code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , **__SCREAMING_SNAKE_CASE , ): super().__init__(features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = Sql( cache_dir=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , sql=__SCREAMING_SNAKE_CASE , con=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) def __UpperCamelCase ( self ): snake_case__ : Any = None snake_case__ : int = None snake_case__ : Dict = None snake_case__ : List[Any] = None self.builder.download_and_prepare( download_config=__SCREAMING_SNAKE_CASE , download_mode=__SCREAMING_SNAKE_CASE , verification_mode=__SCREAMING_SNAKE_CASE , base_path=__SCREAMING_SNAKE_CASE , ) # Build dataset for splits snake_case__ : List[str] = self.builder.as_dataset( split="""train""" , verification_mode=__SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0." ) snake_case__ : Dict = dataset snake_case__ : Any = name snake_case__ : Tuple = con snake_case__ : Any = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE snake_case__ : Optional[int] = num_proc snake_case__ : str = to_sql_kwargs def __UpperCamelCase ( self ): snake_case__ : Dict = self.to_sql_kwargs.pop("""sql""" , __SCREAMING_SNAKE_CASE ) snake_case__ : int = self.to_sql_kwargs.pop("""con""" , __SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = self.to_sql_kwargs.pop("""index""" , __SCREAMING_SNAKE_CASE ) snake_case__ : Any = self._write(index=__SCREAMING_SNAKE_CASE , **self.to_sql_kwargs ) return written def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ , snake_case__ , snake_case__ : List[Any] = args snake_case__ : List[str] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs snake_case__ : List[str] = query_table( table=self.dataset.data , key=slice(__SCREAMING_SNAKE_CASE , offset + self.batch_size ) , indices=self.dataset._indices , ) snake_case__ : int = batch.to_pandas() snake_case__ : Optional[Any] = df.to_sql(self.name , self.con , index=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return num_rows or len(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): snake_case__ : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: snake_case__ , snake_case__ : int = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
38
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu A_ : Dict = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : List[Any]=None , __magic_name__ : List[str]=None , __magic_name__ : List[str]=None ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = True while ask_again: snake_case__ : Optional[Any] = input(__magic_name__ ) try: if default is not None and len(__magic_name__ ) == 0: return default return convert_value(__magic_name__ ) if convert_value is not None else result except Exception: if error_message is not None: print(__magic_name__ ) def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Any=[] , __magic_name__ : Optional[int]=None , __magic_name__ : int=0 ) -> Optional[int]: '''simple docstring''' snake_case__ : Union[str, Any] = BulletMenu(__magic_name__ , __magic_name__ ) snake_case__ : Optional[Any] = menu.run(default_choice=__magic_name__ ) return convert_value(__magic_name__ ) if convert_value is not None else result def UpperCamelCase__ ( __magic_name__ : Any ) -> int: '''simple docstring''' snake_case__ : Tuple = int(__magic_name__ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCamelCase__ ( __magic_name__ : str ) -> Tuple: '''simple docstring''' snake_case__ : List[Any] = int(__magic_name__ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCamelCase__ ( __magic_name__ : List[str] ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = int(__magic_name__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase__ ( __magic_name__ : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[Any] = int(__magic_name__ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCamelCase__ ( __magic_name__ : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ : Optional[Any] = int(__magic_name__ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCamelCase__ ( __magic_name__ : Dict ) -> Tuple: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class __snake_case ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : str = super()._format_usage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : str = usage.replace("""<command> [<args>] """ , """""" ) return usage
38
1
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : List[Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = None if token is not None: snake_case__ : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : List[Any] = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ ).json() snake_case__ : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__magic_name__ ): snake_case__ : Tuple = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=None ) -> List[str]: '''simple docstring''' snake_case__ : Optional[Any] = None if token is not None: snake_case__ : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : Dict = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" snake_case__ : Union[str, Any] = requests.get(__magic_name__ , headers=__magic_name__ ).json() snake_case__ : Dict = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__magic_name__ ): snake_case__ : Dict = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = None if token is not None: snake_case__ : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ , allow_redirects=__magic_name__ ) snake_case__ : Any = result.headers["""Location"""] snake_case__ : Tuple = requests.get(__magic_name__ , allow_redirects=__magic_name__ ) snake_case__ : int = os.path.join(__magic_name__ , f"{artifact_name}.zip" ) with open(__magic_name__ , """wb""" ) as fp: fp.write(response.content ) def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : str=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Any = [] snake_case__ : Union[str, Any] = [] snake_case__ : Any = None with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__magic_name__ ) as f: for line in f: snake_case__ : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs snake_case__ : str = line[: line.index(""": """ )] snake_case__ : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed snake_case__ : Dict = line[len("""FAILED """ ) :] failed_tests.append(__magic_name__ ) elif filename == "job_name.txt": snake_case__ : Optional[Any] = line if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError( f"`errors` and `failed_tests` should have the same number of elements. Got {len(__magic_name__ )} for `errors` " f"and {len(__magic_name__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" """ problem.""" ) snake_case__ : Optional[Any] = None if job_name and job_links: snake_case__ : Optional[Any] = job_links.get(__magic_name__ , __magic_name__ ) # A list with elements of the form (line of error, error, failed test) snake_case__ : List[Any] = [x + [y] + [job_link] for x, y in zip(__magic_name__ , __magic_name__ )] return result def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : Union[str, Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = [] snake_case__ : Dict = [os.path.join(__magic_name__ , __magic_name__ ) for p in os.listdir(__magic_name__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(__magic_name__ , job_links=__magic_name__ ) ) return errors def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=None ) -> List[Any]: '''simple docstring''' snake_case__ : Any = Counter() counter.update([x[1] for x in logs] ) snake_case__ : Dict = counter.most_common() snake_case__ : Any = {} for error, count in counts: if error_filter is None or error not in error_filter: snake_case__ : int = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) ) return r def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> List[Any]: '''simple docstring''' snake_case__ : str = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): snake_case__ : Tuple = test.split("""/""" )[2] else: snake_case__ : Any = None return test def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Union[str, Any]=None ) -> List[str]: '''simple docstring''' snake_case__ : List[str] = [(x[0], x[1], get_model(x[2] )) for x in logs] snake_case__ : List[Any] = [x for x in logs if x[2] is not None] snake_case__ : Any = {x[2] for x in logs} snake_case__ : Optional[Any] = {} for test in tests: snake_case__ : str = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) snake_case__ : Optional[int] = counter.most_common() snake_case__ : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} snake_case__ : int = sum(error_counts.values() ) if n_errors > 0: snake_case__ : str = {"""count""": n_errors, """errors""": error_counts} snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) ) return r def UpperCamelCase__ ( __magic_name__ : int ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[Any] = """| no. | error | status |""" snake_case__ : int = """|-:|:-|:-|""" snake_case__ : int = [header, sep] for error in reduced_by_error: snake_case__ : Union[str, Any] = reduced_by_error[error]["""count"""] snake_case__ : Dict = f"| {count} | {error[:1_00]} | |" lines.append(__magic_name__ ) return "\n".join(__magic_name__ ) def UpperCamelCase__ ( __magic_name__ : Dict ) -> List[Any]: '''simple docstring''' snake_case__ : List[Any] = """| model | no. of errors | major error | count |""" snake_case__ : Optional[int] = """|-:|-:|-:|-:|""" snake_case__ : Dict = [header, sep] for model in reduced_by_model: snake_case__ : Tuple = reduced_by_model[model]["""count"""] snake_case__ , snake_case__ : Tuple = list(reduced_by_model[model]["""errors"""].items() )[0] snake_case__ : Optional[int] = f"| {model} | {count} | {error[:60]} | {_count} |" lines.append(__magic_name__ ) return "\n".join(__magic_name__ ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") A_ : int = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) A_ : Optional[int] = get_job_links(args.workflow_run_id, token=args.token) A_ : Optional[Any] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: A_ : int = k.find(" / ") A_ : List[Any] = k[index + len(" / ") :] A_ : List[str] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) A_ : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) A_ : str = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error A_ : List[str] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors A_ : Any = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) A_ : Any = reduce_by_error(errors) A_ : Union[str, Any] = reduce_by_model(errors) A_ : Any = make_github_table(reduced_by_error) A_ : Optional[Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
38
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( __magic_name__ : list ) -> float: '''simple docstring''' if not nums: raise ValueError("""List is empty""" ) return sum(__magic_name__ ) / len(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
38
1
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : Union[str, Any] = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } A_ : List[Any] = { "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } A_ : List[str] = { "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' snake_case__ : int = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : Dict = char snake_case__ : int = set(__magic_name__ ) return pairs class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , **__SCREAMING_SNAKE_CASE , ): super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) snake_case__ : Dict = vocab_file snake_case__ : Optional[Any] = merges_file snake_case__ : Dict = {} snake_case__ : Any = 0 snake_case__ : int = 1 snake_case__ : int = 2 snake_case__ : List[Any] = 3 self.add_from_file(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(__SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as merges_handle: snake_case__ : Any = merges_handle.read().split("""\n""" )[:-1] snake_case__ : int = [tuple(merge.split()[:-1] ) for merge in merges] snake_case__ : List[str] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) snake_case__ : List[str] = {} def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : int = [self.cls_token_id] snake_case__ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __UpperCamelCase ( self ): return len(self.encoder ) def __UpperCamelCase ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if token in self.cache: return self.cache[token] snake_case__ : List[Any] = tuple(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) snake_case__ : Any = get_pairs(__SCREAMING_SNAKE_CASE ) if not pairs: return token while True: snake_case__ : Optional[Any] = min(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : self.bpe_ranks.get(__SCREAMING_SNAKE_CASE , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break snake_case__ , snake_case__ : Tuple = bigram snake_case__ : Dict = [] snake_case__ : str = 0 while i < len(__SCREAMING_SNAKE_CASE ): try: snake_case__ : Tuple = word.index(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : List[str] = j if word[i] == first and i < len(__SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : Dict = tuple(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = new_word if len(__SCREAMING_SNAKE_CASE ) == 1: break else: snake_case__ : Union[str, Any] = get_pairs(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = """@@ """.join(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = word[:-4] snake_case__ : Dict = word return word def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[int] = [] snake_case__ : Any = re.findall(R"""\S+\n?""" , __SCREAMING_SNAKE_CASE ) for token in words: split_tokens.extend(list(self.bpe(__SCREAMING_SNAKE_CASE ).split(""" """ ) ) ) return split_tokens def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): return self.decoder.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = """ """.join(__SCREAMING_SNAKE_CASE ).replace("""@@ """ , """""" ).strip() return out_string def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return snake_case__ : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Any = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) if os.path.abspath(self.merges_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.merges_file , __SCREAMING_SNAKE_CASE ) return out_vocab_file, out_merge_file def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): try: with open(__SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return snake_case__ : Tuple = f.readlines() for lineTmp in lines: snake_case__ : Any = lineTmp.strip() snake_case__ : Optional[Any] = line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) snake_case__ : Optional[int] = line[:idx] snake_case__ : Union[str, Any] = len(self.encoder )
38
'''simple docstring''' from __future__ import annotations A_ : str = "Muhammad Umer Farooq" A_ : Optional[Any] = "MIT" A_ : int = "1.0.0" A_ : int = "Muhammad Umer Farooq" A_ : int = "[email protected]" A_ : Dict = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): super().__init__() snake_case__ : list[str] = [] snake_case__ : List[Any] = domain def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: snake_case__ : str = parse.urljoin(self.domain , __SCREAMING_SNAKE_CASE ) self.urls.append(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' return ".".join(get_sub_domain_name(__magic_name__ ).split(""".""" )[-2:] ) def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' return parse.urlparse(__magic_name__ ).netloc def UpperCamelCase__ ( __magic_name__ : str = "https://github.com" ) -> list[str]: '''simple docstring''' snake_case__ : List[str] = get_domain_name(__magic_name__ ) # Initialize the parser snake_case__ : Optional[Any] = Parser(__magic_name__ ) try: # Open URL snake_case__ : Any = requests.get(__magic_name__ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through snake_case__ : List[str] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: snake_case__ : Tuple = requests.get(__magic_name__ ) # Get the valid email. snake_case__ : List[str] = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__magic_name__ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__magic_name__ ) if __name__ == "__main__": A_ : str = emails_from_url("https://github.com") print(F'{len(emails)} emails found:') print("\n".join(sorted(emails)))
38
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging A_ : List[str] = logging.get_logger(__name__) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = ['''input_values''', '''padding_mask'''] def __init__( self , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = 2_4_0_0_0 , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): super().__init__(feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = chunk_length_s snake_case__ : Union[str, Any] = overlap @property def __UpperCamelCase ( self ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __UpperCamelCase ( self ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs snake_case__ : Tuple = True snake_case__ : Dict = bool( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case__ : Optional[Any] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): snake_case__ : int = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): snake_case__ : Dict = raw_audio.astype(np.floataa ) # always return batch if not is_batched: snake_case__ : int = [np.asarray(__SCREAMING_SNAKE_CASE ).T] # verify inputs are valid for idx, example in enumerate(__SCREAMING_SNAKE_CASE ): if example.ndim > 2: raise ValueError(f"Expected input shape (channels, length) but got shape {example.shape}" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f"Expected mono audio but example has {example.shape[-1]} channels" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f"Expected stereo audio but example has {example.shape[-1]} channels" ) snake_case__ : Union[str, Any] = None snake_case__ : Union[str, Any] = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: snake_case__ : str = min(array.shape[0] for array in raw_audio ) snake_case__ : Optional[int] = int(np.floor(max_length / self.chunk_stride ) ) snake_case__ : Optional[Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: snake_case__ : Tuple = max(array.shape[0] for array in raw_audio ) snake_case__ : Any = int(np.ceil(max_length / self.chunk_stride ) ) snake_case__ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length snake_case__ : int = """max_length""" else: snake_case__ : List[Any] = input_values # normal padding on batch if padded_inputs is None: snake_case__ : Dict = self.pad( __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , ) if padding: snake_case__ : Dict = padded_inputs.pop("""attention_mask""" ) snake_case__ : Optional[int] = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: snake_case__ : Any = example[..., None] input_values.append(example.T ) snake_case__ : Any = input_values if return_tensors is not None: snake_case__ : List[str] = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs
38
'''simple docstring''' def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> Tuple: '''simple docstring''' if not head: return True # split the list to two parts snake_case__ , snake_case__ : Dict = head.next, head while fast and fast.next: snake_case__ : Any = fast.next.next snake_case__ : int = slow.next snake_case__ : Dict = slow.next snake_case__ : List[str] = None # Don't forget here! But forget still works! # reverse the second part snake_case__ : Tuple = None while second: snake_case__ : Tuple = second.next snake_case__ : Any = node snake_case__ : str = second snake_case__ : Optional[Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False snake_case__ : List[Any] = node.next snake_case__ : int = head.next return True def UpperCamelCase__ ( __magic_name__ : Any ) -> Optional[Any]: '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) snake_case__ : List[Any] = head while fast and fast.next: snake_case__ , snake_case__ : Any = fast.next.next, slow.next # 2. Push the second half into the stack snake_case__ : Tuple = [slow.val] while slow.next: snake_case__ : Optional[Any] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False snake_case__ : str = cur.next return True def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Tuple: '''simple docstring''' if not head or not head.next: return True snake_case__ : int = {} snake_case__ : Union[str, Any] = 0 while head: if head.val in d: d[head.val].append(__magic_name__ ) else: snake_case__ : Tuple = [pos] snake_case__ : Optional[Any] = head.next pos += 1 snake_case__ : int = pos - 1 snake_case__ : str = 0 for v in d.values(): if len(__magic_name__ ) % 2 != 0: middle += 1 else: snake_case__ : List[str] = 0 for i in range(0 , len(__magic_name__ ) ): if v[i] + v[len(__magic_name__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
38
1
'''simple docstring''' import os import sys A_ : Dict = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) A_ : Optional[Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase__ ( *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase__ ( *__magic_name__ : int , **__magic_name__ : int ) -> str: '''simple docstring''' return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase__ ( *__magic_name__ : List[str] , **__magic_name__ : int ) -> Optional[Any]: '''simple docstring''' return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase__ ( *__magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ) -> List[str]: '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase__ ( *__magic_name__ : List[str] , **__magic_name__ : Dict ) -> Tuple: '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase__ ( *__magic_name__ : Dict , **__magic_name__ : Tuple ) -> Union[str, Any]: '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase__ ( *__magic_name__ : Dict , **__magic_name__ : Tuple ) -> int: '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
38
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A_ : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A_ : str = 250004 A_ : str = 250020 @require_sentencepiece @require_tokenizers class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MBartTokenizer lowerCamelCase__ = MBartTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def __UpperCamelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self ): snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) snake_case__ : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case__ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case__ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def __UpperCamelCase ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case__ : Optional[int] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = tempfile.mkdtemp() snake_case__ : int = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) snake_case__ : List[str] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way snake_case__ : Tuple = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True snake_case__ : Any = tempfile.mkdtemp() snake_case__ : Optional[int] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) snake_case__ : int = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way snake_case__ : List[Any] = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False snake_case__ : Dict = tempfile.mkdtemp() snake_case__ : Union[str, Any] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case__ : Dict = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = '''facebook/mbart-large-en-ro''' lowerCamelCase__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] lowerCamelCase__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] lowerCamelCase__ = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def __UpperCamelCase ( cls ): snake_case__ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) snake_case__ : Any = 1 return cls def __UpperCamelCase ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 2_5_0_0_2_0 ) def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): self.assertIn(__SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids ) snake_case__ : List[str] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] snake_case__ : List[Any] = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = ["""this is gunna be a long sentence """ * 2_0] assert isinstance(src_text[0] , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = 1_0 snake_case__ : int = self.tokenizer(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = tempfile.mkdtemp() snake_case__ : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = MBartTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __SCREAMING_SNAKE_CASE ) @require_torch def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) snake_case__ : int = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) snake_case__ : List[str] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) snake_case__ : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.tokenizer(self.src_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=3 , return_tensors="""pt""" ) snake_case__ : Optional[int] = self.tokenizer( text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=1_0 , return_tensors="""pt""" ) snake_case__ : str = targets["""input_ids"""] snake_case__ : Optional[Any] = shift_tokens_right(__SCREAMING_SNAKE_CASE , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , { # A, test, EOS, en_XX """input_ids""": [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 2_5_0_0_0_1, } , )
38
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCamelCase__ ( ) -> Dict: '''simple docstring''' snake_case__ : Union[str, Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__magic_name__ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__magic_name__ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__magic_name__ ) return parser.parse_args() def UpperCamelCase__ ( ) -> Tuple: '''simple docstring''' snake_case__ : List[str] = parse_args() # Import training_script as a module. snake_case__ : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case__ : List[Any] = script_fpath.stem snake_case__ : List[str] = importlib.import_module(__magic_name__ ) # Patch sys.argv snake_case__ : Optional[int] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
38
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : int = logging.get_logger(__name__) A_ : Dict = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''bit''' lowerCamelCase__ = ['''preactivation''', '''bottleneck'''] lowerCamelCase__ = ['''SAME''', '''VALID'''] def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="preactivation" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case__ : Tuple = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) snake_case__ : List[str] = num_channels snake_case__ : Tuple = embedding_size snake_case__ : str = hidden_sizes snake_case__ : Optional[Any] = depths snake_case__ : List[Any] = layer_type snake_case__ : Dict = hidden_act snake_case__ : Union[str, Any] = global_padding snake_case__ : List[str] = num_groups snake_case__ : str = drop_path_rate snake_case__ : List[Any] = embedding_dynamic_padding snake_case__ : List[str] = output_stride snake_case__ : Dict = width_factor snake_case__ : List[str] = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] snake_case__ , snake_case__ : Dict = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
38
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : int = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''mra''' def __init__( self , __SCREAMING_SNAKE_CASE=5_0_2_6_5 , __SCREAMING_SNAKE_CASE=7_6_8 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=3_0_7_2 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE="full" , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , **__SCREAMING_SNAKE_CASE , ): super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = vocab_size snake_case__ : Optional[int] = max_position_embeddings snake_case__ : List[Any] = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Dict = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : Tuple = attention_probs_dropout_prob snake_case__ : Dict = initializer_range snake_case__ : List[str] = type_vocab_size snake_case__ : str = layer_norm_eps snake_case__ : Dict = position_embedding_type snake_case__ : Union[str, Any] = block_per_row snake_case__ : str = approx_mode snake_case__ : int = initial_prior_first_n_blocks snake_case__ : str = initial_prior_diagonal_n_blocks
38
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A_ : Optional[int] = logging.get_logger(__name__) def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=False ) -> Tuple: '''simple docstring''' snake_case__ : int = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Tuple=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: snake_case__ : int = """""" else: snake_case__ : Dict = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : int = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case__ : Union[str, Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Optional[int] = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size] snake_case__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Optional[int] = in_proj_bias[-config.hidden_size :] def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case__ : str = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : str ) -> Union[str, Any]: '''simple docstring''' snake_case__ : List[str] = dct.pop(__magic_name__ ) snake_case__ : Dict = val def UpperCamelCase__ ( ) -> str: '''simple docstring''' snake_case__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : int=False ) -> Optional[int]: '''simple docstring''' snake_case__ : int = BitConfig( global_padding="""same""" , layer_type="""bottleneck""" , depths=(3, 4, 9) , out_features=["""stage3"""] , embedding_dynamic_padding=__magic_name__ , ) snake_case__ : Optional[int] = ViTHybridConfig(backbone_config=__magic_name__ , image_size=3_84 , num_labels=10_00 ) snake_case__ : Union[str, Any] = False # load original model from timm snake_case__ : List[Any] = timm.create_model(__magic_name__ , pretrained=__magic_name__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[int] = timm_model.state_dict() if base_model: remove_classification_head_(__magic_name__ ) snake_case__ : int = create_rename_keys(__magic_name__ , __magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , __magic_name__ ) snake_case__ : str = """huggingface/label-files""" snake_case__ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case__ : Dict = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : List[Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case__ : int = idalabel snake_case__ : str = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ : str = ViTHybridModel(__magic_name__ ).eval() else: snake_case__ : Union[str, Any] = ViTHybridForImageClassification(__magic_name__ ).eval() model.load_state_dict(__magic_name__ ) # create image processor snake_case__ : Optional[Any] = create_transform(**resolve_data_config({} , model=__magic_name__ ) ) snake_case__ : Union[str, Any] = transform.transforms snake_case__ : Tuple = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } snake_case__ : Any = ViTHybridImageProcessor( do_resize=__magic_name__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__magic_name__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=__magic_name__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) snake_case__ : Any = prepare_img() snake_case__ : int = transform(__magic_name__ ).unsqueeze(0 ) snake_case__ : List[str] = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(__magic_name__ , __magic_name__ ) # verify logits with torch.no_grad(): snake_case__ : Optional[Any] = model(__magic_name__ ) snake_case__ : Union[str, Any] = outputs.logits print("""Predicted class:""" , logits.argmax(-1 ).item() ) if base_model: snake_case__ : Dict = timm_model.forward_features(__magic_name__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__magic_name__ , outputs.pooler_output , atol=1E-3 ) else: snake_case__ : int = timm_model(__magic_name__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__magic_name__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(__magic_name__ ) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(f"ybelkada/{vit_name}" ) processor.push_to_hub(f"ybelkada/{vit_name}" ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) A_ : Union[str, Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
38
1
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ): snake_case__ : str = [] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_init_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_train_begin""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_train_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_epoch_begin""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_epoch_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_step_begin""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_step_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_evaluate""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_predict""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_save""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_log""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_prediction_step""" ) @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Tuple = tempfile.mkdtemp() def __UpperCamelCase ( self ): shutil.rmtree(self.output_dir ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. snake_case__ : List[Any] = RegressionDataset(length=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = RegressionDataset(length=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = RegressionModelConfig(a=__SCREAMING_SNAKE_CASE , b=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = RegressionPreTrainedModel(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = TrainingArguments(self.output_dir , disable_tqdm=__SCREAMING_SNAKE_CASE , report_to=[] , **__SCREAMING_SNAKE_CASE ) return Trainer( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , train_dataset=__SCREAMING_SNAKE_CASE , eval_dataset=__SCREAMING_SNAKE_CASE , callbacks=__SCREAMING_SNAKE_CASE , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) # Order doesn't matter snake_case__ : Tuple = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ ) snake_case__ : List[str] = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ ) for cba, cba in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , cba.__class__ ) elif not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(cba.__class__ , __SCREAMING_SNAKE_CASE ) else: self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = ["""on_init_end""", """on_train_begin"""] snake_case__ : Union[str, Any] = 0 snake_case__ : Dict = len(trainer.get_eval_dataloader() ) snake_case__ : Any = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(__SCREAMING_SNAKE_CASE ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __UpperCamelCase ( self ): snake_case__ : Any = self.get_trainer() snake_case__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) # Callbacks passed at init are added to the default callbacks snake_case__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(__SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback snake_case__ : Optional[Any] = self.get_trainer(disable_tqdm=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] snake_case__ : int = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.remove(__SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = self.get_trainer() snake_case__ : List[str] = trainer.pop_callback(__SCREAMING_SNAKE_CASE ) self.assertEqual(cb.__class__ , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) trainer.add_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.insert(0 , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) # We can also add, pop, or remove by instance snake_case__ : List[Any] = self.get_trainer() snake_case__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.remove(__SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = self.get_trainer() snake_case__ : Any = trainer.callback_handler.callbacks[0] snake_case__ : Optional[Any] = trainer.pop_callback(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) trainer.add_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.insert(0 , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() snake_case__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) # Independent log/save/eval snake_case__ : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() snake_case__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() snake_case__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() snake_case__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() snake_case__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) # A bit of everything snake_case__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() snake_case__ : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: snake_case__ : List[str] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(__SCREAMING_SNAKE_CASE ) in warn_mock.call_args[0][0]
38
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = 42 class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE=True , ): super().__init__() snake_case__ : str = layers_per_block snake_case__ : int = torch.nn.Convad( __SCREAMING_SNAKE_CASE , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) snake_case__ : List[Any] = None snake_case__ : List[Any] = nn.ModuleList([] ) # down snake_case__ : Union[str, Any] = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = output_channel snake_case__ : Union[str, Any] = block_out_channels[i] snake_case__ : int = i == len(__SCREAMING_SNAKE_CASE ) - 1 snake_case__ : str = get_down_block( __SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , ) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid snake_case__ : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , ) # out snake_case__ : Tuple = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 ) snake_case__ : Tuple = nn.SiLU() snake_case__ : str = 2 * out_channels if double_z else out_channels snake_case__ : int = nn.Convad(block_out_channels[-1] , __SCREAMING_SNAKE_CASE , 3 , padding=1 ) snake_case__ : Union[str, Any] = False def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = x snake_case__ : int = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) # middle snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: snake_case__ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # middle snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: snake_case__ : List[str] = down_block(__SCREAMING_SNAKE_CASE ) # middle snake_case__ : str = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process snake_case__ : Any = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = self.conv_act(__SCREAMING_SNAKE_CASE ) snake_case__ : str = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE="group" , ): super().__init__() snake_case__ : Any = layers_per_block snake_case__ : Optional[Any] = nn.Convad( __SCREAMING_SNAKE_CASE , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) snake_case__ : Union[str, Any] = None snake_case__ : Dict = nn.ModuleList([] ) snake_case__ : Optional[int] = in_channels if norm_type == """spatial""" else None # mid snake_case__ : Tuple = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , ) # up snake_case__ : List[Any] = list(reversed(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Optional[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = output_channel snake_case__ : Optional[Any] = reversed_block_out_channels[i] snake_case__ : List[str] = i == len(__SCREAMING_SNAKE_CASE ) - 1 snake_case__ : int = get_up_block( __SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block + 1 , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , prev_output_channel=__SCREAMING_SNAKE_CASE , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , resnet_time_scale_shift=__SCREAMING_SNAKE_CASE , ) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) snake_case__ : int = output_channel # out if norm_type == "spatial": snake_case__ : List[Any] = SpatialNorm(block_out_channels[0] , __SCREAMING_SNAKE_CASE ) else: snake_case__ : Any = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 ) snake_case__ : Tuple = nn.SiLU() snake_case__ : Union[str, Any] = nn.Convad(block_out_channels[0] , __SCREAMING_SNAKE_CASE , 3 , padding=1 ) snake_case__ : int = False def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): snake_case__ : Union[str, Any] = z snake_case__ : Any = self.conv_in(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle snake_case__ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) snake_case__ : int = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: snake_case__ : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle snake_case__ : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: # middle snake_case__ : List[Any] = self.mid_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: snake_case__ : Dict = up_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: snake_case__ : Optional[Any] = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: snake_case__ : str = self.conv_norm_out(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Any = self.conv_act(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="random" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True ): super().__init__() snake_case__ : int = n_e snake_case__ : Optional[int] = vq_embed_dim snake_case__ : int = beta snake_case__ : Optional[int] = legacy snake_case__ : Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) snake_case__ : List[str] = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) snake_case__ : Optional[Any] = self.used.shape[0] snake_case__ : List[str] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": snake_case__ : Dict = self.re_embed snake_case__ : List[str] = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: snake_case__ : Union[str, Any] = n_e snake_case__ : str = sane_index_shape def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 snake_case__ : Dict = inds.reshape(ishape[0] , -1 ) snake_case__ : Any = self.used.to(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = (inds[:, :, None] == used[None, None, ...]).long() snake_case__ : List[Any] = match.argmax(-1 ) snake_case__ : List[str] = match.sum(2 ) < 1 if self.unknown_index == "random": snake_case__ : List[str] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: snake_case__ : Optional[Any] = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 snake_case__ : int = inds.reshape(ishape[0] , -1 ) snake_case__ : Optional[int] = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token snake_case__ : List[Any] = 0 # simply set to zero snake_case__ : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): # reshape z -> (batch, height, width, channel) and flatten snake_case__ : Any = z.permute(0 , 2 , 3 , 1 ).contiguous() snake_case__ : Optional[Any] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z snake_case__ : Dict = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE , self.embedding.weight ) , dim=1 ) snake_case__ : Union[str, Any] = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) snake_case__ : List[str] = None snake_case__ : Union[str, Any] = None # compute loss for embedding if not self.legacy: snake_case__ : Tuple = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: snake_case__ : List[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients snake_case__ : Any = z + (z_q - z).detach() # reshape back to match original input shape snake_case__ : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: snake_case__ : List[Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis snake_case__ : str = self.remap_to_used(__SCREAMING_SNAKE_CASE ) snake_case__ : str = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: snake_case__ : Tuple = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # shape specifying (batch, height, width, channel) if self.remap is not None: snake_case__ : List[Any] = indices.reshape(shape[0] , -1 ) # add batch axis snake_case__ : Optional[int] = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = indices.reshape(-1 ) # flatten again # get quantized latent vectors snake_case__ : int = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: snake_case__ : str = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape snake_case__ : str = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): snake_case__ : Tuple = parameters snake_case__ , snake_case__ : Any = torch.chunk(__SCREAMING_SNAKE_CASE , 2 , dim=1 ) snake_case__ : Union[str, Any] = torch.clamp(self.logvar , -30.0 , 20.0 ) snake_case__ : Optional[int] = deterministic snake_case__ : Optional[int] = torch.exp(0.5 * self.logvar ) snake_case__ : Any = torch.exp(self.logvar ) if self.deterministic: snake_case__ : List[str] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE = None ): # make sure sample is on the same device as the parameters and has same dtype snake_case__ : Dict = randn_tensor( self.mean.shape , generator=__SCREAMING_SNAKE_CASE , device=self.parameters.device , dtype=self.parameters.dtype ) snake_case__ : Optional[int] = self.mean + self.std * sample return x def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) snake_case__ : Any = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): return self.mean
38
1
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , __SCREAMING_SNAKE_CASE , ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = RobertaConfig lowerCamelCase__ = '''roberta''' def __init__( self , __SCREAMING_SNAKE_CASE ): super().__init__(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = RobertaEmbeddings(__SCREAMING_SNAKE_CASE ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , __SCREAMING_SNAKE_CASE , ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = RobertaConfig lowerCamelCase__ = '''roberta''' def __init__( self , __SCREAMING_SNAKE_CASE ): super().__init__(__SCREAMING_SNAKE_CASE ) snake_case__ : int = config.num_labels snake_case__ : str = config.num_hidden_layers snake_case__ : Optional[int] = DeeRobertaModel(__SCREAMING_SNAKE_CASE ) snake_case__ : int = nn.Dropout(config.hidden_dropout_prob ) snake_case__ : Dict = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=-1 , __SCREAMING_SNAKE_CASE=False , ): snake_case__ : Tuple = self.num_layers try: snake_case__ : List[Any] = self.roberta( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , position_ids=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , inputs_embeds=__SCREAMING_SNAKE_CASE , ) snake_case__ : int = outputs[1] snake_case__ : str = self.dropout(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = self.classifier(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case__ : Optional[int] = e.message snake_case__ : Dict = e.exit_layer snake_case__ : Optional[int] = outputs[0] if not self.training: snake_case__ : Any = entropy(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = [] snake_case__ : List[str] = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case__ : str = MSELoss() snake_case__ : List[str] = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case__ : Optional[Any] = CrossEntropyLoss() snake_case__ : str = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case__ : Optional[int] = [] for highway_exit in outputs[-1]: snake_case__ : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(__SCREAMING_SNAKE_CASE ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case__ : Dict = MSELoss() snake_case__ : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case__ : int = CrossEntropyLoss() snake_case__ : Dict = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__SCREAMING_SNAKE_CASE ) if train_highway: snake_case__ : Any = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case__ : Union[str, Any] = (loss,) + outputs if not self.training: snake_case__ : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case__ : Optional[int] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
38
