake_case_ , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , )
images.append(snake_case_ )
_UpperCAmelCase = torch.stack(snake_case_ )
if output_type not in ["np", "pil"]:
raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' )
_UpperCAmelCase = images.cpu().numpy()
if output_type == "pil":
_UpperCAmelCase = [self.numpy_to_pil(snake_case_ ) for image in images]
# Offload last model to CPU
if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (images,)
return ShapEPipelineOutput(images=snake_case_ )
| 368 |
'''simple docstring'''
from typing import List, Union
import numpy as np
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING
__SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__)
@add_end_docstrings(lowerCAmelCase_ )
class A_ ( lowerCAmelCase_ ):
def __init__( self : List[str] , *snake_case_ : Dict , **snake_case_ : Dict ):
super().__init__(*snake_case_ , **snake_case_ )
requires_backends(self , "vision" )
self.check_model_type(snake_case_ )
def __call__( self : Optional[Any] , snake_case_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **snake_case_ : Optional[int] ):
return super().__call__(snake_case_ , **snake_case_ )
def lowercase ( self : Union[str, Any] , **snake_case_ : Union[str, Any] ):
return {}, {}, {}
def lowercase ( self : Dict , snake_case_ : Optional[int] ):
_UpperCAmelCase = load_image(snake_case_ )
_UpperCAmelCase = image.size
_UpperCAmelCase = self.image_processor(images=snake_case_ , return_tensors=self.framework )
return model_inputs
def lowercase ( self : Optional[int] , snake_case_ : List[Any] ):
_UpperCAmelCase = self.model(**snake_case_ )
return model_outputs
def lowercase ( self : List[str] , snake_case_ : Dict ):
_UpperCAmelCase = model_outputs.predicted_depth
_UpperCAmelCase = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=snake_case_ )
_UpperCAmelCase = prediction.squeeze().cpu().numpy()
_UpperCAmelCase = (output * 2_5_5 / np.max(snake_case_ )).astype("uint8" )
_UpperCAmelCase = Image.fromarray(snake_case_ )
_UpperCAmelCase = {}
_UpperCAmelCase = predicted_depth
_UpperCAmelCase = depth
return output_dict
| 156 | 0 |
"""simple docstring"""
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def snake_case ( ):
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(A__ ):
requests.request("GET" ,"https://huggingface.co" )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request("GET" ,"https://huggingface.co" ,timeout=1.0 )
@pytest.mark.integration
def snake_case ( ):
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request("GET" ,"https://huggingface.co" )
def snake_case ( ):
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(A__ ):
http_head("https://huggingface.co" )
| 268 |
"""simple docstring"""
import unittest
from transformers import DebertaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
)
from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCamelCase_ (__A ):
def __init__( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=13 , lowerCAmelCase_ : Tuple=7 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=99 , lowerCAmelCase_ : int=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : str=37 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : List[Any]=512 , lowerCAmelCase_ : Optional[int]=16 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : List[str]=0.0_2 , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Union[str, Any]="None" , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : int=None , ) -> Dict:
UpperCAmelCase_ : Dict = parent
UpperCAmelCase_ : Union[str, Any] = batch_size
UpperCAmelCase_ : Optional[Any] = seq_length
UpperCAmelCase_ : List[Any] = is_training
UpperCAmelCase_ : Optional[int] = use_input_mask
UpperCAmelCase_ : int = use_token_type_ids
UpperCAmelCase_ : Any = use_labels
UpperCAmelCase_ : Optional[int] = vocab_size
UpperCAmelCase_ : Any = hidden_size
UpperCAmelCase_ : Dict = num_hidden_layers
UpperCAmelCase_ : List[Any] = num_attention_heads
UpperCAmelCase_ : List[Any] = intermediate_size
UpperCAmelCase_ : int = hidden_act
UpperCAmelCase_ : Optional[Any] = hidden_dropout_prob
UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Any = max_position_embeddings
UpperCAmelCase_ : Union[str, Any] = type_vocab_size
UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size
UpperCAmelCase_ : Tuple = initializer_range
UpperCAmelCase_ : int = num_labels
UpperCAmelCase_ : Optional[Any] = num_choices
UpperCAmelCase_ : List[str] = relative_attention
UpperCAmelCase_ : List[Any] = position_biased_input
UpperCAmelCase_ : Dict = pos_att_type
UpperCAmelCase_ : Optional[Any] = scope
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Tuple = None
if self.use_input_mask:
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCAmelCase_ : Optional[Any] = None
if self.use_token_type_ids:
UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Optional[Any] = None
UpperCAmelCase_ : List[str] = None
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict:
return DebertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase_ : List[str] = self.get_config()
UpperCAmelCase_ : int = 300
return config
def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : int ) -> List[Any]:
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] ) -> List[Any]:
UpperCAmelCase_ : Optional[Any] = DebertaModel(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )[0]
UpperCAmelCase_ : Optional[int] = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )[0]
UpperCAmelCase_ : Optional[Any] = model(lowerCAmelCase_ )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] ) -> List[Any]:
UpperCAmelCase_ : Union[str, Any] = DebertaForMaskedLM(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
UpperCAmelCase_ : List[Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]:
UpperCAmelCase_ : Any = self.num_labels
UpperCAmelCase_ : List[Any] = DebertaForSequenceClassification(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> str:
UpperCAmelCase_ : Optional[int] = self.num_labels
UpperCAmelCase_ : Optional[int] = DebertaForTokenClassification(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str ) -> List[Any]:
UpperCAmelCase_ : Dict = DebertaForQuestionAnswering(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
UpperCAmelCase_ : Any = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Tuple = config_and_inputs
UpperCAmelCase_ : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase_ (__A , __A , unittest.TestCase ):
__magic_name__ = (
(
DebertaModel,
DebertaForMaskedLM,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaForQuestionAnswering,
)
if is_torch_available()
else ()
)
__magic_name__ = (
{
'''feature-extraction''': DebertaModel,
'''fill-mask''': DebertaForMaskedLM,
'''question-answering''': DebertaForQuestionAnswering,
'''text-classification''': DebertaForSequenceClassification,
'''token-classification''': DebertaForTokenClassification,
'''zero-shot''': DebertaForSequenceClassification,
}
if is_torch_available()
else {}
)
__magic_name__ = True
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int:
UpperCAmelCase_ : int = DebertaModelTester(self )
UpperCAmelCase_ : Any = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]:
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]:
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]:
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]:
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*lowerCAmelCase_ )
@slow
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple:
for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[int] = DebertaModel.from_pretrained(lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ (unittest.TestCase ):
@unittest.skip(reason="Model not available yet" )
def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]:
pass
@slow
def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]:
UpperCAmelCase_ : Optional[int] = DebertaModel.from_pretrained("microsoft/deberta-base" )
UpperCAmelCase_ : List[Any] = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] )
UpperCAmelCase_ : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
UpperCAmelCase_ : Optional[Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0]
# compare the actual values for a slice.
UpperCAmelCase_ : Tuple = torch.tensor(
[[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase_ , atol=1e-4 ) , f"""{output[:, 1:4, 1:4]}""" )
| 268 | 1 |
def UpperCamelCase( lowercase_ ) -> list:
'''simple docstring'''
def merge(lowercase_ , lowercase_ ) -> list:
def _merge():
while left and right:
yield (left if left[0] <= right[0] else right).pop(0 )
yield from left
yield from right
return list(_merge() )
if len(lowercase_ ) <= 1:
return collection
snake_case_ = len(lowercase_ ) // 2
return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase_ = input('''Enter numbers separated by a comma:\n''').strip()
lowerCamelCase_ = [int(item) for item in user_input.split(''',''')]
print(*merge_sort(unsorted), sep=''',''') | 371 |
from __future__ import annotations
def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> dict[str, float]:
'''simple docstring'''
if (voltage, current, resistance).count(0 ) != 1:
raise ValueError("""One and only one argument must be 0""" )
if resistance < 0:
raise ValueError("""Resistance cannot be negative""" )
if voltage == 0:
return {"voltage": float(current * resistance )}
elif current == 0:
return {"current": voltage / resistance}
elif resistance == 0:
return {"resistance": voltage / current}
else:
raise ValueError("""Exactly one argument must be 0""" )
if __name__ == "__main__":
import doctest
doctest.testmod() | 34 | 0 |
'''simple docstring'''
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
lowerCamelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
lowerCamelCase__ = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n'
class lowerCAmelCase__ ( unittest.TestCase ):
def lowerCAmelCase__ ( self : Any ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase : List[str] = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) )
_UpperCAmelCase : Optional[int] = self.diffusers_dir
shutil.copy(
os.path.join(lowerCamelCase__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , )
def lowerCAmelCase__ ( self : int ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : List[str] = "src/diffusers"
shutil.rmtree(self.diffusers_dir )
def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any]=None ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase : List[str] = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code
if overwrite_result is not None:
_UpperCAmelCase : List[Any] = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result
_UpperCAmelCase : str = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
_UpperCAmelCase : int = black.format_str(lowerCamelCase__ , mode=lowerCamelCase__ )
_UpperCAmelCase : Tuple = os.path.join(self.diffusers_dir , "new_code.py" )
with open(lowerCamelCase__ , "w" , newline="\n" ) as f:
f.write(lowerCamelCase__ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase__ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=lowerCamelCase__ )
with open(lowerCamelCase__ , "r" ) as f:
self.assertTrue(f.read() , lowerCamelCase__ )
def lowerCAmelCase__ ( self : int ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : Any = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" )
self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
def lowerCAmelCase__ ( self : List[Any] ) ->Dict:
'''simple docstring'''
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , )
# With no empty line at the end
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowerCamelCase__ , )
# Copy consistency with rename
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowerCamelCase__ ) , )
# Copy consistency with a really long name
_UpperCAmelCase : int = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"
self.check_copy_consistency(
F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , lowerCamelCase__ , lowerCamelCase__ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowerCamelCase__ , overwrite_result=re.sub("DDPM" , "Test" , lowerCamelCase__ ) , )
| 234 |
'''simple docstring'''
import json
import logging
import os
import sys
from pathlib import Path
import finetune_rag
from transformers.file_utils import is_apex_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
require_ray,
require_torch_gpu,
require_torch_multi_gpu,
)
logging.basicConfig(level=logging.DEBUG)
lowerCamelCase__ = logging.getLogger()
lowerCamelCase__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowerCAmelCase__ ( UpperCAmelCase__ ):
def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : Optional[int] ) ->Tuple:
'''simple docstring'''
os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ )
_UpperCAmelCase : List[Any] = {"source": "What is love ?", "target": "life"}
_UpperCAmelCase : Any = {"train": 12, "val": 2, "test": 2}
for split in ["train", "test", "val"]:
for field in ["source", "target"]:
_UpperCAmelCase : Dict = "\n".join([contents[field]] * n_lines[split] )
with open(os.path.join(lowerCamelCase__ , F"""{split}.{field}""" ) , "w" ) as f:
f.write(lowerCamelCase__ )
def lowerCAmelCase__ ( self : int , lowerCamelCase__ : int , lowerCamelCase__ : str = "pytorch" ) ->Any:
'''simple docstring'''
_UpperCAmelCase : Any = self.get_auto_remove_tmp_dir()
_UpperCAmelCase : int = os.path.join(lowerCamelCase__ , "output" )
_UpperCAmelCase : Tuple = os.path.join(lowerCamelCase__ , "data" )
self._create_dummy_data(data_dir=lowerCamelCase__ )
_UpperCAmelCase : str = F"""
--data_dir {data_dir} \
--output_dir {output_dir} \
--model_name_or_path facebook/rag-sequence-base \
--model_type rag_sequence \
--do_train \
--do_predict \
--n_val -1 \
--val_check_interval 1.0 \
--train_batch_size 2 \
--eval_batch_size 1 \
--max_source_length 25 \
--max_target_length 25 \
--val_max_target_length 25 \
--test_max_target_length 25 \
--label_smoothing 0.1 \
--dropout 0.1 \
--attention_dropout 0.1 \
--weight_decay 0.001 \
--adam_epsilon 1e-08 \
--max_grad_norm 0.1 \
--lr_scheduler polynomial \
--learning_rate 3e-04 \
--num_train_epochs 1 \
--warmup_steps 4 \
--gradient_accumulation_steps 1 \
--distributed-port 8787 \
--use_dummy_dataset 1 \
--distributed_retriever {distributed_retriever} \
""".split()
if gpus > 0:
testargs.append(F"""--gpus={gpus}""" )
if is_apex_available():
testargs.append("--fp16" )
else:
testargs.append("--gpus=0" )
testargs.append("--distributed_backend=ddp_cpu" )
testargs.append("--num_processes=2" )
_UpperCAmelCase : str = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs
execute_subprocess_async(lowerCamelCase__ , env=self.get_env() )
_UpperCAmelCase : Optional[int] = os.path.join(lowerCamelCase__ , "metrics.json" )
with open(lowerCamelCase__ ) as f:
_UpperCAmelCase : Dict = json.load(lowerCamelCase__ )
return result
@require_torch_gpu
def lowerCAmelCase__ ( self : Dict ) ->Dict:
'''simple docstring'''
_UpperCAmelCase : Optional[Any] = self._run_finetune(gpus=1 )
self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
@require_torch_multi_gpu
def lowerCAmelCase__ ( self : List[Any] ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase : List[str] = self._run_finetune(gpus=2 )
self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
@require_torch_gpu
@require_ray
def lowerCAmelCase__ ( self : int ) ->str:
'''simple docstring'''
_UpperCAmelCase : Any = self._run_finetune(gpus=1 , distributed_retriever="ray" )
self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
@require_torch_multi_gpu
@require_ray
def lowerCAmelCase__ ( self : int ) ->Any:
'''simple docstring'''
_UpperCAmelCase : str = self._run_finetune(gpus=1 , distributed_retriever="ray" )
self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
| 234 | 1 |
import numpy as np
from scipy.spatial.distance import cdist
from sklearn.metrics import fa_score
import datasets
_lowercase : Optional[Any] ="\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n"
_lowercase : int ="\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n"
_lowercase : int ="\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for 'cvit-mkb-clsr' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'precision@10': 1.0}\n\n"
def lowerCAmelCase_ ( _lowercase : int , _lowercase : Dict) -> Tuple:
"""simple docstring"""
return float((preds == labels).mean())
def lowerCAmelCase_ ( _lowercase : List[str] , _lowercase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
a__ : Any = simple_accuracy(_lowercase , _lowercase)
a__ : int = float(fa_score(y_true=_lowercase , y_pred=_lowercase))
return {
"accuracy": acc,
"f1": fa,
}
def lowerCAmelCase_ ( _lowercase : List[Any] , _lowercase : str) -> int:
"""simple docstring"""
a__ : Dict = np.array(_lowercase)
a__ : int = np.array(_lowercase)
a__ : Optional[int] = en_sentvecs.shape[0]
# mean centering
a__ : List[str] = en_sentvecs - np.mean(_lowercase , axis=0)
a__ : Tuple = in_sentvecs - np.mean(_lowercase , axis=0)
a__ : Any = cdist(_lowercase , _lowercase , """cosine""")
a__ : Optional[int] = np.array(range(_lowercase))
a__ : Union[str, Any] = sim.argsort(axis=1)[:, :10]
a__ : Any = np.any(preds == actual[:, None] , axis=1)
return float(matches.mean())
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class snake_case__ (datasets.Metric ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__( self ) -> Any:
"""simple docstring"""
if self.config_name not in [
"wnli",
"copa",
"sna",
"csqa",
"wstp",
"inltkh",
"bbca",
"cvit-mkb-clsr",
"iitp-mr",
"iitp-pr",
"actsa-sc",
"md",
"wiki-ner",
]:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", """
"""\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", """
"""\"wiki-ner\"]""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""int64""" )
if self.config_name != """cvit-mkb-clsr"""
else datasets.Sequence(datasets.Value("""float32""" ) ),
"""references""": datasets.Value("""int64""" )
if self.config_name != """cvit-mkb-clsr"""
else datasets.Sequence(datasets.Value("""float32""" ) ),
} ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if self.config_name != """cvit-mkb-clsr""" else None , )
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> Optional[Any]:
"""simple docstring"""
if self.config_name == "cvit-mkb-clsr":
return {"precision@10": precision_at_aa(__lowercase , __lowercase )}
elif self.config_name in ["wiki-ner"]:
return acc_and_fa(__lowercase , __lowercase )
elif self.config_name in [
"wnli",
"copa",
"sna",
"csqa",
"wstp",
"inltkh",
"bbca",
"iitp-mr",
"iitp-pr",
"actsa-sc",
"md",
]:
return {"accuracy": simple_accuracy(__lowercase , __lowercase )}
else:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", """
"""\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", """
"""\"wiki-ner\"]""" )
| 266 |
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def lowerCAmelCase_ ( _lowercase : Union[str, Any] , _lowercase : Dict=False) -> Any:
"""simple docstring"""
try:
a__ : str = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
a__ : Optional[int] = default
else:
# KEY is set, convert it to True or False.
try:
a__ : Optional[int] = strtobool(_lowercase)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F'''If set, {key} must be yes or no.''')
return _value
_lowercase : Dict =parse_flag_from_env("RUN_SLOW", default=False)
def lowerCAmelCase_ ( _lowercase : Any) -> str:
"""simple docstring"""
return unittest.skip("""Test was skipped""")(_lowercase)
def lowerCAmelCase_ ( _lowercase : str) -> List[str]:
"""simple docstring"""
return unittest.skipUnless(_run_slow_tests , """test is slow""")(_lowercase)
def lowerCAmelCase_ ( _lowercase : List[Any]) -> Union[str, Any]:
"""simple docstring"""
return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""")(_lowercase)
def lowerCAmelCase_ ( _lowercase : List[Any]) -> List[Any]:
"""simple docstring"""
return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""")(_lowercase)
def lowerCAmelCase_ ( _lowercase : Optional[int]) -> Dict:
"""simple docstring"""
return unittest.skipUnless(is_xpu_available() , """test requires a XPU""")(_lowercase)
def lowerCAmelCase_ ( _lowercase : Tuple) -> List[str]:
"""simple docstring"""
return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""")(_lowercase)
def lowerCAmelCase_ ( _lowercase : Dict) -> Union[str, Any]:
"""simple docstring"""
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""")(_lowercase)
def lowerCAmelCase_ ( _lowercase : Tuple) -> Any:
"""simple docstring"""
return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""")(_lowercase)
def lowerCAmelCase_ ( _lowercase : Union[str, Any]) -> List[str]:
"""simple docstring"""
return unittest.skipUnless(is_tpu_available() , """test requires TPU""")(_lowercase)
def lowerCAmelCase_ ( _lowercase : str) -> int:
"""simple docstring"""
return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""")(_lowercase)
def lowerCAmelCase_ ( _lowercase : Any) -> List[str]:
"""simple docstring"""
return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""")(_lowercase)
def lowerCAmelCase_ ( _lowercase : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""")(_lowercase)
def lowerCAmelCase_ ( _lowercase : int) -> Tuple:
"""simple docstring"""
return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""")(_lowercase)
def lowerCAmelCase_ ( _lowercase : int) -> Optional[Any]:
"""simple docstring"""
return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""")(_lowercase)
def lowerCAmelCase_ ( _lowercase : Optional[int]) -> List[str]:
"""simple docstring"""
return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""")(_lowercase)
def lowerCAmelCase_ ( _lowercase : Union[str, Any]) -> Optional[Any]:
"""simple docstring"""
return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""") , """test requires torch version >= 1.12.0""")(_lowercase)
def lowerCAmelCase_ ( _lowercase : Any=None , _lowercase : List[str]=None) -> Dict:
"""simple docstring"""
if test_case is None:
return partial(_lowercase , version=_lowercase)
return unittest.skipUnless(is_torch_version(""">=""" , _lowercase) , F'''test requires torch version >= {version}''')(_lowercase)
def lowerCAmelCase_ ( _lowercase : Any) -> int:
"""simple docstring"""
return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""")(_lowercase)
def lowerCAmelCase_ ( _lowercase : str) -> Union[str, Any]:
"""simple docstring"""
return unittest.skipUnless(is_wandb_available() , """test requires wandb""")(_lowercase)
def lowerCAmelCase_ ( _lowercase : Optional[int]) -> Union[str, Any]:
"""simple docstring"""
return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""")(_lowercase)
_lowercase : List[str] =(
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def lowerCAmelCase_ ( _lowercase : Optional[int]) -> Union[str, Any]:
"""simple docstring"""
return unittest.skipUnless(
_atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(_lowercase)
class snake_case__ (unittest.TestCase ):
"""simple docstring"""
__lowerCAmelCase :Optional[Any] = True
@classmethod
def SCREAMING_SNAKE_CASE__( cls ) -> Optional[int]:
"""simple docstring"""
a__ : Tuple = tempfile.mkdtemp()
@classmethod
def SCREAMING_SNAKE_CASE__( cls ) -> Dict:
"""simple docstring"""
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def SCREAMING_SNAKE_CASE__( self ) -> List[Any]:
"""simple docstring"""
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob("""**/*""" ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(__lowercase )
class snake_case__ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]:
"""simple docstring"""
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class snake_case__ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Union[str, Any]:
"""simple docstring"""
a__ : Tuple = mocks if isinstance(__lowercase , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def lowerCAmelCase_ ( _lowercase : Optional[int]) -> List[Any]:
"""simple docstring"""
a__ : Tuple = AcceleratorState()
a__ : List[str] = tensor[None].clone().to(state.device)
a__ : Any = gather(_lowercase).cpu()
a__ : Optional[Any] = tensor[0].cpu()
for i in range(tensors.shape[0]):
if not torch.equal(tensors[i] , _lowercase):
return False
return True
class snake_case__ :
"""simple docstring"""
def __init__( self , __lowercase , __lowercase , __lowercase ) -> Any:
"""simple docstring"""
a__ : Any = returncode
a__ : List[Any] = stdout
a__ : Any = stderr
async def lowerCAmelCase_ ( _lowercase : str , _lowercase : str) -> List[Any]:
"""simple docstring"""
while True:
a__ : str = await stream.readline()
if line:
callback(_lowercase)
else:
break
async def lowerCAmelCase_ ( _lowercase : Any , _lowercase : Union[str, Any]=None , _lowercase : List[str]=None , _lowercase : Tuple=None , _lowercase : Optional[Any]=False , _lowercase : Dict=False) -> _RunOutput:
"""simple docstring"""
if echo:
print("""\nRunning: """ , """ """.join(_lowercase))
a__ : int = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=_lowercase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowercase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
a__ : int = []
a__ : Optional[int] = []
def tee(_lowercase : List[str] , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Optional[Any]=""):
a__ : int = line.decode("""utf-8""").rstrip()
sink.append(_lowercase)
if not quiet:
print(_lowercase , _lowercase , file=_lowercase)
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda _lowercase: tee(_lowercase , _lowercase , sys.stdout , label="""stdout:"""))),
asyncio.create_task(_read_stream(p.stderr , lambda _lowercase: tee(_lowercase , _lowercase , sys.stderr , label="""stderr:"""))),
] , timeout=_lowercase , )
return _RunOutput(await p.wait() , _lowercase , _lowercase)
def lowerCAmelCase_ ( _lowercase : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Tuple=None , _lowercase : Any=180 , _lowercase : List[Any]=False , _lowercase : Dict=True) -> _RunOutput:
"""simple docstring"""
a__ : Any = asyncio.get_event_loop()
a__ : List[Any] = loop.run_until_complete(
_stream_subprocess(_lowercase , env=_lowercase , stdin=_lowercase , timeout=_lowercase , quiet=_lowercase , echo=_lowercase))
a__ : Optional[int] = """ """.join(_lowercase)
if result.returncode > 0:
a__ : List[Any] = """\n""".join(result.stderr)
raise RuntimeError(
F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
F'''The combined stderr from workers follows:\n{stderr}''')
return result
class snake_case__ (A__ ):
"""simple docstring"""
pass
def lowerCAmelCase_ ( _lowercase : List[str] , _lowercase : Optional[int]=False) -> Dict:
"""simple docstring"""
try:
a__ : List[Any] = subprocess.check_output(_lowercase , stderr=subprocess.STDOUT)
if return_stdout:
if hasattr(_lowercase , """decode"""):
a__ : Tuple = output.decode("""utf-8""")
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
F'''Command `{' '.join(_lowercase)}` failed with the following error:\n\n{e.output.decode()}''') from e
| 266 | 1 |
"""simple docstring"""
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def _lowerCamelCase( a ):
__a = {}
__a = tokenizer(example["content"] , truncation=a )["input_ids"]
__a = len(example["content"] ) / len(output["input_ids"] )
return output
SCREAMING_SNAKE_CASE__:Optional[int] = HfArgumentParser(PretokenizationArguments)
SCREAMING_SNAKE_CASE__:str = parser.parse_args()
if args.num_workers is None:
SCREAMING_SNAKE_CASE__:Any = multiprocessing.cpu_count()
SCREAMING_SNAKE_CASE__:int = AutoTokenizer.from_pretrained(args.tokenizer_dir)
SCREAMING_SNAKE_CASE__:int = time.time()
SCREAMING_SNAKE_CASE__:str = load_dataset(args.dataset_name, split="""train""")
print(F'''Dataset loaded in {time.time()-t_start:.2f}s''')
SCREAMING_SNAKE_CASE__:int = time.time()
SCREAMING_SNAKE_CASE__:List[Any] = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"""repo_name""",
"""path""",
"""copies""",
"""size""",
"""content""",
"""license""",
"""hash""",
"""line_mean""",
"""line_max""",
"""alpha_frac""",
"""autogenerated""",
],
)
print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''')
SCREAMING_SNAKE_CASE__:Tuple = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
| 261 | """simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class snake_case__ ( snake_case_, snake_case_, snake_case_, unittest.TestCase ):
_snake_case : str = StableUnCLIPImgaImgPipeline
_snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
_snake_case : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
_snake_case : Optional[Any] = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
_snake_case : List[Any] = frozenset([] )
def a__ ( self ):
__a = 32
__a = embedder_hidden_size
# image encoding components
__a = CLIPImageProcessor(crop_size=32 , size=32 )
torch.manual_seed(0 )
__a = CLIPVisionModelWithProjection(
CLIPVisionConfig(
hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) )
# regular denoising components
torch.manual_seed(0 )
__a = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase )
__a = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
__a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
__a = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
__a = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , )
torch.manual_seed(0 )
__a = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , )
torch.manual_seed(0 )
__a = AutoencoderKL()
__a = {
# image encoding components
"feature_extractor": feature_extractor,
"image_encoder": image_encoder.eval(),
# image noising components
"image_normalizer": image_normalizer.eval(),
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder.eval(),
"unet": unet.eval(),
"scheduler": scheduler,
"vae": vae.eval(),
}
return components
def a__ ( self , lowerCamelCase , lowerCamelCase=0 , lowerCamelCase=True ):
if str(lowerCamelCase ).startswith("mps" ):
__a = torch.manual_seed(lowerCamelCase )
else:
__a = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase )
__a = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase )
if pil_image:
__a = input_image * 0.5 + 0.5
__a = input_image.clamp(0 , 1 )
__a = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__a = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0]
return {
"prompt": "An anime racoon running a marathon",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
@skip_mps
def a__ ( self ):
__a = "cpu" # ensure determinism for the device-dependent torch.Generator
__a = self.get_dummy_components()
__a = StableUnCLIPImgaImgPipeline(**lowerCamelCase )
__a = sd_pipe.to(lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase )
__a = self.get_dummy_inputs(lowerCamelCase )
inputs.update({"image_embeds": None} )
__a = sd_pipe(**lowerCamelCase ).images
__a = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__a = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def a__ ( self ):
__a = torch_device in ["cpu", "mps"]
self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase )
def a__ ( self ):
__a = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def a__ ( self ):
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase )
@slow
@require_torch_gpu
class snake_case__ ( unittest.TestCase ):
def a__ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a__ ( self ):
__a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
__a = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" )
__a = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__a = torch.Generator(device="cpu" ).manual_seed(0 )
__a = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" )
__a = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase )
def a__ ( self ):
__a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
__a = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" )
__a = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__a = torch.Generator(device="cpu" ).manual_seed(0 )
__a = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" )
__a = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase )
def a__ ( self ):
__a = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" )
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__a = StableUnCLIPImgaImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa )
__a = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__a = pipe(
lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , )
__a = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 261 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
lowerCAmelCase : Optional[Any] = None
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Dict = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
lowerCAmelCase : List[Any] = {
"""vocab_file""": {
"""google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""",
"""google/bigbird-roberta-large""": (
"""https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model"""
),
"""google/bigbird-base-trivia-itc""": (
"""https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model"""
),
},
"""tokenizer_file""": {
"""google/bigbird-roberta-base""": (
"""https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json"""
),
"""google/bigbird-roberta-large""": (
"""https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json"""
),
"""google/bigbird-base-trivia-itc""": (
"""https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json"""
),
},
}
lowerCAmelCase : Optional[Any] = {
"""google/bigbird-roberta-base""": 40_96,
"""google/bigbird-roberta-large""": 40_96,
"""google/bigbird-base-trivia-itc""": 40_96,
}
lowerCAmelCase : str = """▁"""
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = BigBirdTokenizer
__magic_name__ = ["input_ids", "attention_mask"]
__magic_name__ = []
def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : Dict = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token
_lowerCAmelCase : int = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token
_lowerCAmelCase : Union[str, Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token
_lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token
_lowerCAmelCase : int = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token
_lowerCAmelCase : List[str] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase : Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token
super().__init__(
snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , )
_lowerCAmelCase : Optional[Any] = vocab_file
_lowerCAmelCase : Union[str, Any] = False if not self.vocab_file else True
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : List[str] = [self.sep_token_id]
_lowerCAmelCase : Any = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a ( self , snake_case__ , snake_case__ = None , snake_case__ = False ):
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is None:
return [1] + ([0] * len(snake_case__ )) + [1]
return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1]
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(snake_case__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
_lowerCAmelCase : List[Any] = os.path.join(
snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ):
copyfile(self.vocab_file , snake_case__ )
return (out_vocab_file,)
| 25 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
lowerCAmelCase : str = {
"""vocab_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json"""
),
},
"""merges_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt"""
),
},
"""tokenizer_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""",
"""roberta-base-openai-detector""": (
"""https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json"""
),
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json"""
),
},
}
lowerCAmelCase : List[str] = {
"""roberta-base""": 5_12,
"""roberta-large""": 5_12,
"""roberta-large-mnli""": 5_12,
"""distilroberta-base""": 5_12,
"""roberta-base-openai-detector""": 5_12,
"""roberta-large-openai-detector""": 5_12,
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = ["input_ids", "attention_mask"]
__magic_name__ = RobertaTokenizer
def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ):
'''simple docstring'''
super().__init__(
snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , )
_lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space:
_lowerCAmelCase : Tuple = getattr(snake_case__ , pre_tok_state.pop('type' ) )
_lowerCAmelCase : List[Any] = add_prefix_space
_lowerCAmelCase : List[str] = pre_tok_class(**snake_case__ )
_lowerCAmelCase : Union[str, Any] = add_prefix_space
_lowerCAmelCase : Union[str, Any] = 'post_processor'
_lowerCAmelCase : int = getattr(self.backend_tokenizer , snake_case__ , snake_case__ )
if tokenizer_component_instance:
_lowerCAmelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
_lowerCAmelCase : Any = tuple(state['sep'] )
if "cls" in state:
_lowerCAmelCase : str = tuple(state['cls'] )
_lowerCAmelCase : List[str] = False
if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space:
_lowerCAmelCase : int = add_prefix_space
_lowerCAmelCase : Tuple = True
if state.get('trim_offsets' , snake_case__ ) != trim_offsets:
_lowerCAmelCase : Union[str, Any] = trim_offsets
_lowerCAmelCase : Optional[int] = True
if changes_to_apply:
_lowerCAmelCase : Any = getattr(snake_case__ , state.pop('type' ) )
_lowerCAmelCase : Optional[int] = component_class(**snake_case__ )
setattr(self.backend_tokenizer , snake_case__ , snake_case__ )
@property
def a ( self ):
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value
_lowerCAmelCase : Tuple = value
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = kwargs.get('is_split_into_words' , snake_case__ )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*snake_case__ , **snake_case__ )
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = kwargs.get('is_split_into_words' , snake_case__ )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._encode_plus(*snake_case__ , **snake_case__ )
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ )
return tuple(snake_case__ )
def a ( self , snake_case__ , snake_case__=None ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 25 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"}
class snake_case ( __snake_case ):
SCREAMING_SNAKE_CASE_ : Any = """ctrl"""
SCREAMING_SNAKE_CASE_ : List[Any] = ["""past_key_values"""]
SCREAMING_SNAKE_CASE_ : Optional[Any] = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Any , UpperCamelCase__ : Any=2_4_6_5_3_4 , UpperCamelCase__ : int=2_5_6 , UpperCamelCase__ : Optional[int]=1_2_8_0 , UpperCamelCase__ : int=8_1_9_2 , UpperCamelCase__ : Any=4_8 , UpperCamelCase__ : int=1_6 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : str=1e-6 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : Tuple=True , **UpperCamelCase__ : Optional[Any] , )-> str:
'''simple docstring'''
__lowerCAmelCase: Optional[Any] = vocab_size
__lowerCAmelCase: int = n_positions
__lowerCAmelCase: int = n_embd
__lowerCAmelCase: Optional[Any] = n_layer
__lowerCAmelCase: List[str] = n_head
__lowerCAmelCase: List[Any] = dff
__lowerCAmelCase: str = resid_pdrop
__lowerCAmelCase: Optional[int] = embd_pdrop
__lowerCAmelCase: Tuple = layer_norm_epsilon
__lowerCAmelCase: Optional[Any] = initializer_range
__lowerCAmelCase: Union[str, Any] = use_cache
super().__init__(**UpperCamelCase__)
| 217 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
__A = logging.get_logger(__name__)
__A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
__A = {
"vocab_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json",
"roberta-large-openai-detector": (
"https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json"
),
},
"merges_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt",
"roberta-large-openai-detector": (
"https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt"
),
},
"tokenizer_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json",
"roberta-base-openai-detector": (
"https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json"
),
"roberta-large-openai-detector": (
"https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json"
),
},
}
__A = {
"roberta-base": 512,
"roberta-large": 512,
"roberta-large-mnli": 512,
"distilroberta-base": 512,
"roberta-base-openai-detector": 512,
"roberta-large-openai-detector": 512,
}
class snake_case ( __snake_case ):
SCREAMING_SNAKE_CASE_ : str = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE_ : Optional[int] = ["""input_ids""", """attention_mask"""]
SCREAMING_SNAKE_CASE_ : Any = RobertaTokenizer
def __init__( self : Optional[int] , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : int="replace" , UpperCamelCase__ : Union[str, Any]="<s>" , UpperCamelCase__ : List[Any]="</s>" , UpperCamelCase__ : Any="</s>" , UpperCamelCase__ : Union[str, Any]="<s>" , UpperCamelCase__ : str="<unk>" , UpperCamelCase__ : Optional[int]="<pad>" , UpperCamelCase__ : int="<mask>" , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Optional[Any]=True , **UpperCamelCase__ : Tuple , )-> Optional[int]:
'''simple docstring'''
super().__init__(
UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , **UpperCamelCase__ , )
__lowerCAmelCase: Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("add_prefix_space" , UpperCamelCase__) != add_prefix_space:
__lowerCAmelCase: str = getattr(UpperCamelCase__ , pre_tok_state.pop("type"))
__lowerCAmelCase: Optional[int] = add_prefix_space
__lowerCAmelCase: Dict = pre_tok_class(**UpperCamelCase__)
__lowerCAmelCase: Any = add_prefix_space
__lowerCAmelCase: int = "post_processor"
__lowerCAmelCase: Optional[Any] = getattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__)
if tokenizer_component_instance:
__lowerCAmelCase: Dict = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__lowerCAmelCase: List[Any] = tuple(state["sep"])
if "cls" in state:
__lowerCAmelCase: str = tuple(state["cls"])
__lowerCAmelCase: str = False
if state.get("add_prefix_space" , UpperCamelCase__) != add_prefix_space:
__lowerCAmelCase: Optional[Any] = add_prefix_space
__lowerCAmelCase: List[str] = True
if state.get("trim_offsets" , UpperCamelCase__) != trim_offsets:
__lowerCAmelCase: Any = trim_offsets
__lowerCAmelCase: List[str] = True
if changes_to_apply:
__lowerCAmelCase: str = getattr(UpperCamelCase__ , state.pop("type"))
__lowerCAmelCase: List[str] = component_class(**UpperCamelCase__)
setattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__)
@property
def lowercase_ ( self : List[str])-> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet.")