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1, 3_8_4, 2_4, 2_4] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , ): snake_case__ : str = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : Optional[int] = patch_size snake_case__ : List[str] = num_channels snake_case__ : Any = is_training snake_case__ : int = use_labels snake_case__ : str = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : str = backbone_out_indices snake_case__ : List[Any] = num_attention_heads snake_case__ : Dict = intermediate_size snake_case__ : Optional[Any] = hidden_act snake_case__ : str = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : Dict = initializer_range snake_case__ : Optional[int] = num_labels snake_case__ : str = backbone_featmap_shape snake_case__ : List[Any] = scope snake_case__ : Optional[Any] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) snake_case__ : List[Any] = (image_size // patch_size) ** 2 snake_case__ : Union[str, Any] = num_patches + 1 def __UpperCamelCase ( self ): snake_case__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : str = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): snake_case__ : Any = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [9_6, 1_9_2, 3_8_4, 7_6_8], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = DPTModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = self.num_labels snake_case__ : str = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = self.num_labels snake_case__ : Dict = DPTForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : str = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs snake_case__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCamelCase__ = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : List[Any] = DPTModelTester(self ) snake_case__ : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Tuple = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : List[str] = [*signature.parameters.keys()] snake_case__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : int = True if model_class in get_values(__SCREAMING_SNAKE_CASE ): continue snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() snake_case__ : Optional[Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Union[str, Any] = False snake_case__ : str = True if model_class in get_values(__SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() snake_case__ : List[str] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCamelCase ( self ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : str = _config_zero_init(__SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: snake_case__ : Any = model_class(config=__SCREAMING_SNAKE_CASE ) # Skip the check for the backbone snake_case__ : str = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": snake_case__ : Optional[int] = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __UpperCamelCase ( self ): pass @slow def __UpperCamelCase ( self ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: snake_case__ : List[str] = DPTModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = """add""" with self.assertRaises(__SCREAMING_SNAKE_CASE ): snake_case__ : List[str] = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> Dict: '''simple docstring''' snake_case__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Dict = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) snake_case__ : Union[str, Any] = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = prepare_img() snake_case__ : Optional[int] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : Dict = model(**__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = outputs.predicted_depth # verify the predicted depth snake_case__ : Any = torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
38
1
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() A_ : Optional[int] = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] A_ : Optional[int] = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Optional[Any] ) -> Tuple: '''simple docstring''' snake_case__ : Optional[Any] = { """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks snake_case__ : int = int(re.match(R""".*layer_(\d*).*""" , __magic_name__ )[1] ) layer_number -= 3 return f"h.{layer_number}." + key def UpperCamelCase__ ( __magic_name__ : List[str] ) -> Tuple: '''simple docstring''' if dtype == torch.bool: return 1 / 8 snake_case__ : List[Any] = re.search(R"""[^\d](\d+)$""" , str(__magic_name__ ) ) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}." ) snake_case__ : Optional[Any] = int(bit_search.groups()[0] ) return bit_size // 8 def UpperCamelCase__ ( __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' if bloom_config_file == "": snake_case__ : Tuple = BloomConfig() else: snake_case__ : str = BloomConfig.from_json_file(__magic_name__ ) if shard_model: snake_case__ : str = os.listdir(__magic_name__ ) snake_case__ : Union[str, Any] = sorted(filter(lambda __magic_name__ : s.startswith("""layer""" ) and "model_00" in s , __magic_name__ ) ) snake_case__ : List[Any] = {"""weight_map""": {}, """metadata""": {}} snake_case__ : Any = 0 snake_case__ : Optional[int] = None snake_case__ : Tuple = BloomConfig() for j, file in enumerate(__magic_name__ ): print("""Processing file: {}""".format(__magic_name__ ) ) snake_case__ : Any = None for i in range(__magic_name__ ): # load all TP files snake_case__ : int = file.replace("""model_00""" , f"model_0{i}" ) snake_case__ : Union[str, Any] = torch.load(os.path.join(__magic_name__ , __magic_name__ ) , map_location="""cpu""" ) # Rename keys in the transformers names snake_case__ : Tuple = list(temp.keys() ) for key in keys: snake_case__ : str = temp.pop(__magic_name__ ) if tensors is None: snake_case__ : List[Any] = temp else: for key in tensors.keys(): if any(key.endswith(__magic_name__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case__ : str = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case__ : str = torch.cat([tensors[key], temp[key]] , dim=__magic_name__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__magic_name__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case__ : Tuple = tensors[key] / pretraining_tp torch.save( __magic_name__ , os.path.join( __magic_name__ , """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) , str(len(__magic_name__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): snake_case__ : int = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: snake_case__ : Union[str, Any] = """pytorch_model_{}-of-{}.bin""".format( str(j + 1 ).zfill(5 ) , str(len(__magic_name__ ) ).zfill(5 ) ) snake_case__ : Dict = BloomConfig() snake_case__ : Dict = pytorch_dump_folder_path + """/""" + CONFIG_NAME snake_case__ : int = total_size with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(__magic_name__ , WEIGHTS_NAME + """.index.json""" ) , """w""" , encoding="""utf-8""" ) as f: snake_case__ : Tuple = json.dumps(__magic_name__ , indent=2 , sort_keys=__magic_name__ ) + """\n""" f.write(__magic_name__ ) else: snake_case__ : Optional[Any] = BloomModel(__magic_name__ ) snake_case__ : Optional[Any] = os.listdir(__magic_name__ ) snake_case__ : Union[str, Any] = sorted(filter(lambda __magic_name__ : s.startswith("""layer""" ) and "model_00" in s , __magic_name__ ) ) snake_case__ : Tuple = None for i, file in enumerate(__magic_name__ ): snake_case__ : Dict = None for i in range(__magic_name__ ): # load all TP files snake_case__ : List[str] = file.replace("""model_00""" , f"model_0{i}" ) snake_case__ : Optional[int] = torch.load(os.path.join(__magic_name__ , __magic_name__ ) , map_location="""cpu""" ) # Rename keys in the transformers names snake_case__ : Optional[int] = list(temp.keys() ) for key in keys: snake_case__ : int = temp.pop(__magic_name__ ) if tensors is None: snake_case__ : str = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(__magic_name__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case__ : Optional[int] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case__ : Tuple = torch.cat([tensors[key], temp[key]] , dim=__magic_name__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__magic_name__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case__ : str = tensors[key] / pretraining_tp snake_case__ : Any = model.load_state_dict(__magic_name__ , strict=__magic_name__ ) assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected" if missing_keys is None: snake_case__ : Optional[int] = set(other_keys.missing_keys ) else: snake_case__ : Optional[int] = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"The keys {missing_keys} are missing" # Save pytorch-model os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) snake_case__ : Tuple = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME snake_case__ : List[Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}" ) if config.torch_dtype is not None: snake_case__ : int = model.to(config.torch_dtype ) torch.save(model.state_dict() , __magic_name__ ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) A_ : Optional[int] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
38
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Dict: '''simple docstring''' snake_case__ : int = botoa.client("""iam""" ) snake_case__ : Union[str, Any] = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=__magic_name__ , AssumeRolePolicyDocument=json.dumps(__magic_name__ , indent=2 ) ) snake_case__ : Dict = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=__magic_name__ , PolicyName=f"{role_name}_policy_permission" , PolicyDocument=json.dumps(__magic_name__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"role {role_name} already exists. Using existing one" ) def UpperCamelCase__ ( __magic_name__ : Any ) -> Tuple: '''simple docstring''' snake_case__ : List[str] = botoa.client("""iam""" ) return iam_client.get_role(RoleName=__magic_name__ )["Role"]["Arn"] def UpperCamelCase__ ( ) -> Tuple: '''simple docstring''' snake_case__ : Union[str, Any] = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , __magic_name__ , ) snake_case__ : List[Any] = None if credentials_configuration == 0: snake_case__ : Dict = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) snake_case__ : List[str] = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) snake_case__ : List[str] = _ask_field("""AWS Access Key ID: """ ) snake_case__ : int = aws_access_key_id snake_case__ : Optional[Any] = _ask_field("""AWS Secret Access Key: """ ) snake_case__ : List[str] = aws_secret_access_key snake_case__ : Tuple = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) snake_case__ : Optional[int] = aws_region snake_case__ : int = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , __magic_name__ , ) if role_management == 0: snake_case__ : Optional[Any] = _ask_field("""Enter your IAM role name: """ ) else: snake_case__ : Optional[int] = """accelerate_sagemaker_execution_role""" print(f"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(__magic_name__ ) snake_case__ : Dict = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : Any = None if is_custom_docker_image: snake_case__ : str = _ask_field("""Enter your Docker image: """ , lambda __magic_name__ : str(__magic_name__ ).lower() ) snake_case__ : Tuple = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : List[Any] = None if is_sagemaker_inputs_enabled: snake_case__ : str = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , ) snake_case__ : Optional[int] = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : Optional[Any] = None if is_sagemaker_metrics_enabled: snake_case__ : List[Any] = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , ) snake_case__ : Tuple = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) snake_case__ : Any = {} snake_case__ : List[Any] = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) if use_dynamo: snake_case__ : str = """dynamo_""" snake_case__ : Tuple = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) snake_case__ : List[str] = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) if use_custom_options: snake_case__ : str = _ask_options( """Which mode do you want to use?""" , __magic_name__ , lambda __magic_name__ : TORCH_DYNAMO_MODES[int(__magic_name__ )] , default="""default""" , ) snake_case__ : Union[str, Any] = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : str = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : Dict = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: snake_case__ : List[str] = _ask_options( __magic_name__ , __magic_name__ , lambda __magic_name__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__magic_name__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" snake_case__ : Optional[int] = _ask_field(__magic_name__ , lambda __magic_name__ : str(__magic_name__ ).lower() , default="""ml.p3.2xlarge""" ) snake_case__ : Dict = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): snake_case__ : Optional[Any] = _ask_field( """How many machines do you want use? [1]: """ , __magic_name__ , default=1 , ) snake_case__ : Union[str, Any] = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=__magic_name__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__magic_name__ , use_cpu=__magic_name__ , dynamo_config=__magic_name__ , eca_instance_type=__magic_name__ , profile=__magic_name__ , region=__magic_name__ , iam_role_name=__magic_name__ , mixed_precision=__magic_name__ , num_machines=__magic_name__ , sagemaker_inputs_file=__magic_name__ , sagemaker_metrics_file=__magic_name__ , )
38
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu A_ : int = False class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self ): return 1_2 @property def __UpperCamelCase ( self ): return 1_2 @property def __UpperCamelCase ( self ): return 3_2 @property def __UpperCamelCase ( self ): torch.manual_seed(0 ) snake_case__ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self ): snake_case__ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __UpperCamelCase ( self ): torch.manual_seed(0 ) snake_case__ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(__SCREAMING_SNAKE_CASE ) @property def __UpperCamelCase ( self ): torch.manual_seed(0 ) snake_case__ : Any = 1_2 snake_case__ : Any = 1_2 snake_case__ : Any = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case__ : int = TransformeraDModel(**__SCREAMING_SNAKE_CASE ) return model def __UpperCamelCase ( self ): snake_case__ : Optional[int] = """cpu""" snake_case__ : int = self.dummy_vqvae snake_case__ : Union[str, Any] = self.dummy_text_encoder snake_case__ : str = self.dummy_tokenizer snake_case__ : List[Any] = self.dummy_transformer snake_case__ : Union[str, Any] = VQDiffusionScheduler(self.num_embed ) snake_case__ : Tuple = LearnedClassifierFreeSamplingEmbeddings(learnable=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = VQDiffusionPipeline( vqvae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , transformer=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , learned_classifier_free_sampling_embeddings=__SCREAMING_SNAKE_CASE , ) snake_case__ : List[str] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = """teddy bear playing in the pool""" snake_case__ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) snake_case__ : Union[str, Any] = pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="""np""" ) snake_case__ : List[Any] = output.images snake_case__ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) snake_case__ : Optional[int] = pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" , return_dict=__SCREAMING_SNAKE_CASE , num_inference_steps=2 )[0] snake_case__ : Optional[int] = image[0, -3:, -3:, -1] snake_case__ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case__ : List[Any] = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self ): snake_case__ : int = """cpu""" snake_case__ : Optional[Any] = self.dummy_vqvae snake_case__ : Optional[int] = self.dummy_text_encoder snake_case__ : List[Any] = self.dummy_tokenizer snake_case__ : List[str] = self.dummy_transformer snake_case__ : Tuple = VQDiffusionScheduler(self.num_embed ) snake_case__ : Dict = LearnedClassifierFreeSamplingEmbeddings( learnable=__SCREAMING_SNAKE_CASE , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case__ : Union[str, Any] = VQDiffusionPipeline( vqvae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , transformer=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , learned_classifier_free_sampling_embeddings=__SCREAMING_SNAKE_CASE , ) snake_case__ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """teddy bear playing in the pool""" snake_case__ : Optional[Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) snake_case__ : Optional[Any] = pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="""np""" ) snake_case__ : int = output.images snake_case__ : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) snake_case__ : Any = pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" , return_dict=__SCREAMING_SNAKE_CASE , num_inference_steps=2 )[0] snake_case__ : Optional[Any] = image[0, -3:, -3:, -1] snake_case__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case__ : Optional[Any] = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): snake_case__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case__ : Dict = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case__ : int = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case__ : List[str] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) snake_case__ : List[str] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" , ) snake_case__ : Any = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
38
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def UpperCamelCase__ ( __magic_name__ : str = "laptop" ) -> DataFrame: '''simple docstring''' snake_case__ : Union[str, Any] = f"https://www.amazon.in/laptop/s?k={product}" snake_case__ : List[str] = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } snake_case__ : int = BeautifulSoup(requests.get(__magic_name__ , headers=__magic_name__ ).text ) # Initialize a Pandas dataframe with the column titles snake_case__ : Optional[Any] = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: snake_case__ : Optional[int] = item.ha.text snake_case__ : Any = """https://www.amazon.in/""" + item.ha.a["""href"""] snake_case__ : List[str] = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: snake_case__ : Dict = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: snake_case__ : Optional[int] = """Not available""" try: snake_case__ : Tuple = ( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: snake_case__ : Optional[Any] = """""" try: snake_case__ : str = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 1_00 ) except ValueError: snake_case__ : List[Any] = float("""nan""" ) except AttributeError: pass snake_case__ : str = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] snake_case__ : List[Any] = """ """ snake_case__ : Union[str, Any] = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": A_ : int = "headphones" get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
38
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( __magic_name__ : list[int] , __magic_name__ : list[int] , __magic_name__ : int ) -> tuple[float, list[float]]: '''simple docstring''' snake_case__ : List[str] = list(range(len(__magic_name__ ) ) ) snake_case__ : int = [v / w for v, w in zip(__magic_name__ , __magic_name__ )] index.sort(key=lambda __magic_name__ : ratio[i] , reverse=__magic_name__ ) snake_case__ : float = 0 snake_case__ : list[float] = [0] * len(__magic_name__ ) for i in index: if weight[i] <= capacity: snake_case__ : List[str] = 1 max_value += value[i] capacity -= weight[i] else: snake_case__ : Optional[int] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
38
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = LongformerTokenizer lowerCamelCase__ = True lowerCamelCase__ = LongformerTokenizerFast lowerCamelCase__ = True def __UpperCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case__ : Optional[int] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) snake_case__ : int = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case__ : Any = {"""unk_token""": """<unk>"""} snake_case__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : str = """lower newer""" snake_case__ : Dict = """lower newer""" return input_text, output_text def __UpperCamelCase ( self ): snake_case__ : int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case__ : Tuple = """lower newer""" snake_case__ : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] snake_case__ : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokens + [tokenizer.unk_token] snake_case__ : List[Any] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Tuple = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) snake_case__ : int = tokenizer.encode("""sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : int = """Encode this sequence.""" snake_case__ : Union[str, Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments snake_case__ : Optional[int] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) snake_case__ : List[str] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens snake_case__ : List[str] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space snake_case__ : Dict = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) snake_case__ : str = """Encode <mask> sequence""" snake_case__ : Tuple = """Encode <mask>sequence""" snake_case__ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = encoded.index(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer.encode(__SCREAMING_SNAKE_CASE ) snake_case__ : str = encoded.index(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """A, <mask> AllenNLP sentence.""" snake_case__ : str = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) snake_case__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) snake_case__ : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def __UpperCamelCase ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): snake_case__ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) snake_case__ : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state["""trim_offsets"""] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : Union[str, Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` snake_case__ : Any = f"{text_of_1_token} {text_of_1_token}" snake_case__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Optional[Any] = f" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) snake_case__ : Dict = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
38
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : Union[str, Any] = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
38
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : int = logging.get_logger(__name__) A_ : Any = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''resnet''' lowerCamelCase__ = ['''basic''', '''bottleneck'''] def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="bottleneck" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) snake_case__ : List[Any] = num_channels snake_case__ : str = embedding_size snake_case__ : List[Any] = hidden_sizes snake_case__ : Dict = depths snake_case__ : List[Any] = layer_type snake_case__ : int = hidden_act snake_case__ : Union[str, Any] = downsample_in_first_stage snake_case__ : Dict = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] snake_case__ , snake_case__ : Any = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = version.parse('''1.11''' ) @property def __UpperCamelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __UpperCamelCase ( self ): return 1e-3
38
1
'''simple docstring''' from __future__ import annotations from typing import Any class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE = 6 ): snake_case__ : Node | None = None snake_case__ : Node | None = None self.create_linked_list(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = Node() snake_case__ : str = current_node snake_case__ : List[Any] = current_node snake_case__ : Union[str, Any] = current_node for _ in range(1 , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = Node() snake_case__ : Union[str, Any] = current_node snake_case__ : Tuple = previous_node snake_case__ : int = current_node snake_case__ : int = self.front snake_case__ : str = previous_node def __UpperCamelCase ( self ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __UpperCamelCase ( self ): self.check_can_perform_operation() return self.front.data if self.front else None def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if self.rear is None: return self.check_is_full() if not self.is_empty(): snake_case__ : List[str] = self.rear.next if self.rear: snake_case__ : Tuple = data def __UpperCamelCase ( self ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: snake_case__ : int = self.front.data snake_case__ : Tuple = None return data snake_case__ : Any = self.front snake_case__ : Optional[int] = old_front.next snake_case__ : Union[str, Any] = old_front.data snake_case__ : Optional[int] = None return data def __UpperCamelCase ( self ): if self.is_empty(): raise Exception("""Empty Queue""" ) def __UpperCamelCase ( self ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __snake_case : '''simple docstring''' def __init__( self ): snake_case__ : Any | None = None snake_case__ : Node | None = None snake_case__ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
38
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
38
1
'''simple docstring''' def UpperCamelCase__ ( __magic_name__ : int ) -> int: '''simple docstring''' if not isinstance(__magic_name__ , __magic_name__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) snake_case__ : List[str] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
38
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ): snake_case__ : str = [] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_init_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_train_begin""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_train_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_epoch_begin""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_epoch_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_step_begin""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_step_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_evaluate""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_predict""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_save""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_log""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_prediction_step""" ) @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Tuple = tempfile.mkdtemp() def __UpperCamelCase ( self ): shutil.rmtree(self.output_dir ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. snake_case__ : List[Any] = RegressionDataset(length=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = RegressionDataset(length=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = RegressionModelConfig(a=__SCREAMING_SNAKE_CASE , b=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = RegressionPreTrainedModel(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = TrainingArguments(self.output_dir , disable_tqdm=__SCREAMING_SNAKE_CASE , report_to=[] , **__SCREAMING_SNAKE_CASE ) return Trainer( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , train_dataset=__SCREAMING_SNAKE_CASE , eval_dataset=__SCREAMING_SNAKE_CASE , callbacks=__SCREAMING_SNAKE_CASE , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) # Order doesn't matter snake_case__ : Tuple = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ ) snake_case__ : List[str] = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ ) for cba, cba in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , cba.__class__ ) elif not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(cba.__class__ , __SCREAMING_SNAKE_CASE ) else: self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = ["""on_init_end""", """on_train_begin"""] snake_case__ : Union[str, Any] = 0 snake_case__ : Dict = len(trainer.get_eval_dataloader() ) snake_case__ : Any = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(__SCREAMING_SNAKE_CASE ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __UpperCamelCase ( self ): snake_case__ : Any = self.get_trainer() snake_case__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) # Callbacks passed at init are added to the default callbacks snake_case__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(__SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback snake_case__ : Optional[Any] = self.get_trainer(disable_tqdm=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] snake_case__ : int = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.remove(__SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = self.get_trainer() snake_case__ : List[str] = trainer.pop_callback(__SCREAMING_SNAKE_CASE ) self.assertEqual(cb.__class__ , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) trainer.add_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.insert(0 , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) # We can also add, pop, or remove by instance snake_case__ : List[Any] = self.get_trainer() snake_case__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.remove(__SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = self.get_trainer() snake_case__ : Any = trainer.callback_handler.callbacks[0] snake_case__ : Optional[Any] = trainer.pop_callback(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) trainer.add_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.insert(0 , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() snake_case__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) # Independent log/save/eval snake_case__ : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() snake_case__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() snake_case__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() snake_case__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() snake_case__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) # A bit of everything snake_case__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() snake_case__ : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: snake_case__ : List[str] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(__SCREAMING_SNAKE_CASE ) in warn_mock.call_args[0][0]
38
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( __magic_name__ : list[int] ) -> int: '''simple docstring''' if not nums: return 0 snake_case__ : Dict = nums[0] snake_case__ : str = 0 for num in nums[1:]: snake_case__ , snake_case__ : int = ( max_excluding + num, max(__magic_name__ , __magic_name__ ), ) return max(__magic_name__ , __magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
38
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=1_8 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=4_0_0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ): snake_case__ : Any = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case__ : List[Any] = parent snake_case__ : int = batch_size snake_case__ : List[Any] = num_channels snake_case__ : str = image_size snake_case__ : Union[str, Any] = min_resolution snake_case__ : List[Any] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : int = size snake_case__ : Tuple = do_normalize snake_case__ : Dict = image_mean snake_case__ : Union[str, Any] = image_std def __UpperCamelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = DPTImageProcessor if is_vision_available() else None def __UpperCamelCase ( self ): snake_case__ : str = DPTImageProcessingTester(self ) @property def __UpperCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_mean""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_std""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_normalize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """size""" ) ) def __UpperCamelCase ( self ): snake_case__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} ) snake_case__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input snake_case__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input snake_case__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : Any = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
38
1
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = LongformerTokenizer lowerCamelCase__ = True lowerCamelCase__ = LongformerTokenizerFast lowerCamelCase__ = True def __UpperCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case__ : Optional[int] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) snake_case__ : int = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case__ : Any = {"""unk_token""": """<unk>"""} snake_case__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : str = """lower newer""" snake_case__ : Dict = """lower newer""" return input_text, output_text def __UpperCamelCase ( self ): snake_case__ : int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case__ : Tuple = """lower newer""" snake_case__ : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] snake_case__ : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokens + [tokenizer.unk_token] snake_case__ : List[Any] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Tuple = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) snake_case__ : int = tokenizer.encode("""sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : int = """Encode this sequence.""" snake_case__ : Union[str, Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments snake_case__ : Optional[int] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) snake_case__ : List[str] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens snake_case__ : List[str] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space snake_case__ : Dict = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) snake_case__ : str = """Encode <mask> sequence""" snake_case__ : Tuple = """Encode <mask>sequence""" snake_case__ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = encoded.index(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer.encode(__SCREAMING_SNAKE_CASE ) snake_case__ : str = encoded.index(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """A, <mask> AllenNLP sentence.""" snake_case__ : str = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) snake_case__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) snake_case__ : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def __UpperCamelCase ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): snake_case__ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) snake_case__ : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state["""trim_offsets"""] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : Union[str, Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` snake_case__ : Any = f"{text_of_1_token} {text_of_1_token}" snake_case__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Optional[Any] = f" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) snake_case__ : Dict = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
38
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """embed_dim""" ) ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """num_heads""" ) ) class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1_6, 4_8, 9_6] , __SCREAMING_SNAKE_CASE=[1, 3, 6] , __SCREAMING_SNAKE_CASE=[1, 2, 1_0] , __SCREAMING_SNAKE_CASE=[7, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2] , __SCREAMING_SNAKE_CASE=[2, 1, 1] , __SCREAMING_SNAKE_CASE=[2, 2, 2] , __SCREAMING_SNAKE_CASE=[False, False, True] , __SCREAMING_SNAKE_CASE=[0.0, 0.0, 0.0] , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=2 , ): snake_case__ : List[str] = parent snake_case__ : Tuple = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : List[Any] = patch_sizes snake_case__ : Optional[int] = patch_stride snake_case__ : Optional[Any] = patch_padding snake_case__ : Any = is_training snake_case__ : int = use_labels snake_case__ : Dict = num_labels snake_case__ : Optional[Any] = num_channels snake_case__ : Optional[Any] = embed_dim snake_case__ : Optional[int] = num_heads snake_case__ : Optional[int] = stride_kv snake_case__ : int = depth snake_case__ : Optional[Any] = cls_token snake_case__ : List[Any] = attention_drop_rate snake_case__ : Union[str, Any] = initializer_range snake_case__ : List[Any] = layer_norm_eps def __UpperCamelCase ( self ): snake_case__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : List[Any] = None if self.use_labels: # create a random int32 tensor of given shape snake_case__ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : List[str] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : int = TFCvtModel(config=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = (self.image_size, self.image_size) snake_case__ , snake_case__ : str = image_size[0], image_size[1] for i in range(len(self.depth ) ): snake_case__ : Any = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) snake_case__ : Optional[int] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = self.num_labels snake_case__ : str = TFCvtForImageClassification(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs snake_case__ : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowerCamelCase__ = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = TFCvtModelTester(self ) snake_case__ : Any = TFCvtConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def __UpperCamelCase ( self ): pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def __UpperCamelCase ( self ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def __UpperCamelCase ( self ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def __UpperCamelCase ( self ): super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def __UpperCamelCase ( self ): snake_case__ : List[str] = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(__SCREAMING_SNAKE_CASE ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[Any] = [*signature.parameters.keys()] snake_case__ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) snake_case__ : Optional[int] = outputs.hidden_states snake_case__ : Tuple = len(self.model_tester.depth ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[Any] = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[str] = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def __UpperCamelCase ( self ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : str = TFCvtModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> str: '''simple docstring''' snake_case__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case__ : Union[str, Any] = self.default_image_processor snake_case__ : int = prepare_img() snake_case__ : Dict = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""tf""" ) # forward pass snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ) # verify the logits snake_case__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : int = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
38
1
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS A_ : List[Any] = logging.get_logger(__name__) A_ : List[str] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if config is None: assert isinstance(self.model , __SCREAMING_SNAKE_CASE ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f" {self.model.__class__}" ) snake_case__ : Optional[Any] = self.model.config else: snake_case__ : int = config snake_case__ : List[str] = data_args snake_case__ : Union[str, Any] = self.config.tgt_vocab_size if isinstance(self.config , __SCREAMING_SNAKE_CASE ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for" """ padding..""" ) if self.args.label_smoothing == 0: snake_case__ : Union[str, Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss snake_case__ : Optional[int] = label_smoothed_nll_loss def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if self.optimizer is None: snake_case__ : Tuple = ["""bias""", """LayerNorm.weight"""] snake_case__ : Tuple = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] snake_case__ : Dict = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: snake_case__ : str = Adafactor snake_case__ : Dict = {"""scale_parameter""": False, """relative_step""": False} else: snake_case__ : Union[str, Any] = AdamW snake_case__ : Dict = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } snake_case__ : Union[str, Any] = self.args.learning_rate if self.sharded_ddp: snake_case__ : Dict = OSS( params=__SCREAMING_SNAKE_CASE , optim=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) else: snake_case__ : Tuple = optimizer_cls(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if self.lr_scheduler is None: snake_case__ : Union[str, Any] = self._get_lr_scheduler(__SCREAMING_SNAKE_CASE ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : List[str] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": snake_case__ : Optional[int] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": snake_case__ : int = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: snake_case__ : str = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__SCREAMING_SNAKE_CASE ) return scheduler def __UpperCamelCase ( self ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token snake_case__ : str = model(**__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )[0] snake_case__ : Union[str, Any] = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models snake_case__ , snake_case__ : Tuple = model(**__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )[:2] else: # compute label smoothed loss snake_case__ : Optional[Any] = model(**__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )[0] snake_case__ : str = torch.nn.functional.log_softmax(__SCREAMING_SNAKE_CASE , dim=-1 ) snake_case__ , snake_case__ : str = self.loss_fn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = inputs.pop("""labels""" ) snake_case__ , snake_case__ : Optional[int] = self._compute_loss(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return loss def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , ): snake_case__ : List[str] = self._prepare_inputs(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: snake_case__ : List[str] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **__SCREAMING_SNAKE_CASE , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: snake_case__ : Optional[int] = self._pad_tensors_to_max_len(__SCREAMING_SNAKE_CASE , gen_kwargs["""max_length"""] ) snake_case__ : List[Any] = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data snake_case__ , snake_case__ : str = self._compute_loss(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) snake_case__ : Tuple = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: snake_case__ : List[Any] = self._pad_tensors_to_max_len(__SCREAMING_SNAKE_CASE , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # If PAD token is not defined at least EOS token has to be defined snake_case__ : List[str] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f" padded to `max_length`={max_length}" ) snake_case__ : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) snake_case__ : int = tensor return padded_tensor
38
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. snake_case__ : int = [[1, 2, 4], [1, 2, 3, 4]] snake_case__ : Any = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) self.assertTrue(isinstance(dc.token_ids , __SCREAMING_SNAKE_CASE ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __UpperCamelCase ( self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). snake_case__ : Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) # fails here def __UpperCamelCase ( self ): snake_case__ : List[str] = [[1, 2, 3], [1, 2, 4]] snake_case__ : Optional[int] = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ , snake_case__ : Any = dc.update(1 ) snake_case__ : Any = stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) snake_case__ , snake_case__ , snake_case__ : Tuple = dc.update(2 ) snake_case__ : Tuple = stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = dc.update(3 ) snake_case__ : List[str] = stepped is True and completed is True and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] snake_case__ : int = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ , snake_case__ : str = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) snake_case__ , snake_case__ , snake_case__ : str = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case__ , snake_case__ , snake_case__ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
38
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : Optional[Any] = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''xlm''' lowerCamelCase__ = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self , __SCREAMING_SNAKE_CASE=3_0_1_4_5 , __SCREAMING_SNAKE_CASE=2_0_4_8 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=2_0_4_8**-0.5 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="first" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE , ): snake_case__ : Tuple = vocab_size snake_case__ : Any = emb_dim snake_case__ : str = n_layers snake_case__ : Dict = n_heads snake_case__ : Union[str, Any] = dropout snake_case__ : Union[str, Any] = attention_dropout snake_case__ : str = gelu_activation snake_case__ : List[str] = sinusoidal_embeddings snake_case__ : Optional[Any] = causal snake_case__ : int = asm snake_case__ : List[str] = n_langs snake_case__ : Any = use_lang_emb snake_case__ : List[str] = layer_norm_eps snake_case__ : Optional[Any] = bos_index snake_case__ : Optional[int] = eos_index snake_case__ : str = pad_index snake_case__ : Optional[Any] = unk_index snake_case__ : Tuple = mask_index snake_case__ : Tuple = is_encoder snake_case__ : Any = max_position_embeddings snake_case__ : Tuple = embed_init_std snake_case__ : int = init_std snake_case__ : List[str] = summary_type snake_case__ : List[str] = summary_use_proj snake_case__ : int = summary_activation snake_case__ : Union[str, Any] = summary_proj_to_labels snake_case__ : Tuple = summary_first_dropout snake_case__ : List[Any] = start_n_top snake_case__ : Tuple = end_n_top snake_case__ : Union[str, Any] = mask_token_id snake_case__ : Dict = lang_id if "n_words" in kwargs: snake_case__ : str = kwargs["""n_words"""] super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCamelCase ( self ): if self.task == "multiple-choice": snake_case__ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case__ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
38
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : Tuple = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''segformer''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[2, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[8, 4, 2, 1] , __SCREAMING_SNAKE_CASE=[3_2, 6_4, 1_6_0, 2_5_6] , __SCREAMING_SNAKE_CASE=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[1, 2, 5, 8] , __SCREAMING_SNAKE_CASE=[4, 4, 4, 4] , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1e-6 , __SCREAMING_SNAKE_CASE=2_5_6 , __SCREAMING_SNAKE_CASE=2_5_5 , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __SCREAMING_SNAKE_CASE , ) snake_case__ : Dict = num_channels snake_case__ : Optional[Any] = num_encoder_blocks snake_case__ : Any = depths snake_case__ : Optional[int] = sr_ratios snake_case__ : Tuple = hidden_sizes snake_case__ : List[str] = patch_sizes snake_case__ : str = strides snake_case__ : Optional[int] = mlp_ratios snake_case__ : Optional[Any] = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : Optional[int] = hidden_dropout_prob snake_case__ : List[str] = attention_probs_dropout_prob snake_case__ : List[Any] = classifier_dropout_prob snake_case__ : int = initializer_range snake_case__ : List[str] = drop_path_rate snake_case__ : int = layer_norm_eps snake_case__ : List[Any] = decoder_hidden_size snake_case__ : List[Any] = kwargs.get("""reshape_last_stage""" , __SCREAMING_SNAKE_CASE ) snake_case__ : Dict = semantic_loss_ignore_index class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = version.parse('''1.11''' ) @property def __UpperCamelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __UpperCamelCase ( self ): return 1e-4 @property def __UpperCamelCase ( self ): return 1_2
38
1