return None
return str(self._mask_token)
@mask_token.setter
def lowercase_ ( self : Tuple , UpperCamelCase__ : Optional[int])-> Optional[Any]:
'''simple docstring'''
__lowerCAmelCase: List[Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__) if isinstance(UpperCamelCase__ , UpperCamelCase__) else value
__lowerCAmelCase: int = value
def lowercase_ ( self : Any , *UpperCamelCase__ : str , **UpperCamelCase__ : List[Any])-> BatchEncoding:
'''simple docstring'''
__lowerCAmelCase: List[Any] = kwargs.get("is_split_into_words" , UpperCamelCase__)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__)
def lowercase_ ( self : int , *UpperCamelCase__ : Dict , **UpperCamelCase__ : List[str])-> BatchEncoding:
'''simple docstring'''
__lowerCAmelCase: Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase__)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__)
def lowercase_ ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None)-> Tuple[str]:
'''simple docstring'''
__lowerCAmelCase: str = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__)
return tuple(UpperCamelCase__)
def lowercase_ ( self : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=None)-> Optional[Any]:
'''simple docstring'''
__lowerCAmelCase: str = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def lowercase_ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[int]:
'''simple docstring'''
__lowerCAmelCase: Optional[Any] = [self.sep_token_id]
__lowerCAmelCase: str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
| 217 | 1 |
"""simple docstring"""
import os
from datetime import datetime as dt
from github import Github
SCREAMING_SNAKE_CASE__ = [
"good first issue",
"good second issue",
"good difficult issue",
"enhancement",
"new pipeline/model",
"new scheduler",
"wip",
]
def lowerCAmelCase__ ( ) -> Dict:
"""simple docstring"""
snake_case = Github(os.environ['GITHUB_TOKEN'] )
snake_case = g.get_repo('huggingface/diffusers' )
snake_case = repo.get_issues(state='open' )
for issue in open_issues:
snake_case = sorted(issue.get_comments() , key=lambda _UpperCamelCase : i.created_at , reverse=_UpperCamelCase )
snake_case = comments[0] if len(_UpperCamelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state='closed' )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state='open' )
issue.remove_from_labels('stale' )
elif (
(dt.utcnow() - issue.updated_at).days > 2_3
and (dt.utcnow() - issue.created_at).days >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
'This issue has been automatically marked as stale because it has not had '
'recent activity. If you think this still needs to be addressed '
'please comment on this thread.\n\nPlease note that issues that do not follow the '
'[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) '
'are likely to be ignored.' )
issue.add_to_labels('stale' )
if __name__ == "__main__":
main()
| 354 | """simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
SCREAMING_SNAKE_CASE__ = {
"configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"],
"tokenization_xlm": ["XLMTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMForMultipleChoice",
"XLMForQuestionAnswering",
"XLMForQuestionAnsweringSimple",
"XLMForSequenceClassification",
"XLMForTokenClassification",
"XLMModel",
"XLMPreTrainedModel",
"XLMWithLMHeadModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMForMultipleChoice",
"TFXLMForQuestionAnsweringSimple",
"TFXLMForSequenceClassification",
"TFXLMForTokenClassification",
"TFXLMMainLayer",
"TFXLMModel",
"TFXLMPreTrainedModel",
"TFXLMWithLMHeadModel",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 149 | 0 |
'''simple docstring'''
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
lowerCAmelCase : Any ="."
if __name__ == "__main__":
lowerCAmelCase : Union[str, Any] =os.path.join(REPO_PATH, '''utils/documentation_tests.txt''')
lowerCAmelCase : Tuple =[]
lowerCAmelCase : Union[str, Any] =[]
with open(doctest_file_path) as fp:
for line in fp:
lowerCAmelCase : Tuple =line.strip()
lowerCAmelCase : Any =os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
lowerCAmelCase : List[str] ="\n".join(non_existent_paths)
raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''')
if all_paths != sorted(all_paths):
raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
| 223 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCAmelCase__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = 1
UpperCAmelCase_ : Dict = 3
UpperCAmelCase_ : Dict = (32, 32)
UpperCAmelCase_ : str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__magic_name__ )
return image
@property
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Dict = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
return model
@property
def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : str = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModel(__magic_name__ )
@property
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
def extract(*__magic_name__ : Dict , **__magic_name__ : Any ):
class __a :
def __init__( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = torch.ones([0] )
def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> List[str]:
"""simple docstring"""
self.pixel_values.to(__magic_name__ )
return self
return Out()
return extract
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ : Optional[Any] = self.dummy_cond_unet
UpperCAmelCase_ : Any = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , )
UpperCAmelCase_ : List[Any] = self.dummy_vae
UpperCAmelCase_ : List[str] = self.dummy_text_encoder
UpperCAmelCase_ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ : str = StableDiffusionPipeline(
unet=__magic_name__ , scheduler=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=self.dummy_extractor , )
UpperCAmelCase_ : List[str] = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = '''A painting of a squirrel eating a burger'''
UpperCAmelCase_ : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = sd_pipe([prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' )
UpperCAmelCase_ : Optional[Any] = output.images
UpperCAmelCase_ : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(0 )
UpperCAmelCase_ : Optional[int] = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__magic_name__ , )[0]
UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : str = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ : Dict = self.dummy_cond_unet
UpperCAmelCase_ : str = PNDMScheduler(skip_prk_steps=__magic_name__ )
UpperCAmelCase_ : Any = self.dummy_vae
UpperCAmelCase_ : List[str] = self.dummy_text_encoder
UpperCAmelCase_ : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ : Optional[Any] = StableDiffusionPipeline(
unet=__magic_name__ , scheduler=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=self.dummy_extractor , )
UpperCAmelCase_ : str = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[str] = '''A painting of a squirrel eating a burger'''
UpperCAmelCase_ : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(0 )
UpperCAmelCase_ : Optional[int] = sd_pipe([prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' )
UpperCAmelCase_ : List[str] = output.images
UpperCAmelCase_ : str = torch.Generator(device=__magic_name__ ).manual_seed(0 )
UpperCAmelCase_ : int = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__magic_name__ , )[0]
UpperCAmelCase_ : List[str] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : str = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ ( self : Dict ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(
'''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=__magic_name__ )
assert isinstance(__magic_name__ , __magic_name__ )
assert isinstance(pipe.scheduler , __magic_name__ )
assert pipe.safety_checker is None
UpperCAmelCase_ : str = pipe('''example prompt''' , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
UpperCAmelCase_ : int = pipe('''example prompt''' , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ ( self : str ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.dummy_cond_unet
UpperCAmelCase_ : Tuple = PNDMScheduler(skip_prk_steps=__magic_name__ )
UpperCAmelCase_ : Tuple = self.dummy_vae
UpperCAmelCase_ : Optional[Any] = self.dummy_text_encoder
UpperCAmelCase_ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
# put models in fp16
UpperCAmelCase_ : Union[str, Any] = unet.half()
UpperCAmelCase_ : Any = vae.half()
UpperCAmelCase_ : Tuple = bert.half()
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ : List[Any] = StableDiffusionPipeline(
unet=__magic_name__ , scheduler=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=self.dummy_extractor , )
UpperCAmelCase_ : str = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger'''
UpperCAmelCase_ : List[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__magic_name__ )
UpperCAmelCase_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
UpperCAmelCase_ : Any = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Optional[int] = (
'''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle'''
''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with'''
''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and'''
''' children from bahnhof zoo, detailed '''
)
UpperCAmelCase_ : str = 40_03_66_03_46
UpperCAmelCase_ : Any = 7
# without safety guidance (sld_guidance_scale = 0)
UpperCAmelCase_ : Optional[Any] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : List[Any] = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , )
UpperCAmelCase_ : Tuple = output.images
UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Any = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
UpperCAmelCase_ : Tuple = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : List[Any] = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCAmelCase_ : Tuple = output.images
UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ ( self : int ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : int = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__magic_name__ )
UpperCAmelCase_ : int = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
UpperCAmelCase_ : Optional[Any] = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Any = '''padme amidala taking a bath artwork, safe for work, no nudity'''
UpperCAmelCase_ : Tuple = 27_34_97_17_55
UpperCAmelCase_ : List[str] = 7
UpperCAmelCase_ : Any = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : int = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , )
UpperCAmelCase_ : str = output.images
UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1]
UpperCAmelCase_ : List[str] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
UpperCAmelCase_ : List[Any] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : Any = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCAmelCase_ : Optional[int] = output.images
UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : List[str] = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : int = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' )
UpperCAmelCase_ : Any = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Optional[int] = (
'''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.'''
''' leyendecker'''
)
UpperCAmelCase_ : str = 10_44_35_52_34
UpperCAmelCase_ : int = 12
UpperCAmelCase_ : int = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , )
UpperCAmelCase_ : int = output.images
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : List[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
UpperCAmelCase_ : List[str] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : int = sd_pipe(
[prompt] , generator=__magic_name__ , guidance_scale=__magic_name__ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCAmelCase_ : Any = output.images
UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Dict = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 125 | 0 |
"""simple docstring"""
def a_ ( _lowercase ):
_UpperCamelCase : Any = len(_lowercase )
_UpperCamelCase : Tuple = len(matrix[0] )
_UpperCamelCase : str = min(_lowercase , _lowercase )
for row in range(_lowercase ):
# Check if diagonal element is not zero
if matrix[row][row] != 0:
# Eliminate all the elements below the diagonal
for col in range(row + 1 , _lowercase ):
_UpperCamelCase : Optional[int] = matrix[col][row] / matrix[row][row]
for i in range(_lowercase , _lowercase ):
matrix[col][i] -= multiplier * matrix[row][i]
else:
# Find a non-zero diagonal element to swap rows
_UpperCamelCase : Dict = True
for i in range(row + 1 , _lowercase ):
if matrix[i][row] != 0:
_UpperCamelCase : Dict = matrix[i], matrix[row]
_UpperCamelCase : int = False
break
if reduce:
rank -= 1
for i in range(_lowercase ):
_UpperCamelCase : Union[str, Any] = matrix[i][rank]
# Reduce the row pointer by one to stay on the same row
row -= 1
return rank
if __name__ == "__main__":
import doctest
doctest.testmod()
| 366 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class _a ( _lowerCAmelCase ):
UpperCamelCase = ['''image_processor''', '''feature_extractor''']
UpperCamelCase = '''TvltImageProcessor'''
UpperCamelCase = '''TvltFeatureExtractor'''
def __init__( self : Union[str, Any], lowerCAmelCase__ : str, lowerCAmelCase__ : List[str] ) -> Optional[Any]:
'''simple docstring'''
super().__init__(image_processor=lowerCAmelCase__, feature_extractor=lowerCAmelCase__ )
_UpperCamelCase : List[str] = image_processor
_UpperCamelCase : int = feature_extractor
def __call__( self : List[str], lowerCAmelCase__ : Optional[int]=None, lowerCAmelCase__ : str=None, lowerCAmelCase__ : Dict=None, lowerCAmelCase__ : str=None, lowerCAmelCase__ : Optional[int]=False, lowerCAmelCase__ : str=False, *lowerCAmelCase__ : List[str], **lowerCAmelCase__ : Optional[int], ) -> Dict:
'''simple docstring'''
if images is None and audio is None:
raise ValueError('''You need to specify either an `images` or `audio` input to process.''' )
_UpperCamelCase : Optional[int] = None
if images is not None:
_UpperCamelCase : Optional[int] = self.image_processor(lowerCAmelCase__, mask_pixel=lowerCAmelCase__, *lowerCAmelCase__, **lowerCAmelCase__ )
if images_mixed is not None:
_UpperCamelCase : str = self.image_processor(lowerCAmelCase__, is_mixed=lowerCAmelCase__, *lowerCAmelCase__, **lowerCAmelCase__ )
if audio is not None:
_UpperCamelCase : Union[str, Any] = self.feature_extractor(
lowerCAmelCase__, *lowerCAmelCase__, sampling_rate=lowerCAmelCase__, mask_audio=lowerCAmelCase__, **lowerCAmelCase__ )
_UpperCamelCase : str = {}
if audio is not None:
output_dict.update(lowerCAmelCase__ )
if images is not None:
output_dict.update(lowerCAmelCase__ )
if images_mixed_dict is not None:
output_dict.update(lowerCAmelCase__ )
return output_dict
@property
def snake_case ( self : List[str] ) -> Tuple:
'''simple docstring'''
_UpperCamelCase : List[str] = self.image_processor.model_input_names
_UpperCamelCase : List[Any] = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 128 | 0 |
"""simple docstring"""
from __future__ import annotations
def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,):
SCREAMING_SNAKE_CASE__ : Any = len(_snake_case )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(_snake_case ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] ,[*diagonal_right_collisions, row - col] ,[*diagonal_left_collisions, row + col] ,_snake_case ,_snake_case ,)
def lowercase_ ( _snake_case ):
SCREAMING_SNAKE_CASE__ : list[list[str]] = []
depth_first_search([] ,[] ,[] ,_snake_case ,_snake_case )
# Print all the boards
for board in boards:
for column in board:
print(_snake_case )
print("""""" )
print(len(_snake_case ) ,"""solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 25 |
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def lowercase_ ( _snake_case ):
SCREAMING_SNAKE_CASE__ : List[Any] = 384
SCREAMING_SNAKE_CASE__ : Tuple = 7
if "tiny" in model_name:
SCREAMING_SNAKE_CASE__ : int = 96
SCREAMING_SNAKE_CASE__ : str = (2, 2, 6, 2)
SCREAMING_SNAKE_CASE__ : List[Any] = (3, 6, 12, 24)
elif "small" in model_name:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 96
SCREAMING_SNAKE_CASE__ : Any = (2, 2, 18, 2)
SCREAMING_SNAKE_CASE__ : Tuple = (3, 6, 12, 24)
elif "base" in model_name:
SCREAMING_SNAKE_CASE__ : Tuple = 128
SCREAMING_SNAKE_CASE__ : List[Any] = (2, 2, 18, 2)
SCREAMING_SNAKE_CASE__ : int = (4, 8, 16, 32)
SCREAMING_SNAKE_CASE__ : Optional[int] = 12
SCREAMING_SNAKE_CASE__ : Optional[int] = 512
elif "large" in model_name:
SCREAMING_SNAKE_CASE__ : Optional[Any] = 192
SCREAMING_SNAKE_CASE__ : int = (2, 2, 18, 2)
SCREAMING_SNAKE_CASE__ : int = (6, 12, 24, 48)
SCREAMING_SNAKE_CASE__ : List[Any] = 12
SCREAMING_SNAKE_CASE__ : Optional[Any] = 768
# set label information
SCREAMING_SNAKE_CASE__ : Optional[Any] = 150
SCREAMING_SNAKE_CASE__ : Tuple = """huggingface/label-files"""
SCREAMING_SNAKE_CASE__ : List[str] = """ade20k-id2label.json"""
SCREAMING_SNAKE_CASE__ : str = json.load(open(hf_hub_download(_snake_case ,_snake_case ,repo_type="""dataset""" ) ,"""r""" ) )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {int(_snake_case ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE__ : List[Any] = {v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE__ : str = SwinConfig(
embed_dim=_snake_case ,depths=_snake_case ,num_heads=_snake_case ,window_size=_snake_case ,out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ,)
SCREAMING_SNAKE_CASE__ : int = UperNetConfig(
backbone_config=_snake_case ,auxiliary_in_channels=_snake_case ,num_labels=_snake_case ,idalabel=_snake_case ,labelaid=_snake_case ,)
return config
def lowercase_ ( _snake_case ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = []
# fmt: off
# stem
rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") )
rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") )
rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") )
rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""),
("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""),
("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""),
("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""),
] )
# fmt: on
return rename_keys
def lowercase_ ( _snake_case ,_snake_case ,_snake_case ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = dct.pop(_snake_case )
SCREAMING_SNAKE_CASE__ : Tuple = val
def lowercase_ ( _snake_case ,_snake_case ):
SCREAMING_SNAKE_CASE__ : int = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ : List[Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ : Tuple = in_proj_weight[:dim, :]
SCREAMING_SNAKE_CASE__ : List[Any] = in_proj_bias[: dim]
SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_weight[
dim : dim * 2, :
]
SCREAMING_SNAKE_CASE__ : List[Any] = in_proj_bias[
dim : dim * 2
]
SCREAMING_SNAKE_CASE__ : Tuple = in_proj_weight[
-dim :, :
]
SCREAMING_SNAKE_CASE__ : Optional[Any] = in_proj_bias[-dim :]
# fmt: on
def lowercase_ ( _snake_case ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = x.shape
SCREAMING_SNAKE_CASE__ : List[Any] = x.reshape(_snake_case ,4 ,in_channel // 4 )
SCREAMING_SNAKE_CASE__ : Dict = x[:, [0, 2, 1, 3], :].transpose(1 ,2 ).reshape(_snake_case ,_snake_case )
return x
def lowercase_ ( _snake_case ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = x.shape
SCREAMING_SNAKE_CASE__ : Any = x.reshape(_snake_case ,in_channel // 4 ,4 )
SCREAMING_SNAKE_CASE__ : Optional[Any] = x[:, :, [0, 2, 1, 3]].transpose(1 ,2 ).reshape(_snake_case ,_snake_case )
return x
def lowercase_ ( _snake_case ):
SCREAMING_SNAKE_CASE__ : Tuple = x.shape[0]
SCREAMING_SNAKE_CASE__ : List[str] = x.reshape(4 ,in_channel // 4 )
SCREAMING_SNAKE_CASE__ : Optional[Any] = x[[0, 2, 1, 3], :].transpose(0 ,1 ).reshape(_snake_case )
return x
def lowercase_ ( _snake_case ):
SCREAMING_SNAKE_CASE__ : int = x.shape[0]
SCREAMING_SNAKE_CASE__ : List[str] = x.reshape(in_channel // 4 ,4 )
SCREAMING_SNAKE_CASE__ : Tuple = x[:, [0, 2, 1, 3]].transpose(0 ,1 ).reshape(_snake_case )
return x
def lowercase_ ( _snake_case ,_snake_case ,_snake_case ):
SCREAMING_SNAKE_CASE__ : List[Any] = {
"""upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""",
"""upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""",
"""upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""",
"""upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""",
}
SCREAMING_SNAKE_CASE__ : Optional[int] = model_name_to_url[model_name]
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.hub.load_state_dict_from_url(_snake_case ,map_location="""cpu""" ,file_name=_snake_case )[
"""state_dict"""
]
for name, param in state_dict.items():
print(_snake_case ,param.shape )
SCREAMING_SNAKE_CASE__ : Optional[Any] = get_upernet_config(_snake_case )
SCREAMING_SNAKE_CASE__ : List[str] = UperNetForSemanticSegmentation(_snake_case )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
SCREAMING_SNAKE_CASE__ : Optional[int] = state_dict.pop(_snake_case )
if "bn" in key:
SCREAMING_SNAKE_CASE__ : Optional[int] = key.replace("""bn""" ,"""batch_norm""" )
SCREAMING_SNAKE_CASE__ : Dict = val
# rename keys
SCREAMING_SNAKE_CASE__ : str = create_rename_keys(_snake_case )
for src, dest in rename_keys:
rename_key(_snake_case ,_snake_case ,_snake_case )
read_in_q_k_v(_snake_case ,config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = reverse_correct_unfold_reduction_order(_snake_case )
if "norm" in key:
SCREAMING_SNAKE_CASE__ : Tuple = reverse_correct_unfold_norm_order(_snake_case )
model.load_state_dict(_snake_case )
# verify on image
SCREAMING_SNAKE_CASE__ : List[str] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"""
SCREAMING_SNAKE_CASE__ : str = Image.open(requests.get(_snake_case ,stream=_snake_case ).raw ).convert("""RGB""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = SegformerImageProcessor()
SCREAMING_SNAKE_CASE__ : Optional[int] = processor(_snake_case ,return_tensors="""pt""" ).pixel_values
with torch.no_grad():
SCREAMING_SNAKE_CASE__ : Tuple = model(_snake_case )
SCREAMING_SNAKE_CASE__ : List[Any] = outputs.logits
print(logits.shape )
print("""First values of logits:""" ,logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] )
elif model_name == "upernet-swin-small":
SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor(
[[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] )
elif model_name == "upernet-swin-base":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor(
[[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] )
elif model_name == "upernet-swin-large":
SCREAMING_SNAKE_CASE__ : Dict = torch.tensor(
[[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] )
print("""Logits:""" ,outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] ,_snake_case ,atol=1E-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_snake_case )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(_snake_case )
if push_to_hub:
print(f'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(f'''openmmlab/{model_name}''' )
processor.push_to_hub(f'''openmmlab/{model_name}''' )
if __name__ == "__main__":
UpperCAmelCase__ : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='upernet-swin-tiny',
type=str,
choices=[f"""upernet-swin-{size}""" for size in ['tiny', 'small', 'base', 'large']],
help='Name of the Swin + UperNet model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
UpperCAmelCase__ : List[str] = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 25 | 1 |
def A ( a_ ) -> str:
__UpperCamelCase : set[int] =set()
# To detect a back edge, keep track of vertices currently in the recursion stack
__UpperCamelCase : set[int] =set()
return any(
node not in visited and depth_first_search(a_ ,a_ ,a_ ,a_ )
for node in graph )
def A ( a_ ,a_ ,a_ ,a_ ) -> Optional[Any]:
visited.add(a_ )
rec_stk.add(a_ )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(a_ ,a_ ,a_ ,a_ ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(a_ )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 360 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ :Union[str, Any] = logging.get_logger(__name__)
A_ :Tuple = {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class __A ( a ):
"""simple docstring"""
UpperCamelCase__ : Any ="""xlnet"""
UpperCamelCase__ : Tuple =["""mems"""]
UpperCamelCase__ : Any ={
"""n_token""": """vocab_size""", # Backward compatibility
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , lowerCamelCase__=32000 , lowerCamelCase__=1024 , lowerCamelCase__=24 , lowerCamelCase__=16 , lowerCamelCase__=4096 , lowerCamelCase__="gelu" , lowerCamelCase__=True , lowerCamelCase__="bi" , lowerCamelCase__=0.02 , lowerCamelCase__=1E-12 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=-1 , lowerCamelCase__=False , lowerCamelCase__="last" , lowerCamelCase__=True , lowerCamelCase__="tanh" , lowerCamelCase__=0.1 , lowerCamelCase__=5 , lowerCamelCase__=5 , lowerCamelCase__=5 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ):
"""simple docstring"""
__UpperCamelCase : Optional[int] =vocab_size
__UpperCamelCase : int =d_model
__UpperCamelCase : Optional[Any] =n_layer
__UpperCamelCase : str =n_head
if d_model % n_head != 0:
raise ValueError(f'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
f'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' )
__UpperCamelCase : Optional[Any] =d_model // n_head
__UpperCamelCase : List[Any] =ff_activation
__UpperCamelCase : Tuple =d_inner
__UpperCamelCase : List[Any] =untie_r
__UpperCamelCase : List[Any] =attn_type
__UpperCamelCase : Dict =initializer_range
__UpperCamelCase : List[str] =layer_norm_eps
__UpperCamelCase : List[str] =dropout
__UpperCamelCase : int =mem_len
__UpperCamelCase : List[Any] =reuse_len
__UpperCamelCase : Union[str, Any] =bi_data
__UpperCamelCase : Optional[Any] =clamp_len
__UpperCamelCase : Tuple =same_length
__UpperCamelCase : int =summary_type
__UpperCamelCase : Dict =summary_use_proj
__UpperCamelCase : Dict =summary_activation
__UpperCamelCase : str =summary_last_dropout
__UpperCamelCase : Dict =start_n_top
__UpperCamelCase : Optional[Any] =end_n_top
__UpperCamelCase : int =bos_token_id
__UpperCamelCase : Union[str, Any] =pad_token_id
__UpperCamelCase : Dict =eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'
' instead.' , lowerCamelCase__ , )
__UpperCamelCase : Dict =kwargs['use_cache']
__UpperCamelCase : Optional[int] =use_mems_eval
__UpperCamelCase : Any =use_mems_train
super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ )
@property
def __lowercase ( self ):
"""simple docstring"""
logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
return -1
@max_position_embeddings.setter
def __lowercase ( self , lowerCamelCase__ ):
"""simple docstring"""
raise NotImplementedError(
f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
| 245 | 0 |
"""simple docstring"""
import sys
from pathlib import Path
SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
SCREAMING_SNAKE_CASE__ = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
SCREAMING_SNAKE_CASE__ = 'zero2'
SCREAMING_SNAKE_CASE__ = 'zero3'
SCREAMING_SNAKE_CASE__ = [ZEROa, ZEROa]
def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[int] ) -> Optional[int]:
"""simple docstring"""
snake_case = parameterized.to_safe_name('_'.join(str(snake_case_ ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
SCREAMING_SNAKE_CASE__ = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class lowerCAmelCase_ ( UpperCamelCase__ ):
"""simple docstring"""
@parameterized.expand(__a , name_func=__a )
def snake_case ( self , lowerCAmelCase , lowerCAmelCase ):
"""simple docstring"""
self.run_and_check(
stage=__a , model=__a , distributed=__a , fpaa=__a , )
@require_torch_multi_gpu
@parameterized.expand(__a , name_func=__a )
def snake_case ( self , lowerCAmelCase , lowerCAmelCase ):
"""simple docstring"""
self.run_and_check(
stage=__a , model=__a , distributed=__a , fpaa=__a , )
@parameterized.expand(__a , name_func=__a )
def snake_case ( self , lowerCAmelCase , lowerCAmelCase ):
"""simple docstring"""
self.run_and_check(
stage=__a , model=__a , distributed=__a , fpaa=__a , )
@require_torch_multi_gpu
@parameterized.expand(__a , name_func=__a )
def snake_case ( self , lowerCAmelCase , lowerCAmelCase ):
"""simple docstring"""
self.run_and_check(
stage=__a , model=__a , distributed=__a , fpaa=__a , )
def snake_case ( self , lowerCAmelCase ):
"""simple docstring"""
pass
def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 10 , lowerCAmelCase = True , lowerCAmelCase = True , lowerCAmelCase = True , ):
"""simple docstring"""
snake_case = models[model]
snake_case = self.run_trainer(
stage=__a , model_name=__a , eval_steps=__a , num_train_epochs=1 , distributed=__a , fpaa=__a , )
self.do_checks(__a )
return output_dir
def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 10 , lowerCAmelCase = 1 , lowerCAmelCase = True , lowerCAmelCase = True , ):
"""simple docstring"""
snake_case = self.get_auto_remove_tmp_dir('./xxx' , after=__a )
snake_case = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(__a )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(['--fp16'] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case = self.get_launcher(__a )
snake_case = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(__a , env=self.get_env() )
return output_dir
def snake_case ( self , lowerCAmelCase=False ):
"""simple docstring"""
snake_case = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 150 | '''simple docstring'''
def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> str:
'''simple docstring'''
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] # remove the leading "0b"
UpperCAmelCase_ = str(bin(snake_case_ ) )[2:]
UpperCAmelCase_ = max(len(snake_case_ ) , len(snake_case_ ) )
return "0b" + "".join(
str(int("1" in (char_a, char_b) ) )
for char_a, char_b in zip(a_binary.zfill(snake_case_ ) , b_binary.zfill(snake_case_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 | 0 |
"""simple docstring"""
import math
import os
import re
import sys
import unittest
from pathlib import Path
from typing import Tuple
from unittest.mock import patch
from parameterized import parameterized
from transformers.testing_utils import (
CaptureStderr,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
get_torch_dist_unique_port,
require_apex,
require_bitsandbytes,
require_fairscale,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
require_torch_non_multi_gpu,
slow,
)
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
a :Tuple = os.path.abspath(os.path.dirname(__file__))
with ExtendSysPath(f'{bindir}/../../examples/pytorch/translation'):
from run_translation import main # noqa
set_seed(42)
a :Dict = "sshleifer/student_marian_en_ro_6_1"
a :Optional[Any] = "sshleifer/tiny-mbart"
@require_torch
class __a (UpperCamelCase_):
'''simple docstring'''
def _a ( self , _a=False , _a=None , _a=True , _a=True , _a=True , _a=True , ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.run_trainer(
eval_steps=1 , max_len=12 , model_name=_a , num_train_epochs=1 , distributed=_a , extra_args_str=_a , predict_with_generate=_a , do_train=_a , do_eval=_a , do_predict=_a , )
SCREAMING_SNAKE_CASE__ : Any = TrainerState.load_from_json(os.path.join(_a , """trainer_state.json""" ) ).log_history
if not do_eval:
return
SCREAMING_SNAKE_CASE__ : int = [log for log in logs if """eval_loss""" in log.keys()]
SCREAMING_SNAKE_CASE__ : Dict = eval_metrics[0]
if predict_with_generate:
assert "eval_bleu" in first_step_stats
SCREAMING_SNAKE_CASE__ : List[str] = eval_metrics[-1]
assert isinstance(last_step_stats["""eval_bleu"""] , _a )
assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`"
@require_torch_non_multi_gpu
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
self.run_seqaseq_quick()
@require_torch_multi_gpu
def _a ( self ) -> Optional[int]:
"""simple docstring"""
self.run_seqaseq_quick(distributed=_a )
@require_torch_multi_gpu
def _a ( self ) -> str:
"""simple docstring"""
self.run_seqaseq_quick(distributed=_a )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def _a ( self ) -> List[str]:
"""simple docstring"""
self.run_seqaseq_quick(distributed=_a , extra_args_str="""--sharded_ddp simple""" )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def _a ( self ) -> List[str]:
"""simple docstring"""
self.run_seqaseq_quick(distributed=_a , extra_args_str="""--sharded_ddp simple --fp16""" )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
self.run_seqaseq_quick(distributed=_a , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=_a )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def _a ( self ) -> List[Any]:
"""simple docstring"""
self.run_seqaseq_quick(
distributed=_a , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=_a )
@require_apex
@require_torch_gpu
def _a ( self ) -> List[str]:
"""simple docstring"""
self.run_seqaseq_quick(distributed=_a , extra_args_str="""--fp16 --fp16_backend=apex""" )
# test 2nd time - was getting eval_loss': nan'
# to reproduce the problem set distributed=False
self.run_seqaseq_quick(distributed=_a , extra_args_str="""--fp16 --fp16_backend=apex""" )
@parameterized.expand(["""base""", """low""", """high""", """mixed"""] )
@require_torch_multi_gpu
def _a ( self , _a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = {
# test with the default log_level - should be info and thus log info once
"""base""": {"""extra_args_str""": """""", """n_matches""": 1},
# test with low log_level and log_level_replica - should be noisy on all processes
# now the info string should appear twice on 2 processes
"""low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2},
# test with high log_level and low log_level_replica
# now the info string should appear once only on the replica
"""high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1},
# test with high log_level and log_level_replica - should be quiet on all processes
"""mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0},
}
SCREAMING_SNAKE_CASE__ : List[str] = experiments[experiment_id]
SCREAMING_SNAKE_CASE__ : List[Any] = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False}
SCREAMING_SNAKE_CASE__ : Optional[Any] = """Running training"""
with CaptureStderr() as cl:
self.run_seqaseq_quick(**_a , extra_args_str=data["""extra_args_str"""] )
SCREAMING_SNAKE_CASE__ : Any = len(re.findall(_a , cl.err ) )
self.assertEqual(_a , data["""n_matches"""] )
@slow
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.run_trainer(
eval_steps=2 , max_len=128 , model_name=_a , learning_rate=3E-4 , num_train_epochs=10 , distributed=_a , )
# Check metrics
SCREAMING_SNAKE_CASE__ : Any = TrainerState.load_from_json(os.path.join(_a , """trainer_state.json""" ) ).log_history
SCREAMING_SNAKE_CASE__ : str = [log for log in logs if """eval_loss""" in log.keys()]
SCREAMING_SNAKE_CASE__ : int = eval_metrics[0]
SCREAMING_SNAKE_CASE__ : Optional[int] = eval_metrics[-1]
assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing"
assert isinstance(last_step_stats["""eval_bleu"""] , _a )
# test if do_predict saves generations and metrics
SCREAMING_SNAKE_CASE__ : List[Any] = os.listdir(_a )
SCREAMING_SNAKE_CASE__ : List[Any] = {os.path.basename(_a ) for p in contents}
assert "generated_predictions.txt" in contents
assert "predict_results.json" in contents
@slow
@require_bitsandbytes
def _a ( self ) -> List[Any]:
"""simple docstring"""
from transformers.training_args import OptimizerNames
def train_and_return_metrics(_a ) -> Tuple[int, float]:
SCREAMING_SNAKE_CASE__ : Optional[Any] = """--skip_memory_metrics 0"""
SCREAMING_SNAKE_CASE__ : Any = self.run_trainer(
max_len=128 , model_name=_a , learning_rate=3E-4 , num_train_epochs=1 , optim=_a , distributed=_a , extra_args_str=_a , do_eval=_a , do_predict=_a , n_gpus_to_use=1 , )
# Check metrics
SCREAMING_SNAKE_CASE__ : Any = TrainerState.load_from_json(Path(_a , """trainer_state.json""" ) ).log_history
SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 )
SCREAMING_SNAKE_CASE__ : Tuple = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = logs[0]["""train_loss"""]
return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss
SCREAMING_SNAKE_CASE__ : Dict = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value )
SCREAMING_SNAKE_CASE__ : Optional[Any] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value )
SCREAMING_SNAKE_CASE__ : Dict = gpu_alloc_mem_orig - gpu_alloc_mem_bnb
SCREAMING_SNAKE_CASE__ : Union[str, Any] = gpu_peak_mem_orig + gpu_alloc_mem_orig
SCREAMING_SNAKE_CASE__ : int = gpu_peak_mem_bnb + gpu_alloc_mem_bnb
SCREAMING_SNAKE_CASE__ : List[Any] = gpu_total_mem_orig - gpu_total_mem_bnb
# sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which
# doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized
# in 2 bytes and the diff in optim memory usage is derived as so:
#
# - normal 25*8=~200MB (8 bytes per param)
# - bnb 25*2= ~50MB (2 bytes per param)
#
# Thus we should expect ~150MB total memory saved.
#
# Peak memory should be the same - the total should be different by about that same margin
#
# After leaving a small margin to accommodate for differences between gpus let's check
# that we have at least 120MB in savings
SCREAMING_SNAKE_CASE__ : Any = 120
# uncomment the following if this test starts failing - requires py38 for a new print feature
# gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb
# print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB")
# print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB")
# print(f"{gpu_alloc_mem_diff=}MB")
# print(f"{gpu_peak_mem_diff=}MB")
# print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB")
# print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB")
self.assertGreater(
_a , _a , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got"""
f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and'''
f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , )
self.assertGreater(
_a , _a , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got"""
f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and'''
f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , )
self.assertEqual(
_a , _a , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' )
def _a ( self , _a , _a , _a , _a = 3E-3 , _a = "adafactor" , _a = False , _a = None , _a = 0 , _a = True , _a = True , _a = True , _a = True , _a = None , ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = f'''
--model_name_or_path {model_name}
--train_file {data_dir}/train.json
--validation_file {data_dir}/val.json
--test_file {data_dir}/test.json
--output_dir {output_dir}
--overwrite_output_dir
--max_train_samples 8
--max_source_length {max_len}
--max_target_length {max_len}
--do_train
--num_train_epochs {str(_a )}
--per_device_train_batch_size 4
--learning_rate {learning_rate}
--warmup_steps 8
--logging_steps 0
--logging_strategy no
--save_steps {str(_a )}
--group_by_length
--label_smoothing_factor 0.1
--target_lang ro_RO
--source_lang en_XX
'''.split()
SCREAMING_SNAKE_CASE__ : str = f'''
--do_eval
--per_device_eval_batch_size 4
--max_eval_samples 8
--val_max_target_length {max_len}
--evaluation_strategy steps
--eval_steps {str(_a )}
'''.split()
SCREAMING_SNAKE_CASE__ : int = """
--do_predict
""".split()
SCREAMING_SNAKE_CASE__ : List[Any] = []
if do_train:
args += args_train
if do_eval:
args += args_eval
if do_predict:
args += args_predict
if predict_with_generate:
args += "--predict_with_generate".split()
if do_train:
if optim == "adafactor":
args += "--adafactor".split()
else:
args += f'''--optim {optim}'''.split()
if extra_args_str is not None:
args += extra_args_str.split()
if distributed:
if n_gpus_to_use is None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_gpu_count()
SCREAMING_SNAKE_CASE__ : List[Any] = get_torch_dist_unique_port()
SCREAMING_SNAKE_CASE__ : int = f'''
-m torch.distributed.run
--nproc_per_node={n_gpus_to_use}
--master_port={master_port}
{self.examples_dir_str}/pytorch/translation/run_translation.py
'''.split()
SCREAMING_SNAKE_CASE__ : Optional[int] = [sys.executable] + distributed_args + args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(_a , env=self.get_env() )
else:
SCREAMING_SNAKE_CASE__ : Dict = ["""run_translation.py"""] + args
with patch.object(_a , """argv""" , _a ):
main()
return output_dir
| 363 |
"""simple docstring"""
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int:
return number | (1 << position)
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int:
return number & ~(1 << position)
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int:
return number ^ (1 << position)
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> bool:
return ((number >> position) & 1) == 1
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int:
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 56 | 0 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowerCAmelCase_ ( UpperCAmelCase__ ):
__lowerCamelCase : Tuple = ["image_processor", "tokenizer"]
__lowerCamelCase : Dict = "LayoutLMv2ImageProcessor"
__lowerCamelCase : List[str] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast")
def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Optional[int]:
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , _a , )
_lowerCAmelCase = kwargs.pop("feature_extractor" )
_lowerCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(_a , _a )
def __call__( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = True , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> int:
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes "
"if you initialized the image processor with apply_ocr set to True." )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." )
# first, apply the image processor
_lowerCAmelCase = self.image_processor(images=_a , return_tensors=_a )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_a , _a ):
_lowerCAmelCase = [text] # add batch dimension (as the image processor always adds a batch dimension)
_lowerCAmelCase = features["words"]
_lowerCAmelCase = self.tokenizer(
text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
# add pixel values
_lowerCAmelCase = features.pop("pixel_values" )
if return_overflowing_tokens is True:
_lowerCAmelCase = self.get_overflowing_images(_a , encoded_inputs["overflow_to_sample_mapping"] )
_lowerCAmelCase = images
return encoded_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]:
_lowerCAmelCase = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_a ) != len(_a ):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
f''' {len(_a )} and {len(_a )}''' )
return images_with_overflow
def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
return self.tokenizer.batch_decode(*_a , **_a )
def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
return self.tokenizer.decode(*_a , **_a )
@property
def _snake_case ( self ) -> List[Any]:
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def _snake_case ( self ) -> List[str]:
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , )
return self.image_processor_class
@property
def _snake_case ( self ) -> List[Any]:
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , )
return self.image_processor
| 158 |
"""simple docstring"""
from typing import Any
def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> list:
_validation(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , )
# Creates data structures and fill initial step
lowerCamelCase = {}
lowerCamelCase = {}
for state in states_space:
lowerCamelCase = observations_space[0]
lowerCamelCase = (
initial_probabilities[state] * emission_probabilities[state][observation]
)
lowerCamelCase = None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(snake_case__ ) ):
lowerCamelCase = observations_space[o]
lowerCamelCase = observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
lowerCamelCase = """"""
lowerCamelCase = -1
for k_state in states_space:
lowerCamelCase = (
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
lowerCamelCase = probability
lowerCamelCase = k_state
# Update probabilities and pointers dicts
lowerCamelCase = (
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
lowerCamelCase = arg_max
# The final observation
lowerCamelCase = observations_space[len(snake_case__ ) - 1]
# argmax for given final observation
lowerCamelCase = """"""
lowerCamelCase = -1
for k_state in states_space:
lowerCamelCase = probabilities[(k_state, final_observation)]
if probability > max_probability:
lowerCamelCase = probability
lowerCamelCase = k_state
lowerCamelCase = arg_max
# Process pointers backwards
lowerCamelCase = last_state
lowerCamelCase = []
for o in range(len(snake_case__ ) - 1 , -1 , -1 ):
result.append(snake_case__ )
lowerCamelCase = pointers[previous, observations_space[o]]
result.reverse()
return result
def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> None:
_validate_not_empty(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , )
_validate_lists(snake_case__ , snake_case__ )
_validate_dicts(
snake_case__ , snake_case__ , snake_case__ )
def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> None:
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError("""There's an empty parameter""" )
def a__ ( snake_case__ , snake_case__ ) -> None:
_validate_list(snake_case__ , """observations_space""" )
_validate_list(snake_case__ , """states_space""" )
def a__ ( snake_case__ , snake_case__ ) -> None:
if not isinstance(_object , snake_case__ ):
lowerCamelCase = F'{var_name} must be a list'
raise ValueError(snake_case__ )
else:
for x in _object:
if not isinstance(snake_case__ , snake_case__ ):
lowerCamelCase = F'{var_name} must be a list of strings'
raise ValueError(snake_case__ )
def a__ ( snake_case__ , snake_case__ , snake_case__ , ) -> None:
_validate_dict(snake_case__ , """initial_probabilities""" , snake_case__ )
_validate_nested_dict(snake_case__ , """transition_probabilities""" )
_validate_nested_dict(snake_case__ , """emission_probabilities""" )
def a__ ( snake_case__ , snake_case__ ) -> None:
_validate_dict(_object , snake_case__ , snake_case__ )
for x in _object.values():
_validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False ) -> None:
if not isinstance(_object , snake_case__ ):
lowerCamelCase = F'{var_name} must be a dict'
raise ValueError(snake_case__ )
if not all(isinstance(snake_case__ , snake_case__ ) for x in _object ):
lowerCamelCase = F'{var_name} all keys must be strings'
raise ValueError(snake_case__ )
if not all(isinstance(snake_case__ , snake_case__ ) for x in _object.values() ):
lowerCamelCase = """nested dictionary """ if nested else """"""
lowerCamelCase = F'{var_name} {nested_text}all values must be {value_type.__name__}'
raise ValueError(snake_case__ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 291 | 0 |
"""simple docstring"""
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowerCamelCase_ : Optional[int] = logging.get_logger(__name__)
lowerCamelCase_ : Dict = {"""vocab_file""": """spiece.model"""}
lowerCamelCase_ : List[str] = {
"""vocab_file""": {
"""google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""",
"""google/bigbird-roberta-large""": (
"""https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model"""
),
"""google/bigbird-base-trivia-itc""": (
"""https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model"""
),
}
}
lowerCamelCase_ : Optional[Any] = {
"""google/bigbird-roberta-base""": 4_096,
"""google/bigbird-roberta-large""": 4_096,
"""google/bigbird-base-trivia-itc""": 4_096,
}
class a__ ( __snake_case ):
A__ : Tuple = VOCAB_FILES_NAMES
A__ : int = PRETRAINED_VOCAB_FILES_MAP
A__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ : Optional[Any] = ['input_ids', 'attention_mask']
A__ : List[int] = []
def __init__( self , UpperCAmelCase , UpperCAmelCase="<unk>" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<pad>" , UpperCAmelCase="[SEP]" , UpperCAmelCase="[MASK]" , UpperCAmelCase="[CLS]" , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
__a = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token
__a = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token
__a = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token
__a = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token
__a = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token
__a = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
__a = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
__a = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , sep_token=UpperCAmelCase , mask_token=UpperCAmelCase , cls_token=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , )
__a = vocab_file
__a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase )
@property
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]:
return self.sp_model.get_piece_size()
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
__a = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Tuple:
__a = self.__dict__.copy()
__a = None
return state
def __setstate__( self , UpperCAmelCase ) -> Dict:
__a = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__a = {}
__a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> List[str]:
return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase )
def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> List[Any]:
return self.sp_model.piece_to_id(UpperCAmelCase )
def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> List[str]:
__a = self.sp_model.IdToPiece(UpperCAmelCase )
return token
def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Optional[int]:
__a = []
__a = ''
__a = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase ) + token
__a = True
__a = []
else:
current_sub_tokens.append(UpperCAmelCase )
__a = False
out_string += self.sp_model.decode(UpperCAmelCase )
return out_string.strip()
def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = True , **UpperCAmelCase , ) -> str:
__a = kwargs.pop('use_source_tokenizer' , UpperCAmelCase )
__a = self.convert_ids_to_tokens(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
__a = []
__a = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase ) )
__a = []
sub_texts.append(UpperCAmelCase )
else:
current_sub_text.append(UpperCAmelCase )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
__a = re.sub(R' (\[(MASK|SEP)\])' , R'\1' , ' '.join(UpperCAmelCase ) )
else:
__a = ''.join(UpperCAmelCase )
__a = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
__a = self.clean_up_tokenization(UpperCAmelCase )
return clean_text
else:
return text
def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__a = os.path.join(
UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase , 'wb' ) as fi:
__a = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase )
return (out_vocab_file,)
def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__a = [self.cls_token_id]
__a = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1]
def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 359 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase_ : Tuple = logging.get_logger(__name__)
lowerCamelCase_ : List[Any] = {
"""google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""",
"""google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json"""
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class a__ ( __snake_case ):
A__ : Dict = 'fnet'
def __init__( self , UpperCAmelCase=3_2_0_0_0 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=4 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=False , UpperCAmelCase=5_1_2 , UpperCAmelCase=3 , UpperCAmelCase=1 , UpperCAmelCase=2 , **UpperCAmelCase , ) -> Dict:
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
__a = vocab_size
__a = max_position_embeddings
__a = hidden_size
__a = num_hidden_layers
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = initializer_range
__a = type_vocab_size
__a = layer_norm_eps
__a = use_tpu_fourier_optimizations
__a = tpu_short_seq_length
| 197 | 0 |
from math import ceil, sqrt
def _lowerCAmelCase ( __lowerCAmelCase = 1000000 ) -> int:
"""simple docstring"""
snake_case__ : Dict = 0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
snake_case__ : Any = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
snake_case__ : int = 1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(f"""{solution() = }""")
| 230 |
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class a ( unittest.TestCase ):
__lowerCAmelCase : Any = MODEL_FOR_MASKED_LM_MAPPING
__lowerCAmelCase : Optional[Any] = TF_MODEL_FOR_MASKED_LM_MAPPING
def __lowerCamelCase ( self :str ):
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def __lowerCamelCase ( self :Any ):
snake_case__ : Optional[Any] = pipeline(task='''fill-mask''' ,model='''sshleifer/tiny-distilroberta-base''' ,top_k=2 ,framework='''tf''' )
snake_case__ : int = unmasker('''My name is <mask>''' )
self.assertEqual(
nested_simplify(__lowercase ,decimals=6 ) ,[
{'''sequence''': '''My name is grouped''', '''score''': 2.1e-0_5, '''token''': 3_8_0_1_5, '''token_str''': ''' grouped'''},
{'''sequence''': '''My name is accuser''', '''score''': 2.1e-0_5, '''token''': 2_5_5_0_6, '''token_str''': ''' accuser'''},
] ,)
snake_case__ : int = unmasker('''The largest city in France is <mask>''' )
self.assertEqual(
nested_simplify(__lowercase ,decimals=6 ) ,[
{
'''sequence''': '''The largest city in France is grouped''',
'''score''': 2.1e-0_5,
'''token''': 3_8_0_1_5,
'''token_str''': ''' grouped''',
},
{
'''sequence''': '''The largest city in France is accuser''',
'''score''': 2.1e-0_5,
'''token''': 2_5_5_0_6,
'''token_str''': ''' accuser''',
},
] ,)
snake_case__ : Optional[int] = unmasker('''My name is <mask>''' ,targets=[''' Patrick''', ''' Clara''', ''' Teven'''] ,top_k=3 )
self.assertEqual(
nested_simplify(__lowercase ,decimals=6 ) ,[
{'''sequence''': '''My name is Clara''', '''score''': 2e-0_5, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''},
{'''sequence''': '''My name is Patrick''', '''score''': 2e-0_5, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''},
{'''sequence''': '''My name is Te''', '''score''': 1.9e-0_5, '''token''': 2_9_4_1, '''token_str''': ''' Te'''},
] ,)
@require_torch
def __lowerCamelCase ( self :Optional[int] ):
snake_case__ : str = pipeline(task='''fill-mask''' ,model='''sshleifer/tiny-distilroberta-base''' ,top_k=2 ,framework='''pt''' )
snake_case__ : str = unmasker('''My name is <mask>''' )
self.assertEqual(
nested_simplify(__lowercase ,decimals=6 ) ,[
{'''sequence''': '''My name is Maul''', '''score''': 2.2e-0_5, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul'''},
{'''sequence''': '''My name isELS''', '''score''': 2.2e-0_5, '''token''': 1_6_4_1_6, '''token_str''': '''ELS'''},
] ,)
snake_case__ : List[str] = unmasker('''The largest city in France is <mask>''' )
self.assertEqual(
nested_simplify(__lowercase ,decimals=6 ) ,[
{
'''sequence''': '''The largest city in France is Maul''',
'''score''': 2.2e-0_5,
'''token''': 3_5_6_7_6,
'''token_str''': ''' Maul''',
},
{'''sequence''': '''The largest city in France isELS''', '''score''': 2.2e-0_5, '''token''': 1_6_4_1_6, '''token_str''': '''ELS'''},
] ,)
snake_case__ : Union[str, Any] = unmasker('''My name is <mask>''' ,targets=[''' Patrick''', ''' Clara''', ''' Teven'''] ,top_k=3 )
self.assertEqual(
nested_simplify(__lowercase ,decimals=6 ) ,[
{'''sequence''': '''My name is Patrick''', '''score''': 2.1e-0_5, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''},
{'''sequence''': '''My name is Te''', '''score''': 2e-0_5, '''token''': 2_9_4_1, '''token_str''': ''' Te'''},
{'''sequence''': '''My name is Clara''', '''score''': 2e-0_5, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''},
] ,)
snake_case__ : Optional[int] = unmasker('''My name is <mask> <mask>''' ,top_k=2 )
self.assertEqual(
nested_simplify(__lowercase ,decimals=6 ) ,[
[
{
'''score''': 2.2e-0_5,
'''token''': 3_5_6_7_6,
'''token_str''': ''' Maul''',
'''sequence''': '''<s>My name is Maul<mask></s>''',
},
{'''score''': 2.2e-0_5, '''token''': 1_6_4_1_6, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''},
],
[
{
'''score''': 2.2e-0_5,
'''token''': 3_5_6_7_6,
'''token_str''': ''' Maul''',
'''sequence''': '''<s>My name is<mask> Maul</s>''',
},
{'''score''': 2.2e-0_5, '''token''': 1_6_4_1_6, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''},
],
] ,)
@require_torch_gpu
def __lowerCamelCase ( self :int ):
snake_case__ : Optional[int] = pipeline('''fill-mask''' ,model='''hf-internal-testing/tiny-random-distilbert''' ,device=0 ,framework='''pt''' )
# convert model to fp16
pipe.model.half()
snake_case__ : List[str] = pipe('''Paris is the [MASK] of France.''' )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(__lowercase ,__lowercase )
@slow
@require_torch
def __lowerCamelCase ( self :str ):
snake_case__ : List[str] = pipeline(task='''fill-mask''' ,model='''distilroberta-base''' ,top_k=2 ,framework='''pt''' )
self.run_large_test(__lowercase )
@slow
@require_tf
def __lowerCamelCase ( self :Any ):
snake_case__ : Optional[Any] = pipeline(task='''fill-mask''' ,model='''distilroberta-base''' ,top_k=2 ,framework='''tf''' )
self.run_large_test(__lowercase )
def __lowerCamelCase ( self :Optional[Any] ,__lowercase :List[Any] ):
snake_case__ : Optional[Any] = unmasker('''My name is <mask>''' )
self.assertEqual(
nested_simplify(__lowercase ) ,[
{'''sequence''': '''My name is John''', '''score''': 0.008, '''token''': 6_1_0, '''token_str''': ''' John'''},
{'''sequence''': '''My name is Chris''', '''score''': 0.007, '''token''': 1_5_7_3, '''token_str''': ''' Chris'''},
] ,)
snake_case__ : str = unmasker('''The largest city in France is <mask>''' )
self.assertEqual(
nested_simplify(__lowercase ) ,[
{
'''sequence''': '''The largest city in France is Paris''',
'''score''': 0.251,
'''token''': 2_2_0_1,
'''token_str''': ''' Paris''',
},
{
'''sequence''': '''The largest city in France is Lyon''',
'''score''': 0.214,
'''token''': 1_2_7_9_0,
'''token_str''': ''' Lyon''',
},
] ,)
snake_case__ : Dict = unmasker('''My name is <mask>''' ,targets=[''' Patrick''', ''' Clara''', ''' Teven'''] ,top_k=3 )
self.assertEqual(
nested_simplify(__lowercase ) ,[
{'''sequence''': '''My name is Patrick''', '''score''': 0.005, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''},
{'''sequence''': '''My name is Clara''', '''score''': 0.000, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''},
{'''sequence''': '''My name is Te''', '''score''': 0.000, '''token''': 2_9_4_1, '''token_str''': ''' Te'''},
] ,)
@require_torch
def __lowerCamelCase ( self :List[str] ):
snake_case__ : List[Any] = pipeline(task='''fill-mask''' ,model='''sshleifer/tiny-distilroberta-base''' ,framework='''pt''' )
snake_case__ : str = None
snake_case__ : int = None
self.run_pipeline_test(__lowercase ,[] )
@require_tf
def __lowerCamelCase ( self :int ):
snake_case__ : Optional[int] = pipeline(task='''fill-mask''' ,model='''sshleifer/tiny-distilroberta-base''' ,framework='''tf''' )
snake_case__ : int = None
snake_case__ : List[str] = None
self.run_pipeline_test(__lowercase ,[] )
def __lowerCamelCase ( self :Any ,__lowercase :Any ,__lowercase :str ,__lowercase :Union[str, Any] ):
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' )
snake_case__ : Optional[int] = FillMaskPipeline(model=__lowercase ,tokenizer=__lowercase )
snake_case__ : List[str] = [
F"""This is another {tokenizer.mask_token} test""",
]
return fill_masker, examples
def __lowerCamelCase ( self :Optional[Any] ,__lowercase :List[Any] ,__lowercase :Optional[Any] ):
snake_case__ : List[str] = fill_masker.tokenizer
snake_case__ : List[Any] = fill_masker.model
snake_case__ : Dict = fill_masker(
F"""This is a {tokenizer.mask_token}""" ,)
self.assertEqual(
__lowercase ,[
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
] ,)
snake_case__ : Tuple = fill_masker([F"""This is a {tokenizer.mask_token}"""] )
self.assertEqual(
__lowercase ,[
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
] ,)
snake_case__ : List[str] = fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""] )
self.assertEqual(
__lowercase ,[
[
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
],
[
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
],
] ,)
with self.assertRaises(__lowercase ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(__lowercase ):
fill_masker('''This is''' )
self.run_test_top_k(__lowercase ,__lowercase )
self.run_test_targets(__lowercase ,__lowercase )
self.run_test_top_k_targets(__lowercase ,__lowercase )
self.fill_mask_with_duplicate_targets_and_top_k(__lowercase ,__lowercase )
self.fill_mask_with_multiple_masks(__lowercase ,__lowercase )
def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :Optional[int] ,__lowercase :int ):
snake_case__ : int = tokenizer.get_vocab()
snake_case__ : Dict = sorted(vocab.keys() )[:2]
# Pipeline argument
snake_case__ : List[Any] = FillMaskPipeline(model=__lowercase ,tokenizer=__lowercase ,targets=__lowercase )
snake_case__ : str = fill_masker(F"""This is a {tokenizer.mask_token}""" )
self.assertEqual(
__lowercase ,[
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
] ,)
snake_case__ : Optional[Any] = {vocab[el] for el in targets}
self.assertEqual({el['''token'''] for el in outputs} ,__lowercase )
snake_case__ : Any = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['''token_str'''] for el in outputs} ,set(__lowercase ) )
# Call argument
snake_case__ : str = FillMaskPipeline(model=__lowercase ,tokenizer=__lowercase )
snake_case__ : int = fill_masker(F"""This is a {tokenizer.mask_token}""" ,targets=__lowercase )
self.assertEqual(
__lowercase ,[
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
] ,)
snake_case__ : str = {vocab[el] for el in targets}
self.assertEqual({el['''token'''] for el in outputs} ,__lowercase )
snake_case__ : Optional[Any] = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['''token_str'''] for el in outputs} ,set(__lowercase ) )
# Score equivalence
snake_case__ : Dict = fill_masker(F"""This is a {tokenizer.mask_token}""" ,targets=__lowercase )
snake_case__ : Union[str, Any] = [top_mask['''token_str'''] for top_mask in outputs]
snake_case__ : Tuple = [top_mask['''score'''] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__lowercase ) == set(__lowercase ):
snake_case__ : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" ,targets=__lowercase )
snake_case__ : int = [top_mask['''score'''] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(__lowercase ) ,nested_simplify(__lowercase ) )
# Raises with invalid
with self.assertRaises(__lowercase ):
snake_case__ : List[str] = fill_masker(F"""This is a {tokenizer.mask_token}""" ,targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(__lowercase ):
snake_case__ : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" ,targets=[''''''] )
with self.assertRaises(__lowercase ):
snake_case__ : Optional[int] = fill_masker(F"""This is a {tokenizer.mask_token}""" ,targets='''''' )
def __lowerCamelCase ( self :Any ,__lowercase :Union[str, Any] ,__lowercase :Dict ):
snake_case__ : int = FillMaskPipeline(model=__lowercase ,tokenizer=__lowercase ,top_k=2 )
snake_case__ : Tuple = fill_masker(F"""This is a {tokenizer.mask_token}""" )
self.assertEqual(
__lowercase ,[
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
] ,)
snake_case__ : Any = FillMaskPipeline(model=__lowercase ,tokenizer=__lowercase )
snake_case__ : Optional[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" ,top_k=2 )
self.assertEqual(
__lowercase ,[
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
] ,)
self.assertEqual(nested_simplify(__lowercase ) ,nested_simplify(__lowercase ) )
def __lowerCamelCase ( self :List[Any] ,__lowercase :Tuple ,__lowercase :str ):
snake_case__ : Optional[int] = tokenizer.get_vocab()
snake_case__ : int = FillMaskPipeline(model=__lowercase ,tokenizer=__lowercase )
# top_k=2, ntargets=3
snake_case__ : int = sorted(vocab.keys() )[:3]
snake_case__ : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" ,top_k=2 ,targets=__lowercase )
# If we use the most probably targets, and filter differently, we should still
# have the same results
snake_case__ : Dict = [el['''token_str'''] for el in sorted(__lowercase ,key=lambda __lowercase : x["score"] ,reverse=__lowercase )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__lowercase ).issubset(__lowercase ):