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP A_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A_ : Tuple = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n" def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : List[Any]=8 ) -> str: '''simple docstring''' snake_case__ : Tuple = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 snake_case__ : List[str] = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): super().__init__() self.register_modules( text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , movq=__SCREAMING_SNAKE_CASE , ) snake_case__ : Optional[int] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if latents is None: snake_case__ : Optional[Any] = randn_tensor(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) snake_case__ : List[str] = latents.to(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = latents * scheduler.init_noise_sigma return latents def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , ): snake_case__ : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else 1 # get prompt text embeddings snake_case__ : List[str] = self.tokenizer( __SCREAMING_SNAKE_CASE , padding="""max_length""" , truncation=__SCREAMING_SNAKE_CASE , max_length=7_7 , return_attention_mask=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" , ) snake_case__ : str = text_inputs.input_ids snake_case__ : Optional[Any] = self.tokenizer(__SCREAMING_SNAKE_CASE , padding="""longest""" , return_tensors="""pt""" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : int = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) snake_case__ : Union[str, Any] = text_input_ids.to(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = text_inputs.attention_mask.to(__SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ : Tuple = self.text_encoder( input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = prompt_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 ) snake_case__ : Optional[int] = text_encoder_hidden_states.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 ) snake_case__ : List[Any] = text_mask.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: snake_case__ : List[str] if negative_prompt is None: snake_case__ : Any = [""""""] * batch_size elif type(__SCREAMING_SNAKE_CASE ) is not type(__SCREAMING_SNAKE_CASE ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(__SCREAMING_SNAKE_CASE )} !=" f" {type(__SCREAMING_SNAKE_CASE )}." ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = [negative_prompt] elif batch_size != len(__SCREAMING_SNAKE_CASE ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(__SCREAMING_SNAKE_CASE )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" """ the batch size of `prompt`.""" ) else: snake_case__ : Optional[Any] = negative_prompt snake_case__ : Dict = self.tokenizer( __SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=7_7 , truncation=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" , ) snake_case__ : int = uncond_input.input_ids.to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = uncond_input.attention_mask.to(__SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ : Union[str, Any] = self.text_encoder( input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case__ : Any = negative_prompt_embeds.shape[1] snake_case__ : Optional[int] = negative_prompt_embeds.repeat(1 , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = uncond_text_encoder_hidden_states.shape[1] snake_case__ : Optional[Any] = uncond_text_encoder_hidden_states.repeat(1 , __SCREAMING_SNAKE_CASE , 1 ) snake_case__ : str = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , __SCREAMING_SNAKE_CASE , -1 ) snake_case__ : Any = uncond_text_mask.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case__ : List[str] = torch.cat([negative_prompt_embeds, prompt_embeds] ) snake_case__ : Tuple = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) snake_case__ : str = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) snake_case__ : Optional[int] = torch.device(f"cuda:{gpu_id}" ) snake_case__ : Dict = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) snake_case__ : List[str] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=__SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case__ : List[str] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: snake_case__ , snake_case__ : Optional[Any] = cpu_offload_with_hook(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prev_module_hook=__SCREAMING_SNAKE_CASE ) if self.safety_checker is not None: snake_case__ , snake_case__ : Tuple = cpu_offload_with_hook(self.safety_checker , __SCREAMING_SNAKE_CASE , prev_module_hook=__SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. snake_case__ : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCamelCase ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__SCREAMING_SNAKE_CASE , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__SCREAMING_SNAKE_CASE ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 5_1_2 , __SCREAMING_SNAKE_CASE = 5_1_2 , __SCREAMING_SNAKE_CASE = 1_0_0 , __SCREAMING_SNAKE_CASE = 4.0 , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : str = 1 elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : List[str] = len(__SCREAMING_SNAKE_CASE ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(__SCREAMING_SNAKE_CASE )}" ) snake_case__ : str = self._execution_device snake_case__ : List[Any] = batch_size * num_images_per_prompt snake_case__ : Dict = guidance_scale > 1.0 snake_case__ , snake_case__ , snake_case__ : List[str] = self._encode_prompt( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Union[str, Any] = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: snake_case__ : Optional[Any] = image_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 ) snake_case__ : Optional[int] = negative_image_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 ) snake_case__ : str = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=__SCREAMING_SNAKE_CASE ) self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE ) snake_case__ : int = self.scheduler.timesteps snake_case__ : int = self.unet.config.in_channels snake_case__ , snake_case__ : Union[str, Any] = get_new_h_w(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.movq_scale_factor ) # create initial latent snake_case__ : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.scheduler , ) for i, t in enumerate(self.progress_bar(__SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance snake_case__ : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case__ : Any = {"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds} snake_case__ : Dict = self.unet( sample=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , added_cond_kwargs=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0] if do_classifier_free_guidance: snake_case__ , snake_case__ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) snake_case__ , snake_case__ : Optional[Any] = noise_pred.chunk(2 ) snake_case__ , snake_case__ : Union[str, Any] = variance_pred.chunk(2 ) snake_case__ : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case__ : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case__ , snake_case__ : str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case__ : Optional[Any] = self.scheduler.step( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , ).prev_sample # post-processing snake_case__ : Optional[int] = self.movq.decode(__SCREAMING_SNAKE_CASE , force_not_quantize=__SCREAMING_SNAKE_CASE )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: snake_case__ : List[Any] = image * 0.5 + 0.5 snake_case__ : List[str] = image.clamp(0 , 1 ) snake_case__ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case__ : int = self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
38
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : List[Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = None if token is not None: snake_case__ : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : List[Any] = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ ).json() snake_case__ : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__magic_name__ ): snake_case__ : Tuple = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=None ) -> List[str]: '''simple docstring''' snake_case__ : Optional[Any] = None if token is not None: snake_case__ : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : Dict = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" snake_case__ : Union[str, Any] = requests.get(__magic_name__ , headers=__magic_name__ ).json() snake_case__ : Dict = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__magic_name__ ): snake_case__ : Dict = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = None if token is not None: snake_case__ : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ , allow_redirects=__magic_name__ ) snake_case__ : Any = result.headers["""Location"""] snake_case__ : Tuple = requests.get(__magic_name__ , allow_redirects=__magic_name__ ) snake_case__ : int = os.path.join(__magic_name__ , f"{artifact_name}.zip" ) with open(__magic_name__ , """wb""" ) as fp: fp.write(response.content ) def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : str=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Any = [] snake_case__ : Union[str, Any] = [] snake_case__ : Any = None with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__magic_name__ ) as f: for line in f: snake_case__ : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs snake_case__ : str = line[: line.index(""": """ )] snake_case__ : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed snake_case__ : Dict = line[len("""FAILED """ ) :] failed_tests.append(__magic_name__ ) elif filename == "job_name.txt": snake_case__ : Optional[Any] = line if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError( f"`errors` and `failed_tests` should have the same number of elements. Got {len(__magic_name__ )} for `errors` " f"and {len(__magic_name__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" """ problem.""" ) snake_case__ : Optional[Any] = None if job_name and job_links: snake_case__ : Optional[Any] = job_links.get(__magic_name__ , __magic_name__ ) # A list with elements of the form (line of error, error, failed test) snake_case__ : List[Any] = [x + [y] + [job_link] for x, y in zip(__magic_name__ , __magic_name__ )] return result def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : Union[str, Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = [] snake_case__ : Dict = [os.path.join(__magic_name__ , __magic_name__ ) for p in os.listdir(__magic_name__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(__magic_name__ , job_links=__magic_name__ ) ) return errors def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=None ) -> List[Any]: '''simple docstring''' snake_case__ : Any = Counter() counter.update([x[1] for x in logs] ) snake_case__ : Dict = counter.most_common() snake_case__ : Any = {} for error, count in counts: if error_filter is None or error not in error_filter: snake_case__ : int = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) ) return r def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> List[Any]: '''simple docstring''' snake_case__ : str = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): snake_case__ : Tuple = test.split("""/""" )[2] else: snake_case__ : Any = None return test def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Union[str, Any]=None ) -> List[str]: '''simple docstring''' snake_case__ : List[str] = [(x[0], x[1], get_model(x[2] )) for x in logs] snake_case__ : List[Any] = [x for x in logs if x[2] is not None] snake_case__ : Any = {x[2] for x in logs} snake_case__ : Optional[Any] = {} for test in tests: snake_case__ : str = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) snake_case__ : Optional[int] = counter.most_common() snake_case__ : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} snake_case__ : int = sum(error_counts.values() ) if n_errors > 0: snake_case__ : str = {"""count""": n_errors, """errors""": error_counts} snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) ) return r def UpperCamelCase__ ( __magic_name__ : int ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[Any] = """| no. | error | status |""" snake_case__ : int = """|-:|:-|:-|""" snake_case__ : int = [header, sep] for error in reduced_by_error: snake_case__ : Union[str, Any] = reduced_by_error[error]["""count"""] snake_case__ : Dict = f"| {count} | {error[:1_00]} | |" lines.append(__magic_name__ ) return "\n".join(__magic_name__ ) def UpperCamelCase__ ( __magic_name__ : Dict ) -> List[Any]: '''simple docstring''' snake_case__ : List[Any] = """| model | no. of errors | major error | count |""" snake_case__ : Optional[int] = """|-:|-:|-:|-:|""" snake_case__ : Dict = [header, sep] for model in reduced_by_model: snake_case__ : Tuple = reduced_by_model[model]["""count"""] snake_case__ , snake_case__ : Tuple = list(reduced_by_model[model]["""errors"""].items() )[0] snake_case__ : Optional[int] = f"| {model} | {count} | {error[:60]} | {_count} |" lines.append(__magic_name__ ) return "\n".join(__magic_name__ ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") A_ : int = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) A_ : Optional[int] = get_job_links(args.workflow_run_id, token=args.token) A_ : Optional[Any] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: A_ : int = k.find(" / ") A_ : List[Any] = k[index + len(" / ") :] A_ : List[str] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) A_ : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) A_ : str = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error A_ : List[str] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors A_ : Any = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) A_ : Any = reduce_by_error(errors) A_ : Union[str, Any] = reduce_by_model(errors) A_ : Any = make_github_table(reduced_by_error) A_ : Optional[Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
38
1
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib A_ : int = threading.Lock() A_ : Optional[logging.Handler] = None A_ : str = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } A_ : Dict = logging.WARNING A_ : Tuple = True def UpperCamelCase__ ( ) -> int: '''simple docstring''' snake_case__ : Dict = os.getenv("""TRANSFORMERS_VERBOSITY""" , __magic_name__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def UpperCamelCase__ ( ) -> str: '''simple docstring''' return __name__.split(""".""" )[0] def UpperCamelCase__ ( ) -> logging.Logger: '''simple docstring''' return logging.getLogger(_get_library_name() ) def UpperCamelCase__ ( ) -> None: '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return snake_case__ : int = logging.StreamHandler() # Set sys.stderr as stream. snake_case__ : Optional[int] = sys.stderr.flush # Apply our default configuration to the library root logger. snake_case__ : Dict = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) snake_case__ : List[str] = False def UpperCamelCase__ ( ) -> None: '''simple docstring''' global _default_handler with _lock: if not _default_handler: return snake_case__ : Optional[Any] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) snake_case__ : str = None def UpperCamelCase__ ( ) -> List[str]: '''simple docstring''' return log_levels def UpperCamelCase__ ( __magic_name__ : Optional[str] = None ) -> logging.Logger: '''simple docstring''' if name is None: snake_case__ : Tuple = _get_library_name() _configure_library_root_logger() return logging.getLogger(__magic_name__ ) def UpperCamelCase__ ( ) -> int: '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def UpperCamelCase__ ( __magic_name__ : int ) -> None: '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(__magic_name__ ) def UpperCamelCase__ ( ) -> List[Any]: '''simple docstring''' return set_verbosity(__magic_name__ ) def UpperCamelCase__ ( ) -> List[str]: '''simple docstring''' return set_verbosity(__magic_name__ ) def UpperCamelCase__ ( ) -> Optional[Any]: '''simple docstring''' return set_verbosity(__magic_name__ ) def UpperCamelCase__ ( ) -> Any: '''simple docstring''' return set_verbosity(__magic_name__ ) def UpperCamelCase__ ( ) -> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def UpperCamelCase__ ( ) -> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def UpperCamelCase__ ( __magic_name__ : logging.Handler ) -> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__magic_name__ ) def UpperCamelCase__ ( __magic_name__ : logging.Handler ) -> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__magic_name__ ) def UpperCamelCase__ ( ) -> None: '''simple docstring''' _configure_library_root_logger() snake_case__ : List[str] = False def UpperCamelCase__ ( ) -> None: '''simple docstring''' _configure_library_root_logger() snake_case__ : str = True def UpperCamelCase__ ( ) -> None: '''simple docstring''' snake_case__ : Union[str, Any] = _get_library_root_logger().handlers for handler in handlers: snake_case__ : Optional[int] = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" ) handler.setFormatter(__magic_name__ ) def UpperCamelCase__ ( ) -> None: '''simple docstring''' snake_case__ : Any = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__magic_name__ ) def UpperCamelCase__ ( self : List[Any] , *__magic_name__ : str , **__magic_name__ : List[str] ) -> Any: '''simple docstring''' snake_case__ : Dict = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" , __magic_name__ ) if no_advisory_warnings: return self.warning(*__magic_name__ , **__magic_name__ ) A_ : List[str] = warning_advice @functools.lru_cache(__magic_name__ ) def UpperCamelCase__ ( self : Optional[int] , *__magic_name__ : int , **__magic_name__ : List[Any] ) -> Dict: '''simple docstring''' self.warning(*__magic_name__ , **__magic_name__ ) A_ : Dict = warning_once class __snake_case : '''simple docstring''' def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): # pylint: disable=unused-argument snake_case__ : List[str] = args[0] if args else None def __iter__( self ): return iter(self._iterator ) def __getattr__( self , __SCREAMING_SNAKE_CASE ): def empty_fn(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): return self def __exit__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return class __snake_case : '''simple docstring''' def __call__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): if _tqdm_active: return tqdm_lib.tqdm(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) else: return EmptyTqdm(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): snake_case__ : str = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() A_ : List[str] = _tqdm_cls() def UpperCamelCase__ ( ) -> bool: '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def UpperCamelCase__ ( ) -> List[Any]: '''simple docstring''' global _tqdm_active snake_case__ : List[str] = True hf_hub_utils.enable_progress_bars() def UpperCamelCase__ ( ) -> Any: '''simple docstring''' global _tqdm_active snake_case__ : List[str] = False hf_hub_utils.disable_progress_bars()
38
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version A_ : Tuple = get_logger(__name__) class __snake_case : '''simple docstring''' lowerCamelCase__ = '''dummy_data''' lowerCamelCase__ = '''datasets''' lowerCamelCase__ = False def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , ): snake_case__ : List[Any] = 0 snake_case__ : Union[str, Any] = dataset_name snake_case__ : Optional[int] = cache_dir snake_case__ : Union[str, Any] = use_local_dummy_data snake_case__ : int = config # download_callbacks take a single url as input snake_case__ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root snake_case__ : Union[str, Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general snake_case__ : Union[str, Any] = str(__SCREAMING_SNAKE_CASE ) # to be downloaded snake_case__ : List[str] = None snake_case__ : List[str] = None @property def __UpperCamelCase ( self ): if self._dummy_file is None: snake_case__ : List[str] = self.download_dummy_data() return self._dummy_file @property def __UpperCamelCase ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def __UpperCamelCase ( self ): return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) snake_case__ : Optional[int] = cached_path( __SCREAMING_SNAKE_CASE , cache_dir=self.cache_dir , extract_compressed_file=__SCREAMING_SNAKE_CASE , force_extract=__SCREAMING_SNAKE_CASE ) return os.path.join(__SCREAMING_SNAKE_CASE , self.dummy_file_name ) @property def __UpperCamelCase ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __UpperCamelCase ( self ): if self._bucket_url is None: snake_case__ : List[str] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def __UpperCamelCase ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ): if self.load_existing_dummy_data: # dummy data is downloaded and tested snake_case__ : List[Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned snake_case__ : List[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return self.create_dummy_data_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): return self.create_dummy_data_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: return self.create_dummy_data_single(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ): return self.download_and_extract(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return self.download_and_extract(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): return path def __UpperCamelCase ( self ): return {} def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : int = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for single_url in single_urls: download_callback(__SCREAMING_SNAKE_CASE ) else: snake_case__ : List[str] = single_urls download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = [os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) for x in single_urls] else: snake_case__ : List[Any] = single_urls snake_case__ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) snake_case__ : Optional[int] = value # make sure that values are unique if all(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique snake_case__ : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one snake_case__ : Tuple = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , __SCREAMING_SNAKE_CASE ) ) for url in data_url ) snake_case__ : List[Any] = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): snake_case__ : List[str] = [data_url[0]] * len(__SCREAMING_SNAKE_CASE ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus snake_case__ : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(__SCREAMING_SNAKE_CASE ) return dummy_data_list def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for download_callback in self.download_callbacks: download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus snake_case__ : Any = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(__SCREAMING_SNAKE_CASE ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): def _iter_archive_members(__SCREAMING_SNAKE_CASE ): # this preserves the order of the members inside the ZIP archive snake_case__ : List[str] = Path(self.dummy_file ).parent snake_case__ : Dict = path.relative_to(__SCREAMING_SNAKE_CASE ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: snake_case__ : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = Path(__SCREAMING_SNAKE_CASE ) snake_case__ : int = _iter_archive_members(__SCREAMING_SNAKE_CASE ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(__SCREAMING_SNAKE_CASE ).as_posix(), file_path.open("""rb""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[int] = [paths] for path in paths: if os.path.isfile(__SCREAMING_SNAKE_CASE ): if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__SCREAMING_SNAKE_CASE ): if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(__SCREAMING_SNAKE_CASE ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
38
1
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): super().__init__( features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE , streaming=__SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) snake_case__ : Tuple = Generator( cache_dir=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , gen_kwargs=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) def __UpperCamelCase ( self ): # Build iterable dataset if self.streaming: snake_case__ : Dict = self.builder.as_streaming_dataset(split="""train""" ) # Build regular (map-style) dataset else: snake_case__ : Optional[Any] = None snake_case__ : List[Any] = None snake_case__ : Dict = None snake_case__ : int = None self.builder.download_and_prepare( download_config=__SCREAMING_SNAKE_CASE , download_mode=__SCREAMING_SNAKE_CASE , verification_mode=__SCREAMING_SNAKE_CASE , base_path=__SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) snake_case__ : Optional[int] = self.builder.as_dataset( split="""train""" , verification_mode=__SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset
38
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = IFImgaImgSuperResolutionPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def __UpperCamelCase ( self ): return self._get_superresolution_dummy_components() def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): snake_case__ : List[Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: snake_case__ : Tuple = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __UpperCamelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __UpperCamelCase ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def __UpperCamelCase ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __UpperCamelCase ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __UpperCamelCase ( self ): self._test_save_load_local() def __UpperCamelCase ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
38
1
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = CustomTokenizer pass
38
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu A_ : Dict = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : List[Any]=None , __magic_name__ : List[str]=None , __magic_name__ : List[str]=None ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = True while ask_again: snake_case__ : Optional[Any] = input(__magic_name__ ) try: if default is not None and len(__magic_name__ ) == 0: return default return convert_value(__magic_name__ ) if convert_value is not None else result except Exception: if error_message is not None: print(__magic_name__ ) def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Any=[] , __magic_name__ : Optional[int]=None , __magic_name__ : int=0 ) -> Optional[int]: '''simple docstring''' snake_case__ : Union[str, Any] = BulletMenu(__magic_name__ , __magic_name__ ) snake_case__ : Optional[Any] = menu.run(default_choice=__magic_name__ ) return convert_value(__magic_name__ ) if convert_value is not None else result def UpperCamelCase__ ( __magic_name__ : Any ) -> int: '''simple docstring''' snake_case__ : Tuple = int(__magic_name__ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCamelCase__ ( __magic_name__ : str ) -> Tuple: '''simple docstring''' snake_case__ : List[Any] = int(__magic_name__ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCamelCase__ ( __magic_name__ : List[str] ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = int(__magic_name__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase__ ( __magic_name__ : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[Any] = int(__magic_name__ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCamelCase__ ( __magic_name__ : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ : Optional[Any] = int(__magic_name__ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCamelCase__ ( __magic_name__ : Dict ) -> Tuple: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class __snake_case ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : str = super()._format_usage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : str = usage.replace("""<command> [<args>] """ , """""" ) return usage
38
1
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : Tuple = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''segformer''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[2, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[8, 4, 2, 1] , __SCREAMING_SNAKE_CASE=[3_2, 6_4, 1_6_0, 2_5_6] , __SCREAMING_SNAKE_CASE=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[1, 2, 5, 8] , __SCREAMING_SNAKE_CASE=[4, 4, 4, 4] , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1e-6 , __SCREAMING_SNAKE_CASE=2_5_6 , __SCREAMING_SNAKE_CASE=2_5_5 , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __SCREAMING_SNAKE_CASE , ) snake_case__ : Dict = num_channels snake_case__ : Optional[Any] = num_encoder_blocks snake_case__ : Any = depths snake_case__ : Optional[int] = sr_ratios snake_case__ : Tuple = hidden_sizes snake_case__ : List[str] = patch_sizes snake_case__ : str = strides snake_case__ : Optional[int] = mlp_ratios snake_case__ : Optional[Any] = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : Optional[int] = hidden_dropout_prob snake_case__ : List[str] = attention_probs_dropout_prob snake_case__ : List[Any] = classifier_dropout_prob snake_case__ : int = initializer_range snake_case__ : List[str] = drop_path_rate snake_case__ : int = layer_norm_eps snake_case__ : List[Any] = decoder_hidden_size snake_case__ : List[Any] = kwargs.get("""reshape_last_stage""" , __SCREAMING_SNAKE_CASE ) snake_case__ : Dict = semantic_loss_ignore_index class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = version.parse('''1.11''' ) @property def __UpperCamelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __UpperCamelCase ( self ): return 1e-4 @property def __UpperCamelCase ( self ): return 1_2
38
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( __magic_name__ : list ) -> float: '''simple docstring''' if not nums: raise ValueError("""List is empty""" ) return sum(__magic_name__ ) / len(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
38
1
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = DownBlockaD # noqa F405 lowerCamelCase__ = '''down''' def __UpperCamelCase ( self ): snake_case__ : List[Any] = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ResnetDownsampleBlockaD # noqa F405 lowerCamelCase__ = '''down''' def __UpperCamelCase ( self ): snake_case__ : int = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = AttnDownBlockaD # noqa F405 lowerCamelCase__ = '''down''' def __UpperCamelCase ( self ): snake_case__ : str = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = CrossAttnDownBlockaD # noqa F405 lowerCamelCase__ = '''down''' def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Optional[int] = super().prepare_init_args_and_inputs_for_common() snake_case__ : List[str] = 3_2 return init_dict, inputs_dict def __UpperCamelCase ( self ): snake_case__ : int = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = SimpleCrossAttnDownBlockaD # noqa F405 lowerCamelCase__ = '''down''' @property def __UpperCamelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Optional[Any] = super().prepare_init_args_and_inputs_for_common() snake_case__ : List[str] = 3_2 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = SkipDownBlockaD # noqa F405 lowerCamelCase__ = '''down''' @property def __UpperCamelCase ( self ): return super().get_dummy_input(include_skip_sample=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = AttnSkipDownBlockaD # noqa F405 lowerCamelCase__ = '''down''' @property def __UpperCamelCase ( self ): return super().get_dummy_input(include_skip_sample=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : int = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = DownEncoderBlockaD # noqa F405 lowerCamelCase__ = '''down''' @property def __UpperCamelCase ( self ): return super().get_dummy_input(include_temb=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : int = { """in_channels""": 3_2, """out_channels""": 3_2, } snake_case__ : Tuple = self.dummy_input return init_dict, inputs_dict def __UpperCamelCase ( self ): snake_case__ : Dict = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = AttnDownEncoderBlockaD # noqa F405 lowerCamelCase__ = '''down''' @property def __UpperCamelCase ( self ): return super().get_dummy_input(include_temb=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = { """in_channels""": 3_2, """out_channels""": 3_2, } snake_case__ : Optional[int] = self.dummy_input return init_dict, inputs_dict def __UpperCamelCase ( self ): snake_case__ : Dict = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = UNetMidBlockaD # noqa F405 lowerCamelCase__ = '''mid''' def __UpperCamelCase ( self ): snake_case__ : Dict = { """in_channels""": 3_2, """temb_channels""": 1_2_8, } snake_case__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def __UpperCamelCase ( self ): snake_case__ : Optional[int] = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = UNetMidBlockaDCrossAttn # noqa F405 lowerCamelCase__ = '''mid''' def __UpperCamelCase ( self ): snake_case__ , snake_case__ : int = super().prepare_init_args_and_inputs_for_common() snake_case__ : Any = 3_2 return init_dict, inputs_dict def __UpperCamelCase ( self ): snake_case__ : List[str] = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowerCamelCase__ = '''mid''' @property def __UpperCamelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Optional[int] = super().prepare_init_args_and_inputs_for_common() snake_case__ : Tuple = 3_2 return init_dict, inputs_dict def __UpperCamelCase ( self ): snake_case__ : str = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = UpBlockaD # noqa F405 lowerCamelCase__ = '''up''' @property def __UpperCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Any = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ResnetUpsampleBlockaD # noqa F405 lowerCamelCase__ = '''up''' @property def __UpperCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Tuple = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = CrossAttnUpBlockaD # noqa F405 lowerCamelCase__ = '''up''' @property def __UpperCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Optional[int] = super().prepare_init_args_and_inputs_for_common() snake_case__ : Dict = 3_2 return init_dict, inputs_dict def __UpperCamelCase ( self ): snake_case__ : Dict = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = SimpleCrossAttnUpBlockaD # noqa F405 lowerCamelCase__ = '''up''' @property def __UpperCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=__SCREAMING_SNAKE_CASE , include_encoder_hidden_states=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Union[str, Any] = super().prepare_init_args_and_inputs_for_common() snake_case__ : str = 3_2 return init_dict, inputs_dict def __UpperCamelCase ( self ): snake_case__ : Optional[int] = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = AttnUpBlockaD # noqa F405 lowerCamelCase__ = '''up''' @property def __UpperCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=__SCREAMING_SNAKE_CASE ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def __UpperCamelCase ( self ): snake_case__ : int = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = SkipUpBlockaD # noqa F405 lowerCamelCase__ = '''up''' @property def __UpperCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = AttnSkipUpBlockaD # noqa F405 lowerCamelCase__ = '''up''' @property def __UpperCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = UpDecoderBlockaD # noqa F405 lowerCamelCase__ = '''up''' @property def __UpperCamelCase ( self ): return super().get_dummy_input(include_temb=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[str] = {"""in_channels""": 3_2, """out_channels""": 3_2} snake_case__ : Tuple = self.dummy_input return init_dict, inputs_dict def __UpperCamelCase ( self ): snake_case__ : List[str] = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = AttnUpDecoderBlockaD # noqa F405 lowerCamelCase__ = '''up''' @property def __UpperCamelCase ( self ): return super().get_dummy_input(include_temb=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = {"""in_channels""": 3_2, """out_channels""": 3_2} snake_case__ : int = self.dummy_input return init_dict, inputs_dict def __UpperCamelCase ( self ): snake_case__ : int = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(__SCREAMING_SNAKE_CASE )
38
'''simple docstring''' from __future__ import annotations A_ : str = "Muhammad Umer Farooq" A_ : Optional[Any] = "MIT" A_ : int = "1.0.0" A_ : int = "Muhammad Umer Farooq" A_ : int = "[email protected]" A_ : Dict = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): super().__init__() snake_case__ : list[str] = [] snake_case__ : List[Any] = domain def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: snake_case__ : str = parse.urljoin(self.domain , __SCREAMING_SNAKE_CASE ) self.urls.append(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' return ".".join(get_sub_domain_name(__magic_name__ ).split(""".""" )[-2:] ) def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' return parse.urlparse(__magic_name__ ).netloc def UpperCamelCase__ ( __magic_name__ : str = "https://github.com" ) -> list[str]: '''simple docstring''' snake_case__ : List[str] = get_domain_name(__magic_name__ ) # Initialize the parser snake_case__ : Optional[Any] = Parser(__magic_name__ ) try: # Open URL snake_case__ : Any = requests.get(__magic_name__ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through snake_case__ : List[str] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: snake_case__ : Tuple = requests.get(__magic_name__ ) # Get the valid email. snake_case__ : List[str] = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__magic_name__ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__magic_name__ ) if __name__ == "__main__": A_ : str = emails_from_url("https://github.com") print(F'{len(emails)} emails found:') print("\n".join(sorted(emails)))
38
1
'''simple docstring''' from math import loga def UpperCamelCase__ ( __magic_name__ : int ) -> int: '''simple docstring''' if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
38
'''simple docstring''' def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> Tuple: '''simple docstring''' if not head: return True # split the list to two parts snake_case__ , snake_case__ : Dict = head.next, head while fast and fast.next: snake_case__ : Any = fast.next.next snake_case__ : int = slow.next snake_case__ : Dict = slow.next snake_case__ : List[str] = None # Don't forget here! But forget still works! # reverse the second part snake_case__ : Tuple = None while second: snake_case__ : Tuple = second.next snake_case__ : Any = node snake_case__ : str = second snake_case__ : Optional[Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False snake_case__ : List[Any] = node.next snake_case__ : int = head.next return True def UpperCamelCase__ ( __magic_name__ : Any ) -> Optional[Any]: '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) snake_case__ : List[Any] = head while fast and fast.next: snake_case__ , snake_case__ : Any = fast.next.next, slow.next # 2. Push the second half into the stack snake_case__ : Tuple = [slow.val] while slow.next: snake_case__ : Optional[Any] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False snake_case__ : str = cur.next return True def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Tuple: '''simple docstring''' if not head or not head.next: return True snake_case__ : int = {} snake_case__ : Union[str, Any] = 0 while head: if head.val in d: d[head.val].append(__magic_name__ ) else: snake_case__ : Tuple = [pos] snake_case__ : Optional[Any] = head.next pos += 1 snake_case__ : int = pos - 1 snake_case__ : str = 0 for v in d.values(): if len(__magic_name__ ) % 2 != 0: middle += 1 else: snake_case__ : List[str] = 0 for i in range(0 , len(__magic_name__ ) ): if v[i] + v[len(__magic_name__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
38
1
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() A_ : List[Any] = logging.get_logger("transformers.models.encodec") A_ : Dict = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } A_ : Optional[int] = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } A_ : List[str] = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } A_ : List[str] = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } A_ : List[Any] = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } A_ : Union[str, Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } A_ : int = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } A_ : Any = [] A_ : List[str] = [] def UpperCamelCase__ ( __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict ) -> List[str]: '''simple docstring''' for attribute in key.split(""".""" ): snake_case__ : Tuple = getattr(__magic_name__ , __magic_name__ ) if weight_type is not None: snake_case__ : List[Any] = getattr(__magic_name__ , __magic_name__ ).shape else: snake_case__ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case__ : Union[str, Any] = value elif weight_type == "weight_g": snake_case__ : List[str] = value elif weight_type == "weight_v": snake_case__ : str = value elif weight_type == "bias": snake_case__ : Dict = value elif weight_type == "running_mean": snake_case__ : Tuple = value elif weight_type == "running_var": snake_case__ : Tuple = value elif weight_type == "num_batches_tracked": snake_case__ : str = value elif weight_type == "weight_ih_l0": snake_case__ : Union[str, Any] = value elif weight_type == "weight_hh_l0": snake_case__ : int = value elif weight_type == "bias_ih_l0": snake_case__ : List[str] = value elif weight_type == "bias_hh_l0": snake_case__ : Optional[Any] = value elif weight_type == "weight_ih_l1": snake_case__ : Any = value elif weight_type == "weight_hh_l1": snake_case__ : Any = value elif weight_type == "bias_ih_l1": snake_case__ : List[str] = value elif weight_type == "bias_hh_l1": snake_case__ : Tuple = value else: snake_case__ : List[str] = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str ) -> Optional[int]: '''simple docstring''' for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: snake_case__ , snake_case__ : Dict = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCamelCase__ ( __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Any ) -> List[Any]: '''simple docstring''' snake_case__ : Dict = [] if model_name == "encodec_24khz" or "encodec_32khz": snake_case__ : Optional[int] = MAPPING_24K elif model_name == "encodec_48khz": snake_case__ : Union[str, Any] = MAPPING_48K else: raise ValueError(f"Unsupported model: {model_name}" ) for name, value in orig_dict.items(): if should_ignore(__magic_name__ , __magic_name__ ): logger.info(f"{name} was ignored" ) continue snake_case__ : Dict = False for key, mapped_key in MAPPING.items(): if "*" in key: snake_case__ , snake_case__ : Union[str, Any] = key.split(""".*.""" ) if prefix in name and suffix in name: snake_case__ : Union[str, Any] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue snake_case__ : List[str] = True if "*" in mapped_key: snake_case__ : Tuple = name.split(__magic_name__ )[0].split(""".""" )[-2] snake_case__ : str = mapped_key.replace("""*""" , __magic_name__ ) if "weight_g" in name: snake_case__ : Optional[int] = """weight_g""" elif "weight_v" in name: snake_case__ : List[Any] = """weight_v""" elif "weight_ih_l0" in name: snake_case__ : Tuple = """weight_ih_l0""" elif "weight_hh_l0" in name: snake_case__ : Any = """weight_hh_l0""" elif "bias_ih_l0" in name: snake_case__ : List[str] = """bias_ih_l0""" elif "bias_hh_l0" in name: snake_case__ : List[Any] = """bias_hh_l0""" elif "weight_ih_l1" in name: snake_case__ : Optional[int] = """weight_ih_l1""" elif "weight_hh_l1" in name: snake_case__ : Optional[Any] = """weight_hh_l1""" elif "bias_ih_l1" in name: snake_case__ : Any = """bias_ih_l1""" elif "bias_hh_l1" in name: snake_case__ : Optional[int] = """bias_hh_l1""" elif "bias" in name: snake_case__ : Union[str, Any] = """bias""" elif "weight" in name: snake_case__ : Union[str, Any] = """weight""" elif "running_mean" in name: snake_case__ : int = """running_mean""" elif "running_var" in name: snake_case__ : int = """running_var""" elif "num_batches_tracked" in name: snake_case__ : List[Any] = """num_batches_tracked""" else: snake_case__ : Optional[Any] = None set_recursively(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) continue if not is_used: unused_weights.append(__magic_name__ ) logger.warning(f"Unused weights: {unused_weights}" ) @torch.no_grad() def UpperCamelCase__ ( __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : int=None , __magic_name__ : Any=None , ) -> Optional[Any]: '''simple docstring''' if config_path is not None: snake_case__ : List[str] = EncodecConfig.from_pretrained(__magic_name__ ) else: snake_case__ : List[Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": snake_case__ : Union[str, Any] = [8, 5, 4, 4] snake_case__ : Union[str, Any] = [2.2] snake_case__ : Any = 64 snake_case__ : List[str] = 3_20_00 snake_case__ : List[Any] = 20_48 snake_case__ : str = False snake_case__ : List[str] = False snake_case__ : List[str] = False elif model_name == "encodec_48khz": snake_case__ : str = [8, 5, 4, 2] snake_case__ : int = [3.0, 6.0, 12.0, 24.0] snake_case__ : int = 4_80_00 snake_case__ : Optional[int] = 2 snake_case__ : int = False snake_case__ : Dict = """time_group_norm""" snake_case__ : Tuple = True snake_case__ : List[Any] = 1.0 snake_case__ : str = 0.01 else: raise ValueError(f"Unknown model name: {model_name}" ) snake_case__ : List[Any] = EncodecModel(__magic_name__ ) snake_case__ : str = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__magic_name__ ) snake_case__ : Dict = torch.load(__magic_name__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights snake_case__ : Optional[Any] = original_checkpoint["""best_state"""] recursively_load_weights(__magic_name__ , __magic_name__ , __magic_name__ ) model.save_pretrained(__magic_name__ ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(__magic_name__ ) model.push_to_hub(__magic_name__ ) if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) A_ : Union[str, Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
38
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A_ : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A_ : str = 250004 A_ : str = 250020 @require_sentencepiece @require_tokenizers class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MBartTokenizer lowerCamelCase__ = MBartTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def __UpperCamelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self ): snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) snake_case__ : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case__ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case__ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def __UpperCamelCase ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case__ : Optional[int] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = tempfile.mkdtemp() snake_case__ : int = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) snake_case__ : List[str] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way snake_case__ : Tuple = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True snake_case__ : Any = tempfile.mkdtemp() snake_case__ : Optional[int] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) snake_case__ : int = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way snake_case__ : List[Any] = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False snake_case__ : Dict = tempfile.mkdtemp() snake_case__ : Union[str, Any] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case__ : Dict = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = '''facebook/mbart-large-en-ro''' lowerCamelCase__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] lowerCamelCase__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] lowerCamelCase__ = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def __UpperCamelCase ( cls ): snake_case__ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) snake_case__ : Any = 1 return cls def __UpperCamelCase ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 2_5_0_0_2_0 ) def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): self.assertIn(__SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids ) snake_case__ : List[str] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] snake_case__ : List[Any] = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = ["""this is gunna be a long sentence """ * 2_0] assert isinstance(src_text[0] , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = 1_0 snake_case__ : int = self.tokenizer(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = tempfile.mkdtemp() snake_case__ : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = MBartTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __SCREAMING_SNAKE_CASE ) @require_torch def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) snake_case__ : int = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) snake_case__ : List[str] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) snake_case__ : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.tokenizer(self.src_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=3 , return_tensors="""pt""" ) snake_case__ : Optional[int] = self.tokenizer( text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=1_0 , return_tensors="""pt""" ) snake_case__ : str = targets["""input_ids"""] snake_case__ : Optional[Any] = shift_tokens_right(__SCREAMING_SNAKE_CASE , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , { # A, test, EOS, en_XX """input_ids""": [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 2_5_0_0_0_1, } , )
38
1
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = StableUnCLIPPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : List[str] = 3_2 snake_case__ : List[Any] = embedder_hidden_size # prior components torch.manual_seed(0 ) snake_case__ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) snake_case__ : Optional[int] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__SCREAMING_SNAKE_CASE , projection_dim=__SCREAMING_SNAKE_CASE , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) snake_case__ : int = PriorTransformer( num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=__SCREAMING_SNAKE_CASE , num_layers=1 , ) torch.manual_seed(0 ) snake_case__ : Tuple = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1_0_0_0 , clip_sample=__SCREAMING_SNAKE_CASE , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) snake_case__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=__SCREAMING_SNAKE_CASE ) snake_case__ : str = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) snake_case__ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) snake_case__ : Optional[Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__SCREAMING_SNAKE_CASE , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) snake_case__ : Dict = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__SCREAMING_SNAKE_CASE , layers_per_block=1 , upcast_attention=__SCREAMING_SNAKE_CASE , use_linear_projection=__SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) snake_case__ : List[Any] = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=__SCREAMING_SNAKE_CASE , steps_offset=1 , ) torch.manual_seed(0 ) snake_case__ : Dict = AutoencoderKL() snake_case__ : Optional[int] = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): snake_case__ : List[str] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: snake_case__ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __UpperCamelCase ( self ): snake_case__ : List[str] = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Any = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=__SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): snake_case__ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) snake_case__ : Optional[Any] = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() snake_case__ : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case__ : int = pipe("""anime turle""" , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" ) snake_case__ : Union[str, Any] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) snake_case__ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() snake_case__ : int = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) snake_case__ : Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
38
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : int = logging.get_logger(__name__) A_ : Dict = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''bit''' lowerCamelCase__ = ['''preactivation''', '''bottleneck'''] lowerCamelCase__ = ['''SAME''', '''VALID'''] def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="preactivation" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case__ : Tuple = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) snake_case__ : List[str] = num_channels snake_case__ : Tuple = embedding_size snake_case__ : str = hidden_sizes snake_case__ : Optional[Any] = depths snake_case__ : List[Any] = layer_type snake_case__ : Dict = hidden_act snake_case__ : Union[str, Any] = global_padding snake_case__ : List[str] = num_groups snake_case__ : str = drop_path_rate snake_case__ : List[Any] = embedding_dynamic_padding snake_case__ : List[str] = output_stride snake_case__ : Dict = width_factor snake_case__ : List[str] = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] snake_case__ , snake_case__ : Dict = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
38
1
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : Optional[Any]=10_00 ) -> List[str]: '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd snake_case__ : int = n - 1 snake_case__ : Union[str, Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) snake_case__ : str = 0 while count < prec: snake_case__ : Any = random.randint(2 , n - 1 ) snake_case__ : Optional[Any] = bin_exp_mod(__magic_name__ , __magic_name__ , __magic_name__ ) if b != 1: snake_case__ : Optional[int] = True for _ in range(__magic_name__ ): if b == n - 1: snake_case__ : Any = False break snake_case__ : List[str] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": A_ : Optional[Any] = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
38
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A_ : Optional[int] = logging.get_logger(__name__) def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=False ) -> Tuple: '''simple docstring''' snake_case__ : int = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Tuple=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: snake_case__ : int = """""" else: snake_case__ : Dict = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : int = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case__ : Union[str, Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Optional[int] = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size] snake_case__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Optional[int] = in_proj_bias[-config.hidden_size :] def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case__ : str = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : str ) -> Union[str, Any]: '''simple docstring''' snake_case__ : List[str] = dct.pop(__magic_name__ ) snake_case__ : Dict = val def UpperCamelCase__ ( ) -> str: '''simple docstring''' snake_case__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : int=False ) -> Optional[int]: '''simple docstring''' snake_case__ : int = BitConfig( global_padding="""same""" , layer_type="""bottleneck""" , depths=(3, 4, 9) , out_features=["""stage3"""] , embedding_dynamic_padding=__magic_name__ , ) snake_case__ : Optional[int] = ViTHybridConfig(backbone_config=__magic_name__ , image_size=3_84 , num_labels=10_00 ) snake_case__ : Union[str, Any] = False # load original model from timm snake_case__ : List[Any] = timm.create_model(__magic_name__ , pretrained=__magic_name__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[int] = timm_model.state_dict() if base_model: remove_classification_head_(__magic_name__ ) snake_case__ : int = create_rename_keys(__magic_name__ , __magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , __magic_name__ ) snake_case__ : str = """huggingface/label-files""" snake_case__ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case__ : Dict = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : List[Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case__ : int = idalabel snake_case__ : str = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ : str = ViTHybridModel(__magic_name__ ).eval() else: snake_case__ : Union[str, Any] = ViTHybridForImageClassification(__magic_name__ ).eval() model.load_state_dict(__magic_name__ ) # create image processor snake_case__ : Optional[Any] = create_transform(**resolve_data_config({} , model=__magic_name__ ) ) snake_case__ : Union[str, Any] = transform.transforms snake_case__ : Tuple = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } snake_case__ : Any = ViTHybridImageProcessor( do_resize=__magic_name__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__magic_name__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=__magic_name__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) snake_case__ : Any = prepare_img() snake_case__ : int = transform(__magic_name__ ).unsqueeze(0 ) snake_case__ : List[str] = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(__magic_name__ , __magic_name__ ) # verify logits with torch.no_grad(): snake_case__ : Optional[Any] = model(__magic_name__ ) snake_case__ : Union[str, Any] = outputs.logits print("""Predicted class:""" , logits.argmax(-1 ).item() ) if base_model: snake_case__ : Dict = timm_model.forward_features(__magic_name__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__magic_name__ , outputs.pooler_output , atol=1E-3 ) else: snake_case__ : int = timm_model(__magic_name__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__magic_name__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(__magic_name__ ) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(f"ybelkada/{vit_name}" ) processor.push_to_hub(f"ybelkada/{vit_name}" ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) A_ : Union[str, Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
38
1
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Dict ) -> Optional[int]: '''simple docstring''' snake_case__ : List[Any] = AlbertConfig.from_json_file(__magic_name__ ) print(f"Building PyTorch model from configuration: {config}" ) snake_case__ : Optional[int] = AlbertForPreTraining(__magic_name__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(__magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , __magic_name__ ) if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
38
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = 42 class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE=True , ): super().__init__() snake_case__ : str = layers_per_block snake_case__ : int = torch.nn.Convad( __SCREAMING_SNAKE_CASE , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) snake_case__ : List[Any] = None snake_case__ : List[Any] = nn.ModuleList([] ) # down snake_case__ : Union[str, Any] = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = output_channel snake_case__ : Union[str, Any] = block_out_channels[i] snake_case__ : int = i == len(__SCREAMING_SNAKE_CASE ) - 1 snake_case__ : str = get_down_block( __SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , ) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid snake_case__ : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , ) # out snake_case__ : Tuple = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 ) snake_case__ : Tuple = nn.SiLU() snake_case__ : str = 2 * out_channels if double_z else out_channels snake_case__ : int = nn.Convad(block_out_channels[-1] , __SCREAMING_SNAKE_CASE , 3 , padding=1 ) snake_case__ : Union[str, Any] = False def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = x snake_case__ : int = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) # middle snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: snake_case__ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # middle snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: snake_case__ : List[str] = down_block(__SCREAMING_SNAKE_CASE ) # middle snake_case__ : str = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process snake_case__ : Any = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = self.conv_act(__SCREAMING_SNAKE_CASE ) snake_case__ : str = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE="group" , ): super().__init__() snake_case__ : Any = layers_per_block snake_case__ : Optional[Any] = nn.Convad( __SCREAMING_SNAKE_CASE , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) snake_case__ : Union[str, Any] = None snake_case__ : Dict = nn.ModuleList([] ) snake_case__ : Optional[int] = in_channels if norm_type == """spatial""" else None # mid snake_case__ : Tuple = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , ) # up snake_case__ : List[Any] = list(reversed(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Optional[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = output_channel snake_case__ : Optional[Any] = reversed_block_out_channels[i] snake_case__ : List[str] = i == len(__SCREAMING_SNAKE_CASE ) - 1 snake_case__ : int = get_up_block( __SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block + 1 , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , prev_output_channel=__SCREAMING_SNAKE_CASE , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , resnet_time_scale_shift=__SCREAMING_SNAKE_CASE , ) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) snake_case__ : int = output_channel # out if norm_type == "spatial": snake_case__ : List[Any] = SpatialNorm(block_out_channels[0] , __SCREAMING_SNAKE_CASE ) else: snake_case__ : Any = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 ) snake_case__ : Tuple = nn.SiLU() snake_case__ : Union[str, Any] = nn.Convad(block_out_channels[0] , __SCREAMING_SNAKE_CASE , 3 , padding=1 ) snake_case__ : int = False def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): snake_case__ : Union[str, Any] = z snake_case__ : Any = self.conv_in(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle snake_case__ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) snake_case__ : int = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: snake_case__ : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle snake_case__ : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: # middle snake_case__ : List[Any] = self.mid_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: snake_case__ : Dict = up_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: snake_case__ : Optional[Any] = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: snake_case__ : str = self.conv_norm_out(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Any = self.conv_act(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="random" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True ): super().__init__() snake_case__ : int = n_e snake_case__ : Optional[int] = vq_embed_dim snake_case__ : int = beta snake_case__ : Optional[int] = legacy snake_case__ : Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) snake_case__ : List[str] = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) snake_case__ : Optional[Any] = self.used.shape[0] snake_case__ : List[str] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": snake_case__ : Dict = self.re_embed snake_case__ : List[str] = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: snake_case__ : Union[str, Any] = n_e snake_case__ : str = sane_index_shape def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 snake_case__ : Dict = inds.reshape(ishape[0] , -1 ) snake_case__ : Any = self.used.to(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = (inds[:, :, None] == used[None, None, ...]).long() snake_case__ : List[Any] = match.argmax(-1 ) snake_case__ : List[str] = match.sum(2 ) < 1 if self.unknown_index == "random": snake_case__ : List[str] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: snake_case__ : Optional[Any] = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 snake_case__ : int = inds.reshape(ishape[0] , -1 ) snake_case__ : Optional[int] = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token snake_case__ : List[Any] = 0 # simply set to zero snake_case__ : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): # reshape z -> (batch, height, width, channel) and flatten snake_case__ : Any = z.permute(0 , 2 , 3 , 1 ).contiguous() snake_case__ : Optional[Any] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z snake_case__ : Dict = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE , self.embedding.weight ) , dim=1 ) snake_case__ : Union[str, Any] = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) snake_case__ : List[str] = None snake_case__ : Union[str, Any] = None # compute loss for embedding if not self.legacy: snake_case__ : Tuple = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: snake_case__ : List[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients snake_case__ : Any = z + (z_q - z).detach() # reshape back to match original input shape snake_case__ : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: snake_case__ : List[Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis snake_case__ : str = self.remap_to_used(__SCREAMING_SNAKE_CASE ) snake_case__ : str = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: snake_case__ : Tuple = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # shape specifying (batch, height, width, channel) if self.remap is not None: snake_case__ : List[Any] = indices.reshape(shape[0] , -1 ) # add batch axis snake_case__ : Optional[int] = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = indices.reshape(-1 ) # flatten again # get quantized latent vectors snake_case__ : int = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: snake_case__ : str = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape snake_case__ : str = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): snake_case__ : Tuple = parameters snake_case__ , snake_case__ : Any = torch.chunk(__SCREAMING_SNAKE_CASE , 2 , dim=1 ) snake_case__ : Union[str, Any] = torch.clamp(self.logvar , -30.0 , 20.0 ) snake_case__ : Optional[int] = deterministic snake_case__ : Optional[int] = torch.exp(0.5 * self.logvar ) snake_case__ : Any = torch.exp(self.logvar ) if self.deterministic: snake_case__ : List[str] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE = None ): # make sure sample is on the same device as the parameters and has same dtype snake_case__ : Dict = randn_tensor( self.mean.shape , generator=__SCREAMING_SNAKE_CASE , device=self.parameters.device , dtype=self.parameters.dtype ) snake_case__ : Optional[int] = self.mean + self.std * sample return x def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) snake_case__ : Any = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): return self.mean
38
1
'''simple docstring''' import math def UpperCamelCase__ ( __magic_name__ : float , __magic_name__ : float ) -> float: '''simple docstring''' if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__magic_name__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
38
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1, 3_8_4, 2_4, 2_4] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , ): snake_case__ : str = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : Optional[int] = patch_size snake_case__ : List[str] = num_channels snake_case__ : Any = is_training snake_case__ : int = use_labels snake_case__ : str = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : str = backbone_out_indices snake_case__ : List[Any] = num_attention_heads snake_case__ : Dict = intermediate_size snake_case__ : Optional[Any] = hidden_act snake_case__ : str = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : Dict = initializer_range snake_case__ : Optional[int] = num_labels snake_case__ : str = backbone_featmap_shape snake_case__ : List[Any] = scope snake_case__ : Optional[Any] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) snake_case__ : List[Any] = (image_size // patch_size) ** 2 snake_case__ : Union[str, Any] = num_patches + 1 def __UpperCamelCase ( self ): snake_case__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : str = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): snake_case__ : Any = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [9_6, 1_9_2, 3_8_4, 7_6_8], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = DPTModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = self.num_labels snake_case__ : str = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = self.num_labels snake_case__ : Dict = DPTForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : str = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs snake_case__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCamelCase__ = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : List[Any] = DPTModelTester(self ) snake_case__ : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Tuple = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : List[str] = [*signature.parameters.keys()] snake_case__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : int = True if model_class in get_values(__SCREAMING_SNAKE_CASE ): continue snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() snake_case__ : Optional[Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Union[str, Any] = False snake_case__ : str = True if model_class in get_values(__SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() snake_case__ : List[str] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCamelCase ( self ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : str = _config_zero_init(__SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: snake_case__ : Any = model_class(config=__SCREAMING_SNAKE_CASE ) # Skip the check for the backbone snake_case__ : str = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": snake_case__ : Optional[int] = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __UpperCamelCase ( self ): pass @slow def __UpperCamelCase ( self ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: snake_case__ : List[str] = DPTModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = """add""" with self.assertRaises(__SCREAMING_SNAKE_CASE ): snake_case__ : List[str] = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> Dict: '''simple docstring''' snake_case__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Dict = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) snake_case__ : Union[str, Any] = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = prepare_img() snake_case__ : Optional[int] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : Dict = model(**__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = outputs.predicted_depth # verify the predicted depth snake_case__ : Any = torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
38
1
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan A_ : Dict = 6378137.0 A_ : Optional[Any] = 6356752.314245 A_ : List[str] = 6378137 def UpperCamelCase__ ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ) -> float: '''simple docstring''' snake_case__ : List[str] = (AXIS_A - AXIS_B) / AXIS_A snake_case__ : Any = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) snake_case__ : Dict = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) snake_case__ : str = radians(__magic_name__ ) snake_case__ : int = radians(__magic_name__ ) # Equation snake_case__ : Dict = sin((phi_a - phi_a) / 2 ) snake_case__ : str = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda snake_case__ : List[str] = sqrt(sin_sq_phi + (cos(__magic_name__ ) * cos(__magic_name__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
38
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Dict: '''simple docstring''' snake_case__ : int = botoa.client("""iam""" ) snake_case__ : Union[str, Any] = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=__magic_name__ , AssumeRolePolicyDocument=json.dumps(__magic_name__ , indent=2 ) ) snake_case__ : Dict = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=__magic_name__ , PolicyName=f"{role_name}_policy_permission" , PolicyDocument=json.dumps(__magic_name__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"role {role_name} already exists. Using existing one" ) def UpperCamelCase__ ( __magic_name__ : Any ) -> Tuple: '''simple docstring''' snake_case__ : List[str] = botoa.client("""iam""" ) return iam_client.get_role(RoleName=__magic_name__ )["Role"]["Arn"] def UpperCamelCase__ ( ) -> Tuple: '''simple docstring''' snake_case__ : Union[str, Any] = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , __magic_name__ , ) snake_case__ : List[Any] = None if credentials_configuration == 0: snake_case__ : Dict = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) snake_case__ : List[str] = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) snake_case__ : List[str] = _ask_field("""AWS Access Key ID: """ ) snake_case__ : int = aws_access_key_id snake_case__ : Optional[Any] = _ask_field("""AWS Secret Access Key: """ ) snake_case__ : List[str] = aws_secret_access_key snake_case__ : Tuple = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) snake_case__ : Optional[int] = aws_region snake_case__ : int = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , __magic_name__ , ) if role_management == 0: snake_case__ : Optional[Any] = _ask_field("""Enter your IAM role name: """ ) else: snake_case__ : Optional[int] = """accelerate_sagemaker_execution_role""" print(f"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(__magic_name__ ) snake_case__ : Dict = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : Any = None if is_custom_docker_image: snake_case__ : str = _ask_field("""Enter your Docker image: """ , lambda __magic_name__ : str(__magic_name__ ).lower() ) snake_case__ : Tuple = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : List[Any] = None if is_sagemaker_inputs_enabled: snake_case__ : str = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , ) snake_case__ : Optional[int] = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : Optional[Any] = None if is_sagemaker_metrics_enabled: snake_case__ : List[Any] = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , ) snake_case__ : Tuple = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) snake_case__ : Any = {} snake_case__ : List[Any] = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) if use_dynamo: snake_case__ : str = """dynamo_""" snake_case__ : Tuple = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) snake_case__ : List[str] = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) if use_custom_options: snake_case__ : str = _ask_options( """Which mode do you want to use?""" , __magic_name__ , lambda __magic_name__ : TORCH_DYNAMO_MODES[int(__magic_name__ )] , default="""default""" , ) snake_case__ : Union[str, Any] = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : str = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : Dict = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: snake_case__ : List[str] = _ask_options( __magic_name__ , __magic_name__ , lambda __magic_name__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__magic_name__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" snake_case__ : Optional[int] = _ask_field(__magic_name__ , lambda __magic_name__ : str(__magic_name__ ).lower() , default="""ml.p3.2xlarge""" ) snake_case__ : Dict = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): snake_case__ : Optional[Any] = _ask_field( """How many machines do you want use? [1]: """ , __magic_name__ , default=1 , ) snake_case__ : Union[str, Any] = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=__magic_name__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__magic_name__ , use_cpu=__magic_name__ , dynamo_config=__magic_name__ , eca_instance_type=__magic_name__ , profile=__magic_name__ , region=__magic_name__ , iam_role_name=__magic_name__ , mixed_precision=__magic_name__ , num_machines=__magic_name__ , sagemaker_inputs_file=__magic_name__ , sagemaker_metrics_file=__magic_name__ , )
38
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : List[str] = logging.get_logger(__name__) A_ : Optional[Any] = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''swin''' lowerCamelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , __SCREAMING_SNAKE_CASE=2_2_4 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=9_6 , __SCREAMING_SNAKE_CASE=[2, 2, 6, 2] , __SCREAMING_SNAKE_CASE=[3, 6, 1_2, 2_4] , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=4.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = image_size snake_case__ : Dict = patch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : List[str] = embed_dim snake_case__ : Optional[Any] = depths snake_case__ : Dict = len(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = num_heads snake_case__ : str = window_size snake_case__ : Union[str, Any] = mlp_ratio snake_case__ : List[str] = qkv_bias snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : Tuple = drop_path_rate snake_case__ : Tuple = hidden_act snake_case__ : Union[str, Any] = use_absolute_embeddings snake_case__ : int = layer_norm_eps snake_case__ : List[str] = initializer_range snake_case__ : Optional[Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case__ : Optional[Any] = int(embed_dim * 2 ** (len(__SCREAMING_SNAKE_CASE ) - 1) ) snake_case__ : Tuple = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] snake_case__ , snake_case__ : List[Any] = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = version.parse('''1.11''' ) @property def __UpperCamelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __UpperCamelCase ( self ): return 1e-4
38
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def UpperCamelCase__ ( __magic_name__ : str = "laptop" ) -> DataFrame: '''simple docstring''' snake_case__ : Union[str, Any] = f"https://www.amazon.in/laptop/s?k={product}" snake_case__ : List[str] = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } snake_case__ : int = BeautifulSoup(requests.get(__magic_name__ , headers=__magic_name__ ).text ) # Initialize a Pandas dataframe with the column titles snake_case__ : Optional[Any] = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: snake_case__ : Optional[int] = item.ha.text snake_case__ : Any = """https://www.amazon.in/""" + item.ha.a["""href"""] snake_case__ : List[str] = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: snake_case__ : Dict = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: snake_case__ : Optional[int] = """Not available""" try: snake_case__ : Tuple = ( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: snake_case__ : Optional[Any] = """""" try: snake_case__ : str = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 1_00 ) except ValueError: snake_case__ : List[Any] = float("""nan""" ) except AttributeError: pass snake_case__ : str = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] snake_case__ : List[Any] = """ """ snake_case__ : Union[str, Any] = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": A_ : int = "headphones" get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
38
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = KandinskyVaaControlnetPipeline lowerCamelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] lowerCamelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] lowerCamelCase__ = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowerCamelCase__ = False @property def __UpperCamelCase ( self ): return 3_2 @property def __UpperCamelCase ( self ): return 3_2 @property def __UpperCamelCase ( self ): return self.time_input_dim @property def __UpperCamelCase ( self ): return self.time_input_dim * 4 @property def __UpperCamelCase ( self ): return 1_0_0 @property def __UpperCamelCase ( self ): torch.manual_seed(0 ) snake_case__ : List[Any] = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case__ : int = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def __UpperCamelCase ( self ): return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __UpperCamelCase ( self ): torch.manual_seed(0 ) snake_case__ : Any = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase ( self ): snake_case__ : str = self.dummy_unet snake_case__ : Optional[int] = self.dummy_movq snake_case__ : Dict = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__SCREAMING_SNAKE_CASE , ) snake_case__ : Optional[Any] = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): snake_case__ : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) # create hint snake_case__ : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): snake_case__ : Optional[int] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: snake_case__ : List[str] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 6_4, """width""": 6_4, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def __UpperCamelCase ( self ): snake_case__ : Optional[int] = """cpu""" snake_case__ : Any = self.get_dummy_components() snake_case__ : Optional[Any] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) snake_case__ : int = output.images snake_case__ : int = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) , return_dict=__SCREAMING_SNAKE_CASE , )[0] snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1] snake_case__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : Tuple = np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): snake_case__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) snake_case__ : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case__ : List[Any] = torch.from_numpy(np.array(__SCREAMING_SNAKE_CASE ) ).float() / 255.0 snake_case__ : Dict = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case__ : Optional[Any] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) snake_case__ : int = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case__ : List[Any] = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = """A robot, 4k photo""" snake_case__ : int = torch.Generator(device="""cuda""" ).manual_seed(0 ) snake_case__ , snake_case__ : str = pipe_prior( __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() snake_case__ : Any = torch.Generator(device="""cuda""" ).manual_seed(0 ) snake_case__ : List[Any] = pipeline( image_embeds=__SCREAMING_SNAKE_CASE , negative_image_embeds=__SCREAMING_SNAKE_CASE , hint=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=1_0_0 , output_type="""np""" , ) snake_case__ : List[str] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
38
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = LongformerTokenizer lowerCamelCase__ = True lowerCamelCase__ = LongformerTokenizerFast lowerCamelCase__ = True def __UpperCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case__ : Optional[int] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) snake_case__ : int = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case__ : Any = {"""unk_token""": """<unk>"""} snake_case__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : str = """lower newer""" snake_case__ : Dict = """lower newer""" return input_text, output_text def __UpperCamelCase ( self ): snake_case__ : int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case__ : Tuple = """lower newer""" snake_case__ : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] snake_case__ : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokens + [tokenizer.unk_token] snake_case__ : List[Any] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Tuple = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) snake_case__ : int = tokenizer.encode("""sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : int = """Encode this sequence.""" snake_case__ : Union[str, Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments snake_case__ : Optional[int] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) snake_case__ : List[str] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens snake_case__ : List[str] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space snake_case__ : Dict = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) snake_case__ : str = """Encode <mask> sequence""" snake_case__ : Tuple = """Encode <mask>sequence""" snake_case__ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = encoded.index(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer.encode(__SCREAMING_SNAKE_CASE ) snake_case__ : str = encoded.index(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """A, <mask> AllenNLP sentence.""" snake_case__ : str = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) snake_case__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) snake_case__ : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def __UpperCamelCase ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): snake_case__ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) snake_case__ : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state["""trim_offsets"""] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : Union[str, Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` snake_case__ : Any = f"{text_of_1_token} {text_of_1_token}" snake_case__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Optional[Any] = f" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) snake_case__ : Dict = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
38
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : int = logging.get_logger(__name__) A_ : Dict = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''bit''' lowerCamelCase__ = ['''preactivation''', '''bottleneck'''] lowerCamelCase__ = ['''SAME''', '''VALID'''] def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="preactivation" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case__ : Tuple = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) snake_case__ : List[str] = num_channels snake_case__ : Tuple = embedding_size snake_case__ : str = hidden_sizes snake_case__ : Optional[Any] = depths snake_case__ : List[Any] = layer_type snake_case__ : Dict = hidden_act snake_case__ : Union[str, Any] = global_padding snake_case__ : List[str] = num_groups snake_case__ : str = drop_path_rate snake_case__ : List[Any] = embedding_dynamic_padding snake_case__ : List[str] = output_stride snake_case__ : Dict = width_factor snake_case__ : List[str] = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] snake_case__ , snake_case__ : Dict = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
38
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : int = logging.get_logger(__name__) A_ : Any = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''resnet''' lowerCamelCase__ = ['''basic''', '''bottleneck'''] def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="bottleneck" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) snake_case__ : List[Any] = num_channels snake_case__ : str = embedding_size snake_case__ : List[Any] = hidden_sizes snake_case__ : Dict = depths snake_case__ : List[Any] = layer_type snake_case__ : int = hidden_act snake_case__ : Union[str, Any] = downsample_in_first_stage snake_case__ : Dict = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] snake_case__ , snake_case__ : Any = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = version.parse('''1.11''' ) @property def __UpperCamelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __UpperCamelCase ( self ): return 1e-3
38
1
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) A_ : List[str] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def UpperCamelCase__ ( __magic_name__ : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case__ : List[str] = {} state_dict.pop("""pixel_mean""" , __magic_name__ ) state_dict.pop("""pixel_std""" , __magic_name__ ) snake_case__ : Optional[Any] = R""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*""" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case__ : Tuple = key.replace(__magic_name__ , __magic_name__ ) if re.match(__magic_name__ , __magic_name__ ): snake_case__ : List[Any] = int(re.match(__magic_name__ , __magic_name__ ).group(2 ) ) if layer_nb == 0: snake_case__ : str = key.replace("""layers.0""" , """proj_in""" ) elif layer_nb == 1: snake_case__ : Union[str, Any] = key.replace("""layers.1""" , """layers.0""" ) elif layer_nb == 2: snake_case__ : List[Any] = key.replace("""layers.2""" , """proj_out""" ) snake_case__ : Any = value snake_case__ : Any = model_state_dict[ """prompt_encoder.shared_embedding.positional_embedding""" ] return model_state_dict def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : Optional[int]="ybelkada/segment-anything" ) -> Optional[Any]: '''simple docstring''' snake_case__ : str = hf_hub_download(__magic_name__ , f"checkpoints/{model_name}.pth" ) if "sam_vit_b" in model_name: snake_case__ : Union[str, Any] = SamConfig() elif "sam_vit_l" in model_name: snake_case__ : Optional[int] = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) snake_case__ : Union[str, Any] = SamConfig( vision_config=__magic_name__ , ) elif "sam_vit_h" in model_name: snake_case__ : Union[str, Any] = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) snake_case__ : int = SamConfig( vision_config=__magic_name__ , ) snake_case__ : List[Any] = torch.load(__magic_name__ , map_location="""cpu""" ) snake_case__ : List[str] = replace_keys(__magic_name__ ) snake_case__ : Union[str, Any] = SamImageProcessor() snake_case__ : str = SamProcessor(image_processor=__magic_name__ ) snake_case__ : int = SamModel(__magic_name__ ) hf_model.load_state_dict(__magic_name__ ) snake_case__ : List[str] = hf_model.to("""cuda""" ) snake_case__ : Tuple = """https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png""" snake_case__ : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ).convert("""RGB""" ) snake_case__ : List[str] = [[[4_00, 6_50]]] snake_case__ : int = [[1]] snake_case__ : Optional[Any] = processor(images=np.array(__magic_name__ ) , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): snake_case__ : Tuple = hf_model(**__magic_name__ ) snake_case__ : Optional[Any] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 snake_case__ : Tuple = processor( images=np.array(__magic_name__ ) , input_points=__magic_name__ , input_labels=__magic_name__ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): snake_case__ : List[Any] = hf_model(**__magic_name__ ) snake_case__ : str = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 snake_case__ : Any = ((75, 2_75, 17_25, 8_50),) snake_case__ : List[Any] = processor(images=np.array(__magic_name__ ) , input_boxes=__magic_name__ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): snake_case__ : List[Any] = hf_model(**__magic_name__ ) snake_case__ : Union[str, Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. snake_case__ : List[Any] = [[[4_00, 6_50], [8_00, 6_50]]] snake_case__ : Dict = [[1, 1]] snake_case__ : int = processor( images=np.array(__magic_name__ ) , input_points=__magic_name__ , input_labels=__magic_name__ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): snake_case__ : Optional[Any] = hf_model(**__magic_name__ ) snake_case__ : List[str] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": A_ : str = argparse.ArgumentParser() A_ : List[Any] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) A_ : str = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
38
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
38
1
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) snake_case__ : Any = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = -1 snake_case__ : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = model.generate(__SCREAMING_SNAKE_CASE , max_new_tokens=1_0 , do_sample=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: snake_case__ : List[str] = TextStreamer(__SCREAMING_SNAKE_CASE ) model.generate(__SCREAMING_SNAKE_CASE , max_new_tokens=1_0 , do_sample=__SCREAMING_SNAKE_CASE , streamer=__SCREAMING_SNAKE_CASE ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer snake_case__ : List[str] = cs.out[:-1] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) snake_case__ : Any = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = -1 snake_case__ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = model.generate(__SCREAMING_SNAKE_CASE , max_new_tokens=1_0 , do_sample=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = tokenizer.decode(greedy_ids[0] ) snake_case__ : Tuple = TextIteratorStreamer(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = {"""input_ids""": input_ids, """max_new_tokens""": 1_0, """do_sample""": False, """streamer""": streamer} snake_case__ : Tuple = Thread(target=model.generate , kwargs=__SCREAMING_SNAKE_CASE ) thread.start() snake_case__ : Tuple = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) snake_case__ : List[str] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = -1 snake_case__ : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = model.generate(__SCREAMING_SNAKE_CASE , max_new_tokens=1_0 , do_sample=__SCREAMING_SNAKE_CASE ) snake_case__ : str = greedy_ids[:, input_ids.shape[1] :] snake_case__ : Tuple = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: snake_case__ : Any = TextStreamer(__SCREAMING_SNAKE_CASE , skip_prompt=__SCREAMING_SNAKE_CASE ) model.generate(__SCREAMING_SNAKE_CASE , max_new_tokens=1_0 , do_sample=__SCREAMING_SNAKE_CASE , streamer=__SCREAMING_SNAKE_CASE ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer snake_case__ : Any = cs.out[:-1] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them snake_case__ : str = AutoTokenizer.from_pretrained("""distilgpt2""" ) snake_case__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = -1 snake_case__ : Union[str, Any] = torch.ones((1, 5) , device=__SCREAMING_SNAKE_CASE ).long() * model.config.bos_token_id with CaptureStdout() as cs: snake_case__ : Optional[int] = TextStreamer(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) model.generate(__SCREAMING_SNAKE_CASE , max_new_tokens=1 , do_sample=__SCREAMING_SNAKE_CASE , streamer=__SCREAMING_SNAKE_CASE ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token snake_case__ : Tuple = cs.out[:-1] # Remove the final "\n" snake_case__ : List[Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __UpperCamelCase ( self ): snake_case__ : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) snake_case__ : Dict = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = -1 snake_case__ : int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : str = TextIteratorStreamer(__SCREAMING_SNAKE_CASE , timeout=0.001 ) snake_case__ : Dict = {"""input_ids""": input_ids, """max_new_tokens""": 1_0, """do_sample""": False, """streamer""": streamer} snake_case__ : List[str] = Thread(target=model.generate , kwargs=__SCREAMING_SNAKE_CASE ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = """""" for new_text in streamer: streamer_text += new_text
38
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ): snake_case__ : str = [] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_init_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_train_begin""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_train_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_epoch_begin""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_epoch_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_step_begin""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_step_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_evaluate""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_predict""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_save""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_log""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_prediction_step""" ) @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Tuple = tempfile.mkdtemp() def __UpperCamelCase ( self ): shutil.rmtree(self.output_dir ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. snake_case__ : List[Any] = RegressionDataset(length=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = RegressionDataset(length=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = RegressionModelConfig(a=__SCREAMING_SNAKE_CASE , b=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = RegressionPreTrainedModel(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = TrainingArguments(self.output_dir , disable_tqdm=__SCREAMING_SNAKE_CASE , report_to=[] , **__SCREAMING_SNAKE_CASE ) return Trainer( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , train_dataset=__SCREAMING_SNAKE_CASE , eval_dataset=__SCREAMING_SNAKE_CASE , callbacks=__SCREAMING_SNAKE_CASE , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) # Order doesn't matter snake_case__ : Tuple = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ ) snake_case__ : List[str] = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ ) for cba, cba in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , cba.__class__ ) elif not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(cba.__class__ , __SCREAMING_SNAKE_CASE ) else: self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = ["""on_init_end""", """on_train_begin"""] snake_case__ : Union[str, Any] = 0 snake_case__ : Dict = len(trainer.get_eval_dataloader() ) snake_case__ : Any = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(__SCREAMING_SNAKE_CASE ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __UpperCamelCase ( self ): snake_case__ : Any = self.get_trainer() snake_case__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) # Callbacks passed at init are added to the default callbacks snake_case__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(__SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback snake_case__ : Optional[Any] = self.get_trainer(disable_tqdm=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] snake_case__ : int = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.remove(__SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = self.get_trainer() snake_case__ : List[str] = trainer.pop_callback(__SCREAMING_SNAKE_CASE ) self.assertEqual(cb.__class__ , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) trainer.add_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.insert(0 , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) # We can also add, pop, or remove by instance snake_case__ : List[Any] = self.get_trainer() snake_case__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.remove(__SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = self.get_trainer() snake_case__ : Any = trainer.callback_handler.callbacks[0] snake_case__ : Optional[Any] = trainer.pop_callback(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) trainer.add_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.insert(0 , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() snake_case__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) # Independent log/save/eval snake_case__ : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() snake_case__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() snake_case__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() snake_case__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() snake_case__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) # A bit of everything snake_case__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() snake_case__ : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: snake_case__ : List[str] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(__SCREAMING_SNAKE_CASE ) in warn_mock.call_args[0][0]