snake_case__ : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" ,top_k=3 ,targets=__lowercase )
# They should yield exactly the same result
self.assertEqual(nested_simplify(__lowercase ) ,nested_simplify(__lowercase ) )
def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :Dict ,__lowercase :Dict ):
snake_case__ : Union[str, Any] = FillMaskPipeline(model=__lowercase ,tokenizer=__lowercase )
snake_case__ : str = tokenizer.get_vocab()
# String duplicates + id duplicates
snake_case__ : int = sorted(vocab.keys() )[:3]
snake_case__ : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]]
snake_case__ : Optional[Any] = fill_masker(F"""My name is {tokenizer.mask_token}""" ,targets=__lowercase ,top_k=1_0 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(__lowercase ) ,3 )
def __lowerCamelCase ( self :Optional[Any] ,__lowercase :List[Any] ,__lowercase :Optional[Any] ):
snake_case__ : Any = FillMaskPipeline(model=__lowercase ,tokenizer=__lowercase )
snake_case__ : Tuple = fill_masker(
F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" ,top_k=2 )
self.assertEqual(
__lowercase ,[
[
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
],
[
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
],
[
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
{'''sequence''': ANY(__lowercase ), '''score''': ANY(__lowercase ), '''token''': ANY(__lowercase ), '''token_str''': ANY(__lowercase )},
],
] ,)
| 230 | 1 |
'''simple docstring'''
def snake_case_ (UpperCamelCase : int = 3 , UpperCamelCase : int = 7 , UpperCamelCase : int = 100_0000 ):
'''simple docstring'''
_a = 0
_a = 1
for current_denominator in range(1 , limit + 1 ):
_a = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
_a = current_numerator
_a = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=1000000))
| 370 |
'''simple docstring'''
import copy
import random
from transformers import CLIPTokenizer
class A ( _a ):
def __init__( self : str , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ) -> List[Any]:
"""simple docstring"""
super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
_a = {}
def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Tuple , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Tuple ) -> str:
"""simple docstring"""
_a = super().add_tokens(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ )
if num_added_tokens == 0:
raise ValueError(
F'The tokenizer already contains the token {placeholder_token}. Please pass a different'
''' `placeholder_token` that is not already in the tokenizer.''' )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple=1 , **lowerCAmelCase_ : int ) -> Any:
"""simple docstring"""
_a = []
if num_vec_per_token == 1:
self.try_adding_tokens(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ )
output.append(lowerCAmelCase_ )
else:
_a = []
for i in range(lowerCAmelCase_ ):
_a = placeholder_token + F'_{i}'
self.try_adding_tokens(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ )
output.append(lowerCAmelCase_ )
# handle cases where there is a new placeholder token that contains the current placeholder token but is larger
for token in self.token_map:
if token in placeholder_token:
raise ValueError(
F'The tokenizer already has placeholder token {token} that can get confused with'
F' {placeholder_token}keep placeholder tokens independent' )
_a = output
def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Optional[int]=1.0 ) -> Tuple:
"""simple docstring"""
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
_a = []
for i in range(len(lowerCAmelCase_ ) ):
output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowerCAmelCase_ ) )
return output
for placeholder_token in self.token_map:
if placeholder_token in text:
_a = self.token_map[placeholder_token]
_a = tokens[: 1 + int(len(lowerCAmelCase_ ) * prop_tokens_to_load )]
if vector_shuffle:
_a = copy.copy(lowerCAmelCase_ )
random.shuffle(lowerCAmelCase_ )
_a = text.replace(lowerCAmelCase_ , ''' '''.join(lowerCAmelCase_ ) )
return text
def __call__( self : List[str] , lowerCAmelCase_ : str , *lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Union[str, Any]=1.0 , **lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return super().__call__(
self.replace_placeholder_tokens_in_text(
lowerCAmelCase_ , vector_shuffle=lowerCAmelCase_ , prop_tokens_to_load=lowerCAmelCase_ ) , *lowerCAmelCase_ , **lowerCAmelCase_ , )
def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : int , *lowerCAmelCase_ : str , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=1.0 , **lowerCAmelCase_ : Union[str, Any] ) -> Dict:
"""simple docstring"""
return super().encode(
self.replace_placeholder_tokens_in_text(
lowerCAmelCase_ , vector_shuffle=lowerCAmelCase_ , prop_tokens_to_load=lowerCAmelCase_ ) , *lowerCAmelCase_ , **lowerCAmelCase_ , )
| 179 | 0 |
import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class lowercase__ ( __lowerCamelCase ):
'''simple docstring'''
a : int = ["image_processor", "tokenizer"]
a : int = "BlipImageProcessor"
a : Optional[int] = "AutoTokenizer"
def __init__( self, __magic_name__, __magic_name__, __magic_name__ ) -> Dict:
"""simple docstring"""
super().__init__(__magic_name__, __magic_name__ )
# add QFormer tokenizer
UpperCamelCase__ : Any = qformer_tokenizer
def __call__( self, __magic_name__ = None, __magic_name__ = None, __magic_name__ = True, __magic_name__ = False, __magic_name__ = None, __magic_name__ = None, __magic_name__ = 0, __magic_name__ = None, __magic_name__ = None, __magic_name__ = False, __magic_name__ = False, __magic_name__ = False, __magic_name__ = False, __magic_name__ = False, __magic_name__ = True, __magic_name__ = None, **__magic_name__, ) -> BatchFeature:
"""simple docstring"""
if images is None and text is None:
raise ValueError('''You have to specify at least images or text.''' )
UpperCamelCase__ : Any = BatchFeature()
if text is not None:
UpperCamelCase__ : List[str] = self.tokenizer(
text=__magic_name__, add_special_tokens=__magic_name__, padding=__magic_name__, truncation=__magic_name__, max_length=__magic_name__, stride=__magic_name__, pad_to_multiple_of=__magic_name__, return_attention_mask=__magic_name__, return_overflowing_tokens=__magic_name__, return_special_tokens_mask=__magic_name__, return_offsets_mapping=__magic_name__, return_token_type_ids=__magic_name__, return_length=__magic_name__, verbose=__magic_name__, return_tensors=__magic_name__, **__magic_name__, )
encoding.update(__magic_name__ )
UpperCamelCase__ : int = self.qformer_tokenizer(
text=__magic_name__, add_special_tokens=__magic_name__, padding=__magic_name__, truncation=__magic_name__, max_length=__magic_name__, stride=__magic_name__, pad_to_multiple_of=__magic_name__, return_attention_mask=__magic_name__, return_overflowing_tokens=__magic_name__, return_special_tokens_mask=__magic_name__, return_offsets_mapping=__magic_name__, return_token_type_ids=__magic_name__, return_length=__magic_name__, verbose=__magic_name__, return_tensors=__magic_name__, **__magic_name__, )
UpperCamelCase__ : Optional[int] = qformer_text_encoding.pop('''input_ids''' )
UpperCamelCase__ : Dict = qformer_text_encoding.pop('''attention_mask''' )
if images is not None:
UpperCamelCase__ : List[Any] = self.image_processor(__magic_name__, return_tensors=__magic_name__ )
encoding.update(__magic_name__ )
return encoding
def UpperCamelCase__ ( self, *__magic_name__, **__magic_name__ ) -> List[Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*__magic_name__, **__magic_name__ )
def UpperCamelCase__ ( self, *__magic_name__, **__magic_name__ ) -> List[str]:
"""simple docstring"""
return self.tokenizer.decode(*__magic_name__, **__magic_name__ )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def UpperCamelCase__ ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase__ : Optional[int] = self.tokenizer.model_input_names
UpperCamelCase__ : List[str] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def UpperCamelCase__ ( self, __magic_name__, **__magic_name__ ) -> str:
"""simple docstring"""
if os.path.isfile(__magic_name__ ):
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file" )
os.makedirs(__magic_name__, exist_ok=__magic_name__ )
UpperCamelCase__ : List[Any] = os.path.join(__magic_name__, '''qformer_tokenizer''' )
self.qformer_tokenizer.save_pretrained(__magic_name__ )
return super().save_pretrained(__magic_name__, **__magic_name__ )
@classmethod
def UpperCamelCase__ ( cls, __magic_name__, **__magic_name__ ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase__ : str = AutoTokenizer.from_pretrained(__magic_name__, subfolder='''qformer_tokenizer''' )
UpperCamelCase__ : Union[str, Any] = cls._get_arguments_from_pretrained(__magic_name__, **__magic_name__ )
args.append(__magic_name__ )
return cls(*__magic_name__ )
| 201 |
def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> bool:
return str(__UpperCAmelCase ) == str(__UpperCAmelCase )[::-1]
def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> int:
return int(__UpperCAmelCase ) + int(str(__UpperCAmelCase )[::-1] )
def lowerCAmelCase_ ( __UpperCAmelCase: int = 1_0000 ) -> int:
UpperCamelCase__ : Optional[Any] = []
for num in range(1 , __UpperCAmelCase ):
UpperCamelCase__ : str = 0
UpperCamelCase__ : Any = num
while iterations < 50:
UpperCamelCase__ : List[Any] = sum_reverse(__UpperCAmelCase )
iterations += 1
if is_palindrome(__UpperCAmelCase ):
break
else:
lychrel_nums.append(__UpperCAmelCase )
return len(__UpperCAmelCase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 201 | 1 |
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class __UpperCAmelCase :
def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
return None
class __UpperCAmelCase :
def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
return None
class __UpperCAmelCase ( unittest.TestCase ):
__lowercase = [
# (model_name, model_kwargs)
("""bert-base-cased""", {}),
("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def lowerCamelCase ( self ):
"""simple docstring"""
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(snake_case__ , 'tf' , 12 , **snake_case__ )
@require_torch
@slow
def lowerCamelCase ( self ):
"""simple docstring"""
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(snake_case__ , 'pt' , 12 , **snake_case__ )
@require_torch
@slow
def lowerCamelCase ( self ):
"""simple docstring"""
from transformers import BertModel
_snake_case = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words']
with NamedTemporaryFile(mode='w+t' ) as vocab_file:
vocab_file.write('\n'.join(snake_case__ ) )
vocab_file.flush()
_snake_case = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
_snake_case = BertModel(BertConfig(vocab_size=len(snake_case__ ) ) )
model.save_pretrained(snake_case__ )
self._test_export(snake_case__ , 'pt' , 12 , snake_case__ )
@require_tf
@slow
def lowerCamelCase ( self ):
"""simple docstring"""
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
_snake_case = self._test_export(snake_case__ , 'tf' , 12 , **snake_case__ )
_snake_case = quantize(Path(snake_case__ ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(snake_case__ ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
@require_torch
@slow
def lowerCamelCase ( self ):
"""simple docstring"""
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
_snake_case = self._test_export(snake_case__ , 'pt' , 12 , **snake_case__ )
_snake_case = quantize(snake_case__ )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(snake_case__ ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , **lowerCAmelCase_ ):
"""simple docstring"""
try:
# Compute path
with TemporaryDirectory() as tempdir:
_snake_case = Path(snake_case__ ).joinpath('model.onnx' )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ )
return path
except Exception as e:
self.fail(snake_case__ )
@require_torch
@require_tokenizers
@slow
def lowerCamelCase ( self ):
"""simple docstring"""
from transformers import BertModel
_snake_case = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
_snake_case = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(snake_case__ , snake_case__ , 'pt' )
@require_tf
@require_tokenizers
@slow
def lowerCamelCase ( self ):
"""simple docstring"""
from transformers import TFBertModel
_snake_case = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
_snake_case = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(snake_case__ , snake_case__ , 'tf' )
def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case = FeatureExtractionPipeline(snake_case__ , snake_case__ )
_snake_case = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1']
_snake_case = infer_shapes(snake_case__ , snake_case__ )
# Assert all variables are present
self.assertEqual(len(snake_case__ ) , len(snake_case__ ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , snake_case__ )
self.assertSequenceEqual(variable_names[3:] , snake_case__ )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} )
self.assertDictEqual(shapes['output_1'] , {0: 'batch'} )
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = ['input_ids', 'attention_mask', 'token_type_ids']
_snake_case = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]}
_snake_case = ensure_valid_input(FuncContiguousArgs() , snake_case__ , snake_case__ )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(snake_case__ ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(snake_case__ ) , set(snake_case__ ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(snake_case__ , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
_snake_case = ensure_valid_input(FuncNonContiguousArgs() , snake_case__ , snake_case__ )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(snake_case__ ) , 1 )
self.assertEqual(len(snake_case__ ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens['input_ids'] )
self.assertEqual(ordered_input_names[0] , 'input_ids' )
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' )
self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
| 353 |
'''simple docstring'''
from __future__ import annotations
from collections import namedtuple
def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> tuple:
_snake_case = namedtuple('result' , 'name value' )
if (voltage, current, power).count(0 ) != 1:
raise ValueError('Only one argument must be 0' )
elif power < 0:
raise ValueError(
'Power cannot be negative in any electrical/electronics system' )
elif voltage == 0:
return result('voltage' , power / current )
elif current == 0:
return result('current' , power / voltage )
elif power == 0:
return result('power' , float(round(abs(voltage * current ) , 2 ) ) )
else:
raise ValueError('Exactly one argument must be 0' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 160 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : List[str] = {
"configuration_time_series_transformer": [
"TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TimeSeriesTransformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Tuple = [
"TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TimeSeriesTransformerForPrediction",
"TimeSeriesTransformerModel",
"TimeSeriesTransformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
UpperCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 252 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def lowercase ( __magic_name__ ):
'''simple docstring'''
if len(__magic_name__ ) != 32:
raise ValueError("Input must be of length 32" )
UpperCAmelCase : Union[str, Any] = b""
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def lowercase ( __magic_name__ ):
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative" )
UpperCAmelCase : Dict = format(__magic_name__ , "08x" )[-8:]
UpperCAmelCase : List[str] = b""
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" )
return little_endian_hex
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : int = b""
for char in message:
bit_string += format(__magic_name__ , "08b" ).encode("utf-8" )
UpperCAmelCase : List[Any] = format(len(__magic_name__ ) , "064b" ).encode("utf-8" )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(__magic_name__ ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def lowercase ( __magic_name__ ):
'''simple docstring'''
if len(__magic_name__ ) % 512 != 0:
raise ValueError("Input must have length that's a multiple of 512" )
for pos in range(0 , len(__magic_name__ ) , 512 ):
UpperCAmelCase : Union[str, Any] = bit_string[pos : pos + 512]
UpperCAmelCase : Tuple = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def lowercase ( __magic_name__ ):
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative" )
UpperCAmelCase : Any = format(__magic_name__ , "032b" )
UpperCAmelCase : int = ""
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(__magic_name__ , 2 )
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
return (a + b) % 2**32
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative" )
if shift < 0:
raise ValueError("Shift must be non-negative" )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = preprocess(__magic_name__ )
UpperCAmelCase : List[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
UpperCAmelCase : List[str] = 0X67452301
UpperCAmelCase : Tuple = 0XEFCDAB89
UpperCAmelCase : List[Any] = 0X98BADCFE
UpperCAmelCase : List[str] = 0X10325476
UpperCAmelCase : Dict = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(__magic_name__ ):
UpperCAmelCase : Optional[Any] = aa
UpperCAmelCase : List[Any] = ba
UpperCAmelCase : Optional[Any] = ca
UpperCAmelCase : Any = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
UpperCAmelCase : Tuple = d ^ (b & (c ^ d))
UpperCAmelCase : List[str] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
UpperCAmelCase : int = c ^ (d & (b ^ c))
UpperCAmelCase : Tuple = (5 * i + 1) % 16
elif i <= 47:
UpperCAmelCase : Any = b ^ c ^ d
UpperCAmelCase : Union[str, Any] = (3 * i + 5) % 16
else:
UpperCAmelCase : Dict = c ^ (b | not_aa(__magic_name__ ))
UpperCAmelCase : Dict = (7 * i) % 16
UpperCAmelCase : List[str] = (f + a + added_consts[i] + block_words[g]) % 2**32
UpperCAmelCase : List[Any] = d
UpperCAmelCase : Any = c
UpperCAmelCase : Dict = b
UpperCAmelCase : Union[str, Any] = sum_aa(__magic_name__ , left_rotate_aa(__magic_name__ , shift_amounts[i] ) )
# Add hashed chunk to running total
UpperCAmelCase : List[str] = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : Any = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : List[Any] = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : Optional[int] = sum_aa(__magic_name__ , __magic_name__ )
UpperCAmelCase : List[str] = reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311 | 0 |
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class __snake_case ( pl.LightningModule ):
def __init__( self : str , _snake_case : List[str]):
"""simple docstring"""
super().__init__()
UpperCAmelCase_ = model
UpperCAmelCase_ = 2
UpperCAmelCase_ = nn.Linear(self.model.config.hidden_size , self.num_labels)
def lowerCamelCase ( self : int):
"""simple docstring"""
pass
def A (__A : str , __A : str , __A : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ = LongformerModel.from_pretrained(__A )
UpperCAmelCase_ = LightningModel(__A )
UpperCAmelCase_ = torch.load(__A , map_location=torch.device('''cpu''' ) )
lightning_model.load_state_dict(ckpt['''state_dict'''] )
# init longformer question answering model
UpperCAmelCase_ = LongformerForQuestionAnswering.from_pretrained(__A )
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() )
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() )
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(__A )
print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" )
if __name__ == "__main__":
snake_case_ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--longformer_model",
default=None,
type=str,
required=True,
help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.",
)
parser.add_argument(
"--longformer_question_answering_ckpt_path",
default=None,
type=str,
required=True,
help="Path the official PyTorch Lightning Checkpoint.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
snake_case_ : List[str] = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 352 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
| 7 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class A__ ( lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE = KandinskyVaaControlnetPipeline
SCREAMING_SNAKE_CASE = ["""image_embeds""", """negative_image_embeds""", """hint"""]
SCREAMING_SNAKE_CASE = ["""image_embeds""", """negative_image_embeds""", """hint"""]
SCREAMING_SNAKE_CASE = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
SCREAMING_SNAKE_CASE = False
@property
def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[Any]:
"""simple docstring"""
return 32
@property
def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> List[str]:
"""simple docstring"""
return 32
@property
def _SCREAMING_SNAKE_CASE ( self: Any) -> List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Any:
"""simple docstring"""
return self.time_input_dim * 4
@property
def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Optional[Any]:
"""simple docstring"""
return 100
@property
def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Dict:
"""simple docstring"""
torch.manual_seed(0)
__lowerCAmelCase : Optional[Any] = {
"in_channels": 8,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image_hint",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
__lowerCAmelCase : Dict = UNetaDConditionModel(**_UpperCAmelCase)
return model
@property
def _SCREAMING_SNAKE_CASE ( self: str) -> Any:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Any:
"""simple docstring"""
torch.manual_seed(0)
__lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs)
return model
def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[int]:
"""simple docstring"""
__lowerCAmelCase : Tuple = self.dummy_unet
__lowerCAmelCase : Dict = self.dummy_movq
__lowerCAmelCase : Any = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=_UpperCAmelCase , )
__lowerCAmelCase : str = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Union[str, Any]=0) -> int:
"""simple docstring"""
__lowerCAmelCase : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCAmelCase)).to(_UpperCAmelCase)
__lowerCAmelCase : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to(
_UpperCAmelCase)
# create hint
__lowerCAmelCase : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase)).to(_UpperCAmelCase)
if str(_UpperCAmelCase).startswith("mps"):
__lowerCAmelCase : Optional[Any] = torch.manual_seed(_UpperCAmelCase)
else:
__lowerCAmelCase : Dict = torch.Generator(device=_UpperCAmelCase).manual_seed(_UpperCAmelCase)
__lowerCAmelCase : int = {
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"hint": hint,
"generator": generator,
"height": 64,
"width": 64,
"guidance_scale": 4.0,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
def _SCREAMING_SNAKE_CASE ( self: int) -> int:
"""simple docstring"""
__lowerCAmelCase : Optional[int] = "cpu"
__lowerCAmelCase : List[str] = self.get_dummy_components()
__lowerCAmelCase : Optional[Any] = self.pipeline_class(**_UpperCAmelCase)
__lowerCAmelCase : Union[str, Any] = pipe.to(_UpperCAmelCase)
pipe.set_progress_bar_config(disable=_UpperCAmelCase)
__lowerCAmelCase : str = pipe(**self.get_dummy_inputs(_UpperCAmelCase))
__lowerCAmelCase : str = output.images
__lowerCAmelCase : Tuple = pipe(
**self.get_dummy_inputs(_UpperCAmelCase) , return_dict=_UpperCAmelCase , )[0]
__lowerCAmelCase : Tuple = image[0, -3:, -3:, -1]
__lowerCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase : str = np.array(
[0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class A__ ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _SCREAMING_SNAKE_CASE ( self: Any) -> Dict:
"""simple docstring"""
__lowerCAmelCase : Union[str, Any] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy")
__lowerCAmelCase : Optional[int] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/hint_image_cat.png")
__lowerCAmelCase : Any = torch.from_numpy(np.array(_UpperCAmelCase)).float() / 255.0
__lowerCAmelCase : Optional[int] = hint.permute(2 , 0 , 1).unsqueeze(0)
__lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa)
pipe_prior.to(_UpperCAmelCase)
__lowerCAmelCase : Dict = KandinskyVaaControlnetPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa)
__lowerCAmelCase : Any = pipeline.to(_UpperCAmelCase)
pipeline.set_progress_bar_config(disable=_UpperCAmelCase)
__lowerCAmelCase : Dict = "A robot, 4k photo"
__lowerCAmelCase : List[str] = torch.Generator(device="cuda").manual_seed(0)
__lowerCAmelCase , __lowerCAmelCase : List[Any] = pipe_prior(
_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
__lowerCAmelCase : Any = torch.Generator(device="cuda").manual_seed(0)
__lowerCAmelCase : str = pipeline(
image_embeds=_UpperCAmelCase , negative_image_embeds=_UpperCAmelCase , hint=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=100 , output_type="np" , )
__lowerCAmelCase : List[Any] = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase) | 269 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 346 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase : Optional[int] = {
"configuration_squeezebert": [
"SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SqueezeBertConfig",
"SqueezeBertOnnxConfig",
],
"tokenization_squeezebert": ["SqueezeBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Dict = ["SqueezeBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Any = [
"SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"SqueezeBertForMaskedLM",
"SqueezeBertForMultipleChoice",
"SqueezeBertForQuestionAnswering",
"SqueezeBertForSequenceClassification",
"SqueezeBertForTokenClassification",
"SqueezeBertModel",
"SqueezeBertModule",
"SqueezeBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
UpperCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 263 |
"""simple docstring"""
import warnings
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
UpperCamelCase : int = logging.get_logger(__name__)
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = ["input_values", "attention_mask"]
def __init__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 1_6000 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = False , __UpperCAmelCase = 80 , __UpperCAmelCase = 16 , __UpperCAmelCase = 64 , __UpperCAmelCase = "hann_window" , __UpperCAmelCase = 1.0 , __UpperCAmelCase = 80 , __UpperCAmelCase = 7600 , __UpperCAmelCase = 1E-10 , __UpperCAmelCase = 2 , __UpperCAmelCase = True , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(feature_size=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , padding_value=__UpperCAmelCase , **__UpperCAmelCase )
__UpperCamelCase = do_normalize
__UpperCamelCase = return_attention_mask
__UpperCamelCase = num_mel_bins
__UpperCamelCase = hop_length
__UpperCamelCase = win_length
__UpperCamelCase = win_function
__UpperCamelCase = frame_signal_scale
__UpperCamelCase = fmin
__UpperCamelCase = fmax
__UpperCamelCase = mel_floor
__UpperCamelCase = reduction_factor
__UpperCamelCase = win_length * sampling_rate // 1000
__UpperCamelCase = hop_length * sampling_rate // 1000
__UpperCamelCase = optimal_fft_length(self.sample_size )
__UpperCamelCase = (self.n_fft // 2) + 1
__UpperCamelCase = window_function(window_length=self.sample_size , name=self.win_function , periodic=__UpperCAmelCase )
__UpperCamelCase = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , )
if frame_signal_scale != 1.0:
warnings.warn(
'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , __UpperCAmelCase , )
if reduction_factor != 2.0:
warnings.warn(
'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , __UpperCAmelCase , )
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.0 ):
'''simple docstring'''
if attention_mask is not None:
__UpperCamelCase = np.array(__UpperCAmelCase , np.intaa )
__UpperCamelCase = []
for vector, length in zip(__UpperCAmelCase , attention_mask.sum(-1 ) ):
__UpperCamelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 )
if length < normed_slice.shape[0]:
__UpperCamelCase = padding_value
normed_input_values.append(__UpperCAmelCase )
else:
__UpperCamelCase = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values]
return normed_input_values
def UpperCAmelCase ( self , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = spectrogram(
__UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , )
return log_mel_spec.T
def __call__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ):
'''simple docstring'''
if audio is None and audio_target is None:
raise ValueError('You must provide either `audio` or `audio_target` values.' )
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'
F' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
'It is strongly recommended to pass the ``sampling_rate`` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
if audio is not None:
__UpperCamelCase = self._process_audio(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , )
else:
__UpperCamelCase = None
if audio_target is not None:
__UpperCamelCase = self._process_audio(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , )
if inputs is None:
return inputs_target
else:
__UpperCamelCase = inputs_target['input_values']
__UpperCamelCase = inputs_target.get('attention_mask' )
if decoder_attention_mask is not None:
__UpperCamelCase = decoder_attention_mask
return inputs
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = isinstance(__UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1
if is_batched_numpy and len(speech.shape ) > 2:
raise ValueError(F'Only mono-channel audio is supported for input to {self}' )
__UpperCamelCase = is_batched_numpy or (
isinstance(__UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
__UpperCamelCase = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for speech in speech]
elif not is_batched and not isinstance(__UpperCAmelCase , np.ndarray ):
__UpperCamelCase = np.asarray(__UpperCAmelCase , dtype=np.floataa )
elif isinstance(__UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ):
__UpperCamelCase = speech.astype(np.floataa )
# always return batch
if not is_batched:
__UpperCamelCase = [speech]
# needed to make pad() work on spectrogram inputs
__UpperCamelCase = self.feature_size
# convert into correct format for padding
if is_target:
__UpperCamelCase = [self._extract_mel_features(__UpperCAmelCase ) for waveform in speech]
__UpperCamelCase = BatchFeature({'input_values': features} )
__UpperCamelCase = self.num_mel_bins
else:
__UpperCamelCase = BatchFeature({'input_values': speech} )
__UpperCamelCase = self.pad(
__UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCamelCase = feature_size_hack
# convert input values to correct format
__UpperCamelCase = padded_inputs['input_values']
if not isinstance(input_values[0] , np.ndarray ):
__UpperCamelCase = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for array in input_values]
elif (
not isinstance(__UpperCAmelCase , np.ndarray )
and isinstance(input_values[0] , np.ndarray )
and input_values[0].dtype is np.dtype(np.floataa )
):
__UpperCamelCase = [array.astype(np.floataa ) for array in input_values]
elif isinstance(__UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ):
__UpperCamelCase = input_values.astype(np.floataa )
# convert attention_mask to correct format
__UpperCamelCase = padded_inputs.get('attention_mask' )
if attention_mask is not None:
__UpperCamelCase = [np.asarray(__UpperCAmelCase , dtype=np.intaa ) for array in attention_mask]
# zero-mean and unit-variance normalization
if not is_target and self.do_normalize:
__UpperCamelCase = (
attention_mask
if self._get_padding_strategies(__UpperCAmelCase , max_length=__UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
__UpperCamelCase = self.zero_mean_unit_var_norm(
padded_inputs['input_values'] , attention_mask=__UpperCAmelCase , padding_value=self.padding_value )
if return_tensors is not None:
__UpperCamelCase = padded_inputs.convert_to_tensors(__UpperCAmelCase )
return padded_inputs
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = super().to_dict()
# Don't serialize these as they are derived from the other properties.
__UpperCamelCase = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs']
for name in names:
if name in output:
del output[name]
return output
| 263 | 1 |
"""simple docstring"""
from collections import Counter
from pathlib import Path
from typing import Optional, Tuple
import yaml
class _lowerCAmelCase ( yaml.SafeLoader ):
"""simple docstring"""
def snake_case ( self , __UpperCAmelCase ):
'''simple docstring'''
lowerCAmelCase__ :List[Any] = [self.constructed_objects[key_node] for key_node, _ in node.value]
lowerCAmelCase__ :str = [tuple(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else key for key in keys]
lowerCAmelCase__ :Optional[int] = Counter(__UpperCAmelCase )
lowerCAmelCase__ :int = [key for key in counter if counter[key] > 1]
if duplicate_keys:
raise TypeError(F"Got duplicate yaml keys: {duplicate_keys}" )
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=False ):
'''simple docstring'''
lowerCAmelCase__ :Union[str, Any] = super().construct_mapping(__UpperCAmelCase , deep=__UpperCAmelCase )
self._check_no_duplicates_on_constructed_node(__UpperCAmelCase )
return mapping
def __A (_SCREAMING_SNAKE_CASE ) ->Tuple[Optional[str], str]:
"""simple docstring"""
lowerCAmelCase__ :Optional[Any] = list(readme_content.splitlines() )
if full_content and full_content[0] == "---" and "---" in full_content[1:]:
lowerCAmelCase__ :Optional[int] = full_content[1:].index('---' ) + 1
lowerCAmelCase__ :Union[str, Any] = '\n'.join(full_content[1:sep_idx] )
return yamlblock, "\n".join(full_content[sep_idx + 1 :] )
return None, "\n".join(_SCREAMING_SNAKE_CASE )
class _lowerCAmelCase ( a ):
"""simple docstring"""
__magic_name__ :List[str] = {"""train_eval_index"""} # train-eval-index in the YAML metadata
@classmethod
def snake_case ( cls , __UpperCAmelCase ):
'''simple docstring'''
with open(__UpperCAmelCase , encoding='utf-8' ) as readme_file:
lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = _split_yaml_from_readme(readme_file.read() )
if yaml_string is not None:
return cls.from_yaml_string(__UpperCAmelCase )
else:
return cls()
def snake_case ( self , __UpperCAmelCase ):
'''simple docstring'''
if path.exists():
with open(__UpperCAmelCase , encoding='utf-8' ) as readme_file:
lowerCAmelCase__ :Optional[Any] = readme_file.read()
else:
lowerCAmelCase__ :Union[str, Any] = None
lowerCAmelCase__ :Union[str, Any] = self._to_readme(__UpperCAmelCase )
with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as readme_file:
readme_file.write(__UpperCAmelCase )
def snake_case ( self , __UpperCAmelCase = None ):
'''simple docstring'''
if readme_content is not None:
lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = _split_yaml_from_readme(__UpperCAmelCase )
lowerCAmelCase__ :Optional[Any] = '---\n' + self.to_yaml_string() + '---\n' + content
else:
lowerCAmelCase__ :str = '---\n' + self.to_yaml_string() + '---\n'
return full_content
@classmethod
def snake_case ( cls , __UpperCAmelCase ):
'''simple docstring'''
lowerCAmelCase__ :Dict = yaml.load(__UpperCAmelCase , Loader=_NoDuplicateSafeLoader ) or {}
# Convert the YAML keys to DatasetMetadata fields
lowerCAmelCase__ :int = {
(key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value
for key, value in metadata_dict.items()
}
return cls(**__UpperCAmelCase )
def snake_case ( self ):
'''simple docstring'''
return yaml.safe_dump(
{
(key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value
for key, value in self.items()
} , sort_keys=__UpperCAmelCase , allow_unicode=__UpperCAmelCase , encoding='utf-8' , ).decode('utf-8' )
__A = {
"""image-classification""": [],
"""translation""": [],
"""image-segmentation""": [],
"""fill-mask""": [],
"""automatic-speech-recognition""": [],
"""token-classification""": [],
"""sentence-similarity""": [],
"""audio-classification""": [],
"""question-answering""": [],
"""summarization""": [],
"""zero-shot-classification""": [],
"""table-to-text""": [],
"""feature-extraction""": [],
"""other""": [],
"""multiple-choice""": [],
"""text-classification""": [],
"""text-to-image""": [],
"""text2text-generation""": [],
"""zero-shot-image-classification""": [],
"""tabular-classification""": [],
"""tabular-regression""": [],
"""image-to-image""": [],
"""tabular-to-text""": [],
"""unconditional-image-generation""": [],
"""text-retrieval""": [],
"""text-to-speech""": [],
"""object-detection""": [],
"""audio-to-audio""": [],
"""text-generation""": [],
"""conversational""": [],
"""table-question-answering""": [],
"""visual-question-answering""": [],
"""image-to-text""": [],
"""reinforcement-learning""": [],
"""voice-activity-detection""": [],
"""time-series-forecasting""": [],
"""document-question-answering""": [],
}
if __name__ == "__main__":
from argparse import ArgumentParser
__A = ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""")
ap.add_argument("""readme_filepath""")
__A = ap.parse_args()
__A = Path(args.readme_filepath)
__A = DatasetMetadata.from_readme(readme_filepath)
print(dataset_metadata)
dataset_metadata.to_readme(readme_filepath)
| 293 |
"""simple docstring"""
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
__A = logging.getLogger(__name__)
def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]:
"""simple docstring"""
if os.path.exists(_SCREAMING_SNAKE_CASE ):
if os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ) and os.path.isfile(
os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ):
os.remove(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) )
if os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) and os.path.isfile(
os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ):
os.remove(os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) )
else:
os.makedirs(_SCREAMING_SNAKE_CASE )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->Optional[int]:
"""simple docstring"""
lowerCAmelCase__ :Dict = 2
if unlogit:
lowerCAmelCase__ :List[str] = torch.pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :str = p * torch.log(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :List[str] = 0
return -plogp.sum(dim=-1 )
def __A (_SCREAMING_SNAKE_CASE ) ->Dict:
"""simple docstring"""
logger.info('lv, h >\t' + '\t'.join(F"{x + 1}" for x in range(len(_SCREAMING_SNAKE_CASE ) ) ) )
for row in range(len(_SCREAMING_SNAKE_CASE ) ):
if tensor.dtype != torch.long:
logger.info(F"layer {row + 1}:\t" + '\t'.join(F"{x:.5f}" for x in tensor[row].cpu().data ) )
else:
logger.info(F"layer {row + 1}:\t" + '\t'.join(F"{x:d}" for x in tensor[row].cpu().data ) )
def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ) ->Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ :Dict = model.config.num_hidden_layers, model.config.num_attention_heads
lowerCAmelCase__ :Any = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device )
lowerCAmelCase__ :Tuple = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device )
if head_mask is None:
lowerCAmelCase__ :Optional[int] = torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device )
head_mask.requires_grad_(requires_grad=_SCREAMING_SNAKE_CASE )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
lowerCAmelCase__ :List[str] = None
lowerCAmelCase__ :Any = 0.0
lowerCAmelCase__ :Any = 0.0
for step, inputs in enumerate(tqdm(_SCREAMING_SNAKE_CASE , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ):
lowerCAmelCase__ :str = tuple(t.to(args.device ) for t in inputs )
((lowerCAmelCase__) , ) :Dict = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
lowerCAmelCase__ :str = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :str = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(_SCREAMING_SNAKE_CASE ):
lowerCAmelCase__ :Optional[Any] = entropy(attn.detach() , _SCREAMING_SNAKE_CASE )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(_SCREAMING_SNAKE_CASE ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
lowerCAmelCase__ :Union[str, Any] = 2
lowerCAmelCase__ :Tuple = torch.pow(torch.pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20
if not args.dont_normalize_global_importance:
lowerCAmelCase__ :str = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info('Attention entropies' )
print_ad_tensor(_SCREAMING_SNAKE_CASE )
if compute_importance:
logger.info('Head importance scores' )
print_ad_tensor(_SCREAMING_SNAKE_CASE )
logger.info('Head ranked by importance scores' )
lowerCAmelCase__ :List[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
lowerCAmelCase__ :List[Any] = torch.arange(
head_importance.numel() , device=args.device )
lowerCAmelCase__ :int = head_ranks.view_as(_SCREAMING_SNAKE_CASE )
print_ad_tensor(_SCREAMING_SNAKE_CASE )
return attn_entropy, head_importance, total_loss
def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = compute_heads_importance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :List[Any] = 1 / loss # instead of downsteam score use the LM loss
logger.info('Pruning: original score: %f, threshold: %f' , _SCREAMING_SNAKE_CASE , original_score * args.masking_threshold )
lowerCAmelCase__ :Optional[int] = torch.ones_like(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :Dict = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
lowerCAmelCase__ :List[str] = original_score
while current_score >= original_score * args.masking_threshold:
lowerCAmelCase__ :List[str] = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
lowerCAmelCase__ :str = float('Inf' )
lowerCAmelCase__ :List[str] = head_importance.view(-1 ).sort()[1]
if len(_SCREAMING_SNAKE_CASE ) <= num_to_mask:
print('BREAK BY num_to_mask' )
break
# mask heads
lowerCAmelCase__ :int = current_heads_to_mask[:num_to_mask]
logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) )
lowerCAmelCase__ :Dict = new_head_mask.view(-1 )
lowerCAmelCase__ :Any = 0.0
lowerCAmelCase__ :Tuple = new_head_mask.view_as(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :Optional[int] = new_head_mask.clone().detach()
print_ad_tensor(_SCREAMING_SNAKE_CASE )
# Compute metric and head importance again
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = compute_heads_importance(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :Any = 1 / loss
logger.info(
'Masking: current score: %f, remaining heads %d (%.1f percents)' , _SCREAMING_SNAKE_CASE , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , )
logger.info('Final head mask' )
print_ad_tensor(_SCREAMING_SNAKE_CASE )
np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() )
return head_mask
def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ :Union[str, Any] = datetime.now()
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = compute_heads_importance(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , compute_importance=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :Any = 1 / loss
lowerCAmelCase__ :Tuple = datetime.now() - before_time
lowerCAmelCase__ :List[str] = sum(p.numel() for p in model.parameters() )
lowerCAmelCase__ :List[Any] = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_SCREAMING_SNAKE_CASE ) )
}
for k, v in heads_to_prune.items():
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
lowerCAmelCase__ :Union[str, Any] = [
v,
]
assert sum(len(_SCREAMING_SNAKE_CASE ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :Any = sum(p.numel() for p in model.parameters() )
lowerCAmelCase__ :int = datetime.now()
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Dict = compute_heads_importance(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , compute_importance=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , actually_pruned=_SCREAMING_SNAKE_CASE , )
lowerCAmelCase__ :int = 1 / loss
lowerCAmelCase__ :Tuple = datetime.now() - before_time
logger.info(
'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , pruned_num_params / original_num_params * 100 , )
logger.info('Pruning: score with masking: %f score with pruning: %f' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 100 )
save_model(_SCREAMING_SNAKE_CASE , args.output_dir )
def __A () ->Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ :List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--data_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , )
parser.add_argument(
'--model_name_or_path' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--output_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The output directory where the model predictions and checkpoints will be written.' , )
# Other parameters
parser.add_argument(
'--config_name' , default='' , type=_SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name_or_path' , )
parser.add_argument(
'--tokenizer_name' , default='' , type=_SCREAMING_SNAKE_CASE , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , )
parser.add_argument(
'--cache_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help='Where do you want to store the pre-trained models downloaded from s3' , )
parser.add_argument(
'--data_subset' , type=_SCREAMING_SNAKE_CASE , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' )
parser.add_argument(
'--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' )
parser.add_argument(
'--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' )
parser.add_argument(
'--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' )
parser.add_argument(
'--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , )
parser.add_argument(
'--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' )
parser.add_argument(
'--masking_threshold' , default=0.9 , type=_SCREAMING_SNAKE_CASE , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , )
parser.add_argument(
'--masking_amount' , default=0.1 , type=_SCREAMING_SNAKE_CASE , help='Amount to heads to masking at each masking step.' )
parser.add_argument('--metric_name' , default='acc' , type=_SCREAMING_SNAKE_CASE , help='Metric to use for head masking.' )
parser.add_argument(
'--max_seq_length' , default=128 , type=_SCREAMING_SNAKE_CASE , help=(
'The maximum total input sequence length after WordPiece tokenization. \n'
'Sequences longer than this will be truncated, sequences shorter padded.'
) , )
parser.add_argument('--batch_size' , default=1 , type=_SCREAMING_SNAKE_CASE , help='Batch size.' )
parser.add_argument('--seed' , type=_SCREAMING_SNAKE_CASE , default=42 )
parser.add_argument('--local_rank' , type=_SCREAMING_SNAKE_CASE , default=-1 , help='local_rank for distributed training on gpus' )
parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' )
parser.add_argument('--server_ip' , type=_SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' )
parser.add_argument('--server_port' , type=_SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' )
lowerCAmelCase__ :Any = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('Waiting for debugger attach' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_SCREAMING_SNAKE_CASE )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
lowerCAmelCase__ :List[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' )
lowerCAmelCase__ :Optional[int] = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
lowerCAmelCase__ :Dict = torch.device('cuda' , args.local_rank )
lowerCAmelCase__ :Tuple = 1
torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
lowerCAmelCase__ :int = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
lowerCAmelCase__ :Optional[Any] = nn.parallel.DistributedDataParallel(
_SCREAMING_SNAKE_CASE , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_SCREAMING_SNAKE_CASE )
elif args.n_gpu > 1:
lowerCAmelCase__ :Union[str, Any] = nn.DataParallel(_SCREAMING_SNAKE_CASE )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=_SCREAMING_SNAKE_CASE )
torch.save(_SCREAMING_SNAKE_CASE , os.path.join(args.output_dir , 'run_args.bin' ) )
logger.info('Training/evaluation parameters %s' , _SCREAMING_SNAKE_CASE )
# Prepare dataset
lowerCAmelCase__ :Optional[int] = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
lowerCAmelCase__ :Union[str, Any] = (torch.from_numpy(_SCREAMING_SNAKE_CASE ),)
lowerCAmelCase__ :Optional[int] = TensorDataset(*_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :List[Any] = RandomSampler(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :Dict = DataLoader(_SCREAMING_SNAKE_CASE , sampler=_SCREAMING_SNAKE_CASE , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
lowerCAmelCase__ :Optional[Any] = mask_heads(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
prune_heads(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 293 | 1 |
a ={"""a""": ["""c""", """b"""], """b""": ["""d""", """e"""], """c""": [], """d""": [], """e""": []}
a =["""a""", """b""", """c""", """d""", """e"""]
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
__lowerCamelCase : Optional[int] = start
# add current to visited
visited.append(lowerCamelCase__ )
__lowerCamelCase : Optional[Any] = edges[current]
for neighbor in neighbors:
# if neighbor not in visited, visit
if neighbor not in visited:
__lowerCamelCase : str = topological_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# if all neighbors visited add current to sort
sort.append(lowerCamelCase__ )
# if all vertices haven't been visited select a new one to visit
if len(lowerCamelCase__ ) != len(lowerCamelCase__ ):
for vertice in vertices:
if vertice not in visited:
__lowerCamelCase : int = topological_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# return sort
return sort
if __name__ == "__main__":
a =topological_sort("""a""", [], [])
print(sort)
| 352 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a ={
"""configuration_bigbird_pegasus""": [
"""BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BigBirdPegasusConfig""",
"""BigBirdPegasusOnnxConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a =[
"""BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BigBirdPegasusForCausalLM""",
"""BigBirdPegasusForConditionalGeneration""",
"""BigBirdPegasusForQuestionAnswering""",
"""BigBirdPegasusForSequenceClassification""",
"""BigBirdPegasusModel""",
"""BigBirdPegasusPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
BigBirdPegasusConfig,
BigBirdPegasusOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
BigBirdPegasusForCausalLM,
BigBirdPegasusForConditionalGeneration,
BigBirdPegasusForQuestionAnswering,
BigBirdPegasusForSequenceClassification,
BigBirdPegasusModel,
BigBirdPegasusPreTrainedModel,
)
else:
import sys
a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 113 | 0 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class A_ :
def __init__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=1_4 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : Dict=True , UpperCAmelCase : str=True , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : int=9_9 , UpperCAmelCase : List[str]=3_2 , UpperCAmelCase : int=4 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Union[str, Any]=3_7 , UpperCAmelCase : int="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : List[str]=5_1_2 , UpperCAmelCase : Union[str, Any]=0.02 , ) -> Union[str, Any]:
__lowerCAmelCase: Any = parent
__lowerCAmelCase: Optional[int] = batch_size
__lowerCAmelCase: Any = seq_length
__lowerCAmelCase: List[str] = is_training
__lowerCAmelCase: Optional[int] = use_input_mask
__lowerCAmelCase: Union[str, Any] = use_token_type_ids
__lowerCAmelCase: Union[str, Any] = use_labels
__lowerCAmelCase: str = vocab_size
__lowerCAmelCase: str = hidden_size
__lowerCAmelCase: List[Any] = rotary_dim
__lowerCAmelCase: List[Any] = num_hidden_layers
__lowerCAmelCase: Tuple = num_attention_heads
__lowerCAmelCase: int = intermediate_size
__lowerCAmelCase: Optional[Any] = hidden_act
__lowerCAmelCase: Dict = hidden_dropout_prob
__lowerCAmelCase: List[str] = attention_probs_dropout_prob
__lowerCAmelCase: Optional[Any] = max_position_embeddings
__lowerCAmelCase: Tuple = initializer_range
__lowerCAmelCase: Optional[int] = None
__lowerCAmelCase: Dict = vocab_size - 1
__lowerCAmelCase: str = vocab_size - 1
__lowerCAmelCase: List[Any] = vocab_size - 1
def UpperCAmelCase ( self : str ) -> Optional[Any]:
__lowerCAmelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCAmelCase: Optional[Any] = None
if self.use_input_mask:
__lowerCAmelCase: Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCAmelCase: List[str] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def UpperCAmelCase ( self : Dict ) -> List[Any]:
__lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs()
__lowerCAmelCase: Union[str, Any] = config_and_inputs
__lowerCAmelCase: Tuple = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Union[str, Any]:
__lowerCAmelCase: Any = 2_0
__lowerCAmelCase: Any = model_class_name(lowerCamelCase_ )
__lowerCAmelCase: List[Any] = model.init_cache(input_ids.shape[0] , lowerCamelCase_ )
__lowerCAmelCase: Any = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' )
__lowerCAmelCase: Optional[int] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__lowerCAmelCase: Any = model(
input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , )
__lowerCAmelCase: Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' )
__lowerCAmelCase: str = model(
input_ids[:, -1:] , attention_mask=lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase_ , )
__lowerCAmelCase: Union[str, Any] = model(lowerCamelCase_ )
__lowerCAmelCase: int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' )
def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[int]:
__lowerCAmelCase: List[Any] = 2_0
__lowerCAmelCase: Dict = model_class_name(lowerCamelCase_ )
__lowerCAmelCase: Union[str, Any] = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
__lowerCAmelCase: str = model.init_cache(input_ids.shape[0] , lowerCamelCase_ )
__lowerCAmelCase: Optional[Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__lowerCAmelCase: Any = model(
input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , )
__lowerCAmelCase: Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' )
__lowerCAmelCase: Dict = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase_ , position_ids=lowerCamelCase_ , )
__lowerCAmelCase: Union[str, Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )
__lowerCAmelCase: List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' )
@require_flax
class A_ ( lowercase_ , lowercase_ , unittest.TestCase ):
_lowercase : List[str] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
_lowercase : Union[str, Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def UpperCAmelCase ( self : str ) -> Tuple:
__lowerCAmelCase: Union[str, Any] = FlaxGPTJModelTester(self )
def UpperCAmelCase ( self : Any ) -> Dict:
for model_class_name in self.all_model_classes:
__lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
def UpperCAmelCase ( self : Optional[int] ) -> Tuple:
for model_class_name in self.all_model_classes:
__lowerCAmelCase: int = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
@tooslow
def UpperCAmelCase ( self : List[Any] ) -> List[str]:
__lowerCAmelCase: List[Any] = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' )
__lowerCAmelCase: List[Any] = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )
__lowerCAmelCase: Optional[Any] = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' )
__lowerCAmelCase: int = False
__lowerCAmelCase: Optional[Any] = model.config.eos_token_id
__lowerCAmelCase: str = jax.jit(model.generate )
__lowerCAmelCase: str = jit_generate(
inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences
__lowerCAmelCase: Tuple = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ )
__lowerCAmelCase: List[Any] = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
@is_pt_flax_cross_test
def UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
__lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__lowerCAmelCase: str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
__lowerCAmelCase: List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__lowerCAmelCase: List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning
__lowerCAmelCase: int = getattr(lowerCamelCase_ , lowerCamelCase_ )
__lowerCAmelCase: str = pt_inputs["""input_ids"""].shape
__lowerCAmelCase: int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowerCamelCase_ ):
__lowerCAmelCase: int = 0
__lowerCAmelCase: Optional[int] = 1
__lowerCAmelCase: List[Any] = 0
__lowerCAmelCase: Union[str, Any] = 1
__lowerCAmelCase: Optional[int] = pt_model_class(lowerCamelCase_ ).eval()
__lowerCAmelCase: str = model_class(lowerCamelCase_ , dtype=jnp.floataa )
__lowerCAmelCase: Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase_ )
__lowerCAmelCase: Any = fx_state
with torch.no_grad():
__lowerCAmelCase: Any = pt_model(**lowerCamelCase_ ).to_tuple()
__lowerCAmelCase: Any = fx_model(**lowerCamelCase_ ).to_tuple()
self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCamelCase_ )
__lowerCAmelCase: List[str] = model_class.from_pretrained(lowerCamelCase_ , from_pt=lowerCamelCase_ )
__lowerCAmelCase: str = fx_model_loaded(**lowerCamelCase_ ).to_tuple()
self.assertEqual(
len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output_loaded, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@is_pt_flax_cross_test
def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
__lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__lowerCAmelCase: Dict = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
__lowerCAmelCase: List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__lowerCAmelCase: Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning
__lowerCAmelCase: int = getattr(lowerCamelCase_ , lowerCamelCase_ )
__lowerCAmelCase: Tuple = pt_model_class(lowerCamelCase_ ).eval()
__lowerCAmelCase: Any = model_class(lowerCamelCase_ , dtype=jnp.floataa )
__lowerCAmelCase: List[Any] = load_flax_weights_in_pytorch_model(lowerCamelCase_ , fx_model.params )
__lowerCAmelCase: str = pt_inputs["""input_ids"""].shape
__lowerCAmelCase: Union[str, Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowerCamelCase_ ):
__lowerCAmelCase: Union[str, Any] = 0
__lowerCAmelCase: Dict = 1
__lowerCAmelCase: Dict = 0
__lowerCAmelCase: Tuple = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
__lowerCAmelCase: List[str] = pt_model(**lowerCamelCase_ ).to_tuple()
__lowerCAmelCase: Optional[Any] = fx_model(**lowerCamelCase_ ).to_tuple()
self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCamelCase_ )
__lowerCAmelCase: Dict = pt_model_class.from_pretrained(lowerCamelCase_ , from_flax=lowerCamelCase_ )
with torch.no_grad():
__lowerCAmelCase: str = pt_model_loaded(**lowerCamelCase_ ).to_tuple()
self.assertEqual(
len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@tooslow
def UpperCAmelCase ( self : Optional[int] ) -> List[str]:
for model_class_name in self.all_model_classes:
__lowerCAmelCase: Union[str, Any] = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' )
__lowerCAmelCase: Optional[int] = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase_ )
| 322 |
'''simple docstring'''
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = (CMStochasticIterativeScheduler,)
SCREAMING_SNAKE_CASE__ = 10
def lowerCamelCase_ ( self : List[str] , **lowerCamelCase_ : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = {
"""num_train_timesteps""": 2_01,
"""sigma_min""": 0.002,
"""sigma_max""": 80.0,
}
config.update(**lowerCamelCase_ )
return config
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = 10
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0](**lowerCamelCase_ )
scheduler.set_timesteps(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = scheduler.timesteps[0]
SCREAMING_SNAKE_CASE : Dict = scheduler.timesteps[1]
SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample
SCREAMING_SNAKE_CASE : List[str] = 0.1 * sample
SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = 1
scheduler.set_timesteps(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = scheduler.timesteps
SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = self.dummy_model()
SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(lowerCamelCase_ ):
# 1. scale model input
SCREAMING_SNAKE_CASE : Optional[int] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ )
# 2. predict noise residual
SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , lowerCamelCase_ )
# 3. predict previous sample x_t-1
SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_prev_sample
SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) )
assert abs(result_sum.item() - 192.7_614 ) < 1e-2
assert abs(result_mean.item() - 0.2_510 ) < 1e-3
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = [1_06, 0]
scheduler.set_timesteps(timesteps=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = scheduler.timesteps
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = self.dummy_model()
SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ )
# 2. predict noise residual
SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ )
# 3. predict previous sample x_t-1
SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Dict = pred_prev_sample
SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(lowerCamelCase_ ) )
assert abs(result_sum.item() - 347.6_357 ) < 1e-2
assert abs(result_mean.item() - 0.4_527 ) < 1e-3
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : Any = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = [39, 30, 12, 15, 0]
with self.assertRaises(lowerCamelCase_ , msg="""`timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = [39, 30, 12, 1, 0]
SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCamelCase_ )
with self.assertRaises(lowerCamelCase_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=lowerCamelCase_ , timesteps=lowerCamelCase_ )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = [scheduler.config.num_train_timesteps]
with self.assertRaises(
lowerCamelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=lowerCamelCase_ )
| 323 | 0 |
"""simple docstring"""
from collections.abc import Sequence
def lowercase ( lowerCAmelCase__ : Sequence[float] , lowerCAmelCase__ : bool = False ) -> float:
if not arr:
return 0
__a = 0 if allow_empty_subarrays else float('''-inf''' )
__a = 0.0
for num in arr:
__a = max(0 if allow_empty_subarrays else num , curr_sum + num )
__a = max(lowerCAmelCase__ , lowerCAmelCase__ )
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
lowercase_ = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(F'''{max_subarray_sum(nums) = }''')
| 11 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
lowercase_ = None
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
lowercase_ = {
"vocab_file": {
"facebook/mbart-large-en-ro": (
"https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"
),
"facebook/mbart-large-cc25": (
"https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json",
"facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json",
},
}
lowercase_ = {
"facebook/mbart-large-en-ro": 1_0_2_4,
"facebook/mbart-large-cc25": 1_0_2_4,
}
# fmt: off
lowercase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"]
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Tuple = VOCAB_FILES_NAMES
__UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase : Tuple = ['input_ids', 'attention_mask']
__UpperCAmelCase : Optional[Any] = MBartTokenizer
__UpperCAmelCase : List[int] = []
__UpperCAmelCase : List[int] = []
def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , **_a , ):
# Mask token behave like a normal word, i.e. include the space before it
__a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
super().__init__(
vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , )
__a = vocab_file
__a = False if not self.vocab_file else True
__a = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
__a = {
lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__a = src_lang if src_lang is not None else '''en_XX'''
__a = self.convert_tokens_to_ids(self._src_lang )
__a = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __UpperCAmelCase ( self ):
return self._src_lang
@src_lang.setter
def __UpperCAmelCase ( self , _a ):
__a = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __UpperCAmelCase ( self , _a , _a = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __UpperCAmelCase ( self , _a , _a = None ):
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ):
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
__a = src_lang
__a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a )
__a = self.convert_tokens_to_ids(_a )
__a = tgt_lang_id
return inputs
def __UpperCAmelCase ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ):
__a = src_lang
__a = tgt_lang
return super().prepare_seqaseq_batch(_a , _a , **_a )
def __UpperCAmelCase ( self ):
return self.set_src_lang_special_tokens(self.src_lang )
def __UpperCAmelCase ( self ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __UpperCAmelCase ( self , _a ):
__a = self.convert_tokens_to_ids(_a )
__a = []
__a = [self.eos_token_id, self.cur_lang_code]
__a = self.convert_ids_to_tokens(self.prefix_tokens )
__a = self.convert_ids_to_tokens(self.suffix_tokens )
__a = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __UpperCAmelCase ( self , _a ):
__a = self.convert_tokens_to_ids(_a )
__a = []
__a = [self.eos_token_id, self.cur_lang_code]
__a = self.convert_ids_to_tokens(self.prefix_tokens )
__a = self.convert_ids_to_tokens(self.suffix_tokens )
__a = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __UpperCAmelCase ( self , _a , _a = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(_a ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' )
return
__a = os.path.join(
_a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 11 | 1 |
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'''split_dict''' , [
SplitDict(),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name='''my_dataset''' )} ),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_3_3_7 , num_examples=4_2 )} ),
SplitDict({'''train''': SplitInfo()} ),