38
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : Dict = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''lilt''' def __init__( self , __SCREAMING_SNAKE_CASE=3_0_5_2_2 , __SCREAMING_SNAKE_CASE=7_6_8 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=3_0_7_2 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=1_0_2_4 , **__SCREAMING_SNAKE_CASE , ): super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = vocab_size snake_case__ : List[str] = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : Dict = num_attention_heads snake_case__ : List[str] = hidden_act snake_case__ : Union[str, Any] = intermediate_size snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : Union[str, Any] = max_position_embeddings snake_case__ : List[Any] = type_vocab_size snake_case__ : Optional[int] = initializer_range snake_case__ : List[Any] = layer_norm_eps snake_case__ : Optional[int] = position_embedding_type snake_case__ : List[str] = classifier_dropout snake_case__ : Tuple = channel_shrink_ratio snake_case__ : Dict = max_ad_position_embeddings
38
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=1_8 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=4_0_0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ): snake_case__ : Any = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case__ : List[Any] = parent snake_case__ : int = batch_size snake_case__ : List[Any] = num_channels snake_case__ : str = image_size snake_case__ : Union[str, Any] = min_resolution snake_case__ : List[Any] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : int = size snake_case__ : Tuple = do_normalize snake_case__ : Dict = image_mean snake_case__ : Union[str, Any] = image_std def __UpperCamelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = DPTImageProcessor if is_vision_available() else None def __UpperCamelCase ( self ): snake_case__ : str = DPTImageProcessingTester(self ) @property def __UpperCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_mean""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_std""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_normalize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """size""" ) ) def __UpperCamelCase ( self ): snake_case__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} ) snake_case__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input snake_case__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input snake_case__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : Any = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
38
1
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Any: '''simple docstring''' snake_case__ : str = 0 if start < end: snake_case__ : str = randint(__magic_name__ , __magic_name__ ) snake_case__ : Optional[Any] = a[end] snake_case__ : Dict = a[pivot] snake_case__ : Union[str, Any] = temp snake_case__ , snake_case__ : List[Any] = _in_place_partition(__magic_name__ , __magic_name__ , __magic_name__ ) count += _in_place_quick_sort(__magic_name__ , __magic_name__ , p - 1 ) count += _in_place_quick_sort(__magic_name__ , p + 1 , __magic_name__ ) return count def UpperCamelCase__ ( __magic_name__ : Union[str, Any] , __magic_name__ : str , __magic_name__ : int ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[int] = 0 snake_case__ : int = randint(__magic_name__ , __magic_name__ ) snake_case__ : Any = a[end] snake_case__ : Dict = a[pivot] snake_case__ : List[Any] = temp snake_case__ : List[str] = start - 1 for index in range(__magic_name__ , __magic_name__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case__ : Dict = new_pivot_index + 1 snake_case__ : Union[str, Any] = a[new_pivot_index] snake_case__ : int = a[index] snake_case__ : str = temp snake_case__ : List[Any] = a[new_pivot_index + 1] snake_case__ : Optional[int] = a[end] snake_case__ : List[Any] = temp return new_pivot_index + 1, count A_ : Dict = TemporaryFile() A_ : str = 100 # 1000 elements are to be sorted A_ , A_ : Union[str, Any] = 0, 1 # mean and standard deviation A_ : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array A_ : List[str] = np.load(outfile) A_ : List[Any] = len(M) - 1 A_ : List[Any] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
38
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """embed_dim""" ) ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """num_heads""" ) ) class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1_6, 4_8, 9_6] , __SCREAMING_SNAKE_CASE=[1, 3, 6] , __SCREAMING_SNAKE_CASE=[1, 2, 1_0] , __SCREAMING_SNAKE_CASE=[7, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2] , __SCREAMING_SNAKE_CASE=[2, 1, 1] , __SCREAMING_SNAKE_CASE=[2, 2, 2] , __SCREAMING_SNAKE_CASE=[False, False, True] , __SCREAMING_SNAKE_CASE=[0.0, 0.0, 0.0] , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=2 , ): snake_case__ : List[str] = parent snake_case__ : Tuple = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : List[Any] = patch_sizes snake_case__ : Optional[int] = patch_stride snake_case__ : Optional[Any] = patch_padding snake_case__ : Any = is_training snake_case__ : int = use_labels snake_case__ : Dict = num_labels snake_case__ : Optional[Any] = num_channels snake_case__ : Optional[Any] = embed_dim snake_case__ : Optional[int] = num_heads snake_case__ : Optional[int] = stride_kv snake_case__ : int = depth snake_case__ : Optional[Any] = cls_token snake_case__ : List[Any] = attention_drop_rate snake_case__ : Union[str, Any] = initializer_range snake_case__ : List[Any] = layer_norm_eps def __UpperCamelCase ( self ): snake_case__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : List[Any] = None if self.use_labels: # create a random int32 tensor of given shape snake_case__ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : List[str] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : int = TFCvtModel(config=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = (self.image_size, self.image_size) snake_case__ , snake_case__ : str = image_size[0], image_size[1] for i in range(len(self.depth ) ): snake_case__ : Any = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) snake_case__ : Optional[int] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = self.num_labels snake_case__ : str = TFCvtForImageClassification(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs snake_case__ : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowerCamelCase__ = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = TFCvtModelTester(self ) snake_case__ : Any = TFCvtConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def __UpperCamelCase ( self ): pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def __UpperCamelCase ( self ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def __UpperCamelCase ( self ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def __UpperCamelCase ( self ): super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def __UpperCamelCase ( self ): snake_case__ : List[str] = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(__SCREAMING_SNAKE_CASE ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[Any] = [*signature.parameters.keys()] snake_case__ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) snake_case__ : Optional[int] = outputs.hidden_states snake_case__ : Tuple = len(self.model_tester.depth ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[Any] = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[str] = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def __UpperCamelCase ( self ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : str = TFCvtModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> str: '''simple docstring''' snake_case__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case__ : Union[str, Any] = self.default_image_processor snake_case__ : int = prepare_img() snake_case__ : Dict = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""tf""" ) # forward pass snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ) # verify the logits snake_case__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : int = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
38
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: A_ : Union[str, Any] = None A_ : Dict = logging.get_logger(__name__) A_ : str = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} A_ : str = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } A_ : Tuple = { "google/rembert": 256, } A_ : List[Any] = "▁" class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = RemBertTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , **__SCREAMING_SNAKE_CASE , ): # Mask token behave like a normal word, i.e. include the space before it snake_case__ : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) snake_case__ : Optional[int] = do_lower_case snake_case__ : Tuple = remove_space snake_case__ : List[Any] = keep_accents snake_case__ : List[Any] = vocab_file snake_case__ : str = False if not self.vocab_file else True def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): snake_case__ : Optional[int] = [self.sep_token_id] snake_case__ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): snake_case__ : List[Any] = [self.sep_token_id] snake_case__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error("""Vocabulary path ({}) should be a directory""".format(__SCREAMING_SNAKE_CASE ) ) return snake_case__ : int = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
38
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. snake_case__ : int = [[1, 2, 4], [1, 2, 3, 4]] snake_case__ : Any = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) self.assertTrue(isinstance(dc.token_ids , __SCREAMING_SNAKE_CASE ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __UpperCamelCase ( self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). snake_case__ : Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) # fails here def __UpperCamelCase ( self ): snake_case__ : List[str] = [[1, 2, 3], [1, 2, 4]] snake_case__ : Optional[int] = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ , snake_case__ : Any = dc.update(1 ) snake_case__ : Any = stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) snake_case__ , snake_case__ , snake_case__ : Tuple = dc.update(2 ) snake_case__ : Tuple = stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = dc.update(3 ) snake_case__ : List[str] = stepped is True and completed is True and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] snake_case__ : int = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ , snake_case__ : str = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) snake_case__ , snake_case__ , snake_case__ : str = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case__ , snake_case__ , snake_case__ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
38
1
def __lowercase ( snake_case ): """simple docstring""" if num <= 0: raise ValueError('''Input must be a positive integer''' ) __magic_name__ :List[Any] = [True] * (num + 1) __magic_name__ :Tuple = 2 while p * p <= num: if primes[p]: for i in range(p * p, num + 1, snake_case ): __magic_name__ :List[str] = False p += 1 return [prime for prime in range(2, num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ : Tuple = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
0
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : Tuple = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''segformer''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[2, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[8, 4, 2, 1] , __SCREAMING_SNAKE_CASE=[3_2, 6_4, 1_6_0, 2_5_6] , __SCREAMING_SNAKE_CASE=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[1, 2, 5, 8] , __SCREAMING_SNAKE_CASE=[4, 4, 4, 4] , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1e-6 , __SCREAMING_SNAKE_CASE=2_5_6 , __SCREAMING_SNAKE_CASE=2_5_5 , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __SCREAMING_SNAKE_CASE , ) snake_case__ : Dict = num_channels snake_case__ : Optional[Any] = num_encoder_blocks snake_case__ : Any = depths snake_case__ : Optional[int] = sr_ratios snake_case__ : Tuple = hidden_sizes snake_case__ : List[str] = patch_sizes snake_case__ : str = strides snake_case__ : Optional[int] = mlp_ratios snake_case__ : Optional[Any] = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : Optional[int] = hidden_dropout_prob snake_case__ : List[str] = attention_probs_dropout_prob snake_case__ : List[Any] = classifier_dropout_prob snake_case__ : int = initializer_range snake_case__ : List[str] = drop_path_rate snake_case__ : int = layer_norm_eps snake_case__ : List[Any] = decoder_hidden_size snake_case__ : List[Any] = kwargs.get("""reshape_last_stage""" , __SCREAMING_SNAKE_CASE ) snake_case__ : Dict = semantic_loss_ignore_index class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = version.parse('''1.11''' ) @property def __UpperCamelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __UpperCamelCase ( self ): return 1e-4 @property def __UpperCamelCase ( self ): return 1_2
38
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __snake_case = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __snake_case = logging.getLogger() def _A ( ) -> Tuple: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('-f' ) __UpperCamelCase = parser.parse_args() return args.f def _A ( _lowercase , _lowercase="eval" ) -> Dict: """simple docstring""" __UpperCamelCase = os.path.join(_lowercase , f'''{split}_results.json''' ) if os.path.exists(_lowercase ): with open(_lowercase , 'r' ) as f: return json.load(_lowercase ) raise ValueError(f'''can\'t find {path}''' ) __snake_case = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCamelCase (_a ): def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(A_,'argv',A_ ): run_flax_glue.main() __UpperCamelCase = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'],0.7_5 ) @slow def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(A_,'argv',A_ ): run_clm_flax.main() __UpperCamelCase = get_results(A_ ) self.assertLess(result['eval_perplexity'],100 ) @slow def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(A_,'argv',A_ ): run_summarization_flax.main() __UpperCamelCase = get_results(A_,split='test' ) self.assertGreaterEqual(result['test_rouge1'],10 ) self.assertGreaterEqual(result['test_rouge2'],2 ) self.assertGreaterEqual(result['test_rougeL'],7 ) self.assertGreaterEqual(result['test_rougeLsum'],7 ) @slow def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(A_,'argv',A_ ): run_mlm_flax.main() __UpperCamelCase = get_results(A_ ) self.assertLess(result['eval_perplexity'],42 ) @slow def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(A_,'argv',A_ ): run_ta_mlm_flax.main() __UpperCamelCase = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'],0.4_2 ) @slow def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 7 if get_gpu_count() > 1 else 2 __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(A_,'argv',A_ ): run_flax_ner.main() __UpperCamelCase = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'],0.7_5 ) self.assertGreaterEqual(result['eval_f1'],0.3 ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(A_,'argv',A_ ): run_qa.main() __UpperCamelCase = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'],30 ) self.assertGreaterEqual(result['eval_exact'],30 )
1
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : List[Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = None if token is not None: snake_case__ : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : List[Any] = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ ).json() snake_case__ : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__magic_name__ ): snake_case__ : Tuple = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=None ) -> List[str]: '''simple docstring''' snake_case__ : Optional[Any] = None if token is not None: snake_case__ : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : Dict = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" snake_case__ : Union[str, Any] = requests.get(__magic_name__ , headers=__magic_name__ ).json() snake_case__ : Dict = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__magic_name__ ): snake_case__ : Dict = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = None if token is not None: snake_case__ : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ , allow_redirects=__magic_name__ ) snake_case__ : Any = result.headers["""Location"""] snake_case__ : Tuple = requests.get(__magic_name__ , allow_redirects=__magic_name__ ) snake_case__ : int = os.path.join(__magic_name__ , f"{artifact_name}.zip" ) with open(__magic_name__ , """wb""" ) as fp: fp.write(response.content ) def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : str=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Any = [] snake_case__ : Union[str, Any] = [] snake_case__ : Any = None with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__magic_name__ ) as f: for line in f: snake_case__ : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs snake_case__ : str = line[: line.index(""": """ )] snake_case__ : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed snake_case__ : Dict = line[len("""FAILED """ ) :] failed_tests.append(__magic_name__ ) elif filename == "job_name.txt": snake_case__ : Optional[Any] = line if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError( f"`errors` and `failed_tests` should have the same number of elements. Got {len(__magic_name__ )} for `errors` " f"and {len(__magic_name__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" """ problem.""" ) snake_case__ : Optional[Any] = None if job_name and job_links: snake_case__ : Optional[Any] = job_links.get(__magic_name__ , __magic_name__ ) # A list with elements of the form (line of error, error, failed test) snake_case__ : List[Any] = [x + [y] + [job_link] for x, y in zip(__magic_name__ , __magic_name__ )] return result def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : Union[str, Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = [] snake_case__ : Dict = [os.path.join(__magic_name__ , __magic_name__ ) for p in os.listdir(__magic_name__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(__magic_name__ , job_links=__magic_name__ ) ) return errors def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=None ) -> List[Any]: '''simple docstring''' snake_case__ : Any = Counter() counter.update([x[1] for x in logs] ) snake_case__ : Dict = counter.most_common() snake_case__ : Any = {} for error, count in counts: if error_filter is None or error not in error_filter: snake_case__ : int = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) ) return r def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> List[Any]: '''simple docstring''' snake_case__ : str = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): snake_case__ : Tuple = test.split("""/""" )[2] else: snake_case__ : Any = None return test def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Union[str, Any]=None ) -> List[str]: '''simple docstring''' snake_case__ : List[str] = [(x[0], x[1], get_model(x[2] )) for x in logs] snake_case__ : List[Any] = [x for x in logs if x[2] is not None] snake_case__ : Any = {x[2] for x in logs} snake_case__ : Optional[Any] = {} for test in tests: snake_case__ : str = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) snake_case__ : Optional[int] = counter.most_common() snake_case__ : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} snake_case__ : int = sum(error_counts.values() ) if n_errors > 0: snake_case__ : str = {"""count""": n_errors, """errors""": error_counts} snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) ) return r def UpperCamelCase__ ( __magic_name__ : int ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[Any] = """| no. | error | status |""" snake_case__ : int = """|-:|:-|:-|""" snake_case__ : int = [header, sep] for error in reduced_by_error: snake_case__ : Union[str, Any] = reduced_by_error[error]["""count"""] snake_case__ : Dict = f"| {count} | {error[:1_00]} | |" lines.append(__magic_name__ ) return "\n".join(__magic_name__ ) def UpperCamelCase__ ( __magic_name__ : Dict ) -> List[Any]: '''simple docstring''' snake_case__ : List[Any] = """| model | no. of errors | major error | count |""" snake_case__ : Optional[int] = """|-:|-:|-:|-:|""" snake_case__ : Dict = [header, sep] for model in reduced_by_model: snake_case__ : Tuple = reduced_by_model[model]["""count"""] snake_case__ , snake_case__ : Tuple = list(reduced_by_model[model]["""errors"""].items() )[0] snake_case__ : Optional[int] = f"| {model} | {count} | {error[:60]} | {_count} |" lines.append(__magic_name__ ) return "\n".join(__magic_name__ ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") A_ : int = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) A_ : Optional[int] = get_job_links(args.workflow_run_id, token=args.token) A_ : Optional[Any] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: A_ : int = k.find(" / ") A_ : List[Any] = k[index + len(" / ") :] A_ : List[str] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) A_ : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) A_ : str = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error A_ : List[str] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors A_ : Any = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) A_ : Any = reduce_by_error(errors) A_ : Union[str, Any] = reduce_by_model(errors) A_ : Any = make_github_table(reduced_by_error) A_ : Optional[Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
38
0
import datasets UpperCAmelCase_ = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ UpperCAmelCase_ = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ UpperCAmelCase_ = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def SCREAMING_SNAKE_CASE_ ( _snake_case :int , _snake_case :List[Any] ) -> List[str]: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): """simple docstring""" def snake_case_ ( self : Union[str, Any] ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def snake_case_ ( self : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any ) -> Optional[int]: return {"accuracy": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )}
2
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version A_ : Tuple = get_logger(__name__) class __snake_case : '''simple docstring''' lowerCamelCase__ = '''dummy_data''' lowerCamelCase__ = '''datasets''' lowerCamelCase__ = False def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , ): snake_case__ : List[Any] = 0 snake_case__ : Union[str, Any] = dataset_name snake_case__ : Optional[int] = cache_dir snake_case__ : Union[str, Any] = use_local_dummy_data snake_case__ : int = config # download_callbacks take a single url as input snake_case__ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root snake_case__ : Union[str, Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general snake_case__ : Union[str, Any] = str(__SCREAMING_SNAKE_CASE ) # to be downloaded snake_case__ : List[str] = None snake_case__ : List[str] = None @property def __UpperCamelCase ( self ): if self._dummy_file is None: snake_case__ : List[str] = self.download_dummy_data() return self._dummy_file @property def __UpperCamelCase ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def __UpperCamelCase ( self ): return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) snake_case__ : Optional[int] = cached_path( __SCREAMING_SNAKE_CASE , cache_dir=self.cache_dir , extract_compressed_file=__SCREAMING_SNAKE_CASE , force_extract=__SCREAMING_SNAKE_CASE ) return os.path.join(__SCREAMING_SNAKE_CASE , self.dummy_file_name ) @property def __UpperCamelCase ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __UpperCamelCase ( self ): if self._bucket_url is None: snake_case__ : List[str] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def __UpperCamelCase ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ): if self.load_existing_dummy_data: # dummy data is downloaded and tested snake_case__ : List[Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned snake_case__ : List[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return self.create_dummy_data_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): return self.create_dummy_data_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: return self.create_dummy_data_single(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ): return self.download_and_extract(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return self.download_and_extract(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): return path def __UpperCamelCase ( self ): return {} def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : int = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for single_url in single_urls: download_callback(__SCREAMING_SNAKE_CASE ) else: snake_case__ : List[str] = single_urls download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = [os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) for x in single_urls] else: snake_case__ : List[Any] = single_urls snake_case__ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) snake_case__ : Optional[int] = value # make sure that values are unique if all(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique snake_case__ : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one snake_case__ : Tuple = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , __SCREAMING_SNAKE_CASE ) ) for url in data_url ) snake_case__ : List[Any] = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): snake_case__ : List[str] = [data_url[0]] * len(__SCREAMING_SNAKE_CASE ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus snake_case__ : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(__SCREAMING_SNAKE_CASE ) return dummy_data_list def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for download_callback in self.download_callbacks: download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus snake_case__ : Any = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(__SCREAMING_SNAKE_CASE ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): def _iter_archive_members(__SCREAMING_SNAKE_CASE ): # this preserves the order of the members inside the ZIP archive snake_case__ : List[str] = Path(self.dummy_file ).parent snake_case__ : Dict = path.relative_to(__SCREAMING_SNAKE_CASE ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: snake_case__ : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = Path(__SCREAMING_SNAKE_CASE ) snake_case__ : int = _iter_archive_members(__SCREAMING_SNAKE_CASE ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(__SCREAMING_SNAKE_CASE ).as_posix(), file_path.open("""rb""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[int] = [paths] for path in paths: if os.path.isfile(__SCREAMING_SNAKE_CASE ): if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__SCREAMING_SNAKE_CASE ): if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(__SCREAMING_SNAKE_CASE ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
38
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True}) lowerCAmelCase_ = Features({"""text""": Value("""string""")}) lowerCAmelCase_ = Features({}) lowerCAmelCase_ = "text" @property def UpperCAmelCase_ ( self )-> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
3
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = IFImgaImgSuperResolutionPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def __UpperCamelCase ( self ): return self._get_superresolution_dummy_components() def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): snake_case__ : List[Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: snake_case__ : Tuple = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __UpperCamelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __UpperCamelCase ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def __UpperCamelCase ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __UpperCamelCase ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __UpperCamelCase ( self ): self._test_save_load_local() def __UpperCamelCase ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
38
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : List[Any] = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu A_ : Dict = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : List[Any]=None , __magic_name__ : List[str]=None , __magic_name__ : List[str]=None ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = True while ask_again: snake_case__ : Optional[Any] = input(__magic_name__ ) try: if default is not None and len(__magic_name__ ) == 0: return default return convert_value(__magic_name__ ) if convert_value is not None else result except Exception: if error_message is not None: print(__magic_name__ ) def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Any=[] , __magic_name__ : Optional[int]=None , __magic_name__ : int=0 ) -> Optional[int]: '''simple docstring''' snake_case__ : Union[str, Any] = BulletMenu(__magic_name__ , __magic_name__ ) snake_case__ : Optional[Any] = menu.run(default_choice=__magic_name__ ) return convert_value(__magic_name__ ) if convert_value is not None else result def UpperCamelCase__ ( __magic_name__ : Any ) -> int: '''simple docstring''' snake_case__ : Tuple = int(__magic_name__ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCamelCase__ ( __magic_name__ : str ) -> Tuple: '''simple docstring''' snake_case__ : List[Any] = int(__magic_name__ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCamelCase__ ( __magic_name__ : List[str] ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = int(__magic_name__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase__ ( __magic_name__ : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[Any] = int(__magic_name__ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCamelCase__ ( __magic_name__ : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ : Optional[Any] = int(__magic_name__ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCamelCase__ ( __magic_name__ : Dict ) -> Tuple: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class __snake_case ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : str = super()._format_usage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : str = usage.replace("""<command> [<args>] """ , """""" ) return usage
38
0
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = ["""model.decoder.embed_positions.weights"""] def A (__lowerCamelCase :Optional[int] ): if "emb" in name: _lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: _lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: _lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: _lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: _lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: _lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: _lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: _lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: _lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: _lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: _lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def A (__lowerCamelCase :OrderedDict , __lowerCamelCase :int ): _lowerCAmelCase = list(state_dict.keys() ) _lowerCAmelCase = {} for key in keys: _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) _lowerCAmelCase = rename_keys(__lowerCamelCase ) if "in_proj_weight" in key: # split fused qkv proj _lowerCAmelCase = val[:hidden_size, :] _lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] _lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _lowerCAmelCase = val else: _lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def A (__lowerCamelCase :str ): if checkpoint == "small": # default config values _lowerCAmelCase = 1024 _lowerCAmelCase = 24 _lowerCAmelCase = 16 elif checkpoint == "medium": _lowerCAmelCase = 1536 _lowerCAmelCase = 48 _lowerCAmelCase = 24 elif checkpoint == "large": _lowerCAmelCase = 2048 _lowerCAmelCase = 48 _lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) _lowerCAmelCase = MusicgenDecoderConfig( hidden_size=__lowerCamelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=__lowerCamelCase , num_attention_heads=__lowerCamelCase , ) return config @torch.no_grad() def A (__lowerCamelCase :str , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :List[str]=None , __lowerCamelCase :Optional[int]="cpu" ): _lowerCAmelCase = MusicGen.get_pretrained(__lowerCamelCase , device=__lowerCamelCase ) _lowerCAmelCase = decoder_config_from_checkpoint(__lowerCamelCase ) _lowerCAmelCase = fairseq_model.lm.state_dict() _lowerCAmelCase , _lowerCAmelCase = rename_state_dict( __lowerCamelCase , hidden_size=decoder_config.hidden_size ) _lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) _lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) _lowerCAmelCase = MusicgenForCausalLM(__lowerCamelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _lowerCAmelCase , _lowerCAmelCase = decoder.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(__lowerCamelCase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model _lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=__lowerCamelCase , audio_encoder=__lowerCamelCase , decoder=__lowerCamelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__lowerCamelCase ) # check we can do a forward pass _lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) _lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): _lowerCAmelCase = model(input_ids=__lowerCamelCase , decoder_input_ids=__lowerCamelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor _lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) _lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) _lowerCAmelCase = MusicgenProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) # set the appropriate bos/pad token ids _lowerCAmelCase = 2048 _lowerCAmelCase = 2048 # set other default generation config params _lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) _lowerCAmelCase = True _lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(__lowerCamelCase ) processor.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _lowercase = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
5
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( __magic_name__ : list ) -> float: '''simple docstring''' if not nums: raise ValueError("""List is empty""" ) return sum(__magic_name__ ) / len(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
38
0
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "OwlViTImageProcessor" lowerCamelCase_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self :Optional[Any] , __A :int=None , __A :Optional[int]=None , **__A :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __A , ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" ) SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__A , __A ) def __call__( self :str , __A :Dict=None , __A :List[str]=None , __A :str=None , __A :Optional[int]="max_length" , __A :Tuple="np" , **__A :int ) -> Tuple: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )): SCREAMING_SNAKE_CASE__ = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )] elif isinstance(__A , __A ) and isinstance(text[0] , __A ): SCREAMING_SNAKE_CASE__ = [] # Maximum number of queries across batch SCREAMING_SNAKE_CASE__ = max([len(__A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__A ) != max_num_queries: SCREAMING_SNAKE_CASE__ = t + [""" """] * (max_num_queries - len(__A )) SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A ) encodings.append(__A ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) SCREAMING_SNAKE_CASE__ = BatchEncoding() SCREAMING_SNAKE_CASE__ = input_ids SCREAMING_SNAKE_CASE__ = attention_mask if query_images is not None: SCREAMING_SNAKE_CASE__ = BatchEncoding() SCREAMING_SNAKE_CASE__ = self.image_processor( __A , return_tensors=__A , **__A ).pixel_values SCREAMING_SNAKE_CASE__ = query_pixel_values if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif query_images is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :List[Any] , *__A :Dict , **__A :Dict ) -> Optional[int]: """simple docstring""" return self.image_processor.post_process(*__A , **__A ) def _snake_case ( self :Optional[int] , *__A :Dict , **__A :List[str] ) -> Optional[Any]: """simple docstring""" return self.image_processor.post_process_object_detection(*__A , **__A ) def _snake_case ( self :str , *__A :List[str] , **__A :Union[str, Any] ) -> Any: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*__A , **__A ) def _snake_case ( self :Dict , *__A :List[str] , **__A :List[str] ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :Dict , *__A :Dict , **__A :List[str] ) -> str: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :List[Any] ) -> Optional[int]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , ) return self.image_processor_class @property def _snake_case ( self :Any ) -> Optional[Any]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , ) return self.image_processor
6
'''simple docstring''' from __future__ import annotations A_ : str = "Muhammad Umer Farooq" A_ : Optional[Any] = "MIT" A_ : int = "1.0.0" A_ : int = "Muhammad Umer Farooq" A_ : int = "[email protected]" A_ : Dict = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): super().__init__() snake_case__ : list[str] = [] snake_case__ : List[Any] = domain def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: snake_case__ : str = parse.urljoin(self.domain , __SCREAMING_SNAKE_CASE ) self.urls.append(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' return ".".join(get_sub_domain_name(__magic_name__ ).split(""".""" )[-2:] ) def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' return parse.urlparse(__magic_name__ ).netloc def UpperCamelCase__ ( __magic_name__ : str = "https://github.com" ) -> list[str]: '''simple docstring''' snake_case__ : List[str] = get_domain_name(__magic_name__ ) # Initialize the parser snake_case__ : Optional[Any] = Parser(__magic_name__ ) try: # Open URL snake_case__ : Any = requests.get(__magic_name__ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through snake_case__ : List[str] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: snake_case__ : Tuple = requests.get(__magic_name__ ) # Get the valid email. snake_case__ : List[str] = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__magic_name__ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__magic_name__ ) if __name__ == "__main__": A_ : str = emails_from_url("https://github.com") print(F'{len(emails)} emails found:') print("\n".join(sorted(emails)))
38
0
"""simple docstring""" class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = None _A = None _A = graph self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase ) _A = len(_UpperCAmelCase ) _A = None def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ): if sources is int: _A = [sources] if sinks is int: _A = [sinks] if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0: return _A = sources[0] _A = sinks[0] # make fake vertex if there are more # than one source or sink if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1: _A = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _A = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _A = max_input_flow _A = 0 _A = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _A = max_input_flow _A = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ): _A = algorithm(self ) class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ): _A = flow_network _A = flow_network.verticesCount _A = flow_network.sourceIndex _A = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _A = flow_network.graph _A = False def lowerCAmelCase_ ( self : Optional[Any] ): if not self.executed: self._algorithm() _A = True def lowerCAmelCase_ ( self : int ): pass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , _UpperCAmelCase : Any ): super().__init__(_UpperCAmelCase ) # use this to save your result _A = -1 def lowerCAmelCase_ ( self : Optional[Any] ): if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : List[Any] ): super().__init__(_UpperCAmelCase ) _A = [[0] * self.verticies_count for i in range(self.verticies_count )] _A = [0] * self.verticies_count _A = [0] * self.verticies_count def lowerCAmelCase_ ( self : Dict ): _A = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _A = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _A = 0 while i < len(_UpperCAmelCase ): _A = vertices_list[i] _A = self.heights[vertex_index] self.process_vertex(_UpperCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) ) _A = 0 else: i += 1 _A = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_UpperCAmelCase , _UpperCAmelCase ) self.relabel(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ): _A = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ): _A = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _A = self.heights[to_index] if min_height is not None: _A = min_height + 1 if __name__ == "__main__": a = [0] a = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network a = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate a = flow_network.find_maximum_flow() print(F'''maximum flow is {maximum_flow}''')
7
'''simple docstring''' def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> Tuple: '''simple docstring''' if not head: return True # split the list to two parts snake_case__ , snake_case__ : Dict = head.next, head while fast and fast.next: snake_case__ : Any = fast.next.next snake_case__ : int = slow.next snake_case__ : Dict = slow.next snake_case__ : List[str] = None # Don't forget here! But forget still works! # reverse the second part snake_case__ : Tuple = None while second: snake_case__ : Tuple = second.next snake_case__ : Any = node snake_case__ : str = second snake_case__ : Optional[Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False snake_case__ : List[Any] = node.next snake_case__ : int = head.next return True def UpperCamelCase__ ( __magic_name__ : Any ) -> Optional[Any]: '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) snake_case__ : List[Any] = head while fast and fast.next: snake_case__ , snake_case__ : Any = fast.next.next, slow.next # 2. Push the second half into the stack snake_case__ : Tuple = [slow.val] while slow.next: snake_case__ : Optional[Any] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False snake_case__ : str = cur.next return True def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Tuple: '''simple docstring''' if not head or not head.next: return True snake_case__ : int = {} snake_case__ : Union[str, Any] = 0 while head: if head.val in d: d[head.val].append(__magic_name__ ) else: snake_case__ : Tuple = [pos] snake_case__ : Optional[Any] = head.next pos += 1 snake_case__ : int = pos - 1 snake_case__ : str = 0 for v in d.values(): if len(__magic_name__ ) % 2 != 0: middle += 1 else: snake_case__ : List[str] = 0 for i in range(0 , len(__magic_name__ ) ): if v[i] + v[len(__magic_name__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
38
0
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: if not is_accelerate_available(): return method __A : Union[str, Any] = version.parse(accelerate.__version__ ).base_version if version.parse(__snake_case ) < version.parse('0.17.0' ): return method def wrapper(self : Optional[int] , *__snake_case : int , **__snake_case : int ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *__snake_case , **__snake_case ) return wrapper
8
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A_ : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A_ : str = 250004 A_ : str = 250020 @require_sentencepiece @require_tokenizers class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MBartTokenizer lowerCamelCase__ = MBartTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def __UpperCamelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self ): snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) snake_case__ : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case__ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case__ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def __UpperCamelCase ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case__ : Optional[int] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = tempfile.mkdtemp() snake_case__ : int = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) snake_case__ : List[str] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way snake_case__ : Tuple = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True snake_case__ : Any = tempfile.mkdtemp() snake_case__ : Optional[int] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) snake_case__ : int = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way snake_case__ : List[Any] = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False snake_case__ : Dict = tempfile.mkdtemp() snake_case__ : Union[str, Any] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case__ : Dict = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = '''facebook/mbart-large-en-ro''' lowerCamelCase__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] lowerCamelCase__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] lowerCamelCase__ = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def __UpperCamelCase ( cls ): snake_case__ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) snake_case__ : Any = 1 return cls def __UpperCamelCase ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 2_5_0_0_2_0 ) def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): self.assertIn(__SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids ) snake_case__ : List[str] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] snake_case__ : List[Any] = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = ["""this is gunna be a long sentence """ * 2_0] assert isinstance(src_text[0] , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = 1_0 snake_case__ : int = self.tokenizer(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = tempfile.mkdtemp() snake_case__ : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = MBartTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __SCREAMING_SNAKE_CASE ) @require_torch def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) snake_case__ : int = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) snake_case__ : List[str] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) snake_case__ : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.tokenizer(self.src_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=3 , return_tensors="""pt""" ) snake_case__ : Optional[int] = self.tokenizer( text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=1_0 , return_tensors="""pt""" ) snake_case__ : str = targets["""input_ids"""] snake_case__ : Optional[Any] = shift_tokens_right(__SCREAMING_SNAKE_CASE , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , { # A, test, EOS, en_XX """input_ids""": [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 2_5_0_0_0_1, } , )
38
0
from __future__ import annotations from math import pow, sqrt def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(__UpperCamelCase , 2 ) - pow(__UpperCamelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__UpperCamelCase , 2 ) - pow(__UpperCamelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__UpperCamelCase , 2 ) + pow(__UpperCamelCase , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : int = logging.get_logger(__name__) A_ : Dict = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''bit''' lowerCamelCase__ = ['''preactivation''', '''bottleneck'''] lowerCamelCase__ = ['''SAME''', '''VALID'''] def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="preactivation" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case__ : Tuple = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) snake_case__ : List[str] = num_channels snake_case__ : Tuple = embedding_size snake_case__ : str = hidden_sizes snake_case__ : Optional[Any] = depths snake_case__ : List[Any] = layer_type snake_case__ : Dict = hidden_act snake_case__ : Union[str, Any] = global_padding snake_case__ : List[str] = num_groups snake_case__ : str = drop_path_rate snake_case__ : List[Any] = embedding_dynamic_padding snake_case__ : List[str] = output_stride snake_case__ : Dict = width_factor snake_case__ : List[str] = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] snake_case__ , snake_case__ : Dict = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
38
0
def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): if index == number_of_items: return 0 _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = knapsack(__snake_case , __snake_case , __snake_case , __snake_case , index + 1 ) if weights[index] <= max_weight: _UpperCamelCase = values[index] + knapsack( __snake_case , __snake_case , __snake_case , max_weight - weights[index] , index + 1 ) return max(__snake_case , __snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
10
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A_ : Optional[int] = logging.get_logger(__name__) def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=False ) -> Tuple: '''simple docstring''' snake_case__ : int = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Tuple=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: snake_case__ : int = """""" else: snake_case__ : Dict = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : int = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case__ : Union[str, Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Optional[int] = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size] snake_case__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Optional[int] = in_proj_bias[-config.hidden_size :] def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case__ : str = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : str ) -> Union[str, Any]: '''simple docstring''' snake_case__ : List[str] = dct.pop(__magic_name__ ) snake_case__ : Dict = val def UpperCamelCase__ ( ) -> str: '''simple docstring''' snake_case__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : int=False ) -> Optional[int]: '''simple docstring''' snake_case__ : int = BitConfig( global_padding="""same""" , layer_type="""bottleneck""" , depths=(3, 4, 9) , out_features=["""stage3"""] , embedding_dynamic_padding=__magic_name__ , ) snake_case__ : Optional[int] = ViTHybridConfig(backbone_config=__magic_name__ , image_size=3_84 , num_labels=10_00 ) snake_case__ : Union[str, Any] = False # load original model from timm snake_case__ : List[Any] = timm.create_model(__magic_name__ , pretrained=__magic_name__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[int] = timm_model.state_dict() if base_model: remove_classification_head_(__magic_name__ ) snake_case__ : int = create_rename_keys(__magic_name__ , __magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , __magic_name__ ) snake_case__ : str = """huggingface/label-files""" snake_case__ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case__ : Dict = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : List[Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case__ : int = idalabel snake_case__ : str = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ : str = ViTHybridModel(__magic_name__ ).eval() else: snake_case__ : Union[str, Any] = ViTHybridForImageClassification(__magic_name__ ).eval() model.load_state_dict(__magic_name__ ) # create image processor snake_case__ : Optional[Any] = create_transform(**resolve_data_config({} , model=__magic_name__ ) ) snake_case__ : Union[str, Any] = transform.transforms snake_case__ : Tuple = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } snake_case__ : Any = ViTHybridImageProcessor( do_resize=__magic_name__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__magic_name__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=__magic_name__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) snake_case__ : Any = prepare_img() snake_case__ : int = transform(__magic_name__ ).unsqueeze(0 ) snake_case__ : List[str] = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(__magic_name__ , __magic_name__ ) # verify logits with torch.no_grad(): snake_case__ : Optional[Any] = model(__magic_name__ ) snake_case__ : Union[str, Any] = outputs.logits print("""Predicted class:""" , logits.argmax(-1 ).item() ) if base_model: snake_case__ : Dict = timm_model.forward_features(__magic_name__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__magic_name__ , outputs.pooler_output , atol=1E-3 ) else: snake_case__ : int = timm_model(__magic_name__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__magic_name__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(__magic_name__ ) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(f"ybelkada/{vit_name}" ) processor.push_to_hub(f"ybelkada/{vit_name}" ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) A_ : Union[str, Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
38
0
'''simple docstring''' import math def lowerCAmelCase (__A): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase (__A = 0.1): """simple docstring""" _a = 3 _a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(__A) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = 42 class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE=True , ): super().__init__() snake_case__ : str = layers_per_block snake_case__ : int = torch.nn.Convad( __SCREAMING_SNAKE_CASE , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) snake_case__ : List[Any] = None snake_case__ : List[Any] = nn.ModuleList([] ) # down snake_case__ : Union[str, Any] = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = output_channel snake_case__ : Union[str, Any] = block_out_channels[i] snake_case__ : int = i == len(__SCREAMING_SNAKE_CASE ) - 1 snake_case__ : str = get_down_block( __SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , ) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid snake_case__ : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , ) # out snake_case__ : Tuple = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 ) snake_case__ : Tuple = nn.SiLU() snake_case__ : str = 2 * out_channels if double_z else out_channels snake_case__ : int = nn.Convad(block_out_channels[-1] , __SCREAMING_SNAKE_CASE , 3 , padding=1 ) snake_case__ : Union[str, Any] = False def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = x snake_case__ : int = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) # middle snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: snake_case__ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # middle snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: snake_case__ : List[str] = down_block(__SCREAMING_SNAKE_CASE ) # middle snake_case__ : str = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process snake_case__ : Any = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = self.conv_act(__SCREAMING_SNAKE_CASE ) snake_case__ : str = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE="group" , ): super().__init__() snake_case__ : Any = layers_per_block snake_case__ : Optional[Any] = nn.Convad( __SCREAMING_SNAKE_CASE , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) snake_case__ : Union[str, Any] = None snake_case__ : Dict = nn.ModuleList([] ) snake_case__ : Optional[int] = in_channels if norm_type == """spatial""" else None # mid snake_case__ : Tuple = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , ) # up snake_case__ : List[Any] = list(reversed(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Optional[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = output_channel snake_case__ : Optional[Any] = reversed_block_out_channels[i] snake_case__ : List[str] = i == len(__SCREAMING_SNAKE_CASE ) - 1 snake_case__ : int = get_up_block( __SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block + 1 , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , prev_output_channel=__SCREAMING_SNAKE_CASE , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , resnet_time_scale_shift=__SCREAMING_SNAKE_CASE , ) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) snake_case__ : int = output_channel # out if norm_type == "spatial": snake_case__ : List[Any] = SpatialNorm(block_out_channels[0] , __SCREAMING_SNAKE_CASE ) else: snake_case__ : Any = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 ) snake_case__ : Tuple = nn.SiLU() snake_case__ : Union[str, Any] = nn.Convad(block_out_channels[0] , __SCREAMING_SNAKE_CASE , 3 , padding=1 ) snake_case__ : int = False def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): snake_case__ : Union[str, Any] = z snake_case__ : Any = self.conv_in(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle snake_case__ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) snake_case__ : int = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: snake_case__ : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle snake_case__ : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: # middle snake_case__ : List[Any] = self.mid_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: snake_case__ : Dict = up_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: snake_case__ : Optional[Any] = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: snake_case__ : str = self.conv_norm_out(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Any = self.conv_act(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="random" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True ): super().__init__() snake_case__ : int = n_e snake_case__ : Optional[int] = vq_embed_dim snake_case__ : int = beta snake_case__ : Optional[int] = legacy snake_case__ : Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) snake_case__ : List[str] = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) snake_case__ : Optional[Any] = self.used.shape[0] snake_case__ : List[str] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": snake_case__ : Dict = self.re_embed snake_case__ : List[str] = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: snake_case__ : Union[str, Any] = n_e snake_case__ : str = sane_index_shape def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 snake_case__ : Dict = inds.reshape(ishape[0] , -1 ) snake_case__ : Any = self.used.to(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = (inds[:, :, None] == used[None, None, ...]).long() snake_case__ : List[Any] = match.argmax(-1 ) snake_case__ : List[str] = match.sum(2 ) < 1 if self.unknown_index == "random": snake_case__ : List[str] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: snake_case__ : Optional[Any] = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 snake_case__ : int = inds.reshape(ishape[0] , -1 ) snake_case__ : Optional[int] = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token snake_case__ : List[Any] = 0 # simply set to zero snake_case__ : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): # reshape z -> (batch, height, width, channel) and flatten snake_case__ : Any = z.permute(0 , 2 , 3 , 1 ).contiguous() snake_case__ : Optional[Any] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z snake_case__ : Dict = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE , self.embedding.weight ) , dim=1 ) snake_case__ : Union[str, Any] = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) snake_case__ : List[str] = None snake_case__ : Union[str, Any] = None # compute loss for embedding if not self.legacy: snake_case__ : Tuple = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: snake_case__ : List[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients snake_case__ : Any = z + (z_q - z).detach() # reshape back to match original input shape snake_case__ : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: snake_case__ : List[Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis snake_case__ : str = self.remap_to_used(__SCREAMING_SNAKE_CASE ) snake_case__ : str = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: snake_case__ : Tuple = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # shape specifying (batch, height, width, channel) if self.remap is not None: snake_case__ : List[Any] = indices.reshape(shape[0] , -1 ) # add batch axis snake_case__ : Optional[int] = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = indices.reshape(-1 ) # flatten again # get quantized latent vectors snake_case__ : int = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: snake_case__ : str = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape snake_case__ : str = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): snake_case__ : Tuple = parameters snake_case__ , snake_case__ : Any = torch.chunk(__SCREAMING_SNAKE_CASE , 2 , dim=1 ) snake_case__ : Union[str, Any] = torch.clamp(self.logvar , -30.0 , 20.0 ) snake_case__ : Optional[int] = deterministic snake_case__ : Optional[int] = torch.exp(0.5 * self.logvar ) snake_case__ : Any = torch.exp(self.logvar ) if self.deterministic: snake_case__ : List[str] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE = None ): # make sure sample is on the same device as the parameters and has same dtype snake_case__ : Dict = randn_tensor( self.mean.shape , generator=__SCREAMING_SNAKE_CASE , device=self.parameters.device , dtype=self.parameters.dtype ) snake_case__ : Optional[int] = self.mean + self.std * sample return x def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) snake_case__ : Any = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): return self.mean
38
0
lowerCamelCase__ : dict[tuple[int, int, int], int] = {} def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowercase__ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 ) lowercase__ : List[str] = state_late + state_absent + state_ontime lowercase__ : List[Any] = prizestrings return prizestrings def UpperCamelCase ( lowercase_ = 30 ) -> int: '''simple docstring''' return _calculate(lowercase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
12
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1, 3_8_4, 2_4, 2_4] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , ): snake_case__ : str = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : Optional[int] = patch_size snake_case__ : List[str] = num_channels snake_case__ : Any = is_training snake_case__ : int = use_labels snake_case__ : str = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : str = backbone_out_indices snake_case__ : List[Any] = num_attention_heads snake_case__ : Dict = intermediate_size snake_case__ : Optional[Any] = hidden_act snake_case__ : str = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : Dict = initializer_range snake_case__ : Optional[int] = num_labels snake_case__ : str = backbone_featmap_shape snake_case__ : List[Any] = scope snake_case__ : Optional[Any] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) snake_case__ : List[Any] = (image_size // patch_size) ** 2 snake_case__ : Union[str, Any] = num_patches + 1 def __UpperCamelCase ( self ): snake_case__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : str = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): snake_case__ : Any = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [9_6, 1_9_2, 3_8_4, 7_6_8], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = DPTModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = self.num_labels snake_case__ : str = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = self.num_labels snake_case__ : Dict = DPTForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : str = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs snake_case__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCamelCase__ = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : List[Any] = DPTModelTester(self ) snake_case__ : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Tuple = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : List[str] = [*signature.parameters.keys()] snake_case__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : int = True if model_class in get_values(__SCREAMING_SNAKE_CASE ): continue snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() snake_case__ : Optional[Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Union[str, Any] = False snake_case__ : str = True if model_class in get_values(__SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() snake_case__ : List[str] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCamelCase ( self ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : str = _config_zero_init(__SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: snake_case__ : Any = model_class(config=__SCREAMING_SNAKE_CASE ) # Skip the check for the backbone snake_case__ : str = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": snake_case__ : Optional[int] = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __UpperCamelCase ( self ): pass @slow def __UpperCamelCase ( self ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: snake_case__ : List[str] = DPTModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = """add""" with self.assertRaises(__SCREAMING_SNAKE_CASE ): snake_case__ : List[str] = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> Dict: '''simple docstring''' snake_case__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Dict = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) snake_case__ : Union[str, Any] = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = prepare_img() snake_case__ : Optional[int] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : Dict = model(**__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = outputs.predicted_depth # verify the predicted depth snake_case__ : Any = torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
38
0
'''simple docstring''' from collections.abc import Sequence from queue import Queue class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> int: __lowerCamelCase : str = start __lowerCamelCase : Union[str, Any] = end __lowerCamelCase : Any = val __lowerCamelCase : int = (start + end) // 2 __lowerCamelCase : str = left __lowerCamelCase : Tuple = right def __repr__( self ) -> List[str]: return f'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Optional[Any] = collection __lowerCamelCase : Tuple = function if self.collection: __lowerCamelCase : List[str] = self._build_tree(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: self._update_tree(self.root , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: return self._query_range(self.root , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: if start == end: return SegmentTreeNode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.collection[start] ) __lowerCamelCase : Optional[int] = (start + end) // 2 __lowerCamelCase : str = self._build_tree(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self._build_tree(mid + 1 , SCREAMING_SNAKE_CASE_ ) return SegmentTreeNode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.fn(left.val , right.val ) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: if node.start == i and node.end == i: __lowerCamelCase : Any = val return if i <= node.mid: self._update_tree(node.left , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: self._update_tree(node.right , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self.fn(node.left.val , node.right.val ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , SCREAMING_SNAKE_CASE_ , node.mid ) , self._query_range(node.right , node.mid + 1 , SCREAMING_SNAKE_CASE_ ) , ) else: # range in right child tree return self._query_range(node.right , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Dict: if self.root is not None: __lowerCamelCase : Any = Queue() queue.put(self.root ) while not queue.empty(): __lowerCamelCase : List[str] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 50) A__ : List[Any] = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
13
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Dict: '''simple docstring''' snake_case__ : int = botoa.client("""iam""" ) snake_case__ : Union[str, Any] = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=__magic_name__ , AssumeRolePolicyDocument=json.dumps(__magic_name__ , indent=2 ) ) snake_case__ : Dict = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=__magic_name__ , PolicyName=f"{role_name}_policy_permission" , PolicyDocument=json.dumps(__magic_name__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"role {role_name} already exists. Using existing one" ) def UpperCamelCase__ ( __magic_name__ : Any ) -> Tuple: '''simple docstring''' snake_case__ : List[str] = botoa.client("""iam""" ) return iam_client.get_role(RoleName=__magic_name__ )["Role"]["Arn"] def UpperCamelCase__ ( ) -> Tuple: '''simple docstring''' snake_case__ : Union[str, Any] = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , __magic_name__ , ) snake_case__ : List[Any] = None if credentials_configuration == 0: snake_case__ : Dict = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) snake_case__ : List[str] = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) snake_case__ : List[str] = _ask_field("""AWS Access Key ID: """ ) snake_case__ : int = aws_access_key_id snake_case__ : Optional[Any] = _ask_field("""AWS Secret Access Key: """ ) snake_case__ : List[str] = aws_secret_access_key snake_case__ : Tuple = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) snake_case__ : Optional[int] = aws_region snake_case__ : int = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , __magic_name__ , ) if role_management == 0: snake_case__ : Optional[Any] = _ask_field("""Enter your IAM role name: """ ) else: snake_case__ : Optional[int] = """accelerate_sagemaker_execution_role""" print(f"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(__magic_name__ ) snake_case__ : Dict = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : Any = None if is_custom_docker_image: snake_case__ : str = _ask_field("""Enter your Docker image: """ , lambda __magic_name__ : str(__magic_name__ ).lower() ) snake_case__ : Tuple = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : List[Any] = None if is_sagemaker_inputs_enabled: snake_case__ : str = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , ) snake_case__ : Optional[int] = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : Optional[Any] = None if is_sagemaker_metrics_enabled: snake_case__ : List[Any] = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , ) snake_case__ : Tuple = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) snake_case__ : Any = {} snake_case__ : List[Any] = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) if use_dynamo: snake_case__ : str = """dynamo_""" snake_case__ : Tuple = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) snake_case__ : List[str] = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) if use_custom_options: snake_case__ : str = _ask_options( """Which mode do you want to use?""" , __magic_name__ , lambda __magic_name__ : TORCH_DYNAMO_MODES[int(__magic_name__ )] , default="""default""" , ) snake_case__ : Union[str, Any] = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : str = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : Dict = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: snake_case__ : List[str] = _ask_options( __magic_name__ , __magic_name__ , lambda __magic_name__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__magic_name__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" snake_case__ : Optional[int] = _ask_field(__magic_name__ , lambda __magic_name__ : str(__magic_name__ ).lower() , default="""ml.p3.2xlarge""" ) snake_case__ : Dict = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): snake_case__ : Optional[Any] = _ask_field( """How many machines do you want use? [1]: """ , __magic_name__ , default=1 , ) snake_case__ : Union[str, Any] = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=__magic_name__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__magic_name__ , use_cpu=__magic_name__ , dynamo_config=__magic_name__ , eca_instance_type=__magic_name__ , profile=__magic_name__ , region=__magic_name__ , iam_role_name=__magic_name__ , mixed_precision=__magic_name__ , num_machines=__magic_name__ , sagemaker_inputs_file=__magic_name__ , sagemaker_metrics_file=__magic_name__ , )
38
0
from heapq import heappop, heappush import numpy as np def __UpperCAmelCase ( __a : np.ndarray ,__a : tuple[int, int] ,__a : tuple[int, int] ,__a : bool ,) -> tuple[float | int, list[tuple[int, int]]]: """simple docstring""" _a , _a : Optional[Any] = grid.shape _a : Dict = [-1, 1, 0, 0] _a : str = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] _a , _a : Dict = [(0, source)], set() _a : Union[str, Any] = np.full((rows, cols) ,np.inf ) _a : Optional[Any] = 0 _a : Any = np.empty((rows, cols) ,dtype=__a ) _a : Tuple = None while queue: ((_a) , (_a)) : List[Any] = heappop(__a ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: _a : Any = [] while (x, y) != source: path.append((x, y) ) _a , _a : str = predecessors[x, y] path.append(__a ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__a ) ): _a , _a : Tuple = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: _a : str = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__a ,(dist + 1, (nx, ny)) ) _a : Dict = dist + 1 _a : List[str] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
14
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def UpperCamelCase__ ( __magic_name__ : str = "laptop" ) -> DataFrame: '''simple docstring''' snake_case__ : Union[str, Any] = f"https://www.amazon.in/laptop/s?k={product}" snake_case__ : List[str] = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } snake_case__ : int = BeautifulSoup(requests.get(__magic_name__ , headers=__magic_name__ ).text ) # Initialize a Pandas dataframe with the column titles snake_case__ : Optional[Any] = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: snake_case__ : Optional[int] = item.ha.text snake_case__ : Any = """https://www.amazon.in/""" + item.ha.a["""href"""] snake_case__ : List[str] = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: snake_case__ : Dict = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: snake_case__ : Optional[int] = """Not available""" try: snake_case__ : Tuple = ( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: snake_case__ : Optional[Any] = """""" try: snake_case__ : str = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 1_00 ) except ValueError: snake_case__ : List[Any] = float("""nan""" ) except AttributeError: pass snake_case__ : str = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] snake_case__ : List[Any] = """ """ snake_case__ : Union[str, Any] = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": A_ : int = "headphones" get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
38
0
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A : Union[str, Any] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = field(default=UpperCAmelCase__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = v.to_dict() return d
15
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = LongformerTokenizer lowerCamelCase__ = True lowerCamelCase__ = LongformerTokenizerFast lowerCamelCase__ = True def __UpperCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case__ : Optional[int] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) snake_case__ : int = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case__ : Any = {"""unk_token""": """<unk>"""} snake_case__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : str = """lower newer""" snake_case__ : Dict = """lower newer""" return input_text, output_text def __UpperCamelCase ( self ): snake_case__ : int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case__ : Tuple = """lower newer""" snake_case__ : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] snake_case__ : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokens + [tokenizer.unk_token] snake_case__ : List[Any] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Tuple = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) snake_case__ : int = tokenizer.encode("""sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : int = """Encode this sequence.""" snake_case__ : Union[str, Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments snake_case__ : Optional[int] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) snake_case__ : List[str] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens snake_case__ : List[str] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space snake_case__ : Dict = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) snake_case__ : str = """Encode <mask> sequence""" snake_case__ : Tuple = """Encode <mask>sequence""" snake_case__ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = encoded.index(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer.encode(__SCREAMING_SNAKE_CASE ) snake_case__ : str = encoded.index(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """A, <mask> AllenNLP sentence.""" snake_case__ : str = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) snake_case__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) snake_case__ : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def __UpperCamelCase ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): snake_case__ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) snake_case__ : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state["""trim_offsets"""] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : Union[str, Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` snake_case__ : Any = f"{text_of_1_token} {text_of_1_token}" snake_case__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Optional[Any] = f" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) snake_case__ : Dict = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
38
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : List[str] , **__lowerCamelCase : Any ): pass @is_pipeline_test @require_vision @require_timm @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_OBJECT_DETECTION_MAPPING def _snake_case ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = ObjectDetectionPipeline(model=__lowerCamelCase , image_processor=__lowerCamelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(__lowerCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __lowerCamelCase , { "score": ANY(__lowerCamelCase ), "label": ANY(__lowerCamelCase ), "box": {"xmin": ANY(__lowerCamelCase ), "ymin": ANY(__lowerCamelCase ), "xmax": ANY(__lowerCamelCase ), "ymax": ANY(__lowerCamelCase )}, } , ) import datasets SCREAMING_SNAKE_CASE = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE = object_detector(__lowerCamelCase , threshold=0.0 ) self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for outputs in batch_outputs: self.assertGreater(len(__lowerCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __lowerCamelCase , { "score": ANY(__lowerCamelCase ), "label": ANY(__lowerCamelCase ), "box": {"xmin": ANY(__lowerCamelCase ), "ymin": ANY(__lowerCamelCase ), "xmax": ANY(__lowerCamelCase ), "ymax": ANY(__lowerCamelCase )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def _snake_case ( self : int ): pass @require_torch def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE = AutoModelForObjectDetection.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = ObjectDetectionPipeline(model=__lowerCamelCase , feature_extractor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) SCREAMING_SNAKE_CASE = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE = AutoModelForObjectDetection.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = ObjectDetectionPipeline(model=__lowerCamelCase , feature_extractor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE = pipeline("object-detection" , model=__lowerCamelCase ) SCREAMING_SNAKE_CASE = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = 0.9_985 SCREAMING_SNAKE_CASE = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE = pipeline("object-detection" , model=__lowerCamelCase ) SCREAMING_SNAKE_CASE = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=__lowerCamelCase ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE = 0.9_993 SCREAMING_SNAKE_CASE = pipeline("object-detection" , model=__lowerCamelCase , threshold=__lowerCamelCase ) SCREAMING_SNAKE_CASE = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9_993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
16
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : int = logging.get_logger(__name__) A_ : Any = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''resnet''' lowerCamelCase__ = ['''basic''', '''bottleneck'''] def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="bottleneck" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) snake_case__ : List[Any] = num_channels snake_case__ : str = embedding_size snake_case__ : List[Any] = hidden_sizes snake_case__ : Dict = depths snake_case__ : List[Any] = layer_type snake_case__ : int = hidden_act snake_case__ : Union[str, Any] = downsample_in_first_stage snake_case__ : Dict = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] snake_case__ , snake_case__ : Any = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = version.parse('''1.11''' ) @property def __UpperCamelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __UpperCamelCase ( self ): return 1e-3
38
0
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : Dict = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } UpperCAmelCase_ : Dict = logging.get_logger(__name__) class lowerCamelCase_ ( _lowercase ): _lowercase : Tuple = '''mask2former''' _lowercase : Optional[Any] = ['''swin'''] _lowercase : Dict = {'''hidden_size''': '''hidden_dim'''} def __init__( self : Optional[Any] , __A : Optional[Dict] = None , __A : int = 256 , __A : int = 256 , __A : int = 256 , __A : int = 1024 , __A : str = "relu" , __A : int = 6 , __A : int = 10 , __A : int = 8 , __A : float = 0.0 , __A : int = 2048 , __A : bool = False , __A : bool = False , __A : int = 4 , __A : int = 255 , __A : int = 100 , __A : float = 0.1 , __A : float = 2.0 , __A : float = 5.0 , __A : float = 5.0 , __A : int = 1_2544 , __A : float = 3.0 , __A : float = 0.7_5 , __A : float = 0.0_2 , __A : float = 1.0 , __A : bool = True , __A : List[int] = [4, 8, 16, 32] , __A : bool = None , **__A : Dict , ): if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) __A : List[Any] = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__A , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__A , __A ): __A : Any = backbone_config.pop("""model_type""" ) __A : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] __A : str = config_class.from_dict(__A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ F"""Supported model types: {",".join(self.backbones_supported )}""" ) __A : int = backbone_config __A : Optional[Any] = feature_size __A : Union[str, Any] = mask_feature_size __A : List[str] = hidden_dim __A : Union[str, Any] = encoder_feedforward_dim __A : int = activation_function __A : Any = encoder_layers __A : str = decoder_layers __A : List[str] = num_attention_heads __A : Tuple = dropout __A : Tuple = dim_feedforward __A : Optional[int] = pre_norm __A : Optional[Any] = enforce_input_projection __A : Any = common_stride __A : Any = ignore_value __A : List[str] = num_queries __A : List[str] = no_object_weight __A : str = class_weight __A : Any = mask_weight __A : Dict = dice_weight __A : Optional[Any] = train_num_points __A : str = oversample_ratio __A : str = importance_sample_ratio __A : List[str] = init_std __A : Any = init_xavier_std __A : Any = use_auxiliary_loss __A : Optional[int] = feature_strides __A : List[str] = output_auxiliary_logits __A : List[str] = decoder_layers super().__init__(**__A ) @classmethod def lowerCAmelCase_ ( cls : str , __A : PretrainedConfig , **__A : int ): return cls( backbone_config=__A , **__A , ) def lowerCAmelCase_ ( self : Optional[Any] ): __A : Optional[int] = copy.deepcopy(self.__dict__ ) __A : Any = self.backbone_config.to_dict() __A : Optional[int] = self.__class__.model_type return output
17
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
38
0
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ : __lowerCamelCase : Optional[str] = field( default="tab_fact" ,metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __lowerCamelCase : Optional[str] = field( default="tab_fact" ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ,) __lowerCamelCase : int = field( default=1_024 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) __lowerCamelCase : bool = field( default=__magic_name__ ,metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __lowerCamelCase : bool = field( default=__magic_name__ ,metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } ,) __lowerCamelCase : Optional[int] = field( default=__magic_name__ ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) __lowerCamelCase : Optional[int] = field( default=__magic_name__ ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) __lowerCamelCase : Optional[int] = field( default=__magic_name__ ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } ,) __lowerCamelCase : Optional[str] = field( default=__magic_name__ ,metadata={"help": "A csv or a json file containing the training data."} ) __lowerCamelCase : Optional[str] = field( default=__magic_name__ ,metadata={"help": "A csv or a json file containing the validation data."} ) __lowerCamelCase : Optional[str] = field(default=__magic_name__ ,metadata={"help": "A csv or a json file containing the test data."} ) def _snake_case ( self ) -> Optional[Any]: if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name." ) else: _lowerCAmelCase = self.train_file.split("." )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _lowerCAmelCase = self.validation_file.split("." )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class lowerCAmelCase_ : __lowerCamelCase : str = field( default=__magic_name__ ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __lowerCamelCase : Optional[str] = field( default=__magic_name__ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __lowerCamelCase : Optional[str] = field( default=__magic_name__ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __lowerCamelCase : Optional[str] = field( default=__magic_name__ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) __lowerCamelCase : bool = field( default=__magic_name__ ,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ,) __lowerCamelCase : str = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) __lowerCamelCase : bool = field( default=__magic_name__ ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) def __a(): '''simple docstring''' _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE_ ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _lowerCAmelCase = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _lowerCAmelCase = data_args.train_file.split("." )[-1] _lowerCAmelCase = data_args.test_file.split("." )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _lowerCAmelCase = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`." ) for key in data_files.keys(): logger.info(F'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith(".csv" ): # Loading a dataset from local csv files _lowerCAmelCase = load_dataset("csv" , data_files=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _lowerCAmelCase = load_dataset("json" , data_files=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _lowerCAmelCase = raw_datasets["train"].features["label"].names _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _lowerCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=SCREAMING_SNAKE_CASE_ , ) _lowerCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _lowerCAmelCase = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _lowerCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. _lowerCAmelCase = {"Refused": 0, "Entailed": 1} _lowerCAmelCase = {0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) _lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(SCREAMING_SNAKE_CASE_ : List[Any] ): # Tokenize the texts def _convert_table_text_to_pandas(SCREAMING_SNAKE_CASE_ : int ): _lowerCAmelCase = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )] _lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _lowerCAmelCase = examples["statement"] _lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["table_text"] ) ) _lowerCAmelCase = tokenizer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = examples["label"] return result with training_args.main_process_first(desc="dataset map pre-processing" ): _lowerCAmelCase = raw_datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _lowerCAmelCase = raw_datasets["train"] if data_args.max_train_samples is not None: _lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _lowerCAmelCase = raw_datasets["validation"] if data_args.max_eval_samples is not None: _lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset" ) _lowerCAmelCase = raw_datasets["test"] if data_args.max_predict_samples is not None: _lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(SCREAMING_SNAKE_CASE_ ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE_ : EvalPrediction ): _lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , SCREAMING_SNAKE_CASE_ ) else p.predictions _lowerCAmelCase = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _lowerCAmelCase = default_data_collator elif training_args.fpaa: _lowerCAmelCase = DataCollatorWithPadding(SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=8 ) else: _lowerCAmelCase = None # Initialize our Trainer _lowerCAmelCase = Trainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , data_collator=SCREAMING_SNAKE_CASE_ , ) # Training if training_args.do_train: _lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: _lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCAmelCase = last_checkpoint _lowerCAmelCase = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = train_result.metrics _lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE_ ) ) _lowerCAmelCase = min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , SCREAMING_SNAKE_CASE_ ) trainer.save_metrics("train" , SCREAMING_SNAKE_CASE_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCAmelCase = trainer.evaluate(eval_dataset=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) trainer.log_metrics("eval" , SCREAMING_SNAKE_CASE_ ) trainer.save_metrics("eval" , SCREAMING_SNAKE_CASE_ ) if training_args.do_predict: logger.info("*** Predict ***" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _lowerCAmelCase = predict_dataset.remove_columns("label" ) _lowerCAmelCase = trainer.predict(SCREAMING_SNAKE_CASE_ , metric_key_prefix="predict" ).predictions _lowerCAmelCase = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) _lowerCAmelCase = os.path.join(training_args.output_dir , "predict_results_tabfact.txt" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE_ , "w" ) as writer: logger.info("***** Predict Results *****" ) writer.write("index\tprediction\n" ) for index, item in enumerate(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = label_list[item] writer.write(F'''{index}\t{item}\n''' ) _lowerCAmelCase = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE_ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' main() if __name__ == "__main__": main()
18
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ): snake_case__ : str = [] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_init_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_train_begin""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_train_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_epoch_begin""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_epoch_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_step_begin""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_step_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_evaluate""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_predict""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_save""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_log""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_prediction_step""" ) @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Tuple = tempfile.mkdtemp() def __UpperCamelCase ( self ): shutil.rmtree(self.output_dir ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. snake_case__ : List[Any] = RegressionDataset(length=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = RegressionDataset(length=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = RegressionModelConfig(a=__SCREAMING_SNAKE_CASE , b=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = RegressionPreTrainedModel(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = TrainingArguments(self.output_dir , disable_tqdm=__SCREAMING_SNAKE_CASE , report_to=[] , **__SCREAMING_SNAKE_CASE ) return Trainer( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , train_dataset=__SCREAMING_SNAKE_CASE , eval_dataset=__SCREAMING_SNAKE_CASE , callbacks=__SCREAMING_SNAKE_CASE , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) # Order doesn't matter snake_case__ : Tuple = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ ) snake_case__ : List[str] = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ ) for cba, cba in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , cba.__class__ ) elif not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(cba.__class__ , __SCREAMING_SNAKE_CASE ) else: self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = ["""on_init_end""", """on_train_begin"""] snake_case__ : Union[str, Any] = 0 snake_case__ : Dict = len(trainer.get_eval_dataloader() ) snake_case__ : Any = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(__SCREAMING_SNAKE_CASE ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __UpperCamelCase ( self ): snake_case__ : Any = self.get_trainer() snake_case__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) # Callbacks passed at init are added to the default callbacks snake_case__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(__SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback snake_case__ : Optional[Any] = self.get_trainer(disable_tqdm=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] snake_case__ : int = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.remove(__SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = self.get_trainer() snake_case__ : List[str] = trainer.pop_callback(__SCREAMING_SNAKE_CASE ) self.assertEqual(cb.__class__ , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) trainer.add_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.insert(0 , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) # We can also add, pop, or remove by instance snake_case__ : List[Any] = self.get_trainer() snake_case__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.remove(__SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = self.get_trainer() snake_case__ : Any = trainer.callback_handler.callbacks[0] snake_case__ : Optional[Any] = trainer.pop_callback(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) trainer.add_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.insert(0 , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() snake_case__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) # Independent log/save/eval snake_case__ : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() snake_case__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() snake_case__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() snake_case__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() snake_case__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) # A bit of everything snake_case__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() snake_case__ : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: snake_case__ : List[str] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(__SCREAMING_SNAKE_CASE ) in warn_mock.call_args[0][0]
38
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _a = { """configuration_mask2former""": [ """MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Mask2FormerConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["""Mask2FormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """Mask2FormerForUniversalSegmentation""", """Mask2FormerModel""", """Mask2FormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
19
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=1_8 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=4_0_0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ): snake_case__ : Any = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case__ : List[Any] = parent snake_case__ : int = batch_size snake_case__ : List[Any] = num_channels snake_case__ : str = image_size snake_case__ : Union[str, Any] = min_resolution snake_case__ : List[Any] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : int = size snake_case__ : Tuple = do_normalize snake_case__ : Dict = image_mean snake_case__ : Union[str, Any] = image_std def __UpperCamelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = DPTImageProcessor if is_vision_available() else None def __UpperCamelCase ( self ): snake_case__ : str = DPTImageProcessingTester(self ) @property def __UpperCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_mean""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_std""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_normalize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """size""" ) ) def __UpperCamelCase ( self ): snake_case__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} ) snake_case__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input snake_case__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input snake_case__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : Any = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