] , )
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]:
lowerCAmelCase = split_dict._to_yaml_list()
assert len(snake_case__ ) == len(snake_case__ )
lowerCAmelCase = SplitDict._from_yaml_list(snake_case__ )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
lowerCAmelCase = None
# the split name of split_dict takes over the name of the split info object
lowerCAmelCase = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'''split_info''' , [SplitInfo(), SplitInfo(dataset_name=snake_case__ ), SplitInfo(dataset_name='''my_dataset''' )] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]:
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
lowerCAmelCase = asdict(SplitDict({'''train''': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 338 | import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
lowercase__ : str = logging.get_logger(__name__)
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Any = """AutoTokenizer"""
UpperCAmelCase_ : Optional[int] = ["""tokenizer"""]
UpperCAmelCase_ : str = {
"""semantic_prompt""": 1,
"""coarse_prompt""": 2,
"""fine_prompt""": 2,
}
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Optional[Any]:
super().__init__(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = speaker_embeddings
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , **__SCREAMING_SNAKE_CASE ) ->Tuple:
if speaker_embeddings_dict_path is not None:
lowerCAmelCase = get_file_from_repo(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , subfolder=kwargs.pop('''subfolder''' , __SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop('''cache_dir''' , __SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop('''force_download''' , __SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop('''proxies''' , __SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop('''resume_download''' , __SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop('''local_files_only''' , __SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop('''use_auth_token''' , __SCREAMING_SNAKE_CASE ) , revision=kwargs.pop('''revision''' , __SCREAMING_SNAKE_CASE ) , )
if speaker_embeddings_path is None:
logger.warning(
F"`{os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." )
lowerCAmelCase = None
else:
with open(__SCREAMING_SNAKE_CASE ) as speaker_embeddings_json:
lowerCAmelCase = json.load(__SCREAMING_SNAKE_CASE )
else:
lowerCAmelCase = None
lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
return cls(tokenizer=__SCREAMING_SNAKE_CASE , speaker_embeddings=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , __SCREAMING_SNAKE_CASE="speaker_embeddings" , __SCREAMING_SNAKE_CASE = False , **__SCREAMING_SNAKE_CASE , ) ->int:
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , '''v2''' ) , exist_ok=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {}
lowerCAmelCase = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
lowerCAmelCase = self._load_voice_preset(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict['''repo_or_path'''] , __SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}.npy" )
lowerCAmelCase = tmp_dict
with open(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , '''w''' ) as fp:
json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE ) ->List[str]:
lowerCAmelCase = self.speaker_embeddings[voice_preset]
lowerCAmelCase = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
F"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." )
lowerCAmelCase = get_file_from_repo(
self.speaker_embeddings.get('''repo_or_path''' , '''/''' ) , voice_preset_paths[key] , subfolder=kwargs.pop('''subfolder''' , __SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop('''cache_dir''' , __SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop('''force_download''' , __SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop('''proxies''' , __SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop('''resume_download''' , __SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop('''local_files_only''' , __SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop('''use_auth_token''' , __SCREAMING_SNAKE_CASE ) , revision=kwargs.pop('''revision''' , __SCREAMING_SNAKE_CASE ) , )
if path is None:
raise ValueError(
F"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." )
lowerCAmelCase = np.load(__SCREAMING_SNAKE_CASE )
return voice_preset_dict
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE = None ) ->Tuple:
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(F"Voice preset unrecognized, missing {key} as a key." )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." )
def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="pt" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ) ->int:
if voice_preset is not None and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
lowerCAmelCase = self._load_voice_preset(__SCREAMING_SNAKE_CASE )
else:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not voice_preset.endswith('''.npz''' ):
lowerCAmelCase = voice_preset + '''.npz'''
lowerCAmelCase = np.load(__SCREAMING_SNAKE_CASE )
if voice_preset is not None:
self._validate_voice_preset_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.tokenizer(
__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
if voice_preset is not None:
lowerCAmelCase = voice_preset
return encoded_text
| 338 | 1 |
"""simple docstring"""
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCAmelCase : Any = logging.get_logger(__name__)
_lowerCAmelCase : str = {"""vocab_file""": """vocab.txt"""}
_lowerCAmelCase : str = {
"""vocab_file""": {
"""openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""",
},
}
_lowerCAmelCase : List[str] = {
"""openbmb/cpm-ant-10b""": 1_024,
}
def SCREAMING_SNAKE_CASE__ ( snake_case )-> str:
'''simple docstring'''
UpperCAmelCase__ : str = collections.OrderedDict()
with open(__lowerCAmelCase , "r" , encoding="utf-8" ) as reader:
UpperCAmelCase__ : List[Any] = reader.readlines()
for index, token in enumerate(__lowerCAmelCase ):
UpperCAmelCase__ : str = token.rstrip("\n" )
UpperCAmelCase__ : int = index
return vocab
class lowerCAmelCase__ ( __lowerCamelCase ):
def __init__( self : str , snake_case__ : str , snake_case__ : int="<unk>" , snake_case__ : Tuple=2_0_0 ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = vocab
UpperCAmelCase__ : str = unk_token
UpperCAmelCase__ : Dict = max_input_chars_per_word
def __a ( self : Tuple , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = list(__lowercase )
if len(__lowercase ) > self.max_input_chars_per_word:
return [self.unk_token]
UpperCAmelCase__ : List[Any] = 0
UpperCAmelCase__ : List[str] = []
while start < len(__lowercase ):
UpperCAmelCase__ : Any = len(__lowercase )
UpperCAmelCase__ : Any = None
while start < end:
UpperCAmelCase__ : Tuple = ''''''.join(chars[start:end] )
if substr in self.vocab:
UpperCAmelCase__ : Union[str, Any] = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token )
start += 1
else:
sub_tokens.append(__lowercase )
UpperCAmelCase__ : Union[str, Any] = end
return sub_tokens
class lowerCAmelCase__ ( __lowerCamelCase ):
SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE_ =["""input_ids""", """attention_mask"""]
SCREAMING_SNAKE_CASE_ =False
def __init__( self : str , snake_case__ : Optional[Any] , snake_case__ : Dict="<d>" , snake_case__ : List[Any]="</d>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : List[str]="</s>" , snake_case__ : str="<pad>" , snake_case__ : Tuple="<unk>" , snake_case__ : Tuple="</n>" , snake_case__ : List[Any]="</_>" , snake_case__ : str="left" , **snake_case__ : Optional[Any] , ):
'''simple docstring'''
requires_backends(self , ["jieba"] )
super().__init__(
bod_token=__lowercase , eod_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , pad_token=__lowercase , unk_token=__lowercase , line_token=__lowercase , space_token=__lowercase , padding_side=__lowercase , **__lowercase , )
UpperCAmelCase__ : List[str] = bod_token
UpperCAmelCase__ : List[Any] = eod_token
UpperCAmelCase__ : List[Any] = load_vocab(__lowercase )
UpperCAmelCase__ : Any = self.encoder[space_token]
UpperCAmelCase__ : Dict = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
UpperCAmelCase__ : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) )
UpperCAmelCase__ : Any = {v: k for k, v in self.encoder.items()}
UpperCAmelCase__ : Any = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token )
@property
def __a ( self : Optional[int] ):
'''simple docstring'''
return self.encoder[self.bod_token]
@property
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return self.encoder[self.eod_token]
@property
def __a ( self : List[str] ):
'''simple docstring'''
return self.encoder["\n"]
@property
def __a ( self : Tuple ):
'''simple docstring'''
return len(self.encoder )
def __a ( self : Any ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def __a ( self : str , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = []
for x in jieba.cut(__lowercase , cut_all=__lowercase ):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(__lowercase ) )
return output_tokens
def __a ( self : Optional[Any] , snake_case__ : Optional[Any] , **snake_case__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = [i for i in token_ids if i >= 0]
UpperCAmelCase__ : Optional[int] = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(__lowercase , **__lowercase )
def __a ( self : int , snake_case__ : List[str] ):
'''simple docstring'''
return token in self.encoder
def __a ( self : int , snake_case__ : List[str] ):
'''simple docstring'''
return "".join(__lowercase )
def __a ( self : Optional[int] , snake_case__ : Optional[int] ):
'''simple docstring'''
return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) )
def __a ( self : Tuple , snake_case__ : int ):
'''simple docstring'''
return self.decoder.get(__lowercase , self.unk_token )
def __a ( self : Optional[Any] , snake_case__ : str , snake_case__ : Optional[str] = None ):
'''simple docstring'''
if os.path.isdir(__lowercase ):
UpperCAmelCase__ : int = os.path.join(
__lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
else:
UpperCAmelCase__ : str = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
UpperCAmelCase__ : List[str] = 0
if " " in self.encoder:
UpperCAmelCase__ : Dict = self.encoder[''' ''']
del self.encoder[" "]
if "\n" in self.encoder:
UpperCAmelCase__ : Union[str, Any] = self.encoder['''\n''']
del self.encoder["\n"]
UpperCAmelCase__ : Dict = collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) )
with open(__lowercase , "w" , encoding="utf-8" ) as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
" Please check that the vocabulary is not corrupted!" )
UpperCAmelCase__ : str = token_index
writer.write(token + "\n" )
index += 1
return (vocab_file,)
def __a ( self : Tuple , snake_case__ : List[int] , snake_case__ : List[int] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase )
if token_ids_a is not None:
return [1] + ([0] * len(__lowercase )) + [1] + ([0] * len(__lowercase ))
return [1] + ([0] * len(__lowercase ))
| 350 |
"""simple docstring"""
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE__ ( snake_case : Dataset , snake_case : Dict[str, str] )-> Any:
'''simple docstring'''
UpperCAmelCase__ : str = args.log_outputs
UpperCAmelCase__ : str = "_".join(args.dataset.split("/" ) + [args.config, args.split] )
# load metric
UpperCAmelCase__ : List[str] = load_metric("wer" )
UpperCAmelCase__ : Tuple = load_metric("cer" )
# compute metrics
UpperCAmelCase__ : List[str] = wer.compute(references=result["target"] , predictions=result["prediction"] )
UpperCAmelCase__ : Tuple = cer.compute(references=result["target"] , predictions=result["prediction"] )
# print & log results
UpperCAmelCase__ : Union[str, Any] = f'WER: {wer_result}\nCER: {cer_result}'
print(snake_case )
with open(f'{dataset_id}_eval_results.txt' , "w" ) as f:
f.write(snake_case )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
UpperCAmelCase__ : str = f'log_{dataset_id}_predictions.txt'
UpperCAmelCase__ : List[str] = f'log_{dataset_id}_targets.txt'
with open(snake_case , "w" ) as p, open(snake_case , "w" ) as t:
# mapping function to write output
def write_to_file(snake_case : List[Any] , snake_case : List[str] ):
p.write(f'{i}' + "\n" )
p.write(batch["prediction"] + "\n" )
t.write(f'{i}' + "\n" )
t.write(batch["target"] + "\n" )
result.map(snake_case , with_indices=snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str:
'''simple docstring'''
UpperCAmelCase__ : str = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
UpperCAmelCase__ : str = re.sub(snake_case , "" , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
UpperCAmelCase__ : Tuple = ["\n\n", "\n", " ", " "]
for t in token_sequences_to_ignore:
UpperCAmelCase__ : List[Any] = " ".join(text.split(snake_case ) )
return text
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
UpperCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id )
UpperCAmelCase__ : str = feature_extractor.sampling_rate
# resample audio
UpperCAmelCase__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case ) )
# load eval pipeline
if args.device is None:
UpperCAmelCase__ : List[str] = 0 if torch.cuda.is_available() else -1
UpperCAmelCase__ : Optional[int] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(snake_case : Any ):
UpperCAmelCase__ : List[str] = asr(
batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
UpperCAmelCase__ : List[Any] = prediction["text"]
UpperCAmelCase__ : Optional[int] = normalize_text(batch["sentence"] )
return batch
# run inference on all examples
UpperCAmelCase__ : Dict = dataset.map(snake_case , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case , snake_case )
if __name__ == "__main__":
_lowerCAmelCase : Any = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
_lowerCAmelCase : Tuple = parser.parse_args()
main(args)
| 298 | 0 |
def lowerCamelCase__ ( _a , _a):
_validate_point(_a)
_validate_point(_a)
if len(_a) != len(_a):
raise ValueError("Both points must be in the same n-dimensional space")
return float(sum(abs(a - b) for a, b in zip(_a , _a)))
def lowerCamelCase__ ( _a):
if point:
if isinstance(_a , _a):
for item in point:
if not isinstance(_a , (int, float)):
SCREAMING_SNAKE_CASE : List[Any] = (
"Expected a list of numbers as input, found "
f"{type(_a).__name__}"
)
raise TypeError(_a)
else:
SCREAMING_SNAKE_CASE : List[Any] = f"Expected a list of numbers as input, found {type(_a).__name__}"
raise TypeError(_a)
else:
raise ValueError("Missing an input")
def lowerCamelCase__ ( _a , _a):
_validate_point(_a)
_validate_point(_a)
if len(_a) != len(_a):
raise ValueError("Both points must be in the same n-dimensional space")
return float(sum(abs(x - y) for x, y in zip(_a , _a)))
if __name__ == "__main__":
import doctest
doctest.testmod() | 76 |
from typing import Any
class _UpperCamelCase :
'''simple docstring'''
def __init__( self : Dict , a : Any ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = data
SCREAMING_SNAKE_CASE : int = None
def __repr__( self : str ) -> str:
"""simple docstring"""
return F"Node({self.data})"
class _UpperCamelCase :
'''simple docstring'''
def __init__( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = None
def __iter__( self : Any ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head
while node:
yield node.data
SCREAMING_SNAKE_CASE : List[str] = node.next
def __len__( self : str ) -> int:
"""simple docstring"""
return sum(1 for _ in self )
def __repr__( self : Optional[Any] ) -> str:
"""simple docstring"""
return "->".join([str(a ) for item in self] )
def __getitem__( self : List[Any] , a : int ) -> Any:
"""simple docstring"""
if not 0 <= index < len(self ):
raise ValueError("list index out of range." )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self : Tuple , a : int , a : Any ) -> None:
"""simple docstring"""
if not 0 <= index < len(self ):
raise ValueError("list index out of range." )
SCREAMING_SNAKE_CASE : str = self.head
for _ in range(a ):
SCREAMING_SNAKE_CASE : str = current.next
SCREAMING_SNAKE_CASE : Any = data
def __UpperCamelCase ( self : List[str] , a : Any ) -> None:
"""simple docstring"""
self.insert_nth(len(self ) , a )
def __UpperCamelCase ( self : Union[str, Any] , a : Any ) -> None:
"""simple docstring"""
self.insert_nth(0 , a )
def __UpperCamelCase ( self : Optional[Any] , a : int , a : Any ) -> None:
"""simple docstring"""
if not 0 <= index <= len(self ):
raise IndexError("list index out of range" )
SCREAMING_SNAKE_CASE : Any = Node(a )
if self.head is None:
SCREAMING_SNAKE_CASE : Optional[int] = new_node
elif index == 0:
SCREAMING_SNAKE_CASE : Optional[int] = self.head # link new_node to head
SCREAMING_SNAKE_CASE : List[Any] = new_node
else:
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
for _ in range(index - 1 ):
SCREAMING_SNAKE_CASE : Optional[int] = temp.next
SCREAMING_SNAKE_CASE : Optional[int] = temp.next
SCREAMING_SNAKE_CASE : int = new_node
def __UpperCamelCase ( self : Optional[int] ) -> None: # print every node data
"""simple docstring"""
print(self )
def __UpperCamelCase ( self : int ) -> Any:
"""simple docstring"""
return self.delete_nth(0 )
def __UpperCamelCase ( self : Any ) -> Any: # delete from tail
"""simple docstring"""
return self.delete_nth(len(self ) - 1 )
def __UpperCamelCase ( self : List[str] , a : int = 0 ) -> Any:
"""simple docstring"""
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError("List index out of range." )
SCREAMING_SNAKE_CASE : Tuple = self.head # default first node
if index == 0:
SCREAMING_SNAKE_CASE : List[str] = self.head.next
else:
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
for _ in range(index - 1 ):
SCREAMING_SNAKE_CASE : Any = temp.next
SCREAMING_SNAKE_CASE : List[Any] = temp.next
SCREAMING_SNAKE_CASE : List[str] = temp.next.next
return delete_node.data
def __UpperCamelCase ( self : List[Any] ) -> bool:
"""simple docstring"""
return self.head is None
def __UpperCamelCase ( self : Optional[int] ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = None
SCREAMING_SNAKE_CASE : str = self.head
while current:
# Store the current node's next node.
SCREAMING_SNAKE_CASE : Any = current.next
# Make the current node's next point backwards
SCREAMING_SNAKE_CASE : List[Any] = prev
# Make the previous node be the current node
SCREAMING_SNAKE_CASE : Any = current
# Make the current node the next node (to progress iteration)
SCREAMING_SNAKE_CASE : str = next_node
# Return prev in order to put the head at the end
SCREAMING_SNAKE_CASE : Optional[Any] = prev
def lowerCamelCase__ ( ):
SCREAMING_SNAKE_CASE : Union[str, Any] = LinkedList()
assert linked_list.is_empty() is True
assert str(_a) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10):
assert len(_a) == i
linked_list.insert_nth(_a , i + 1)
assert str(_a) == "->".join(str(_a) for i in range(1 , 11))
linked_list.insert_head(0)
linked_list.insert_tail(11)
assert str(_a) == "->".join(str(_a) for i in range(0 , 12))
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9) == 10
assert linked_list.delete_tail() == 11
assert len(_a) == 9
assert str(_a) == "->".join(str(_a) for i in range(1 , 10))
assert all(linked_list[i] == i + 1 for i in range(0 , 9)) is True
for i in range(0 , 9):
SCREAMING_SNAKE_CASE : str = -i
assert all(linked_list[i] == -i for i in range(0 , 9)) is True
linked_list.reverse()
assert str(_a) == "->".join(str(_a) for i in range(-8 , 1))
def lowerCamelCase__ ( ):
SCREAMING_SNAKE_CASE : Optional[Any] = [
-9,
100,
Node(77345112),
"dlrow olleH",
7,
5555,
0,
-192.5_5555,
"Hello, world!",
77.9,
Node(10),
None,
None,
12.20,
]
SCREAMING_SNAKE_CASE : List[Any] = LinkedList()
for i in test_input:
linked_list.insert_tail(_a)
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(_a) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
SCREAMING_SNAKE_CASE : List[Any] = linked_list.delete_head()
assert result == -9
assert (
str(_a) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
SCREAMING_SNAKE_CASE : Any = linked_list.delete_tail()
assert result == 12.2
assert (
str(_a) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
SCREAMING_SNAKE_CASE : Any = linked_list.delete_nth(10)
assert result is None
assert (
str(_a) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node("Hello again, world!"))
assert (
str(_a)
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(_a)
assert (
str(_a)
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(_a)
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def lowerCamelCase__ ( ):
from doctest import testmod
testmod()
SCREAMING_SNAKE_CASE : Optional[int] = LinkedList()
linked_list.insert_head(input("Inserting 1st at head ").strip())
linked_list.insert_head(input("Inserting 2nd at head ").strip())
print("\nPrint list:")
linked_list.print_list()
linked_list.insert_tail(input("\nInserting 1st at tail ").strip())
linked_list.insert_tail(input("Inserting 2nd at tail ").strip())
print("\nPrint list:")
linked_list.print_list()
print("\nDelete head")
linked_list.delete_head()
print("Delete tail")
linked_list.delete_tail()
print("\nPrint list:")
linked_list.print_list()
print("\nReverse linked list")
linked_list.reverse()
print("\nPrint list:")
linked_list.print_list()
print("\nString representation of linked list:")
print(_a)
print("\nReading/changing Node data using indexing:")
print(f"Element at Position 1: {linked_list[1]}")
SCREAMING_SNAKE_CASE : Dict = input("Enter New Value: ").strip()
print("New list:")
print(_a)
print(f"length of linked_list is : {len(_a)}")
if __name__ == "__main__":
main() | 76 | 1 |
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class __a :
def __init__( self , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=None ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = np.random.default_rng(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = length
_UpperCAmelCase = rng.normal(size=(length,) ).astype(np.floataa )
_UpperCAmelCase = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ) -> List[Any]:
"""simple docstring"""
return self.length
def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
return {"x": self.x[i], "y": self.y[i]}
class __a ( torch.nn.Module ):
def __init__( self , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=False ) -> str:
"""simple docstring"""
super().__init__()
_UpperCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
_UpperCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
_UpperCAmelCase = True
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=None ) -> int:
"""simple docstring"""
if self.first_batch:
print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' )
_UpperCAmelCase = False
return x * self.a[0] + self.b[0]
class __a ( torch.nn.Module ):
def __init__( self , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=False ) -> Any:
"""simple docstring"""
super().__init__()
_UpperCAmelCase = torch.nn.Parameter(torch.tensor(_SCREAMING_SNAKE_CASE ).float() )
_UpperCAmelCase = torch.nn.Parameter(torch.tensor(_SCREAMING_SNAKE_CASE ).float() )
_UpperCAmelCase = True
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=None ) -> List[str]:
"""simple docstring"""
if self.first_batch:
print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' )
_UpperCAmelCase = False
return x * self.a + self.b
def lowerCAmelCase__ ( a__: int , a__: int = 1_6 ) -> List[Any]:
'''simple docstring'''
from datasets import load_dataset
from transformers import AutoTokenizer
_UpperCAmelCase = AutoTokenizer.from_pretrained('bert-base-cased' )
_UpperCAmelCase = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'}
_UpperCAmelCase = load_dataset('csv' , data_files=a__ )
_UpperCAmelCase = datasets['train'].unique('label' )
_UpperCAmelCase = {v: i for i, v in enumerate(a__ )}
def tokenize_function(a__: str ):
# max_length=None => use the model max length (it's actually the default)
_UpperCAmelCase = tokenizer(
examples['sentence1'] , examples['sentence2'] , truncation=a__ , max_length=a__ , padding='max_length' )
if "label" in examples:
_UpperCAmelCase = [label_to_id[l] for l in examples['label']]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
_UpperCAmelCase = datasets.map(
a__ , batched=a__ , remove_columns=['sentence1', 'sentence2', 'label'] , )
def collate_fn(a__: Union[str, Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(a__ , padding='max_length' , max_length=1_2_8 , return_tensors='pt' )
return tokenizer.pad(a__ , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
_UpperCAmelCase = DataLoader(tokenized_datasets['train'] , shuffle=a__ , collate_fn=a__ , batch_size=2 )
_UpperCAmelCase = DataLoader(tokenized_datasets['validation'] , shuffle=a__ , collate_fn=a__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 185 |
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class __a ( UpperCAmelCase ):
_a : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 185 | 1 |
"""simple docstring"""
import logging
import os
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
from tqdm import auto as tqdm_lib
_a = {
'debug': logging.DEBUG,
'info': logging.INFO,
'warning': logging.WARNING,
'error': logging.ERROR,
'critical': logging.CRITICAL,
}
_a = logging.WARNING
def __a ( ):
UpperCAmelCase_ : Dict = os.getenv("DATASETS_VERBOSITY", __lowerCamelCase )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """
f"""has to be one of: { ", ".join(log_levels.keys() ) }""" )
return _default_log_level
def __a ( ):
return __name__.split("." )[0]
def __a ( ):
return logging.getLogger(_get_library_name() )
def __a ( ):
# Apply our default configuration to the library root logger.
UpperCAmelCase_ : int = _get_library_root_logger()
library_root_logger.setLevel(_get_default_logging_level() )
def __a ( ):
UpperCAmelCase_ : int = _get_library_root_logger()
library_root_logger.setLevel(logging.NOTSET )
def __a ( __lowerCamelCase = None ):
if name is None:
UpperCAmelCase_ : str = _get_library_name()
return logging.getLogger(__lowerCamelCase )
def __a ( ):
return _get_library_root_logger().getEffectiveLevel()
def __a ( __lowerCamelCase ):
_get_library_root_logger().setLevel(__lowerCamelCase )
def __a ( ):
return set_verbosity(__lowerCamelCase )
def __a ( ):
return set_verbosity(__lowerCamelCase )
def __a ( ):
return set_verbosity(__lowerCamelCase )
def __a ( ):
return set_verbosity(__lowerCamelCase )
def __a ( ):
UpperCAmelCase_ : Tuple = False
def __a ( ):
UpperCAmelCase_ : List[Any] = True
# Configure the library root logger at the module level (singleton-like)
_configure_library_root_logger()
class A_ :
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ): # pylint: disable=unused-argument
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = args[0] if args else None
def __iter__( self ):
"""simple docstring"""
return iter(self._iterator )
def __getattr__( self , lowercase_ ):
"""simple docstring"""
def empty_fn(*lowercase_ , **lowercase_ ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self ):
"""simple docstring"""
return self
def __exit__( self , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
return
_a = True
class A_ :
'''simple docstring'''
def __call__( self , *lowercase_ , lowercase_=False , **lowercase_ ):
"""simple docstring"""
if _tqdm_active and not disable:
return tqdm_lib.tqdm(*lowercase_ , **lowercase_ )
else:
return EmptyTqdm(*lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
_a = _tqdm_cls()
def __a ( ):
global _tqdm_active
return bool(_tqdm_active )
def __a ( ):
global _tqdm_active
UpperCAmelCase_ : Tuple = True
def __a ( ):
global _tqdm_active
UpperCAmelCase_ : int = False
| 61 |
"""simple docstring"""
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
_a = 'src/diffusers'
# Matches is_xxx_available()
_a = re.compile(R'is\_([a-z_]*)_available\(\)')
# Matches from xxx import bla
_a = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
_a = '\n{0} = None\n'
_a = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n'
_a = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n'
def __a ( __lowerCamelCase ):
UpperCAmelCase_ : int = _re_backend.findall(__lowerCamelCase )
if len(__lowerCamelCase ) == 0:
return None
return "_and_".join(__lowerCamelCase )
def __a ( ):
with open(os.path.join(__lowerCamelCase, "__init__.py" ), "r", encoding="utf-8", newline="\n" ) as f:
UpperCAmelCase_ : Optional[int] = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCAmelCase_ : Union[str, Any] = 0
UpperCAmelCase_ : Optional[int] = {}
# Go through the end of the file
while line_index < len(__lowerCamelCase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCAmelCase_ : Union[str, Any] = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("else:" ):
line_index += 1
line_index += 1
UpperCAmelCase_ : List[str] = []
# Until we unindent, add backend objects to the list
while line_index < len(__lowerCamelCase ) and len(lines[line_index] ) > 1:
UpperCAmelCase_ : Union[str, Any] = lines[line_index]
UpperCAmelCase_ : Optional[Any] = _re_single_line_import.search(__lowerCamelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__lowerCamelCase ) > 0:
UpperCAmelCase_ : Optional[int] = objects
else:
line_index += 1
return backend_specific_objects
def __a ( __lowerCamelCase, __lowerCamelCase ):
if name.isupper():
return DUMMY_CONSTANT.format(__lowerCamelCase )
elif name.islower():
return DUMMY_FUNCTION.format(__lowerCamelCase, __lowerCamelCase )
else:
return DUMMY_CLASS.format(__lowerCamelCase, __lowerCamelCase )
def __a ( __lowerCamelCase=None ):
if backend_specific_objects is None:
UpperCAmelCase_ : Tuple = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCAmelCase_ : str = {}
for backend, objects in backend_specific_objects.items():
UpperCAmelCase_ : int = "[" + ", ".join(f"""\"{b}\"""" for b in backend.split("_and_" ) ) + "]"
UpperCAmelCase_ : Dict = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__lowerCamelCase, __lowerCamelCase ) for o in objects] )
UpperCAmelCase_ : int = dummy_file
return dummy_files
def __a ( __lowerCamelCase=False ):
UpperCAmelCase_ : Optional[Any] = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCAmelCase_ : Union[str, Any] = {"torch": "pt"}
# Locate actual dummy modules and read their content.
UpperCAmelCase_ : List[str] = os.path.join(__lowerCamelCase, "utils" )
UpperCAmelCase_ : Optional[int] = {
backend: os.path.join(__lowerCamelCase, f"""dummy_{short_names.get(__lowerCamelCase, __lowerCamelCase )}_objects.py""" )
for backend in dummy_files.keys()
}
UpperCAmelCase_ : Any = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__lowerCamelCase ):
with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f:
UpperCAmelCase_ : Optional[int] = f.read()
else:
UpperCAmelCase_ : Any = ""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f"""Updating diffusers.utils.dummy_{short_names.get(__lowerCamelCase, __lowerCamelCase )}_objects.py as the main """
"__init__ has new objects." )
with open(dummy_file_paths[backend], "w", encoding="utf-8", newline="\n" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"The main __init__ has objects that are not present in "
f"""diffusers.utils.dummy_{short_names.get(__lowerCamelCase, __lowerCamelCase )}_objects.py. Run `make fix-copies` """
"to fix this." )
if __name__ == "__main__":
_a = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
_a = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 61 | 1 |
"""simple docstring"""
from __future__ import annotations
from math import gcd
def lowercase ( _snake_case : int , _snake_case : int = 2 , _snake_case : int = 1 , _snake_case : int = 3 , ) ->int | None:
"""simple docstring"""
if num < 2:
raise ValueError('''The input value cannot be less than 2''' )
# Because of the relationship between ``f(f(x))`` and ``f(x)``, this
# algorithm struggles to find factors that are divisible by two.
# As a workaround, we specifically check for two and even inputs.
# See: https://math.stackexchange.com/a/2856214/165820
if num > 2 and num % 2 == 0:
return 2
# Pollard's Rho algorithm requires a function that returns pseudorandom
# values between 0 <= X < ``num``. It doesn't need to be random in the
# sense that the output value is cryptographically secure or difficult
# to calculate, it only needs to be random in the sense that all output
# values should be equally likely to appear.
# For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num``
# However, the success of Pollard's algorithm isn't guaranteed and is
# determined in part by the initial seed and the chosen random function.
# To make retries easier, we will instead use ``f(x) = (x**2 + C) % num``
# where ``C`` is a value that we can modify between each attempt.
def rand_fn(_snake_case : int , _snake_case : int , _snake_case : int ) -> int:
return (pow(lowerCAmelCase__ , 2 ) + step) % modulus
for _ in range(lowerCAmelCase__ ):
# These track the position within the cycle detection logic.
__snake_case : int = seed
__snake_case : Dict = seed
while True:
# At each iteration, the tortoise moves one step and the hare moves two.
__snake_case : List[Any] = rand_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__snake_case : int = rand_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__snake_case : int = rand_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# At some point both the tortoise and the hare will enter a cycle whose
# length ``p`` is a divisor of ``num``. Once in that cycle, at some point
# the tortoise and hare will end up on the same value modulo ``p``.
# We can detect when this happens because the position difference between
# the tortoise and the hare will share a common divisor with ``num``.
__snake_case : Tuple = gcd(hare - tortoise , lowerCAmelCase__ )
if divisor == 1:
# No common divisor yet, just keep searching.
continue
else:
# We found a common divisor!
if divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# The divisor is a nontrivial factor of ``num``!