38
0
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase_ : def __init__( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="resnet50" , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=True , lowercase_=True , ) -> Union[str, Any]: a__ =parent a__ =out_indices if out_indices is not None else [4] a__ =stage_names a__ =out_features a__ =backbone a__ =batch_size a__ =image_size a__ =num_channels a__ =use_pretrained_backbone a__ =is_training def __UpperCamelCase ( self) -> Optional[Any]: a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =self.get_config() return config, pixel_values def __UpperCamelCase ( self) -> Tuple: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> str: a__ =TimmBackbone(config=lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): a__ =model(lowercase_) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __UpperCamelCase ( self) -> str: a__ =self.prepare_config_and_inputs() a__ , a__ =config_and_inputs a__ ={'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase_ (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case =(TimmBackbone,) if is_torch_available() else () snake_case ={'feature-extraction': TimmBackbone} if is_torch_available() else {} snake_case =False snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> Optional[Any]: a__ =TimmBackboneModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def __UpperCamelCase ( self) -> Dict: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self) -> str: a__ ='resnet18' a__ ='microsoft/resnet-18' a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_) a__ =AutoBackbone.from_pretrained(lowercase_) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_ , out_indices=[1, 2, 3]) a__ =AutoBackbone.from_pretrained(lowercase_ , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> Dict: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> List[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.') def __UpperCamelCase ( self) -> str: pass @unittest.skip('Safetensors is not supported by timm.') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self) -> Optional[Any]: pass def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =True a__ =self.has_attentions # no need to test all models as different heads yield the same functionality a__ =self.all_model_classes[0] a__ =model_class(lowercase_) model.to(lowercase_) a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ =model(**lowercase_) a__ =outputs[0][-1] # Encoder-/Decoder-only models a__ =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a__ =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase_) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def __UpperCamelCase ( self) -> List[str]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None a__ =copy.deepcopy(lowercase_) a__ =None a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights a__ =copy.deepcopy(lowercase_) a__ =False a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_)
20
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """embed_dim""" ) ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """num_heads""" ) ) class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1_6, 4_8, 9_6] , __SCREAMING_SNAKE_CASE=[1, 3, 6] , __SCREAMING_SNAKE_CASE=[1, 2, 1_0] , __SCREAMING_SNAKE_CASE=[7, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2] , __SCREAMING_SNAKE_CASE=[2, 1, 1] , __SCREAMING_SNAKE_CASE=[2, 2, 2] , __SCREAMING_SNAKE_CASE=[False, False, True] , __SCREAMING_SNAKE_CASE=[0.0, 0.0, 0.0] , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=2 , ): snake_case__ : List[str] = parent snake_case__ : Tuple = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : List[Any] = patch_sizes snake_case__ : Optional[int] = patch_stride snake_case__ : Optional[Any] = patch_padding snake_case__ : Any = is_training snake_case__ : int = use_labels snake_case__ : Dict = num_labels snake_case__ : Optional[Any] = num_channels snake_case__ : Optional[Any] = embed_dim snake_case__ : Optional[int] = num_heads snake_case__ : Optional[int] = stride_kv snake_case__ : int = depth snake_case__ : Optional[Any] = cls_token snake_case__ : List[Any] = attention_drop_rate snake_case__ : Union[str, Any] = initializer_range snake_case__ : List[Any] = layer_norm_eps def __UpperCamelCase ( self ): snake_case__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : List[Any] = None if self.use_labels: # create a random int32 tensor of given shape snake_case__ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : List[str] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : int = TFCvtModel(config=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = (self.image_size, self.image_size) snake_case__ , snake_case__ : str = image_size[0], image_size[1] for i in range(len(self.depth ) ): snake_case__ : Any = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) snake_case__ : Optional[int] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = self.num_labels snake_case__ : str = TFCvtForImageClassification(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs snake_case__ : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowerCamelCase__ = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = TFCvtModelTester(self ) snake_case__ : Any = TFCvtConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def __UpperCamelCase ( self ): pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def __UpperCamelCase ( self ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def __UpperCamelCase ( self ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def __UpperCamelCase ( self ): super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def __UpperCamelCase ( self ): snake_case__ : List[str] = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(__SCREAMING_SNAKE_CASE ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[Any] = [*signature.parameters.keys()] snake_case__ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) snake_case__ : Optional[int] = outputs.hidden_states snake_case__ : Tuple = len(self.model_tester.depth ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[Any] = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[str] = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def __UpperCamelCase ( self ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : str = TFCvtModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> str: '''simple docstring''' snake_case__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case__ : Union[str, Any] = self.default_image_processor snake_case__ : int = prepare_img() snake_case__ : Dict = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""tf""" ) # forward pass snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ) # verify the logits snake_case__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : int = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
38
0
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration UpperCAmelCase_ : List[str] = 500000 UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = os.path.split(__file__) UpperCAmelCase_ : Any = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def lowerCAmelCase_ ( lowerCamelCase , **lowerCamelCase ): __magic_name__ : Tuple =dataset.map(**lowerCamelCase ) @get_duration def lowerCAmelCase_ ( lowerCamelCase , **lowerCamelCase ): __magic_name__ : List[str] =dataset.filter(**lowerCamelCase ) def lowerCAmelCase_ ( ): __magic_name__ : Optional[int] ={"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : str =datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) __magic_name__ : str =generate_example_dataset( os.path.join(lowerCamelCase , """dataset.arrow""" ) , lowerCamelCase , num_examples=lowerCamelCase ) __magic_name__ : Dict =transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=lowerCamelCase ) def tokenize(lowerCamelCase ): return tokenizer(examples["""text"""] ) __magic_name__ : Union[str, Any] =map(lowerCamelCase ) __magic_name__ : List[Any] =map(lowerCamelCase , batched=lowerCamelCase ) __magic_name__ : Optional[int] =map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) with dataset.formatted_as(type="""numpy""" ): __magic_name__ : Optional[Any] =map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) with dataset.formatted_as(type="""pandas""" ): __magic_name__ : int =map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): __magic_name__ : List[Any] =map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): __magic_name__ : Optional[Any] =map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) __magic_name__ : Optional[Any] =map(lowerCamelCase , function=lowerCamelCase , batched=lowerCamelCase ) __magic_name__ : Optional[int] =filter(lowerCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase , """wb""" ) as f: f.write(json.dumps(lowerCamelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
21
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. snake_case__ : int = [[1, 2, 4], [1, 2, 3, 4]] snake_case__ : Any = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) self.assertTrue(isinstance(dc.token_ids , __SCREAMING_SNAKE_CASE ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __UpperCamelCase ( self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). snake_case__ : Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) # fails here def __UpperCamelCase ( self ): snake_case__ : List[str] = [[1, 2, 3], [1, 2, 4]] snake_case__ : Optional[int] = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ , snake_case__ : Any = dc.update(1 ) snake_case__ : Any = stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) snake_case__ , snake_case__ , snake_case__ : Tuple = dc.update(2 ) snake_case__ : Tuple = stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = dc.update(3 ) snake_case__ : List[str] = stepped is True and completed is True and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] snake_case__ : int = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ , snake_case__ : str = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) snake_case__ , snake_case__ , snake_case__ : str = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case__ , snake_case__ , snake_case__ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
38
0
'''simple docstring''' def snake_case_ (UpperCamelCase : list[list[int]] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : set ): '''simple docstring''' _a , _a = len(UpperCamelCase ), len(grid[0] ) if ( min(UpperCamelCase , UpperCamelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _a = 0 count += depth_first_search(UpperCamelCase , row + 1 , UpperCamelCase , UpperCamelCase ) count += depth_first_search(UpperCamelCase , row - 1 , UpperCamelCase , UpperCamelCase ) count += depth_first_search(UpperCamelCase , UpperCamelCase , col + 1 , UpperCamelCase ) count += depth_first_search(UpperCamelCase , UpperCamelCase , col - 1 , UpperCamelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
22
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : Tuple = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''segformer''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[2, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[8, 4, 2, 1] , __SCREAMING_SNAKE_CASE=[3_2, 6_4, 1_6_0, 2_5_6] , __SCREAMING_SNAKE_CASE=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[1, 2, 5, 8] , __SCREAMING_SNAKE_CASE=[4, 4, 4, 4] , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1e-6 , __SCREAMING_SNAKE_CASE=2_5_6 , __SCREAMING_SNAKE_CASE=2_5_5 , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __SCREAMING_SNAKE_CASE , ) snake_case__ : Dict = num_channels snake_case__ : Optional[Any] = num_encoder_blocks snake_case__ : Any = depths snake_case__ : Optional[int] = sr_ratios snake_case__ : Tuple = hidden_sizes snake_case__ : List[str] = patch_sizes snake_case__ : str = strides snake_case__ : Optional[int] = mlp_ratios snake_case__ : Optional[Any] = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : Optional[int] = hidden_dropout_prob snake_case__ : List[str] = attention_probs_dropout_prob snake_case__ : List[Any] = classifier_dropout_prob snake_case__ : int = initializer_range snake_case__ : List[str] = drop_path_rate snake_case__ : int = layer_norm_eps snake_case__ : List[Any] = decoder_hidden_size snake_case__ : List[Any] = kwargs.get("""reshape_last_stage""" , __SCREAMING_SNAKE_CASE ) snake_case__ : Dict = semantic_loss_ignore_index class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = version.parse('''1.11''' ) @property def __UpperCamelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __UpperCamelCase ( self ): return 1e-4 @property def __UpperCamelCase ( self ): return 1_2
38
0
import os import time import numpy as np import onnxruntime as ort snake_case__ : Tuple = """1""" snake_case__ : Optional[int] = """0""" snake_case__ : Any = """1""" snake_case__ : List[str] = ort.SessionOptions() snake_case__ : List[str] = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("""Create inference session...""") snake_case__ : List[Any] = ["""TensorrtExecutionProvider""", """CUDAExecutionProvider"""] snake_case__ : str = ort.InferenceSession("""model.onnx""", sess_options=sess_opt, providers=execution_provider) snake_case__ : List[str] = ort.RunOptions() snake_case__ : Optional[int] = 1_2_8 snake_case__ : Optional[int] = 1 snake_case__ : Union[str, Any] = np.ones((batch, sequence), dtype=np.intaa) snake_case__ : int = np.ones((batch, sequence), dtype=np.intaa) snake_case__ : Tuple = np.ones((batch, sequence), dtype=np.intaa) print("""Warm up phase...""") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Start inference...""") snake_case__ : str = time.time() snake_case__ : Tuple = 2_0_0_0 snake_case__ : Dict = {} for iter in range(max_iters): snake_case__ : Tuple = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Average Inference Time = {:.3f} ms""".format((time.time() - start_time) * 1_0_0_0 / max_iters))
23
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : List[Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = None if token is not None: snake_case__ : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : List[Any] = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ ).json() snake_case__ : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__magic_name__ ): snake_case__ : Tuple = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=None ) -> List[str]: '''simple docstring''' snake_case__ : Optional[Any] = None if token is not None: snake_case__ : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : Dict = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" snake_case__ : Union[str, Any] = requests.get(__magic_name__ , headers=__magic_name__ ).json() snake_case__ : Dict = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__magic_name__ ): snake_case__ : Dict = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = None if token is not None: snake_case__ : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ , allow_redirects=__magic_name__ ) snake_case__ : Any = result.headers["""Location"""] snake_case__ : Tuple = requests.get(__magic_name__ , allow_redirects=__magic_name__ ) snake_case__ : int = os.path.join(__magic_name__ , f"{artifact_name}.zip" ) with open(__magic_name__ , """wb""" ) as fp: fp.write(response.content ) def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : str=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Any = [] snake_case__ : Union[str, Any] = [] snake_case__ : Any = None with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__magic_name__ ) as f: for line in f: snake_case__ : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs snake_case__ : str = line[: line.index(""": """ )] snake_case__ : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed snake_case__ : Dict = line[len("""FAILED """ ) :] failed_tests.append(__magic_name__ ) elif filename == "job_name.txt": snake_case__ : Optional[Any] = line if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError( f"`errors` and `failed_tests` should have the same number of elements. Got {len(__magic_name__ )} for `errors` " f"and {len(__magic_name__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" """ problem.""" ) snake_case__ : Optional[Any] = None if job_name and job_links: snake_case__ : Optional[Any] = job_links.get(__magic_name__ , __magic_name__ ) # A list with elements of the form (line of error, error, failed test) snake_case__ : List[Any] = [x + [y] + [job_link] for x, y in zip(__magic_name__ , __magic_name__ )] return result def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : Union[str, Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = [] snake_case__ : Dict = [os.path.join(__magic_name__ , __magic_name__ ) for p in os.listdir(__magic_name__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(__magic_name__ , job_links=__magic_name__ ) ) return errors def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=None ) -> List[Any]: '''simple docstring''' snake_case__ : Any = Counter() counter.update([x[1] for x in logs] ) snake_case__ : Dict = counter.most_common() snake_case__ : Any = {} for error, count in counts: if error_filter is None or error not in error_filter: snake_case__ : int = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) ) return r def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> List[Any]: '''simple docstring''' snake_case__ : str = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): snake_case__ : Tuple = test.split("""/""" )[2] else: snake_case__ : Any = None return test def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Union[str, Any]=None ) -> List[str]: '''simple docstring''' snake_case__ : List[str] = [(x[0], x[1], get_model(x[2] )) for x in logs] snake_case__ : List[Any] = [x for x in logs if x[2] is not None] snake_case__ : Any = {x[2] for x in logs} snake_case__ : Optional[Any] = {} for test in tests: snake_case__ : str = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) snake_case__ : Optional[int] = counter.most_common() snake_case__ : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} snake_case__ : int = sum(error_counts.values() ) if n_errors > 0: snake_case__ : str = {"""count""": n_errors, """errors""": error_counts} snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) ) return r def UpperCamelCase__ ( __magic_name__ : int ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[Any] = """| no. | error | status |""" snake_case__ : int = """|-:|:-|:-|""" snake_case__ : int = [header, sep] for error in reduced_by_error: snake_case__ : Union[str, Any] = reduced_by_error[error]["""count"""] snake_case__ : Dict = f"| {count} | {error[:1_00]} | |" lines.append(__magic_name__ ) return "\n".join(__magic_name__ ) def UpperCamelCase__ ( __magic_name__ : Dict ) -> List[Any]: '''simple docstring''' snake_case__ : List[Any] = """| model | no. of errors | major error | count |""" snake_case__ : Optional[int] = """|-:|-:|-:|-:|""" snake_case__ : Dict = [header, sep] for model in reduced_by_model: snake_case__ : Tuple = reduced_by_model[model]["""count"""] snake_case__ , snake_case__ : Tuple = list(reduced_by_model[model]["""errors"""].items() )[0] snake_case__ : Optional[int] = f"| {model} | {count} | {error[:60]} | {_count} |" lines.append(__magic_name__ ) return "\n".join(__magic_name__ ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") A_ : int = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) A_ : Optional[int] = get_job_links(args.workflow_run_id, token=args.token) A_ : Optional[Any] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: A_ : int = k.find(" / ") A_ : List[Any] = k[index + len(" / ") :] A_ : List[str] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) A_ : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) A_ : str = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error A_ : List[str] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors A_ : Any = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) A_ : Any = reduce_by_error(errors) A_ : Union[str, Any] = reduce_by_model(errors) A_ : Any = make_github_table(reduced_by_error) A_ : Optional[Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
38
0
'''simple docstring''' import argparse from collections import defaultdict import yaml UpperCAmelCase_ : int = '''docs/source/en/_toctree.yml''' def _UpperCamelCase (_lowerCamelCase : Tuple )-> List[str]: '''simple docstring''' __snake_case = defaultdict(_lowerCamelCase ) __snake_case = [] __snake_case = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(_lowerCamelCase ) __snake_case = new_doc_list __snake_case = [key for key, value in counts.items() if value > 1] __snake_case = [] for duplicate_key in duplicates: __snake_case = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(_lowerCamelCase ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) __snake_case = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(_lowerCamelCase ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(_lowerCamelCase ) # Sort return overview_doc def _UpperCamelCase (_lowerCamelCase : Tuple=False )-> Any: '''simple docstring''' with open(_lowerCamelCase , encoding='''utf-8''' ) as f: __snake_case = yaml.safe_load(f.read() ) # Get to the API doc __snake_case = 0 while content[api_idx]["title"] != "API": api_idx += 1 __snake_case = content[api_idx]['''sections'''] # Then to the model doc __snake_case = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 __snake_case = api_doc[scheduler_idx]['''sections'''] __snake_case = clean_doc_toc(_lowerCamelCase ) __snake_case = False if new_scheduler_doc != scheduler_doc: __snake_case = True if overwrite: __snake_case = new_scheduler_doc if diff: if overwrite: __snake_case = api_doc with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(_lowerCamelCase , allow_unicode=_lowerCamelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def _UpperCamelCase (_lowerCamelCase : int=False )-> Optional[int]: '''simple docstring''' with open(_lowerCamelCase , encoding='''utf-8''' ) as f: __snake_case = yaml.safe_load(f.read() ) # Get to the API doc __snake_case = 0 while content[api_idx]["title"] != "API": api_idx += 1 __snake_case = content[api_idx]['''sections'''] # Then to the model doc __snake_case = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 __snake_case = False __snake_case = api_doc[pipeline_idx]['''sections'''] __snake_case = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: __snake_case = pipeline_doc['''section'''] __snake_case = clean_doc_toc(_lowerCamelCase ) if overwrite: __snake_case = new_sub_pipeline_doc new_pipeline_docs.append(_lowerCamelCase ) # sort overall pipeline doc __snake_case = clean_doc_toc(_lowerCamelCase ) if new_pipeline_docs != pipeline_docs: __snake_case = True if overwrite: __snake_case = new_pipeline_docs if diff: if overwrite: __snake_case = api_doc with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(_lowerCamelCase , allow_unicode=_lowerCamelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCAmelCase_ : Dict = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
24
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version A_ : Tuple = get_logger(__name__) class __snake_case : '''simple docstring''' lowerCamelCase__ = '''dummy_data''' lowerCamelCase__ = '''datasets''' lowerCamelCase__ = False def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , ): snake_case__ : List[Any] = 0 snake_case__ : Union[str, Any] = dataset_name snake_case__ : Optional[int] = cache_dir snake_case__ : Union[str, Any] = use_local_dummy_data snake_case__ : int = config # download_callbacks take a single url as input snake_case__ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root snake_case__ : Union[str, Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general snake_case__ : Union[str, Any] = str(__SCREAMING_SNAKE_CASE ) # to be downloaded snake_case__ : List[str] = None snake_case__ : List[str] = None @property def __UpperCamelCase ( self ): if self._dummy_file is None: snake_case__ : List[str] = self.download_dummy_data() return self._dummy_file @property def __UpperCamelCase ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def __UpperCamelCase ( self ): return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) snake_case__ : Optional[int] = cached_path( __SCREAMING_SNAKE_CASE , cache_dir=self.cache_dir , extract_compressed_file=__SCREAMING_SNAKE_CASE , force_extract=__SCREAMING_SNAKE_CASE ) return os.path.join(__SCREAMING_SNAKE_CASE , self.dummy_file_name ) @property def __UpperCamelCase ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __UpperCamelCase ( self ): if self._bucket_url is None: snake_case__ : List[str] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def __UpperCamelCase ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ): if self.load_existing_dummy_data: # dummy data is downloaded and tested snake_case__ : List[Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned snake_case__ : List[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return self.create_dummy_data_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): return self.create_dummy_data_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: return self.create_dummy_data_single(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ): return self.download_and_extract(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return self.download_and_extract(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): return path def __UpperCamelCase ( self ): return {} def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : int = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for single_url in single_urls: download_callback(__SCREAMING_SNAKE_CASE ) else: snake_case__ : List[str] = single_urls download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = [os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) for x in single_urls] else: snake_case__ : List[Any] = single_urls snake_case__ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) snake_case__ : Optional[int] = value # make sure that values are unique if all(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique snake_case__ : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one snake_case__ : Tuple = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , __SCREAMING_SNAKE_CASE ) ) for url in data_url ) snake_case__ : List[Any] = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): snake_case__ : List[str] = [data_url[0]] * len(__SCREAMING_SNAKE_CASE ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus snake_case__ : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(__SCREAMING_SNAKE_CASE ) return dummy_data_list def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for download_callback in self.download_callbacks: download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus snake_case__ : Any = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(__SCREAMING_SNAKE_CASE ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): def _iter_archive_members(__SCREAMING_SNAKE_CASE ): # this preserves the order of the members inside the ZIP archive snake_case__ : List[str] = Path(self.dummy_file ).parent snake_case__ : Dict = path.relative_to(__SCREAMING_SNAKE_CASE ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: snake_case__ : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = Path(__SCREAMING_SNAKE_CASE ) snake_case__ : int = _iter_archive_members(__SCREAMING_SNAKE_CASE ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(__SCREAMING_SNAKE_CASE ).as_posix(), file_path.open("""rb""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[int] = [paths] for path in paths: if os.path.isfile(__SCREAMING_SNAKE_CASE ): if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__SCREAMING_SNAKE_CASE ): if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(__SCREAMING_SNAKE_CASE ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
38
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ = { 'configuration_roberta_prelayernorm': [ 'ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaPreLayerNormConfig', 'RobertaPreLayerNormOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaPreLayerNormForCausalLM', 'RobertaPreLayerNormForMaskedLM', 'RobertaPreLayerNormForMultipleChoice', 'RobertaPreLayerNormForQuestionAnswering', 'RobertaPreLayerNormForSequenceClassification', 'RobertaPreLayerNormForTokenClassification', 'RobertaPreLayerNormModel', 'RobertaPreLayerNormPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaPreLayerNormForCausalLM', 'TFRobertaPreLayerNormForMaskedLM', 'TFRobertaPreLayerNormForMultipleChoice', 'TFRobertaPreLayerNormForQuestionAnswering', 'TFRobertaPreLayerNormForSequenceClassification', 'TFRobertaPreLayerNormForTokenClassification', 'TFRobertaPreLayerNormMainLayer', 'TFRobertaPreLayerNormModel', 'TFRobertaPreLayerNormPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FlaxRobertaPreLayerNormForCausalLM', 'FlaxRobertaPreLayerNormForMaskedLM', 'FlaxRobertaPreLayerNormForMultipleChoice', 'FlaxRobertaPreLayerNormForQuestionAnswering', 'FlaxRobertaPreLayerNormForSequenceClassification', 'FlaxRobertaPreLayerNormForTokenClassification', 'FlaxRobertaPreLayerNormModel', 'FlaxRobertaPreLayerNormPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = IFImgaImgSuperResolutionPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def __UpperCamelCase ( self ): return self._get_superresolution_dummy_components() def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): snake_case__ : List[Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: snake_case__ : Tuple = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __UpperCamelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __UpperCamelCase ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def __UpperCamelCase ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __UpperCamelCase ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __UpperCamelCase ( self ): self._test_save_load_local() def __UpperCamelCase ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
38
0
'''simple docstring''' from ... import PretrainedConfig __UpperCamelCase = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class _A ( __lowercase ): lowercase__: List[Any] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowercase__: Optional[Any] = '''nezha''' def __init__( self : List[Any] , __magic_name__ : str=2_11_28 , __magic_name__ : Tuple=7_68 , __magic_name__ : int=12 , __magic_name__ : List[str]=12 , __magic_name__ : List[str]=30_72 , __magic_name__ : Tuple="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Dict=0.1 , __magic_name__ : int=5_12 , __magic_name__ : List[str]=64 , __magic_name__ : Optional[Any]=2 , __magic_name__ : List[str]=0.02 , __magic_name__ : Dict=1E-12 , __magic_name__ : Any=0.1 , __magic_name__ : str=0 , __magic_name__ : List[Any]=2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=True , **__magic_name__ : List[str] , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) __snake_case : Tuple = vocab_size __snake_case : List[str] = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Dict = hidden_act __snake_case : List[Any] = intermediate_size __snake_case : int = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : str = max_relative_position __snake_case : Optional[int] = type_vocab_size __snake_case : Any = initializer_range __snake_case : Optional[int] = layer_norm_eps __snake_case : Dict = classifier_dropout __snake_case : List[str] = use_cache
26
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu A_ : Dict = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : List[Any]=None , __magic_name__ : List[str]=None , __magic_name__ : List[str]=None ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = True while ask_again: snake_case__ : Optional[Any] = input(__magic_name__ ) try: if default is not None and len(__magic_name__ ) == 0: return default return convert_value(__magic_name__ ) if convert_value is not None else result except Exception: if error_message is not None: print(__magic_name__ ) def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Any=[] , __magic_name__ : Optional[int]=None , __magic_name__ : int=0 ) -> Optional[int]: '''simple docstring''' snake_case__ : Union[str, Any] = BulletMenu(__magic_name__ , __magic_name__ ) snake_case__ : Optional[Any] = menu.run(default_choice=__magic_name__ ) return convert_value(__magic_name__ ) if convert_value is not None else result def UpperCamelCase__ ( __magic_name__ : Any ) -> int: '''simple docstring''' snake_case__ : Tuple = int(__magic_name__ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCamelCase__ ( __magic_name__ : str ) -> Tuple: '''simple docstring''' snake_case__ : List[Any] = int(__magic_name__ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCamelCase__ ( __magic_name__ : List[str] ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = int(__magic_name__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase__ ( __magic_name__ : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[Any] = int(__magic_name__ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCamelCase__ ( __magic_name__ : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ : Optional[Any] = int(__magic_name__ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCamelCase__ ( __magic_name__ : Dict ) -> Tuple: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class __snake_case ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : str = super()._format_usage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : str = usage.replace("""<command> [<args>] """ , """""" ) return usage
38
0
from math import ceil, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 1_000_000 ) -> int: """simple docstring""" _A = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: _A = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: _A = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"{solution() = }")
27
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( __magic_name__ : list ) -> float: '''simple docstring''' if not nums: raise ValueError("""List is empty""" ) return sum(__magic_name__ ) / len(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
38
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Any = ReformerTokenizer A : Any = ReformerTokenizerFast A : Any = True A : Tuple = False A : Optional[Any] = True def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE : Optional[Any] = ReformerTokenizer(A, keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = '<s>' SCREAMING_SNAKE_CASE : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ), A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ), A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '<unk>' ) self.assertEqual(vocab_keys[1], '<s>' ) self.assertEqual(vocab_keys[-1], 'j' ) self.assertEqual(len(A ), 1_000 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1_000 ) def UpperCamelCase_ ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE : str = self.get_tokenizer() SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : Tuple = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize(A ) SCREAMING_SNAKE_CASE : List[Any] = rust_tokenizer.tokenize(A ) self.assertListEqual(A, A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode(A, add_special_tokens=A ) SCREAMING_SNAKE_CASE : Any = rust_tokenizer.encode(A, add_special_tokens=A ) self.assertListEqual(A, A ) SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.encode(A ) self.assertListEqual(A, A ) def UpperCamelCase_ ( self, A=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained(A, **A ) # Simple input SCREAMING_SNAKE_CASE : Tuple = 'This is a simple input' SCREAMING_SNAKE_CASE : List[Any] = ['This is a simple input 1', 'This is a simple input 2'] SCREAMING_SNAKE_CASE : int = ('This is a simple input', 'This is a pair') SCREAMING_SNAKE_CASE : List[Any] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(A, tokenizer_r.encode, A, max_length=A, padding='max_length' ) # Simple input self.assertRaises(A, tokenizer_r.encode_plus, A, max_length=A, padding='max_length' ) # Simple input self.assertRaises( A, tokenizer_r.batch_encode_plus, A, max_length=A, padding='max_length', ) # Pair input self.assertRaises(A, tokenizer_r.encode, A, max_length=A, padding='max_length' ) # Pair input self.assertRaises(A, tokenizer_r.encode_plus, A, max_length=A, padding='max_length' ) # Pair input self.assertRaises( A, tokenizer_r.batch_encode_plus, A, max_length=A, padding='max_length', ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ReformerTokenizer(A, keep_accents=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(A, ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ), [285, 46, 10, 170, 382], ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( A, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ], ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4], ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ], ) @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 'Hello World!' SCREAMING_SNAKE_CASE : Optional[int] = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(A, self.big_tokenizer.encode(A ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) SCREAMING_SNAKE_CASE : List[Any] = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(A, self.big_tokenizer.encode(A ) ) @require_torch @slow def UpperCamelCase_ ( self ): '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence SCREAMING_SNAKE_CASE : List[str] = list(self.big_tokenizer.get_vocab().keys() )[:10] SCREAMING_SNAKE_CASE : Union[str, Any] = ' '.join(A ) SCREAMING_SNAKE_CASE : Dict = self.big_tokenizer.encode_plus(A, return_tensors='pt' ) SCREAMING_SNAKE_CASE : Optional[int] = self.big_tokenizer.batch_encode_plus([sequence, sequence], return_tensors='pt' ) SCREAMING_SNAKE_CASE : str = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) SCREAMING_SNAKE_CASE : List[Any] = encoded_sequence['input_ids'].shape SCREAMING_SNAKE_CASE : List[str] = ReformerModel(A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**A ) model(**A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = {'input_ids': [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 SCREAMING_SNAKE_CASE : Dict = [ 'This is a very simple sentence.', 'The quick brown fox jumps over the lazy dog.', ] self.tokenizer_integration_test_util( expected_encoding=A, model_name='google/reformer-crime-and-punishment', revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a', padding=A, sequences=A, )
28
'''simple docstring''' from __future__ import annotations A_ : str = "Muhammad Umer Farooq" A_ : Optional[Any] = "MIT" A_ : int = "1.0.0" A_ : int = "Muhammad Umer Farooq" A_ : int = "[email protected]" A_ : Dict = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): super().__init__() snake_case__ : list[str] = [] snake_case__ : List[Any] = domain def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: snake_case__ : str = parse.urljoin(self.domain , __SCREAMING_SNAKE_CASE ) self.urls.append(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' return ".".join(get_sub_domain_name(__magic_name__ ).split(""".""" )[-2:] ) def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' return parse.urlparse(__magic_name__ ).netloc def UpperCamelCase__ ( __magic_name__ : str = "https://github.com" ) -> list[str]: '''simple docstring''' snake_case__ : List[str] = get_domain_name(__magic_name__ ) # Initialize the parser snake_case__ : Optional[Any] = Parser(__magic_name__ ) try: # Open URL snake_case__ : Any = requests.get(__magic_name__ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through snake_case__ : List[str] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: snake_case__ : Tuple = requests.get(__magic_name__ ) # Get the valid email. snake_case__ : List[str] = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__magic_name__ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__magic_name__ ) if __name__ == "__main__": A_ : str = emails_from_url("https://github.com") print(F'{len(emails)} emails found:') print("\n".join(sorted(emails)))
38
0
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel A_ = logging.getLogger(__name__) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): # save results if os.path.exists(lowerCAmelCase__ ): if os.path.exists(os.path.join(lowerCAmelCase__ ,'''config.json''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase__ ,'''config.json''' ) ): os.remove(os.path.join(lowerCAmelCase__ ,'''config.json''' ) ) if os.path.exists(os.path.join(lowerCAmelCase__ ,'''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase__ ,'''pytorch_model.bin''' ) ): os.remove(os.path.join(lowerCAmelCase__ ,'''pytorch_model.bin''' ) ) else: os.makedirs(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=False ): lowerCamelCase_ = 2 if unlogit: lowerCamelCase_ = torch.pow(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = p * torch.log(lowerCAmelCase__ ) lowerCamelCase_ = 0 return -plogp.sum(dim=-1 ) def lowercase ( lowerCAmelCase__ ): logger.info('''lv, h >\t''' + '''\t'''.join(f"{x + 1}" for x in range(len(lowerCAmelCase__ ) ) ) ) for row in range(len(lowerCAmelCase__ ) ): if tensor.dtype != torch.long: logger.info(f"layer {row + 1}:\t" + '''\t'''.join(f"{x:.5f}" for x in tensor[row].cpu().data ) ) else: logger.info(f"layer {row + 1}:\t" + '''\t'''.join(f"{x:d}" for x in tensor[row].cpu().data ) ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ,lowerCAmelCase__=True ,lowerCAmelCase__=None ,lowerCAmelCase__=False ): lowerCamelCase_ , lowerCamelCase_ = model.config.num_hidden_layers, model.config.num_attention_heads lowerCamelCase_ = torch.zeros(lowerCAmelCase__ ,lowerCAmelCase__ ).to(args.device ) lowerCamelCase_ = torch.zeros(lowerCAmelCase__ ,lowerCAmelCase__ ).to(args.device ) if head_mask is None: lowerCamelCase_ = torch.ones(lowerCAmelCase__ ,lowerCAmelCase__ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCAmelCase__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowerCamelCase_ = None lowerCamelCase_ = 0.0 lowerCamelCase_ = 0.0 for step, inputs in enumerate(tqdm(lowerCAmelCase__ ,desc='''Iteration''' ,disable=args.local_rank not in [-1, 0] ) ): lowerCamelCase_ = tuple(t.to(args.device ) for t in inputs ) ((lowerCamelCase_) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowerCamelCase_ = model(lowerCAmelCase__ ,labels=lowerCAmelCase__ ,head_mask=lowerCAmelCase__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCAmelCase__ ): lowerCamelCase_ = entropy(attn.detach() ,lowerCAmelCase__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCAmelCase__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowerCamelCase_ = 2 lowerCamelCase_ = torch.pow(torch.pow(lowerCAmelCase__ ,lowerCAmelCase__ ).sum(-1 ) ,1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: lowerCamelCase_ = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(lowerCAmelCase__ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(lowerCAmelCase__ ) logger.info('''Head ranked by importance scores''' ) lowerCamelCase_ = torch.zeros(head_importance.numel() ,dtype=torch.long ,device=args.device ) lowerCamelCase_ = torch.arange( head_importance.numel() ,device=args.device ) lowerCamelCase_ = head_ranks.view_as(lowerCAmelCase__ ) print_ad_tensor(lowerCAmelCase__ ) return attn_entropy, head_importance, total_loss def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = compute_heads_importance(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,compute_entropy=lowerCAmelCase__ ) lowerCamelCase_ = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' ,lowerCAmelCase__ ,original_score * args.masking_threshold ) lowerCamelCase_ = torch.ones_like(lowerCAmelCase__ ) lowerCamelCase_ = max(1 ,int(new_head_mask.numel() * args.masking_amount ) ) lowerCamelCase_ = original_score while current_score >= original_score * args.masking_threshold: lowerCamelCase_ = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowerCamelCase_ = float('''Inf''' ) lowerCamelCase_ = head_importance.view(-1 ).sort()[1] if len(lowerCAmelCase__ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads lowerCamelCase_ = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' ,str(current_heads_to_mask.tolist() ) ) lowerCamelCase_ = new_head_mask.view(-1 ) lowerCamelCase_ = 0.0 lowerCamelCase_ = new_head_mask.view_as(lowerCAmelCase__ ) lowerCamelCase_ = new_head_mask.clone().detach() print_ad_tensor(lowerCAmelCase__ ) # Compute metric and head importance again lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = compute_heads_importance( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,compute_entropy=lowerCAmelCase__ ,head_mask=lowerCAmelCase__ ) lowerCamelCase_ = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' ,lowerCAmelCase__ ,new_head_mask.sum() ,new_head_mask.sum() / new_head_mask.numel() * 100 ,) logger.info('''Final head mask''' ) print_ad_tensor(lowerCAmelCase__ ) np.save(os.path.join(args.output_dir ,'''head_mask.npy''' ) ,head_mask.detach().cpu().numpy() ) return head_mask def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = datetime.now() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = compute_heads_importance( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,compute_entropy=lowerCAmelCase__ ,compute_importance=lowerCAmelCase__ ,head_mask=lowerCAmelCase__ ) lowerCamelCase_ = 1 / loss lowerCamelCase_ = datetime.now() - before_time lowerCamelCase_ = sum(p.numel() for p in model.parameters() ) lowerCamelCase_ = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase__ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [ v, ] assert sum(len(lowerCAmelCase__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCAmelCase__ ) lowerCamelCase_ = sum(p.numel() for p in model.parameters() ) lowerCamelCase_ = datetime.now() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = compute_heads_importance( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,compute_entropy=lowerCAmelCase__ ,compute_importance=lowerCAmelCase__ ,head_mask=lowerCAmelCase__ ,actually_pruned=lowerCAmelCase__ ,) lowerCamelCase_ = 1 / loss lowerCamelCase_ = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' ,lowerCAmelCase__ ,lowerCAmelCase__ ,pruned_num_params / original_num_params * 100 ,) logger.info('''Pruning: score with masking: %f score with pruning: %f''' ,lowerCAmelCase__ ,lowerCAmelCase__ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' ,original_time / new_time * 100 ) save_model(lowerCAmelCase__ ,args.output_dir ) def lowercase ( ): lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' ,default=lowerCAmelCase__ ,type=lowerCAmelCase__ ,required=lowerCAmelCase__ ,help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' ,) parser.add_argument( '''--model_name_or_path''' ,default=lowerCAmelCase__ ,type=lowerCAmelCase__ ,required=lowerCAmelCase__ ,help='''Path to pretrained model or model identifier from huggingface.co/models''' ,) parser.add_argument( '''--output_dir''' ,default=lowerCAmelCase__ ,type=lowerCAmelCase__ ,required=lowerCAmelCase__ ,help='''The output directory where the model predictions and checkpoints will be written.''' ,) # Other parameters parser.add_argument( '''--config_name''' ,default='''''' ,type=lowerCAmelCase__ ,help='''Pretrained config name or path if not the same as model_name_or_path''' ,) parser.add_argument( '''--tokenizer_name''' ,default='''''' ,type=lowerCAmelCase__ ,help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' ,) parser.add_argument( '''--cache_dir''' ,default=lowerCAmelCase__ ,type=lowerCAmelCase__ ,help='''Where do you want to store the pre-trained models downloaded from s3''' ,) parser.add_argument( '''--data_subset''' ,type=lowerCAmelCase__ ,default=-1 ,help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' ,action='''store_true''' ,help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' ,action='''store_true''' ,help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' ,action='''store_true''' ,help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' ,action='''store_true''' ,help='''Don\'t normalize all importance scores between 0 and 1''' ,) parser.add_argument( '''--try_masking''' ,action='''store_true''' ,help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' ,default=0.9 ,type=lowerCAmelCase__ ,help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' ,) parser.add_argument( '''--masking_amount''' ,default=0.1 ,type=lowerCAmelCase__ ,help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' ,default='''acc''' ,type=lowerCAmelCase__ ,help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' ,default=128 ,type=lowerCAmelCase__ ,help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) ,) parser.add_argument('''--batch_size''' ,default=1 ,type=lowerCAmelCase__ ,help='''Batch size.''' ) parser.add_argument('''--seed''' ,type=lowerCAmelCase__ ,default=42 ) parser.add_argument('''--local_rank''' ,type=lowerCAmelCase__ ,default=-1 ,help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' ,action='''store_true''' ,help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' ,type=lowerCAmelCase__ ,default='''''' ,help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' ,type=lowerCAmelCase__ ,default='''''' ,help='''Can be used for distant debugging.''' ) lowerCamelCase_ = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) ,redirect_output=lowerCAmelCase__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowerCamelCase_ = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) lowerCamelCase_ = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowerCamelCase_ = torch.device('''cuda''' ,args.local_rank ) lowerCamelCase_ = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device ,args.n_gpu ,bool(args.local_rank != -1 ) ) ) lowerCamelCase_ = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowerCamelCase_ = nn.parallel.DistributedDataParallel( lowerCAmelCase__ ,device_ids=[args.local_rank] ,output_device=args.local_rank ,find_unused_parameters=lowerCAmelCase__ ) elif args.n_gpu > 1: lowerCamelCase_ = nn.DataParallel(lowerCAmelCase__ ) # Print/save training arguments os.makedirs(args.output_dir ,exist_ok=lowerCAmelCase__ ) torch.save(lowerCAmelCase__ ,os.path.join(args.output_dir ,'''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' ,lowerCAmelCase__ ) # Prepare dataset lowerCamelCase_ = np.concatenate( [ np.loadtxt(args.data_dir ,dtype=np.intaa ), ] ) lowerCamelCase_ = (torch.from_numpy(lowerCAmelCase__ ),) lowerCamelCase_ = TensorDataset(*lowerCAmelCase__ ) lowerCamelCase_ = RandomSampler(lowerCAmelCase__ ) lowerCamelCase_ = DataLoader(lowerCAmelCase__ ,sampler=lowerCAmelCase__ ,batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowerCamelCase_ = mask_heads(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) prune_heads(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) if __name__ == "__main__": main()