return divisor
# If we made it here, then this attempt failed.
# We need to pick a new starting seed for the tortoise and hare
# in addition to a new step value for the random function.
# To keep this example implementation deterministic, the
# new values will be generated based on currently available
# values instead of using something like ``random.randint``.
# We can use the hare's position as the new seed.
# This is actually what Richard Brent's the "optimized" variant does.
__snake_case : List[Any] = hare
# The new step value for the random function can just be incremented.
# At first the results will be similar to what the old function would
# have produced, but the value will quickly diverge after a bit.
step += 1
# We haven't found a divisor within the requested number of attempts.
# We were unlucky or ``num`` itself is actually prime.
return None
if __name__ == "__main__":
import argparse
SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser()
parser.add_argument(
"""num""",
type=int,
help="""The value to find a divisor of""",
)
parser.add_argument(
"""--attempts""",
type=int,
default=3,
help="""The number of attempts before giving up""",
)
SCREAMING_SNAKE_CASE : Tuple = parser.parse_args()
SCREAMING_SNAKE_CASE : Optional[Any] = pollard_rho(args.num, attempts=args.attempts)
if divisor is None:
print(F'{args.num} is probably prime')
else:
SCREAMING_SNAKE_CASE : Optional[Any] = args.num // divisor
print(F'{args.num} = {divisor} * {quotient}')
| 365 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass
from typing import List, Optional, Union
import tqdm
from filelock import FileLock
from transformers import (
BartTokenizer,
BartTokenizerFast,
DataProcessor,
PreTrainedTokenizer,
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
is_tf_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__)
@dataclass(frozen=__snake_case )
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =42
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
@dataclass(frozen=__snake_case )
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
if is_torch_available():
import torch
from torch.utils.data import Dataset
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =42
def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ):
'''simple docstring'''
__snake_case : Any = hans_processors[task]()
__snake_case : int = os.path.join(
a_ , '''cached_{}_{}_{}_{}'''.format(
'''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , )
__snake_case : Tuple = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
__snake_case , __snake_case : Dict = label_list[2], label_list[1]
__snake_case : Any = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__snake_case : int = cached_features_file + '''.lock'''
with FileLock(a_ ):
if os.path.exists(a_ ) and not overwrite_cache:
logger.info(f"""Loading features from cached file {cached_features_file}""" )
__snake_case : Union[str, Any] = torch.load(a_ )
else:
logger.info(f"""Creating features from dataset file at {data_dir}""" )
__snake_case : Dict = (
processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ )
)
logger.info('''Training examples: %s''' , len(a_ ) )
__snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ )
logger.info('''Saving features into cached file %s''' , a_ )
torch.save(self.features , a_ )
def __len__(self ):
'''simple docstring'''
return len(self.features )
def __getitem__(self , a_ ):
'''simple docstring'''
return self.features[i]
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.label_list
if is_tf_available():
import tensorflow as tf
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ):
'''simple docstring'''
__snake_case : List[Any] = hans_processors[task]()
__snake_case : str = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
__snake_case , __snake_case : Tuple = label_list[2], label_list[1]
__snake_case : Dict = label_list
__snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ )
__snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ )
def gen():
for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ):
if ex_index % 1_00_00 == 0:
logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) )
yield (
{
"example_id": 0,
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label,
)
__snake_case : Union[str, Any] = tf.data.Dataset.from_generator(
a_ , (
{
'''example_id''': tf.intaa,
'''input_ids''': tf.intaa,
'''attention_mask''': tf.intaa,
'''token_type_ids''': tf.intaa,
},
tf.intaa,
) , (
{
'''example_id''': tf.TensorShape([] ),
'''input_ids''': tf.TensorShape([None, None] ),
'''attention_mask''': tf.TensorShape([None, None] ),
'''token_type_ids''': tf.TensorShape([None, None] ),
},
tf.TensorShape([] ),
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.dataset
def __len__(self ):
'''simple docstring'''
return len(self.features )
def __getitem__(self , a_ ):
'''simple docstring'''
return self.features[i]
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.label_list
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return ["contradiction", "entailment", "neutral"]
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : List[Any] = []
for i, line in enumerate(a_ ):
if i == 0:
continue
__snake_case : Tuple = '''%s-%s''' % (set_type, line[0])
__snake_case : Dict = line[5]
__snake_case : int = line[6]
__snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7]
__snake_case : List[Any] = line[0]
examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) )
return examples
def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]:
"""simple docstring"""
__snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )}
__snake_case : Tuple = []
for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ):
if ex_index % 10_000 == 0:
logger.info('''Writing example %d''' % (ex_index) )
__snake_case : List[Any] = tokenizer(
example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , )
__snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0
__snake_case : Union[str, Any] = int(example.pairID )
features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) )
for i, example in enumerate(examples[:5] ):
logger.info('''*** Example ***''' )
logger.info(f"""guid: {example}""" )
logger.info(f"""features: {features[i]}""" )
return features
SCREAMING_SNAKE_CASE : Dict = {
"""hans""": 3,
}
SCREAMING_SNAKE_CASE : str = {
"""hans""": HansProcessor,
}
| 24 | 0 |
"""simple docstring"""
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class _A ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
snake_case__ : int = BioGptTokenizer
snake_case__ : List[Any] = False
def A__ ( self ):
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowercase = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""w</w>""",
"""r</w>""",
"""t</w>""",
"""lo""",
"""low""",
"""er</w>""",
"""low</w>""",
"""lowest</w>""",
"""newer</w>""",
"""wider</w>""",
"""<unk>""",
]
lowercase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) )
lowercase = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""]
lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" ) as fp:
fp.write(json.dumps(__lowerCAmelCase ) )
with open(self.merges_file , """w""" ) as fp:
fp.write("""\n""".join(__lowerCAmelCase ) )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = """lower newer"""
lowercase = """lower newer"""
return input_text, output_text
def A__ ( self ):
"""simple docstring"""
lowercase = BioGptTokenizer(self.vocab_file , self.merges_file )
lowercase = """lower"""
lowercase = ["""low""", """er</w>"""]
lowercase = tokenizer.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
lowercase = tokens + ["""<unk>"""]
lowercase = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
lowercase = tokenizer.encode("""sequence builders""" , add_special_tokens=__lowerCAmelCase )
lowercase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__lowerCAmelCase )
lowercase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase )
lowercase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 197 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Generator
def _A () -> Generator[int, None, None]:
'''simple docstring'''
_a = {}
_a = 2
while True:
_a = factor_map.pop(lowerCAmelCase__ , lowerCAmelCase__ )
if factor:
_a = factor + prime
while x in factor_map:
x += factor
_a = factor
else:
_a = prime
yield prime
prime += 1
def _A (lowerCAmelCase__ :float = 1E10 ) -> int:
'''simple docstring'''
_a = sieve()
_a = 1
while True:
_a = next(lowerCAmelCase__ )
if (2 * prime * n) > limit:
return n
# Ignore the next prime as the reminder will be 2.
next(lowerCAmelCase__ )
n += 2
if __name__ == "__main__":
print(solution())
| 168 | 0 |
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
from . import BaseDiffusersCLICommand
def A__ ( SCREAMING_SNAKE_CASE__) -> List[str]:
return EnvironmentCommand()
class __snake_case ( __lowerCamelCase ):
'''simple docstring'''
@staticmethod
def UpperCAmelCase__ ( A : ArgumentParser ):
__snake_case: Optional[Any] = parser.add_parser("""env""" )
download_parser.set_defaults(func=A )
def UpperCAmelCase__ ( self : List[str] ):
__snake_case: List[str] = huggingface_hub.__version__
__snake_case: Optional[int] = """not installed"""
__snake_case: str = """NA"""
if is_torch_available():
import torch
__snake_case: Tuple = torch.__version__
__snake_case: Optional[int] = torch.cuda.is_available()
__snake_case: int = """not installed"""
if is_transformers_available():
import transformers
__snake_case: List[Any] = transformers.__version__
__snake_case: Optional[Any] = """not installed"""
if is_accelerate_available():
import accelerate
__snake_case: Tuple = accelerate.__version__
__snake_case: Union[str, Any] = """not installed"""
if is_xformers_available():
import xformers
__snake_case: int = xformers.__version__
__snake_case: int = {
"""`diffusers` version""": version,
"""Platform""": platform.platform(),
"""Python version""": platform.python_version(),
"""PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''',
"""Huggingface_hub version""": hub_version,
"""Transformers version""": transformers_version,
"""Accelerate version""": accelerate_version,
"""xFormers version""": xformers_version,
"""Using GPU in script?""": """<fill in>""",
"""Using distributed or parallel set-up in script?""": """<fill in>""",
}
print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" )
print(self.format_dict(A ) )
return info
@staticmethod
def UpperCAmelCase__ ( A : List[Any] ):
return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
| 293 |
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@parameterized.expand([(None,), ("""foo.json""",)] )
def UpperCAmelCase__ ( self : List[str] , A : Optional[Any] ):
__snake_case: Any = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A , config_name=A )
__snake_case: Optional[int] = GenerationConfig.from_pretrained(A , config_name=A )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , A )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50 )
self.assertEqual(loaded_config.max_length , 20 )
self.assertEqual(loaded_config.max_time , A )
def UpperCAmelCase__ ( self : Dict ):
__snake_case: str = AutoConfig.from_pretrained("""gpt2""" )
__snake_case: Any = GenerationConfig.from_model_config(A )
__snake_case: str = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(A , A )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def UpperCAmelCase__ ( self : str ):
__snake_case: List[str] = GenerationConfig()
__snake_case: Tuple = {
"""max_new_tokens""": 1_024,
"""foo""": """bar""",
}
__snake_case: List[str] = copy.deepcopy(A )
__snake_case: Optional[int] = generation_config.update(**A )
# update_kwargs was not modified (no side effects)
self.assertEqual(A , A )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_024 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(A , {"""foo""": """bar"""} )
def UpperCAmelCase__ ( self : Tuple ):
__snake_case: List[str] = GenerationConfig()
__snake_case: Optional[int] = """bar"""
with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir:
generation_config.save_pretrained(A )
__snake_case: Any = GenerationConfig.from_pretrained(A )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , """bar""" )
__snake_case: int = GenerationConfig.from_model_config(A )
assert not hasattr(A , """foo""" ) # no new kwargs should be initialized if from config
def UpperCAmelCase__ ( self : Dict ):
__snake_case: Dict = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , A )
self.assertEqual(default_config.num_beams , 1 )
__snake_case: Union[str, Any] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , A )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A )
__snake_case: Tuple = GenerationConfig.from_pretrained(A , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , A )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def UpperCAmelCase__ ( cls : List[str] ):
__snake_case: Optional[int] = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCAmelCase__ ( cls : List[Any] ):
try:
delete_repo(token=cls._token , repo_id="""test-generation-config""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" )
except HTTPError:
pass
def UpperCAmelCase__ ( self : Tuple ):
__snake_case: Optional[int] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("""test-generation-config""" , use_auth_token=self._token )
__snake_case: str = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
# Reset repo
delete_repo(token=self._token , repo_id="""test-generation-config""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A , repo_id="""test-generation-config""" , push_to_hub=A , use_auth_token=self._token )
__snake_case: Optional[Any] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
def UpperCAmelCase__ ( self : List[Any] ):
__snake_case: Union[str, Any] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token )
__snake_case: int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=A , use_auth_token=self._token )
__snake_case: Optional[int] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
| 293 | 1 |
'''simple docstring'''
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class __UpperCAmelCase ( ctypes.Structure ):
# _fields is a specific attr expected by ctypes
__lowercase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)]
def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]:
if os.name == "nt":
_snake_case = CursorInfo()
_snake_case = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(__A , ctypes.byref(__A ) )
_snake_case = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(__A , ctypes.byref(__A ) )
elif os.name == "posix":
sys.stdout.write('\033[?25l' )
sys.stdout.flush()
def SCREAMING_SNAKE_CASE__ ( ) -> List[str]:
if os.name == "nt":
_snake_case = CursorInfo()
_snake_case = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(__A , ctypes.byref(__A ) )
_snake_case = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(__A , ctypes.byref(__A ) )
elif os.name == "posix":
sys.stdout.write('\033[?25h' )
sys.stdout.flush()
@contextmanager
def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]:
try:
hide_cursor()
yield
finally:
show_cursor()
| 42 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase__: Optional[int] = logging.get_logger(__name__)
def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]:
UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' )
if "large" in checkpoint_url:
UpperCAmelCase : Tuple = 1024
UpperCAmelCase : List[Any] = 4096
UpperCAmelCase : str = 24
UpperCAmelCase : List[Any] = 16
UpperCAmelCase : str = [5, 11, 17, 23]
UpperCAmelCase : List[Any] = [256, 512, 1024, 1024]
UpperCAmelCase : Tuple = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
UpperCAmelCase : Optional[Any] = 768
UpperCAmelCase : Tuple = [1, 1, 1, 0.5]
UpperCAmelCase : int = [256, 512, 768, 768]
UpperCAmelCase : Any = 150
UpperCAmelCase : Tuple = 16
UpperCAmelCase : Any = (1, 384, 384)
UpperCAmelCase : Optional[Any] = False
UpperCAmelCase : Tuple = '''project'''
if "ade" in checkpoint_url:
UpperCAmelCase : Any = True
UpperCAmelCase : str = 768
UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5]
UpperCAmelCase : List[Any] = 150
UpperCAmelCase : List[Any] = 16
UpperCAmelCase : str = '''huggingface/label-files'''
UpperCAmelCase : Tuple = '''ade20k-id2label.json'''
UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) )
UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : List[Any] = idalabel
UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480]
return config, expected_shape
def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int:
UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias''']
for k in ignore_keys:
state_dict.pop(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' )
if "pretrained.model" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' )
if "patch_embed" in name:
UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' )
if "pos_embed" in name:
UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' )
if "attn.proj" in name:
UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "proj" in name and "project" not in name:
UpperCAmelCase : str = name.replace('''proj''' , '''projection''' )
if "blocks" in name:
UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' )
if "mlp.fc1" in name:
UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' )
if "norm1" in name and "backbone" not in name:
UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name and "backbone" not in name:
UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' )
if "scratch.output_conv" in name:
UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' )
if "scratch" in name:
UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' )
if "layer1_rn" in name:
UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' )
if "layer2_rn" in name:
UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' )
if "layer3_rn" in name:
UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' )
if "layer4_rn" in name:
UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' )
if "refinenet" in name:
UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" )
if "out_conv" in name:
UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' )
if "resConfUnit1" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' )
if "resConfUnit2" in name:
UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' )
if "conv1" in name:
UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' )
if "conv2" in name:
UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' )
if "pretrained.act_postprocess2.0.project.0" in name:
UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' )
if "pretrained.act_postprocess3.0.project.0" in name:
UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' )
if "pretrained.act_postprocess4.0.project.0" in name:
UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' )
if "pretrained.act_postprocess1.4" in name:
UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' )
if "pretrained.act_postprocess2.3" in name:
UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' )
if "pretrained.act_postprocess2.4" in name:
UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' )
if "pretrained.act_postprocess3.3" in name:
UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' )
if "pretrained.act_postprocess4.3" in name:
UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' )
if "pretrained.act_postprocess4.4" in name:
UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' )
if "pretrained" in name:
UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' )
if "bn" in name:
UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' )
if "head" in name:
UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' )
if "encoder.norm" in name:
UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' )
if "auxlayer" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' )
if "backbone" in name:
UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' )
if ".." in name:
UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' )
if "stem.conv" in name:
UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' )
if "blocks" in name:
UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' )
if "convolution" in name and "backbone" in name:
UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' )
if "layer" in name and "backbone" in name:
UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' )
if "backbone.bit.encoder.bit" in name:
UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' )
if "embedder.conv" in name:
UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' )
if "backbone.bit.encoder.stem.norm" in name:
UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' )
return name
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" )
UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase : int = in_proj_bias[: config.hidden_size]
UpperCAmelCase : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : List[str] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase : str = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :]
def snake_case_ ( ) -> List[str]:
UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw )
return im
@torch.no_grad()
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any:
UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' )
# remove certain keys
remove_ignore_keys_(_lowerCAmelCase )
# rename keys
for key in state_dict.copy().keys():
UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase )
UpperCAmelCase : List[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase )
# load HuggingFace model
UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase )
model.load_state_dict(_lowerCAmelCase )
model.eval()
# Check outputs on an image
UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384
UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase )
UpperCAmelCase : Dict = prepare_img()
UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' )
# forward pass
UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth
if show_prediction:
UpperCAmelCase : Dict = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCAmelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowerCAmelCase )
if push_to_hub:
model.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
if __name__ == "__main__":
UpperCamelCase__: Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
type=str,
help="URL of the original DPT checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=False,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
parser.add_argument(
"--model_name",
default="dpt-large",
type=str,
help="Name of the model, in case you're pushing to the hub.",
)
parser.add_argument(
"--show_prediction",
action="store_true",
)
UpperCamelCase__: Tuple = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 23 | 0 |
'''simple docstring'''
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
lowerCAmelCase : str = get_logger(__name__)
lowerCAmelCase : int = r'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n'
class SCREAMING_SNAKE_CASE__ :
@add_start_docstrings(A_ )
def __call__( self , A_ , A_ )-> jnp.ndarray:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class SCREAMING_SNAKE_CASE__ :
@add_start_docstrings(A_ )
def __call__( self , A_ , A_ )-> jnp.ndarray:
'''simple docstring'''
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class SCREAMING_SNAKE_CASE__ ( snake_case_):
@add_start_docstrings(A_ )
def __call__( self , A_ , A_ , A_ , **A_ )-> jnp.ndarray:
'''simple docstring'''
for processor in self:
UpperCamelCase = inspect.signature(processor.__call__ ).parameters
if len(A_ ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
F'''Make sure that all the required parameters: {list(function_args.keys() )} for '''
F'''{processor.__class__} are passed to the logits processor.''' )
UpperCamelCase = processor(A_ , A_ , A_ , **A_ )
else:
UpperCamelCase = processor(A_ , A_ , A_ )
return scores
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ )-> List[Any]:
'''simple docstring'''
if not isinstance(A_ , A_ ) or not (temperature > 0):
raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' )
UpperCamelCase = temperature
def __call__( self , A_ , A_ , A_ )-> jnp.ndarray:
'''simple docstring'''
UpperCamelCase = scores / self.temperature
return scores
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , A_ = -float('Inf' ) , A_ = 1 )-> int:
'''simple docstring'''
if not isinstance(A_ , A_ ) or (top_p < 0 or top_p > 1.0):
raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' )
if not isinstance(A_ , A_ ) or (min_tokens_to_keep < 1):
raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' )
UpperCamelCase = top_p
UpperCamelCase = filter_value
UpperCamelCase = min_tokens_to_keep
def __call__( self , A_ , A_ , A_ )-> jnp.ndarray:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = lax.top_k(A_ , scores.shape[-1] )
UpperCamelCase = jnp.full_like(A_ , self.filter_value )
UpperCamelCase = jax.nn.softmax(A_ , axis=-1 ).cumsum(axis=-1 )
UpperCamelCase = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
UpperCamelCase = jnp.roll(A_ , 1 )
score_mask |= score_mask.at[:, 0].set(A_ )
# min tokens to keep
UpperCamelCase = score_mask.at[:, : self.min_tokens_to_keep].set(A_ )
UpperCamelCase = jnp.where(A_ , A_ , A_ )
UpperCamelCase = jax.lax.sort_key_val(A_ , A_ )[-1]
return next_scores
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , A_ = -float('Inf' ) , A_ = 1 )-> str:
'''simple docstring'''
if not isinstance(A_ , A_ ) or top_k <= 0:
raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' )
UpperCamelCase = max(A_ , A_ )
UpperCamelCase = filter_value
def __call__( self , A_ , A_ , A_ )-> jnp.ndarray:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = scores.shape
UpperCamelCase = jnp.full(batch_size * vocab_size , self.filter_value )
UpperCamelCase = min(self.top_k , scores.shape[-1] ) # Safety check
UpperCamelCase , UpperCamelCase = lax.top_k(A_ , A_ )
UpperCamelCase = jnp.broadcast_to((jnp.arange(A_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten()
UpperCamelCase = topk_scores.flatten()
UpperCamelCase = topk_indices.flatten() + shift
UpperCamelCase = next_scores_flat.at[topk_indices_flat].set(A_ )
UpperCamelCase = next_scores_flat.reshape(A_ , A_ )
return next_scores
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = bos_token_id
def __call__( self , A_ , A_ , A_ )-> jnp.ndarray:
'''simple docstring'''
UpperCamelCase = jnp.full(scores.shape , -float('inf' ) )
UpperCamelCase = 1 - jnp.bool_(cur_len - 1 )
UpperCamelCase = jnp.where(A_ , new_scores.at[:, self.bos_token_id].set(0 ) , A_ )
return scores
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , A_ )-> str:
'''simple docstring'''
UpperCamelCase = max_length
UpperCamelCase = eos_token_id
def __call__( self , A_ , A_ , A_ )-> jnp.ndarray:
'''simple docstring'''
UpperCamelCase = jnp.full(scores.shape , -float('inf' ) )
UpperCamelCase = 1 - jnp.bool_(cur_len - self.max_length + 1 )
UpperCamelCase = jnp.where(A_ , new_scores.at[:, self.eos_token_id].set(0 ) , A_ )
return scores
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , A_ )-> List[str]:
'''simple docstring'''
if not isinstance(A_ , A_ ) or min_length < 0:
raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' )
if not isinstance(A_ , A_ ) or eos_token_id < 0:
raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' )
UpperCamelCase = min_length
UpperCamelCase = eos_token_id
def __call__( self , A_ , A_ , A_ )-> jnp.ndarray:
'''simple docstring'''
UpperCamelCase = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 )
UpperCamelCase = jnp.where(A_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , A_ )
return scores
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , A_ )-> str:
'''simple docstring'''
UpperCamelCase = list(A_ )
UpperCamelCase = begin_index
def __call__( self , A_ , A_ , A_ )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = 1 - jnp.bool_(cur_len - self.begin_index )
UpperCamelCase = jnp.where(A_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , A_ )
return scores
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ )-> Dict:
'''simple docstring'''
UpperCamelCase = list(A_ )
def __call__( self , A_ , A_ , A_ )-> jnp.ndarray:
'''simple docstring'''
UpperCamelCase = scores.at[..., self.suppress_tokens].set(-float('inf' ) )
return scores
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = dict(A_ )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
UpperCamelCase = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
UpperCamelCase = force_token_array.at[index].set(A_ )
UpperCamelCase = jnp.intaa(A_ )
def __call__( self , A_ , A_ , A_ )-> jnp.ndarray:
'''simple docstring'''
def _force_token(A_ ):
UpperCamelCase = scores.shape[0]
UpperCamelCase = self.force_token_array[generation_idx]
UpperCamelCase = jnp.ones_like(A_ , dtype=scores.dtype ) * -float('inf' )
UpperCamelCase = jnp.zeros((batch_size, 1) , dtype=scores.dtype )
UpperCamelCase = lax.dynamic_update_slice(A_ , A_ , (0, current_token) )
return new_scores
UpperCamelCase = lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(A_ ) , lambda: scores , ) , )
return scores
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , A_ , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = generate_config.eos_token_id
UpperCamelCase = generate_config.no_timestamps_token_id
UpperCamelCase = generate_config.no_timestamps_token_id + 1
UpperCamelCase = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(A_ , 'max_initial_timestamp_index' ):
UpperCamelCase = generate_config.max_initial_timestamp_index
else:
UpperCamelCase = model_config.vocab_size
if self.max_initial_timestamp_index is None:
UpperCamelCase = model_config.vocab_size
def __call__( self , A_ , A_ , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) )
def handle_pairs(A_ , A_ ):
UpperCamelCase = jnp.where((cur_len - self.begin_index) >= 1 , A_ , A_ )
UpperCamelCase = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , A_ , )
UpperCamelCase = jnp.where((cur_len - self.begin_index) < 2 , A_ , A_ )
UpperCamelCase = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , A_ , A_ , )
return jnp.where(
A_ , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , A_ , )
UpperCamelCase = jax.vmap(A_ )(A_ , A_ )
UpperCamelCase = jnp.where(cur_len == self.begin_index , A_ , A_ )
UpperCamelCase = jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , A_ , )
UpperCamelCase = self.timestamp_begin + self.max_initial_timestamp_index
UpperCamelCase = jnp.where(
A_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , A_ , )
# if sum of probability over timestamps is above any other token, sample timestamp
UpperCamelCase = jax.nn.log_softmax(A_ , axis=-1 )
def handle_cumulative_probs(A_ , A_ ):
UpperCamelCase = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 )
UpperCamelCase = jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , A_ , )
UpperCamelCase = jax.vmap(A_ )(A_ , A_ )
return scores
| 351 |
'''simple docstring'''
from __future__ import annotations
from statistics import mean
def A_( A : list[int] , A : list[int] , A : int):
UpperCamelCase = [0] * no_of_processes
UpperCamelCase = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(A):
UpperCamelCase = burst_time[i]
UpperCamelCase = []
UpperCamelCase = 0
UpperCamelCase = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
UpperCamelCase = []
UpperCamelCase = -1
for i in range(A):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(A)
if len(A) > 0:
UpperCamelCase = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
UpperCamelCase = i
total_time += burst_time[target_process]
completed += 1
UpperCamelCase = 0
UpperCamelCase = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def A_( A : list[int] , A : int , A : list[int]):
UpperCamelCase = [0] * no_of_processes
for i in range(A):
UpperCamelCase = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print('[TEST CASE 01]')
lowerCAmelCase : int = 4
lowerCAmelCase : Any = [2, 5, 3, 7]
lowerCAmelCase : int = [0, 0, 0, 0]
lowerCAmelCase : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
lowerCAmelCase : Optional[Any] = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time')
for i, process_id in enumerate(list(range(1, 5))):
print(
f"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"""
f"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"""
)
print(f"""\nAverage waiting time = {mean(waiting_time):.5f}""")
print(f"""Average turnaround time = {mean(turn_around_time):.5f}""")
| 251 | 0 |
from string import ascii_lowercase, ascii_uppercase
def __UpperCamelCase ( lowerCAmelCase__ : Tuple ):
if not sentence:
return ""
__a : int = dict(zip(_A , _A ) )
return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 216 |
__magic_name__: str = [0, 2, 4, 6, 8]
__magic_name__: Optional[int] = [1, 3, 5, 7, 9]
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1, -1, -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
__magic_name__ : List[Any] = 0
for digit in range(10 ):
__magic_name__ : Optional[int] = digit
result += reversible_numbers(
0, (remainder + 2 * digit) // 10, _A, _A )
return result
__magic_name__ : str = 0
for digita in range(10 ):
__magic_name__ : Optional[Any] = digita
if (remainder + digita) % 2 == 0:
__magic_name__ : Tuple = ODD_DIGITS
else:
__magic_name__ : str = EVEN_DIGITS
for digita in other_parity_digits:
__magic_name__ : Tuple = digita
result += reversible_numbers(
remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, )
return result
def UpperCamelCase ( _A = 9 ):
"""simple docstring"""
__magic_name__ : List[str] = 0
for length in range(1, max_power + 1 ):
result += reversible_numbers(_A, 0, [0] * length, _A )
return result
if __name__ == "__main__":
print(F"""{solution() = }""")
| 342 | 0 |
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
return base * power(SCREAMING_SNAKE_CASE__ , (exponent - 1) ) if exponent else 1
if __name__ == "__main__":
print('Raise base to the power of exponent using recursion...')
lowercase_ = int(input('Enter the base: ').strip())
lowercase_ = int(input('Enter the exponent: ').strip())
lowercase_ = power(base, abs(exponent))
if exponent < 0: # power() does not properly deal w/ negative exponents
lowercase_ = 1 / result
print(F"""{base} to the power of {exponent} is {result}""")
| 358 |
from __future__ import annotations
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase : Optional[Any] = 0.00
__lowerCamelCase : Tuple = 0
for resistor in resistors:
if resistor <= 0:
__lowerCamelCase : Union[str, Any] = f'Resistor at index {index} has a negative or zero value!'
raise ValueError(SCREAMING_SNAKE_CASE__ )
first_sum += 1 / float(SCREAMING_SNAKE_CASE__ )
index += 1
return 1 / first_sum
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase : Union[str, Any] = 0.00
__lowerCamelCase : str = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
__lowerCamelCase : Any = f'Resistor at index {index} has a negative value!'
raise ValueError(SCREAMING_SNAKE_CASE__ )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 194 | 0 |
'''simple docstring'''
import importlib.util
import json
import os
import warnings
from dataclasses import dataclass, field
import torch
from ..training_args import TrainingArguments
from ..utils import cached_property, is_sagemaker_dp_enabled, logging
__lowerCamelCase = logging.get_logger(__name__)
def UpperCAmelCase__ ( ) -> Dict:
# Get the sagemaker specific mp parameters from smp_options variable.
A_ = os.getenv("""SM_HP_MP_PARAMETERS""", """{}""" )
try:
# Parse it and check the field "partitions" is included, it is required for model parallel.
A_ = json.loads(UpperCAmelCase__ )
if "partitions" not in smp_options:
return False
except json.JSONDecodeError:
return False
# Get the sagemaker specific framework parameters from mpi_options variable.
A_ = os.getenv("""SM_FRAMEWORK_PARAMS""", """{}""" )
try:
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
A_ = json.loads(UpperCAmelCase__ )
if not mpi_options.get("""sagemaker_mpi_enabled""", UpperCAmelCase__ ):
return False
except json.JSONDecodeError:
return False
# Lastly, check if the `smdistributed` module is present.
return importlib.util.find_spec("""smdistributed""" ) is not None
if is_sagemaker_model_parallel_available():
import smdistributed.modelparallel.torch as smp
smp.init()
@dataclass
class A__ ( _snake_case ):
lowercase = field(
default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , )
def snake_case_ ( self ) -> Tuple:
'''simple docstring'''
super().__post_init__()
warnings.warn(
"""`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """
"""`TrainingArguments` instead.""" , UpperCamelCase__ , )
@cached_property
def snake_case_ ( self ) -> "torch.device":
'''simple docstring'''
logger.info("""PyTorch: setting up devices""" )
if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1:
logger.warning(
"""torch.distributed process group is initialized, but local_rank == -1. """
"""In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" )
if self.no_cuda:
A_ = torch.device("""cpu""" )
A_ = 0
elif is_sagemaker_model_parallel_available():
A_ = smp.local_rank()
A_ = torch.device("""cuda""" , UpperCamelCase__ )
A_ = 1
elif is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.torch_smddp # noqa: F401
torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta )
A_ = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) )
A_ = torch.device("""cuda""" , self.local_rank )
A_ = 1
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
A_ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" )
# Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
# the default value.
A_ = torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta )
A_ = torch.device("""cuda""" , self.local_rank )
A_ = 1
if device.type == "cuda":
torch.cuda.set_device(UpperCamelCase__ )
return device
@property
def snake_case_ ( self ) -> Tuple:
'''simple docstring'''
if is_sagemaker_model_parallel_available():
return smp.dp_size()
return super().world_size
@property
def snake_case_ ( self ) -> str:
'''simple docstring'''
return not is_sagemaker_model_parallel_available()
@property
def snake_case_ ( self ) -> List[Any]:
'''simple docstring'''
return False
| 162 |
'''simple docstring'''
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]:
A_ = {}
A_ = job["""started_at"""]
A_ = job["""completed_at"""]
A_ = date_parser.parse(UpperCAmelCase__ )
A_ = date_parser.parse(UpperCAmelCase__ )
A_ = round((end_datetime - start_datetime).total_seconds() / 60.0 )
A_ = start
A_ = end
A_ = duration_in_min
return job_info
def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=None ) -> Union[str, Any]:
A_ = None
if token is not None:
A_ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''}
A_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
A_ = requests.get(UpperCAmelCase__, headers=UpperCAmelCase__ ).json()
A_ = {}
try:
job_time.update({job["""name"""]: extract_time_from_single_job(UpperCAmelCase__ ) for job in result["""jobs"""]} )
A_ = math.ceil((result["""total_count"""] - 1_00) / 1_00 )
for i in range(UpperCAmelCase__ ):
A_ = requests.get(url + F'''&page={i + 2}''', headers=UpperCAmelCase__ ).json()
job_time.update({job["""name"""]: extract_time_from_single_job(UpperCAmelCase__ ) for job in result["""jobs"""]} )
return job_time
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
if __name__ == "__main__":
__lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''')
__lowerCamelCase = parser.parse_args()
__lowerCamelCase = get_job_time(args.workflow_run_id)
__lowerCamelCase = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(f"""{k}: {v['duration']}""")
| 162 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ = {
'''configuration_clap''': [
'''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ClapAudioConfig''',
'''ClapConfig''',
'''ClapTextConfig''',
],
'''processing_clap''': ['''ClapProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
'''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ClapModel''',
'''ClapPreTrainedModel''',
'''ClapTextModel''',
'''ClapTextModelWithProjection''',
'''ClapAudioModel''',
'''ClapAudioModelWithProjection''',
]
lowerCamelCase__ = ['''ClapFeatureExtractor''']
if TYPE_CHECKING:
from .configuration_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioConfig,
ClapConfig,
ClapTextConfig,
)
from .processing_clap import ClapProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clap import ClapFeatureExtractor
from .modeling_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapPreTrainedModel,
ClapTextModel,
ClapTextModelWithProjection,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 369 |
import math
from collections.abc import Iterator
from itertools import takewhile
def A(__a: int ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def A():
lowerCAmelCase_ = 2
while True:
if is_prime(__a ):
yield num
num += 1
def A(__a: int = 200_0000 ):
return sum(takewhile(lambda __a : x < n , prime_generator() ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 22 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
UpperCAmelCase__ : Dict = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : List[str] = ['SpeechEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Dict = ['FlaxSpeechEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 121 |
import os
import random
import sys
from . import cryptomath_module as cryptomath
from . import rabin_miller
UpperCAmelCase__ : Any = 3
def lowerCamelCase__ ( a ) -> int:
print('''Generating primitive root of p''' )
while True:
_A: Union[str, Any] = random.randrange(3 , a )
if pow(a , 2 , a ) == 1:
continue
if pow(a , a , a ) == 1:
continue
return g
def lowerCamelCase__ ( a ) -> tuple[tuple[int, int, int, int], tuple[int, int]]:
print('''Generating prime p...''' )
_A: Dict = rabin_miller.generate_large_prime(a ) # select large prime number.
_A: Any = primitive_root(a ) # one primitive root on modulo p.
_A: Optional[Any] = random.randrange(3 , a ) # private_key -> have to be greater than 2 for safety.
_A: Dict = cryptomath.find_mod_inverse(pow(a , a , a ) , a )
_A: Union[str, Any] = (key_size, e_a, e_a, p)
_A: Union[str, Any] = (key_size, d)
return public_key, private_key
def lowerCamelCase__ ( a , a ) -> None:
if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ):
print('''\nWARNING:''' )
print(
f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"""
'''Use a different name or delete these files and re-run this program.''' )
sys.exit()
_A , _A: Any = generate_key(a )
print(f"""\nWriting public key to file {name}_pubkey.txt...""" )
with open(f"""{name}_pubkey.txt""" , '''w''' ) as fo:
fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" )
print(f"""Writing private key to file {name}_privkey.txt...""" )
with open(f"""{name}_privkey.txt""" , '''w''' ) as fo:
fo.write(f"""{private_key[0]},{private_key[1]}""" )
def lowerCamelCase__ ( ) -> None:
print('''Making key files...''' )
make_key_files('''elgamal''' , 20_48 )
print('''Key files generation successful''' )
if __name__ == "__main__":
main()
| 121 | 1 |
"""simple docstring"""
def UpperCAmelCase ( UpperCamelCase__ ):
"""simple docstring"""
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError('multiplicative_persistence() only accepts integral values' )
if num < 0:
raise ValueError('multiplicative_persistence() does not accept negative values' )
A__ = 0
A__ = str(UpperCamelCase__ )
while len(UpperCamelCase__ ) != 1:
A__ = [int(UpperCamelCase__ ) for i in num_string]
A__ = 1
for i in range(0 , len(UpperCamelCase__ ) ):
total *= numbers[i]
A__ = str(UpperCamelCase__ )
steps += 1
return steps
def UpperCAmelCase ( UpperCamelCase__ ):
"""simple docstring"""
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError('additive_persistence() only accepts integral values' )
if num < 0:
raise ValueError('additive_persistence() does not accept negative values' )
A__ = 0
A__ = str(UpperCamelCase__ )
while len(UpperCamelCase__ ) != 1:
A__ = [int(UpperCamelCase__ ) for i in num_string]
A__ = 0
for i in range(0 , len(UpperCamelCase__ ) ):
total += numbers[i]
A__ = str(UpperCamelCase__ )
steps += 1
return steps
if __name__ == "__main__":
import doctest
doctest.testmod()
| 154 | """simple docstring"""
import os
def UpperCAmelCase ( ):
"""simple docstring"""
with open(os.path.dirname(UpperCamelCase__ ) + '/grid.txt' ) as f:
A__ = [] # noqa: E741
for _ in range(20 ):
l.append([int(UpperCamelCase__ ) for x in f.readline().split()] )
A__ = 0
# right
for i in range(20 ):
for j in range(17 ):
A__ = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3]
if temp > maximum:
A__ = temp
# down
for i in range(17 ):
for j in range(20 ):
A__ = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j]
if temp > maximum:
A__ = temp
# diagonal 1
for i in range(17 ):
for j in range(17 ):
A__ = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3]
if temp > maximum:
A__ = temp
# diagonal 2
for i in range(17 ):
for j in range(3 , 20 ):
A__ = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3]
if temp > maximum:
A__ = temp
return maximum
if __name__ == "__main__":
print(solution())
| 154 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_A = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A = ['GLPNFeatureExtractor']
_A = ['GLPNImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A = [
'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST',
'GLPNForDepthEstimation',
'GLPNLayer',
'GLPNModel',
'GLPNPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_glpn import GLPNFeatureExtractor
from .image_processing_glpn import GLPNImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_glpn import (
GLPN_PRETRAINED_MODEL_ARCHIVE_LIST,
GLPNForDepthEstimation,
GLPNLayer,
GLPNModel,
GLPNPreTrainedModel,
)
else:
import sys
_A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 62 |
"""simple docstring"""
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class A__ ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str) -> Dict:
"""simple docstring"""
with open(_SCREAMING_SNAKE_CASE , encoding="utf-8") as input_file:
__lowerCAmelCase : List[str] = re.compile(r"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)")
__lowerCAmelCase : List[Any] = input_file.read()
__lowerCAmelCase : Any = regexp.search(_SCREAMING_SNAKE_CASE)
return match
def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: str) -> Optional[Any]:
"""simple docstring"""
with open(_SCREAMING_SNAKE_CASE , encoding="utf-8") as input_file:
__lowerCAmelCase : Any = re.compile(r"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL)
__lowerCAmelCase : Optional[int] = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
__lowerCAmelCase : int = regexp.finditer(_SCREAMING_SNAKE_CASE)
__lowerCAmelCase : Union[str, Any] = [match for match in matches if match is not None and match.group(1) is not None]
return matches[0] if matches else None
def _SCREAMING_SNAKE_CASE ( self: str) -> List[Any]:
"""simple docstring"""
__lowerCAmelCase : Optional[Any] = Path("./datasets")
__lowerCAmelCase : Optional[int] = list(dataset_paths.absolute().glob("**/*.py"))
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(_SCREAMING_SNAKE_CASE)):
raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""")
def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Optional[int]:
"""simple docstring"""
__lowerCAmelCase : Dict = Path("./datasets")
__lowerCAmelCase : Union[str, Any] = list(dataset_paths.absolute().glob("**/*.py"))
for dataset in dataset_files:
if self._no_print_statements(str(_SCREAMING_SNAKE_CASE)):
raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""") | 269 | 0 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : str ):
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), F'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), F'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'
def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple=True ):
model.train()
a__ = model(__lowerCAmelCase )
a__ = F.mse_loss(__lowerCAmelCase , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(__lowerCAmelCase )
def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any]=False ):
set_seed(4_2 )
a__ = RegressionModel()
a__ = deepcopy(__lowerCAmelCase )
a__ = RegressionDataset(length=8_0 )
a__ = DataLoader(__lowerCAmelCase , batch_size=1_6 )
model.to(accelerator.device )
if sched:
a__ = AdamW(params=model.parameters() , lr=1E-3 )
a__ = AdamW(params=ddp_model.parameters() , lr=1E-3 )
a__ = LambdaLR(__lowerCAmelCase , lr_lambda=lambda __lowerCAmelCase : epoch**0.65 )
a__ = LambdaLR(__lowerCAmelCase , lr_lambda=lambda __lowerCAmelCase : epoch**0.65 )
# Make a copy of `model`
if sched:
a__ , a__ , a__ , a__ = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
else:
a__ , a__ = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def __lowercase ( __lowerCAmelCase : List[Any] ):
# Test when on a single CPU or GPU that the context manager does nothing
a__ , a__ , a__ = get_training_setup(__lowerCAmelCase )
# Use a single batch
a__ , a__ = next(iter(__lowerCAmelCase ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
a__ , a__ = accelerator.gather((ddp_input, ddp_target) )
a__ , a__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(__lowerCAmelCase ):
step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
else:
# Sync grads
step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
a__ = ddp_input[torch.randperm(len(__lowerCAmelCase ) )]
def __lowercase ( __lowerCAmelCase : Optional[int] ):
# Test on distributed setup that context manager behaves properly
a__ , a__ , a__ = get_training_setup(__lowerCAmelCase )
# Use a single batch
a__ , a__ = next(iter(__lowerCAmelCase ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
a__ , a__ = accelerator.gather((ddp_input, ddp_target) )
a__ , a__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(__lowerCAmelCase ):
step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
else:
# Sync grads
step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
a__ = ddp_input[torch.randperm(len(__lowerCAmelCase ) )]
def __lowercase ( __lowerCAmelCase : Any=False , __lowerCAmelCase : Optional[Any]=False ):
a__ = Accelerator(
split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
a__ , a__ , a__ = get_training_setup(__lowerCAmelCase )
for iteration, batch in enumerate(__lowerCAmelCase ):
a__ , a__ = batch.values()
# Gather the distributed inputs and targs for the base model
a__ , a__ = accelerator.gather((ddp_input, ddp_target) )
a__ , a__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(__lowerCAmelCase ):
step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(__lowerCAmelCase ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
a__ = ddp_input[torch.randperm(len(__lowerCAmelCase ) )]
GradientState._reset_state()
def __lowercase ( __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : List[Any]=False ):
a__ = Accelerator(
split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
a__ , a__ , a__ , a__ , a__ , a__ , a__ = get_training_setup(__lowerCAmelCase , __lowerCAmelCase )
for iteration, batch in enumerate(__lowerCAmelCase ):
a__ , a__ = batch.values()
# Gather the distributed inputs and targs for the base model
a__ , a__ = accelerator.gather((ddp_input, ddp_target) )
a__ , a__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__lowerCAmelCase )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(__lowerCAmelCase ):
step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), F'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n'
a__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__lowerCAmelCase ))
if accelerator.num_processes > 1:
check_model_parameters(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
GradientState._reset_state()
def __lowercase ( ):
a__ = Accelerator()
a__ = RegressionDataset(length=8_0 )
a__ = DataLoader(__lowerCAmelCase , batch_size=1_6 )
a__ = RegressionDataset(length=9_6 )
a__ = DataLoader(__lowerCAmelCase , batch_size=1_6 )
a__ , a__ = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(__lowerCAmelCase ):
assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCAmelCase )
if iteration < len(__lowerCAmelCase ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(__lowerCAmelCase ):
assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCAmelCase )
if batch_num < len(__lowerCAmelCase ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def __lowercase ( ):
a__ = Accelerator()
a__ = accelerator.state
if state.local_process_index == 0:
print('**Test `accumulate` gradient accumulation with dataloader break**' )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print('**Test NOOP `no_sync` context manager**' )
test_noop_sync(__lowerCAmelCase )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print('**Test Distributed `no_sync` context manager**' )
test_distributed_sync(__lowerCAmelCase )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
'**Test `accumulate` gradient accumulation, ' , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , )
test_gradient_accumulation(__lowerCAmelCase , __lowerCAmelCase )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version('<' , '2.0' ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
'**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
'**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , )
test_gradient_accumulation_with_opt_and_scheduler(__lowerCAmelCase , __lowerCAmelCase )
def __lowercase ( __lowerCAmelCase : Any ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 356 |
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case : Tuple = logging.get_logger(__name__)
snake_case : List[Any] = {
'''snap-research/efficientformer-l1-300''': (
'''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json'''
),
}
class snake_case_ (lowerCamelCase_ ):
UpperCAmelCase__ : int = '''efficientformer'''
def __init__( self :List[str] ,__snake_case :List[int] = [3, 2, 6, 4] ,__snake_case :List[int] = [48, 96, 2_24, 4_48] ,__snake_case :List[bool] = [True, True, True, True] ,__snake_case :int = 4_48 ,__snake_case :int = 32 ,__snake_case :int = 4 ,__snake_case :int = 7 ,__snake_case :int = 5 ,__snake_case :int = 8 ,__snake_case :int = 4 ,__snake_case :float = 0.0 ,__snake_case :int = 16 ,__snake_case :int = 3 ,__snake_case :int = 3 ,__snake_case :int = 3 ,__snake_case :int = 2 ,__snake_case :int = 1 ,__snake_case :float = 0.0 ,__snake_case :int = 1 ,__snake_case :bool = True ,__snake_case :bool = True ,__snake_case :float = 1E-5 ,__snake_case :str = "gelu" ,__snake_case :float = 0.02 ,__snake_case :float = 1E-12 ,__snake_case :int = 2_24 ,__snake_case :float = 1E-05 ,**__snake_case :Dict ,) -> None:
super().__init__(**__snake_case )
a__ = hidden_act
a__ = hidden_dropout_prob
a__ = hidden_sizes
a__ = num_hidden_layers
a__ = num_attention_heads
a__ = initializer_range
a__ = layer_norm_eps
a__ = patch_size
a__ = num_channels
a__ = depths
a__ = mlp_expansion_ratio
a__ = downsamples
a__ = dim
a__ = key_dim
a__ = attention_ratio
a__ = resolution
a__ = pool_size
a__ = downsample_patch_size
a__ = downsample_stride
a__ = downsample_pad
a__ = drop_path_rate
a__ = num_metaad_blocks
a__ = distillation
a__ = use_layer_scale
a__ = layer_scale_init_value
a__ = image_size
a__ = batch_norm_eps
| 109 | 0 |
import inspect
import unittest
from transformers import RegNetConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import RegNetForImageClassification, RegNetModel
from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case__ :
"""simple docstring"""
def __init__( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Union[str, Any]=32 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Tuple=10 , __lowerCamelCase : List[str]=[10, 20, 30, 40] , __lowerCamelCase : int=[1, 1, 2, 1] , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : int=True , __lowerCamelCase : Union[str, Any]="relu" , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : Any=None , ) -> Optional[Any]:
a = parent
a = batch_size
a = image_size
a = num_channels
a = embeddings_size
a = hidden_sizes
a = depths
a = is_training
a = use_labels
a = hidden_act
a = num_labels
a = scope
a = len(__lowerCamelCase )
def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.num_labels )
a = self.get_config()
return config, pixel_values, labels
def __UpperCAmelCase ( self : Any ) -> List[Any]:
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Dict ) -> Union[str, Any]:
a = RegNetModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
a = model(__lowerCamelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def __UpperCAmelCase ( self : int , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ) -> Optional[int]:
a = self.num_labels
a = RegNetForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
a = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
a = self.prepare_config_and_inputs()
a , a , a = config_and_inputs
a = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ (_UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = (RegNetModel, RegNetForImageClassification) if is_torch_available() else ()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = (
{"""feature-extraction""": RegNetModel, """image-classification""": RegNetForImageClassification}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ : Any = False
SCREAMING_SNAKE_CASE_ : int = False
SCREAMING_SNAKE_CASE_ : str = False
SCREAMING_SNAKE_CASE_ : str = False
def __UpperCAmelCase ( self : Any ) -> Any:
a = RegNetModelTester(self )
a = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase )
def __UpperCAmelCase ( self : Dict ) -> Any:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __UpperCAmelCase ( self : List[str] ) -> List[Any]:
return
@unittest.skip(reason="RegNet does not use inputs_embeds" )
def __UpperCAmelCase ( self : str ) -> Optional[Any]:
pass
@unittest.skip(reason="RegNet does not support input and output embeddings" )
def __UpperCAmelCase ( self : Any ) -> Union[str, Any]:
pass
def __UpperCAmelCase ( self : Dict ) -> Optional[Any]:
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__lowerCamelCase )
a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a = [*signature.parameters.keys()]
a = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]:
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def __UpperCAmelCase ( self : int ) -> List[str]:
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(config=__lowerCamelCase )
for name, module in model.named_modules():
if isinstance(__lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
def __UpperCAmelCase ( self : Dict ) -> Any:
def check_hidden_states_output(__lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[str] ):
a = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
a = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
a = self.model_tester.num_stages
self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = ["basic", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
a = layer_type
a = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
a = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def __UpperCAmelCase ( self : Any ) -> List[str]:
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@slow
def __UpperCAmelCase ( self : Optional[int] ) -> Any:
for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = RegNetModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def __magic_name__ ( ):
'''simple docstring'''
a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class snake_case__ (unittest.TestCase ):
"""simple docstring"""
@cached_property
def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
return (
AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple:
a = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowerCamelCase )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
a = model(**__lowerCamelCase )
# verify the logits
a = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
a = torch.tensor([-0.4_180, -1.5_051, -3.4_836] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
| 107 |
"""simple docstring"""
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_A = 1_6
_A = 3_2
def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase = 16 ) -> List[str]:
lowerCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" )
lowerCAmelCase__ : List[str] = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(__UpperCAmelCase ):
# max_length=None => use the model max length (it's actually the default)
lowerCAmelCase__ : Union[str, Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowerCAmelCase__ : str = datasets.map(
__UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCAmelCase__ : List[str] = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__UpperCAmelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowerCAmelCase__ : Union[str, Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowerCAmelCase__ : Optional[Any] = 16
elif accelerator.mixed_precision != "no":
lowerCAmelCase__ : Any = 8
else:
lowerCAmelCase__ : Any = None
return tokenizer.pad(
__UpperCAmelCase , padding="""longest""" , max_length=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_tensors="""pt""" , )
# Instantiate dataloaders.
lowerCAmelCase__ : Any = DataLoader(
tokenized_datasets["""train"""] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=__UpperCAmelCase )
lowerCAmelCase__ : Optional[int] = DataLoader(
tokenized_datasets["""validation"""] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=__UpperCAmelCase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_A = mocked_dataloaders # noqa: F811
def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __UpperCAmelCase ) == "1":
lowerCAmelCase__ : List[Any] = 2
# New Code #
lowerCAmelCase__ : Tuple = int(args.gradient_accumulation_steps )
# Initialize accelerator
lowerCAmelCase__ : Union[str, Any] = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__UpperCAmelCase )
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
"""Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCAmelCase__ : Tuple = config["""lr"""]
lowerCAmelCase__ : int = int(config["""num_epochs"""] )
lowerCAmelCase__ : List[Any] = int(config["""seed"""] )
lowerCAmelCase__ : Tuple = int(config["""batch_size"""] )
lowerCAmelCase__ : Optional[int] = evaluate.load("""glue""" , """mrpc""" )
set_seed(__UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = get_dataloaders(__UpperCAmelCase , __UpperCAmelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCAmelCase__ : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__UpperCAmelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowerCAmelCase__ : Optional[Any] = model.to(accelerator.device )
# Instantiate optimizer
lowerCAmelCase__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCAmelCase )
# Instantiate scheduler
lowerCAmelCase__ : Optional[Any] = get_linear_schedule_with_warmup(
optimizer=__UpperCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__UpperCAmelCase ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = accelerator.prepare(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# Now we train the model
for epoch in range(__UpperCAmelCase ):
model.train()
for step, batch in enumerate(__UpperCAmelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(__UpperCAmelCase ):
lowerCAmelCase__ : str = model(**__UpperCAmelCase )
lowerCAmelCase__ : Union[str, Any] = output.loss
accelerator.backward(__UpperCAmelCase )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__UpperCAmelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowerCAmelCase__ : int = model(**__UpperCAmelCase )
lowerCAmelCase__ : Optional[int] = outputs.logits.argmax(dim=-1 )
lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=__UpperCAmelCase , references=__UpperCAmelCase , )
lowerCAmelCase__ : Any = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , __UpperCAmelCase )
def lowercase_ ( ) -> Any:
lowerCAmelCase__ : Union[str, Any] = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=__UpperCAmelCase , default=__UpperCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
# New Code #
parser.add_argument(
"""--gradient_accumulation_steps""" , type=__UpperCAmelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
lowerCAmelCase__ : List[str] = parser.parse_args()
lowerCAmelCase__ : Any = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(__UpperCAmelCase , __UpperCAmelCase )
if __name__ == "__main__":
main()
| 242 | 0 |
from __future__ import annotations
UpperCamelCase = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def _A ( lowerCAmelCase_ : list[list[int]] , lowerCAmelCase_ : list[int] , lowerCAmelCase_ : list[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : list[list[int]] , ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ = [
[0 for col in range(len(grid[0] ) )] for row in range(len(lowerCAmelCase_ ) )
] # the reference grid
lowerCAmelCase__ = 1
lowerCAmelCase__ = [
[0 for col in range(len(grid[0] ) )] for row in range(len(lowerCAmelCase_ ) )
] # the action grid
lowerCAmelCase__ = init[0]
lowerCAmelCase__ = init[1]
lowerCAmelCase__ = 0
lowerCAmelCase__ = g + heuristic[x][y] # cost from starting cell to destination cell
lowerCAmelCase__ = [[f, g, x, y]]
lowerCAmelCase__ = False # flag that is set when search is complete
lowerCAmelCase__ = False # flag set if we can't find expand
while not found and not resign:
if len(lowerCAmelCase_ ) == 0:
raise ValueError("Algorithm is unable to find solution" )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
lowerCAmelCase__ = cell.pop()
lowerCAmelCase__ = next_cell[2]
lowerCAmelCase__ = next_cell[3]
lowerCAmelCase__ = next_cell[1]
if x == goal[0] and y == goal[1]:
lowerCAmelCase__ = True
else:
for i in range(len(lowerCAmelCase_ ) ): # to try out different valid actions
lowerCAmelCase__ = x + DIRECTIONS[i][0]
lowerCAmelCase__ = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(lowerCAmelCase_ ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
lowerCAmelCase__ = g + cost
lowerCAmelCase__ = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
lowerCAmelCase__ = 1
lowerCAmelCase__ = i
lowerCAmelCase__ = []
lowerCAmelCase__ = goal[0]
lowerCAmelCase__ = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
lowerCAmelCase__ = x - DIRECTIONS[action[x][y]][0]
lowerCAmelCase__ = y - DIRECTIONS[action[x][y]][1]
lowerCAmelCase__ = xa
lowerCAmelCase__ = ya
invpath.append([x, y] )
lowerCAmelCase__ = []
for i in range(len(lowerCAmelCase_ ) ):
path.append(invpath[len(lowerCAmelCase_ ) - 1 - i] )
return path, action
if __name__ == "__main__":
UpperCamelCase = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
UpperCamelCase = [0, 0]
# all coordinates are given in format [y,x]
UpperCamelCase = [len(grid) - 1, len(grid[0]) - 1]
UpperCamelCase = 1
# the cost map which pushes the path closer to the goal
UpperCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
UpperCamelCase = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
UpperCamelCase = 99
UpperCamelCase , UpperCamelCase = search(grid, init, goal, cost, heuristic)
print('ACTION MAP')
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 361 |
def _A ( lowerCAmelCase_ : int = 1000 ):
"""simple docstring"""
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 221 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
a_ = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ['PerceiverFeatureExtractor']
a_ = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 76 |
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowerCamelCase__ ( _a , _a):
# Load checkpoint
SCREAMING_SNAKE_CASE : int = torch.load(_a , map_location="cpu")
SCREAMING_SNAKE_CASE : Dict = chkpt["model"]
# We have the base model one level deeper than the original XLM repository
SCREAMING_SNAKE_CASE : Optional[int] = {}
for k, v in state_dict.items():
if "pred_layer" in k:
SCREAMING_SNAKE_CASE : List[str] = v
else:
SCREAMING_SNAKE_CASE : int = v
SCREAMING_SNAKE_CASE : int = chkpt["params"]
SCREAMING_SNAKE_CASE : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(_a , (torch.FloatTensor, numpy.ndarray))}
SCREAMING_SNAKE_CASE : List[Any] = chkpt["dico_word2id"]
SCREAMING_SNAKE_CASE : List[Any] = {s + "</w>" if s.find("@@") == -1 and i > 13 else s.replace("@@" , ""): i for s, i in vocab.items()}
# Save pytorch-model
SCREAMING_SNAKE_CASE : Tuple = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
SCREAMING_SNAKE_CASE : Any = pytorch_dump_folder_path + "/" + CONFIG_NAME
SCREAMING_SNAKE_CASE : Optional[int] = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"]
print(f"Save PyTorch model to {pytorch_weights_dump_path}")
torch.save(_a , _a)
print(f"Save configuration file to {pytorch_config_dump_path}")
with open(_a , "w" , encoding="utf-8") as f:
f.write(json.dumps(_a , indent=2) + "\n")
print(f"Save vocab file to {pytorch_config_dump_path}")
with open(_a , "w" , encoding="utf-8") as f:
f.write(json.dumps(_a , indent=2) + "\n")
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
a_ = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path) | 76 | 1 |
"""simple docstring"""
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class A__ ( _lowerCamelCase):
A_ : Union[str, Any] = (UnCLIPScheduler,)
def __lowerCamelCase ( self , **_SCREAMING_SNAKE_CASE ):
__lowerCAmelCase : List[str] = {
'num_train_timesteps': 10_00,
'variance_type': 'fixed_small_log',
'clip_sample': True,
'clip_sample_range': 1.0,
'prediction_type': 'epsilon',
}
config.update(**_SCREAMING_SNAKE_CASE )
return config
def __lowerCamelCase ( self ):
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=_SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self ):
for time_step in [0, 5_00, 9_99]:
for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE , prev_timestep=_SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self ):
__lowerCAmelCase : List[Any] = self.scheduler_classes[0]
__lowerCAmelCase : Any = self.get_scheduler_config(variance_type='fixed_small_log' )
__lowerCAmelCase : List[Any] = scheduler_class(**_SCREAMING_SNAKE_CASE )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.054_9625 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.999_4987 ) ) < 1E-5
def __lowerCamelCase ( self ):
__lowerCAmelCase : str = self.scheduler_classes[0]
__lowerCAmelCase : Tuple = self.get_scheduler_config(variance_type='learned_range' )
__lowerCAmelCase : Dict = scheduler_class(**_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Tuple = 0.5
assert scheduler._get_variance(1 , predicted_variance=_SCREAMING_SNAKE_CASE ) - -10.171_2790 < 1E-5
assert scheduler._get_variance(4_87 , predicted_variance=_SCREAMING_SNAKE_CASE ) - -5.799_8052 < 1E-5
assert scheduler._get_variance(9_99 , predicted_variance=_SCREAMING_SNAKE_CASE ) - -0.001_0011 < 1E-5
def __lowerCamelCase ( self ):
__lowerCAmelCase : Dict = self.scheduler_classes[0]
__lowerCAmelCase : List[str] = self.get_scheduler_config()
__lowerCAmelCase : Any = scheduler_class(**_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Union[str, Any] = scheduler.timesteps
__lowerCAmelCase : List[str] = self.dummy_model()
__lowerCAmelCase : Tuple = self.dummy_sample_deter
__lowerCAmelCase : int = torch.manual_seed(0 )
for i, t in enumerate(_SCREAMING_SNAKE_CASE ):
# 1. predict noise residual
__lowerCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# 2. predict previous mean of sample x_t-1
__lowerCAmelCase : Optional[int] = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample
__lowerCAmelCase : int = pred_prev_sample
__lowerCAmelCase : List[str] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) )
__lowerCAmelCase : str = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 252.268_2495 ) < 1E-2
assert abs(result_mean.item() - 0.328_4743 ) < 1E-3
def __lowerCamelCase ( self ):
__lowerCAmelCase : Any = self.scheduler_classes[0]
__lowerCAmelCase : Tuple = self.get_scheduler_config()
__lowerCAmelCase : Optional[Any] = scheduler_class(**_SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(25 )
__lowerCAmelCase : int = scheduler.timesteps
__lowerCAmelCase : str = self.dummy_model()
__lowerCAmelCase : str = self.dummy_sample_deter
__lowerCAmelCase : Any = torch.manual_seed(0 )
for i, t in enumerate(_SCREAMING_SNAKE_CASE ):
# 1. predict noise residual
__lowerCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if i + 1 == timesteps.shape[0]:
__lowerCAmelCase : Union[str, Any] = None
else:
__lowerCAmelCase : Optional[Any] = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
__lowerCAmelCase : Union[str, Any] = scheduler.step(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prev_timestep=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample
__lowerCAmelCase : int = pred_prev_sample
__lowerCAmelCase : Tuple = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) )
__lowerCAmelCase : int = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 258.204_4983 ) < 1E-2
assert abs(result_mean.item() - 0.336_2038 ) < 1E-3
def __lowerCamelCase ( self ):
pass
def __lowerCamelCase ( self ):
pass | 182 |
"""simple docstring"""
lowerCamelCase__ = """0.21.0"""
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich | 182 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.