29
'''simple docstring''' def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> Tuple: '''simple docstring''' if not head: return True # split the list to two parts snake_case__ , snake_case__ : Dict = head.next, head while fast and fast.next: snake_case__ : Any = fast.next.next snake_case__ : int = slow.next snake_case__ : Dict = slow.next snake_case__ : List[str] = None # Don't forget here! But forget still works! # reverse the second part snake_case__ : Tuple = None while second: snake_case__ : Tuple = second.next snake_case__ : Any = node snake_case__ : str = second snake_case__ : Optional[Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False snake_case__ : List[Any] = node.next snake_case__ : int = head.next return True def UpperCamelCase__ ( __magic_name__ : Any ) -> Optional[Any]: '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) snake_case__ : List[Any] = head while fast and fast.next: snake_case__ , snake_case__ : Any = fast.next.next, slow.next # 2. Push the second half into the stack snake_case__ : Tuple = [slow.val] while slow.next: snake_case__ : Optional[Any] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False snake_case__ : str = cur.next return True def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Tuple: '''simple docstring''' if not head or not head.next: return True snake_case__ : int = {} snake_case__ : Union[str, Any] = 0 while head: if head.val in d: d[head.val].append(__magic_name__ ) else: snake_case__ : Tuple = [pos] snake_case__ : Optional[Any] = head.next pos += 1 snake_case__ : int = pos - 1 snake_case__ : str = 0 for v in d.values(): if len(__magic_name__ ) % 2 != 0: middle += 1 else: snake_case__ : List[str] = 0 for i in range(0 , len(__magic_name__ ) ): if v[i] + v[len(__magic_name__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
38
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __a( nn.Module ): """simple docstring""" lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 0.0 lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = jnp.floataa def a__ ( self ) -> int: UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Union[str, Any] = [] for i in range(self.num_layers ): UpperCAmelCase_ : List[Any] = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : Tuple = FlaxResnetBlockaD( in_channels=_SCREAMING_SNAKE_CASE ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = resnets UpperCAmelCase_ : List[str] = attentions if self.add_downsample: UpperCAmelCase_ : Tuple = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=True ) -> List[Any]: UpperCAmelCase_ : List[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): UpperCAmelCase_ : str = resnet(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,deterministic=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = attn(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,deterministic=_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : Any = self.downsamplers_a(_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class __a( nn.Module ): """simple docstring""" lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 0.0 lowerCAmelCase = 1 lowerCAmelCase = True lowerCAmelCase = jnp.floataa def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = [] for i in range(self.num_layers ): UpperCAmelCase_ : Dict = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD( in_channels=_SCREAMING_SNAKE_CASE ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = resnets if self.add_downsample: UpperCAmelCase_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=True ) -> Any: UpperCAmelCase_ : str = () for resnet in self.resnets: UpperCAmelCase_ : Tuple = resnet(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,deterministic=_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : Optional[Any] = self.downsamplers_a(_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class __a( nn.Module ): """simple docstring""" lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 0.0 lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = jnp.floataa def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for i in range(self.num_layers ): UpperCAmelCase_ : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = resnets UpperCAmelCase_ : Dict = attentions if self.add_upsample: UpperCAmelCase_ : Tuple = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=True ) -> Dict: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states UpperCAmelCase_ : int = res_hidden_states_tuple[-1] UpperCAmelCase_ : int = res_hidden_states_tuple[:-1] UpperCAmelCase_ : List[str] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : Tuple = resnet(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,deterministic=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = attn(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,deterministic=_SCREAMING_SNAKE_CASE ) if self.add_upsample: UpperCAmelCase_ : Dict = self.upsamplers_a(_SCREAMING_SNAKE_CASE ) return hidden_states class __a( nn.Module ): """simple docstring""" lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 0.0 lowerCAmelCase = 1 lowerCAmelCase = True lowerCAmelCase = jnp.floataa def a__ ( self ) -> Any: UpperCAmelCase_ : List[Any] = [] for i in range(self.num_layers ): UpperCAmelCase_ : Optional[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : Any = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : int = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = resnets if self.add_upsample: UpperCAmelCase_ : List[str] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=True ) -> str: for resnet in self.resnets: # pop res hidden states UpperCAmelCase_ : Optional[Any] = res_hidden_states_tuple[-1] UpperCAmelCase_ : List[str] = res_hidden_states_tuple[:-1] UpperCAmelCase_ : List[str] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : Optional[Any] = resnet(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,deterministic=_SCREAMING_SNAKE_CASE ) if self.add_upsample: UpperCAmelCase_ : Tuple = self.upsamplers_a(_SCREAMING_SNAKE_CASE ) return hidden_states class __a( nn.Module ): """simple docstring""" lowerCAmelCase = 42 lowerCAmelCase = 0.0 lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = jnp.floataa def a__ ( self ) -> Tuple: # there is always at least one resnet UpperCAmelCase_ : Any = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] UpperCAmelCase_ : int = [] for _ in range(self.num_layers ): UpperCAmelCase_ : Tuple = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = resnets UpperCAmelCase_ : Optional[Any] = attentions def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=True ) -> Any: UpperCAmelCase_ : int = self.resnets[0](_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): UpperCAmelCase_ : Optional[int] = attn(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,deterministic=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = resnet(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,deterministic=_SCREAMING_SNAKE_CASE ) return hidden_states
30
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A_ : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A_ : str = 250004 A_ : str = 250020 @require_sentencepiece @require_tokenizers class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MBartTokenizer lowerCamelCase__ = MBartTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def __UpperCamelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self ): snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) snake_case__ : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case__ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case__ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def __UpperCamelCase ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case__ : Optional[int] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = tempfile.mkdtemp() snake_case__ : int = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) snake_case__ : List[str] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way snake_case__ : Tuple = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True snake_case__ : Any = tempfile.mkdtemp() snake_case__ : Optional[int] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) snake_case__ : int = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way snake_case__ : List[Any] = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False snake_case__ : Dict = tempfile.mkdtemp() snake_case__ : Union[str, Any] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case__ : Dict = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = '''facebook/mbart-large-en-ro''' lowerCamelCase__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] lowerCamelCase__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] lowerCamelCase__ = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def __UpperCamelCase ( cls ): snake_case__ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) snake_case__ : Any = 1 return cls def __UpperCamelCase ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 2_5_0_0_2_0 ) def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): self.assertIn(__SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids ) snake_case__ : List[str] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] snake_case__ : List[Any] = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = ["""this is gunna be a long sentence """ * 2_0] assert isinstance(src_text[0] , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = 1_0 snake_case__ : int = self.tokenizer(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = tempfile.mkdtemp() snake_case__ : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = MBartTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __SCREAMING_SNAKE_CASE ) @require_torch def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) snake_case__ : int = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) snake_case__ : List[str] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) snake_case__ : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.tokenizer(self.src_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=3 , return_tensors="""pt""" ) snake_case__ : Optional[int] = self.tokenizer( text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=1_0 , return_tensors="""pt""" ) snake_case__ : str = targets["""input_ids"""] snake_case__ : Optional[Any] = shift_tokens_right(__SCREAMING_SNAKE_CASE , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , { # A, test, EOS, en_XX """input_ids""": [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 2_5_0_0_0_1, } , )
38
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Union[str, Any]=("DownEncoderBlock2D",) , _lowerCAmelCase : Any=(64,) , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Tuple=32 , _lowerCAmelCase : Any="silu" , _lowerCAmelCase : Any=True , ): super().__init__() SCREAMING_SNAKE_CASE_ = layers_per_block SCREAMING_SNAKE_CASE_ = torch.nn.Convad( _lowerCAmelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = nn.ModuleList([] ) # down SCREAMING_SNAKE_CASE_ = block_out_channels[0] for i, down_block_type in enumerate(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output_channel SCREAMING_SNAKE_CASE_ = block_out_channels[i] SCREAMING_SNAKE_CASE_ = i == len(_lowerCAmelCase ) - 1 SCREAMING_SNAKE_CASE_ = get_down_block( _lowerCAmelCase , num_layers=self.layers_per_block , in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=_lowerCAmelCase , resnet_groups=_lowerCAmelCase , attention_head_dim=_lowerCAmelCase , temb_channels=_lowerCAmelCase , ) self.down_blocks.append(_lowerCAmelCase ) # mid SCREAMING_SNAKE_CASE_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=_lowerCAmelCase , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=_lowerCAmelCase , temb_channels=_lowerCAmelCase , ) # out SCREAMING_SNAKE_CASE_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=_lowerCAmelCase , eps=1E-6 ) SCREAMING_SNAKE_CASE_ = nn.SiLU() SCREAMING_SNAKE_CASE_ = 2 * out_channels if double_z else out_channels SCREAMING_SNAKE_CASE_ = nn.Convad(block_out_channels[-1] , _lowerCAmelCase , 3 , padding=1 ) SCREAMING_SNAKE_CASE_ = False def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = x SCREAMING_SNAKE_CASE_ = self.conv_in(_lowerCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(_lowerCAmelCase : Dict ): def custom_forward(*_lowerCAmelCase : Optional[Any] ): return module(*_lowerCAmelCase ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: SCREAMING_SNAKE_CASE_ = torch.utils.checkpoint.checkpoint( create_custom_forward(_lowerCAmelCase ) , _lowerCAmelCase , use_reentrant=_lowerCAmelCase ) # middle SCREAMING_SNAKE_CASE_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _lowerCAmelCase , use_reentrant=_lowerCAmelCase ) else: for down_block in self.down_blocks: SCREAMING_SNAKE_CASE_ = torch.utils.checkpoint.checkpoint(create_custom_forward(_lowerCAmelCase ) , _lowerCAmelCase ) # middle SCREAMING_SNAKE_CASE_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , _lowerCAmelCase ) else: # down for down_block in self.down_blocks: SCREAMING_SNAKE_CASE_ = down_block(_lowerCAmelCase ) # middle SCREAMING_SNAKE_CASE_ = self.mid_block(_lowerCAmelCase ) # post-process SCREAMING_SNAKE_CASE_ = self.conv_norm_out(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.conv_act(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.conv_out(_lowerCAmelCase ) return sample class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : str=3 , _lowerCAmelCase : int=3 , _lowerCAmelCase : List[Any]=("UpDecoderBlock2D",) , _lowerCAmelCase : List[str]=(64,) , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Tuple=32 , _lowerCAmelCase : int="silu" , _lowerCAmelCase : Any="group" , ): super().__init__() SCREAMING_SNAKE_CASE_ = layers_per_block SCREAMING_SNAKE_CASE_ = nn.Convad( _lowerCAmelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = nn.ModuleList([] ) SCREAMING_SNAKE_CASE_ = in_channels if norm_type == 'spatial' else None # mid SCREAMING_SNAKE_CASE_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=_lowerCAmelCase , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=_lowerCAmelCase , temb_channels=_lowerCAmelCase , ) # up SCREAMING_SNAKE_CASE_ = list(reversed(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output_channel SCREAMING_SNAKE_CASE_ = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE_ = i == len(_lowerCAmelCase ) - 1 SCREAMING_SNAKE_CASE_ = get_up_block( _lowerCAmelCase , num_layers=self.layers_per_block + 1 , in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , prev_output_channel=_lowerCAmelCase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=_lowerCAmelCase , resnet_groups=_lowerCAmelCase , attention_head_dim=_lowerCAmelCase , temb_channels=_lowerCAmelCase , resnet_time_scale_shift=_lowerCAmelCase , ) self.up_blocks.append(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = output_channel # out if norm_type == "spatial": SCREAMING_SNAKE_CASE_ = SpatialNorm(block_out_channels[0] , _lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=_lowerCAmelCase , eps=1E-6 ) SCREAMING_SNAKE_CASE_ = nn.SiLU() SCREAMING_SNAKE_CASE_ = nn.Convad(block_out_channels[0] , _lowerCAmelCase , 3 , padding=1 ) SCREAMING_SNAKE_CASE_ = False def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : List[Any]=None ): SCREAMING_SNAKE_CASE_ = z SCREAMING_SNAKE_CASE_ = self.conv_in(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_lowerCAmelCase : Dict ): def custom_forward(*_lowerCAmelCase : int ): return module(*_lowerCAmelCase ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle SCREAMING_SNAKE_CASE_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _lowerCAmelCase , _lowerCAmelCase , use_reentrant=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = sample.to(_lowerCAmelCase ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE_ = torch.utils.checkpoint.checkpoint( create_custom_forward(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , use_reentrant=_lowerCAmelCase ) else: # middle SCREAMING_SNAKE_CASE_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = sample.to(_lowerCAmelCase ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE_ = torch.utils.checkpoint.checkpoint(create_custom_forward(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase ) else: # middle SCREAMING_SNAKE_CASE_ = self.mid_block(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = sample.to(_lowerCAmelCase ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE_ = up_block(_lowerCAmelCase , _lowerCAmelCase ) # post-process if latent_embeds is None: SCREAMING_SNAKE_CASE_ = self.conv_norm_out(_lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ = self.conv_norm_out(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.conv_act(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.conv_out(_lowerCAmelCase ) return sample class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : List[str]="random" , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=True ): super().__init__() SCREAMING_SNAKE_CASE_ = n_e SCREAMING_SNAKE_CASE_ = vq_embed_dim SCREAMING_SNAKE_CASE_ = beta SCREAMING_SNAKE_CASE_ = legacy SCREAMING_SNAKE_CASE_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) SCREAMING_SNAKE_CASE_ = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) SCREAMING_SNAKE_CASE_ = self.used.shape[0] SCREAMING_SNAKE_CASE_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": SCREAMING_SNAKE_CASE_ = self.re_embed SCREAMING_SNAKE_CASE_ = self.re_embed + 1 print( F"Remapping {self.n_e} indices to {self.re_embed} indices. " F"Using {self.unknown_index} for unknown indices." ) else: SCREAMING_SNAKE_CASE_ = n_e SCREAMING_SNAKE_CASE_ = sane_index_shape def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = inds.shape assert len(_lowerCAmelCase ) > 1 SCREAMING_SNAKE_CASE_ = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE_ = self.used.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (inds[:, :, None] == used[None, None, ...]).long() SCREAMING_SNAKE_CASE_ = match.argmax(-1 ) SCREAMING_SNAKE_CASE_ = match.sum(2 ) < 1 if self.unknown_index == "random": SCREAMING_SNAKE_CASE_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: SCREAMING_SNAKE_CASE_ = self.unknown_index return new.reshape(_lowerCAmelCase ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ = inds.shape assert len(_lowerCAmelCase ) > 1 SCREAMING_SNAKE_CASE_ = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE_ = self.used.to(_lowerCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token SCREAMING_SNAKE_CASE_ = 0 # simply set to zero SCREAMING_SNAKE_CASE_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , _lowerCAmelCase ) return back.reshape(_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Optional[int] ): # reshape z -> (batch, height, width, channel) and flatten SCREAMING_SNAKE_CASE_ = z.permute(0 , 2 , 3 , 1 ).contiguous() SCREAMING_SNAKE_CASE_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z SCREAMING_SNAKE_CASE_ = torch.argmin(torch.cdist(_lowerCAmelCase , self.embedding.weight ) , dim=1 ) SCREAMING_SNAKE_CASE_ = self.embedding(_lowerCAmelCase ).view(z.shape ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None # compute loss for embedding if not self.legacy: SCREAMING_SNAKE_CASE_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: SCREAMING_SNAKE_CASE_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients SCREAMING_SNAKE_CASE_ = z + (z_q - z).detach() # reshape back to match original input shape SCREAMING_SNAKE_CASE_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: SCREAMING_SNAKE_CASE_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE_ = self.remap_to_used(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: SCREAMING_SNAKE_CASE_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ): # shape specifying (batch, height, width, channel) if self.remap is not None: SCREAMING_SNAKE_CASE_ = indices.reshape(shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE_ = self.unmap_to_all(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors SCREAMING_SNAKE_CASE_ = self.embedding(_lowerCAmelCase ) if shape is not None: SCREAMING_SNAKE_CASE_ = z_q.view(_lowerCAmelCase ) # reshape back to match original input shape SCREAMING_SNAKE_CASE_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict=False ): SCREAMING_SNAKE_CASE_ = parameters SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.chunk(_lowerCAmelCase , 2 , dim=1 ) SCREAMING_SNAKE_CASE_ = torch.clamp(self.logvar , -30.0 , 20.0 ) SCREAMING_SNAKE_CASE_ = deterministic SCREAMING_SNAKE_CASE_ = torch.exp(0.5 * self.logvar ) SCREAMING_SNAKE_CASE_ = torch.exp(self.logvar ) if self.deterministic: SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : Optional[torch.Generator] = None ): # make sure sample is on the same device as the parameters and has same dtype SCREAMING_SNAKE_CASE_ = randn_tensor( self.mean.shape , generator=_lowerCAmelCase , device=self.parameters.device , dtype=self.parameters.dtype ) SCREAMING_SNAKE_CASE_ = self.mean + self.std * sample return x def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Union[str, Any]=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int]=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) SCREAMING_SNAKE_CASE_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): return self.mean
31
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : int = logging.get_logger(__name__) A_ : Dict = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''bit''' lowerCamelCase__ = ['''preactivation''', '''bottleneck'''] lowerCamelCase__ = ['''SAME''', '''VALID'''] def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="preactivation" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case__ : Tuple = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) snake_case__ : List[str] = num_channels snake_case__ : Tuple = embedding_size snake_case__ : str = hidden_sizes snake_case__ : Optional[Any] = depths snake_case__ : List[Any] = layer_type snake_case__ : Dict = hidden_act snake_case__ : Union[str, Any] = global_padding snake_case__ : List[str] = num_groups snake_case__ : str = drop_path_rate snake_case__ : List[Any] = embedding_dynamic_padding snake_case__ : List[str] = output_stride snake_case__ : Dict = width_factor snake_case__ : List[str] = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] snake_case__ , snake_case__ : Dict = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
38
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. _UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] _UpperCAmelCase = DisjunctiveConstraint(_UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids , _UpperCamelCase ) ) with self.assertRaises(_UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCamelCase( self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). _UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_UpperCamelCase ): DisjunctiveConstraint(_UpperCamelCase ) # fails here def UpperCamelCase( self ): _UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] _UpperCAmelCase = DisjunctiveConstraint(_UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(1 ) _UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(_UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(2 ) _UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(_UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(3 ) _UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(_UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCamelCase( self ): _UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _UpperCAmelCase = DisjunctiveConstraint(_UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
32
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A_ : Optional[int] = logging.get_logger(__name__) def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=False ) -> Tuple: '''simple docstring''' snake_case__ : int = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Tuple=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: snake_case__ : int = """""" else: snake_case__ : Dict = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : int = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case__ : Union[str, Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Optional[int] = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size] snake_case__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Optional[int] = in_proj_bias[-config.hidden_size :] def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case__ : str = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : str ) -> Union[str, Any]: '''simple docstring''' snake_case__ : List[str] = dct.pop(__magic_name__ ) snake_case__ : Dict = val def UpperCamelCase__ ( ) -> str: '''simple docstring''' snake_case__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : int=False ) -> Optional[int]: '''simple docstring''' snake_case__ : int = BitConfig( global_padding="""same""" , layer_type="""bottleneck""" , depths=(3, 4, 9) , out_features=["""stage3"""] , embedding_dynamic_padding=__magic_name__ , ) snake_case__ : Optional[int] = ViTHybridConfig(backbone_config=__magic_name__ , image_size=3_84 , num_labels=10_00 ) snake_case__ : Union[str, Any] = False # load original model from timm snake_case__ : List[Any] = timm.create_model(__magic_name__ , pretrained=__magic_name__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[int] = timm_model.state_dict() if base_model: remove_classification_head_(__magic_name__ ) snake_case__ : int = create_rename_keys(__magic_name__ , __magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , __magic_name__ ) snake_case__ : str = """huggingface/label-files""" snake_case__ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case__ : Dict = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : List[Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case__ : int = idalabel snake_case__ : str = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ : str = ViTHybridModel(__magic_name__ ).eval() else: snake_case__ : Union[str, Any] = ViTHybridForImageClassification(__magic_name__ ).eval() model.load_state_dict(__magic_name__ ) # create image processor snake_case__ : Optional[Any] = create_transform(**resolve_data_config({} , model=__magic_name__ ) ) snake_case__ : Union[str, Any] = transform.transforms snake_case__ : Tuple = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } snake_case__ : Any = ViTHybridImageProcessor( do_resize=__magic_name__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__magic_name__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=__magic_name__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) snake_case__ : Any = prepare_img() snake_case__ : int = transform(__magic_name__ ).unsqueeze(0 ) snake_case__ : List[str] = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(__magic_name__ , __magic_name__ ) # verify logits with torch.no_grad(): snake_case__ : Optional[Any] = model(__magic_name__ ) snake_case__ : Union[str, Any] = outputs.logits print("""Predicted class:""" , logits.argmax(-1 ).item() ) if base_model: snake_case__ : Dict = timm_model.forward_features(__magic_name__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__magic_name__ , outputs.pooler_output , atol=1E-3 ) else: snake_case__ : int = timm_model(__magic_name__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__magic_name__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(__magic_name__ ) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(f"ybelkada/{vit_name}" ) processor.push_to_hub(f"ybelkada/{vit_name}" ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) A_ : Union[str, Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
38
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: snake_case__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Dict = StableDiffusionLatentUpscalePipeline __lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase : List[Any] = frozenset([] ) __lowercase : Any = True @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = 1 snake_case__ = 4 snake_case__ = (16, 16) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , ) snake_case__ = CLIPTextModel(_a ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''cpu''' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) snake_case__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 2 snake_case__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case__ = getattr(_a , scheduler_enum.name ) snake_case__ = scheduler_cls.from_config(pipe.scheduler.config ) snake_case__ = pipe(**_a )[0] outputs.append(_a ) assert check_same_shape(_a ) @require_torch_gpu @slow class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
33
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = 42 class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE=True , ): super().__init__() snake_case__ : str = layers_per_block snake_case__ : int = torch.nn.Convad( __SCREAMING_SNAKE_CASE , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) snake_case__ : List[Any] = None snake_case__ : List[Any] = nn.ModuleList([] ) # down snake_case__ : Union[str, Any] = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = output_channel snake_case__ : Union[str, Any] = block_out_channels[i] snake_case__ : int = i == len(__SCREAMING_SNAKE_CASE ) - 1 snake_case__ : str = get_down_block( __SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , ) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid snake_case__ : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , ) # out snake_case__ : Tuple = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 ) snake_case__ : Tuple = nn.SiLU() snake_case__ : str = 2 * out_channels if double_z else out_channels snake_case__ : int = nn.Convad(block_out_channels[-1] , __SCREAMING_SNAKE_CASE , 3 , padding=1 ) snake_case__ : Union[str, Any] = False def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = x snake_case__ : int = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) # middle snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: snake_case__ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # middle snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: snake_case__ : List[str] = down_block(__SCREAMING_SNAKE_CASE ) # middle snake_case__ : str = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process snake_case__ : Any = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = self.conv_act(__SCREAMING_SNAKE_CASE ) snake_case__ : str = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE="group" , ): super().__init__() snake_case__ : Any = layers_per_block snake_case__ : Optional[Any] = nn.Convad( __SCREAMING_SNAKE_CASE , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) snake_case__ : Union[str, Any] = None snake_case__ : Dict = nn.ModuleList([] ) snake_case__ : Optional[int] = in_channels if norm_type == """spatial""" else None # mid snake_case__ : Tuple = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , ) # up snake_case__ : List[Any] = list(reversed(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Optional[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = output_channel snake_case__ : Optional[Any] = reversed_block_out_channels[i] snake_case__ : List[str] = i == len(__SCREAMING_SNAKE_CASE ) - 1 snake_case__ : int = get_up_block( __SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block + 1 , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , prev_output_channel=__SCREAMING_SNAKE_CASE , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , resnet_time_scale_shift=__SCREAMING_SNAKE_CASE , ) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) snake_case__ : int = output_channel # out if norm_type == "spatial": snake_case__ : List[Any] = SpatialNorm(block_out_channels[0] , __SCREAMING_SNAKE_CASE ) else: snake_case__ : Any = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 ) snake_case__ : Tuple = nn.SiLU() snake_case__ : Union[str, Any] = nn.Convad(block_out_channels[0] , __SCREAMING_SNAKE_CASE , 3 , padding=1 ) snake_case__ : int = False def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): snake_case__ : Union[str, Any] = z snake_case__ : Any = self.conv_in(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle snake_case__ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) snake_case__ : int = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: snake_case__ : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle snake_case__ : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: # middle snake_case__ : List[Any] = self.mid_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: snake_case__ : Dict = up_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: snake_case__ : Optional[Any] = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: snake_case__ : str = self.conv_norm_out(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Any = self.conv_act(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="random" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True ): super().__init__() snake_case__ : int = n_e snake_case__ : Optional[int] = vq_embed_dim snake_case__ : int = beta snake_case__ : Optional[int] = legacy snake_case__ : Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) snake_case__ : List[str] = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) snake_case__ : Optional[Any] = self.used.shape[0] snake_case__ : List[str] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": snake_case__ : Dict = self.re_embed snake_case__ : List[str] = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: snake_case__ : Union[str, Any] = n_e snake_case__ : str = sane_index_shape def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 snake_case__ : Dict = inds.reshape(ishape[0] , -1 ) snake_case__ : Any = self.used.to(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = (inds[:, :, None] == used[None, None, ...]).long() snake_case__ : List[Any] = match.argmax(-1 ) snake_case__ : List[str] = match.sum(2 ) < 1 if self.unknown_index == "random": snake_case__ : List[str] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: snake_case__ : Optional[Any] = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 snake_case__ : int = inds.reshape(ishape[0] , -1 ) snake_case__ : Optional[int] = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token snake_case__ : List[Any] = 0 # simply set to zero snake_case__ : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): # reshape z -> (batch, height, width, channel) and flatten snake_case__ : Any = z.permute(0 , 2 , 3 , 1 ).contiguous() snake_case__ : Optional[Any] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z snake_case__ : Dict = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE , self.embedding.weight ) , dim=1 ) snake_case__ : Union[str, Any] = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) snake_case__ : List[str] = None snake_case__ : Union[str, Any] = None # compute loss for embedding if not self.legacy: snake_case__ : Tuple = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: snake_case__ : List[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients snake_case__ : Any = z + (z_q - z).detach() # reshape back to match original input shape snake_case__ : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: snake_case__ : List[Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis snake_case__ : str = self.remap_to_used(__SCREAMING_SNAKE_CASE ) snake_case__ : str = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: snake_case__ : Tuple = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # shape specifying (batch, height, width, channel) if self.remap is not None: snake_case__ : List[Any] = indices.reshape(shape[0] , -1 ) # add batch axis snake_case__ : Optional[int] = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = indices.reshape(-1 ) # flatten again # get quantized latent vectors snake_case__ : int = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: snake_case__ : str = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape snake_case__ : str = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): snake_case__ : Tuple = parameters snake_case__ , snake_case__ : Any = torch.chunk(__SCREAMING_SNAKE_CASE , 2 , dim=1 ) snake_case__ : Union[str, Any] = torch.clamp(self.logvar , -30.0 , 20.0 ) snake_case__ : Optional[int] = deterministic snake_case__ : Optional[int] = torch.exp(0.5 * self.logvar ) snake_case__ : Any = torch.exp(self.logvar ) if self.deterministic: snake_case__ : List[str] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE = None ): # make sure sample is on the same device as the parameters and has same dtype snake_case__ : Dict = randn_tensor( self.mean.shape , generator=__SCREAMING_SNAKE_CASE , device=self.parameters.device , dtype=self.parameters.dtype ) snake_case__ : Optional[int] = self.mean + self.std * sample return x def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) snake_case__ : Any = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): return self.mean
38
0
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = LEDTokenizer A_ = LEDTokenizerFast A_ = True def UpperCAmelCase__ ( self) -> int: super().setUp() UpperCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_)))) UpperCamelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase = {'''unk_token''': '''<unk>'''} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(lowerCamelCase_) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(lowerCamelCase_)) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Union[str, Any]: kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Optional[int]: kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return "lower newer", "lower newer" @cached_property def UpperCAmelCase__ ( self) -> Any: return LEDTokenizer.from_pretrained('''allenai/led-base-16384''') @cached_property def UpperCAmelCase__ ( self) -> Any: return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''') @require_torch def UpperCAmelCase__ ( self) -> str: UpperCamelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCamelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(lowerCamelCase_ , max_length=len(lowerCamelCase_) , padding=lowerCamelCase_ , return_tensors='''pt''') self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_) self.assertEqual((2, 9) , batch.input_ids.shape) self.assertEqual((2, 9) , batch.attention_mask.shape) UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) @require_torch def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors='''pt''') self.assertIn('''input_ids''' , lowerCamelCase_) self.assertIn('''attention_mask''' , lowerCamelCase_) self.assertNotIn('''labels''' , lowerCamelCase_) self.assertNotIn('''decoder_attention_mask''' , lowerCamelCase_) @require_torch def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(text_target=lowerCamelCase_ , max_length=3_2 , padding='''max_length''' , return_tensors='''pt''') self.assertEqual(3_2 , targets['''input_ids'''].shape[1]) @require_torch def UpperCAmelCase__ ( self) -> Union[str, Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer( ['''I am a small frog''' * 1_0_2_4, '''I am a small frog'''] , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , return_tensors='''pt''') self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2)) @require_torch def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = ['''A long paragraph for summarization.'''] UpperCamelCase = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(lowerCamelCase_ , return_tensors='''pt''') UpperCamelCase = tokenizer(text_target=lowerCamelCase_ , return_tensors='''pt''') UpperCamelCase = inputs['''input_ids'''] UpperCamelCase = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) @require_torch def UpperCAmelCase__ ( self) -> Dict: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = ['''Summary of the text.''', '''Another summary.'''] UpperCamelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCamelCase = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_) UpperCamelCase = [[0] * len(lowerCamelCase_) for x in encoded_output['''input_ids''']] UpperCamelCase = tokenizer.pad(lowerCamelCase_) self.assertSequenceEqual(outputs['''global_attention_mask'''] , lowerCamelCase_) def UpperCAmelCase__ ( self) -> Tuple: pass def UpperCAmelCase__ ( self) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = '''A, <mask> AllenNLP sentence.''' UpperCamelCase = tokenizer_r.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_) UpperCamelCase = tokenizer_p.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_) self.assertEqual(sum(tokens_r['''token_type_ids''']) , sum(tokens_p['''token_type_ids'''])) self.assertEqual( sum(tokens_r['''attention_mask''']) / len(tokens_r['''attention_mask''']) , sum(tokens_p['''attention_mask''']) / len(tokens_p['''attention_mask''']) , ) UpperCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids''']) UpperCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids''']) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2]) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2]) self.assertSequenceEqual( lowerCamelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>''']) self.assertSequenceEqual( lowerCamelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''])
34
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1, 3_8_4, 2_4, 2_4] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , ): snake_case__ : str = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : Optional[int] = patch_size snake_case__ : List[str] = num_channels snake_case__ : Any = is_training snake_case__ : int = use_labels snake_case__ : str = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : str = backbone_out_indices snake_case__ : List[Any] = num_attention_heads snake_case__ : Dict = intermediate_size snake_case__ : Optional[Any] = hidden_act snake_case__ : str = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : Dict = initializer_range snake_case__ : Optional[int] = num_labels snake_case__ : str = backbone_featmap_shape snake_case__ : List[Any] = scope snake_case__ : Optional[Any] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) snake_case__ : List[Any] = (image_size // patch_size) ** 2 snake_case__ : Union[str, Any] = num_patches + 1 def __UpperCamelCase ( self ): snake_case__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : str = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): snake_case__ : Any = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [9_6, 1_9_2, 3_8_4, 7_6_8], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = DPTModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = self.num_labels snake_case__ : str = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = self.num_labels snake_case__ : Dict = DPTForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : str = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs snake_case__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCamelCase__ = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : List[Any] = DPTModelTester(self ) snake_case__ : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Tuple = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : List[str] = [*signature.parameters.keys()] snake_case__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : int = True if model_class in get_values(__SCREAMING_SNAKE_CASE ): continue snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() snake_case__ : Optional[Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Union[str, Any] = False snake_case__ : str = True if model_class in get_values(__SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() snake_case__ : List[str] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCamelCase ( self ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : str = _config_zero_init(__SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: snake_case__ : Any = model_class(config=__SCREAMING_SNAKE_CASE ) # Skip the check for the backbone snake_case__ : str = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": snake_case__ : Optional[int] = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __UpperCamelCase ( self ): pass @slow def __UpperCamelCase ( self ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: snake_case__ : List[str] = DPTModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = """add""" with self.assertRaises(__SCREAMING_SNAKE_CASE ): snake_case__ : List[str] = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> Dict: '''simple docstring''' snake_case__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Dict = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) snake_case__ : Union[str, Any] = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = prepare_img() snake_case__ : Optional[int] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : Dict = model(**__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = outputs.predicted_depth # verify the predicted depth snake_case__ : Any = torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
38
0
import sys def a ( A__ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = len(A__ ) SCREAMING_SNAKE_CASE__ : Tuple = [[0 for x in range(A__ )] for x in range(A__ )] SCREAMING_SNAKE_CASE__ : str = [[0 for x in range(A__ )] for x in range(A__ )] for chain_length in range(2 , A__ ): for a in range(1 , n - chain_length + 1 ): SCREAMING_SNAKE_CASE__ : List[str] = a + chain_length - 1 SCREAMING_SNAKE_CASE__ : Any = sys.maxsize for c in range(A__ , A__ ): SCREAMING_SNAKE_CASE__ : Dict = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: SCREAMING_SNAKE_CASE__ : Optional[int] = cost SCREAMING_SNAKE_CASE__ : int = c return matrix, sol def a ( A__ , A__ , A__ ) -> List[str]: '''simple docstring''' if i == j: print('''A''' + str(A__ ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(A__ , A__ , optimal_solution[i][j] ) print_optiomal_solution(A__ , optimal_solution[i][j] + 1 , A__ ) print(''')''' , end=''' ''' ) def a ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] SCREAMING_SNAKE_CASE__ : List[str] = len(A__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = matrix_chain_order(A__ ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(A__ , 1 , n - 1 ) if __name__ == "__main__": main()
35
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Dict: '''simple docstring''' snake_case__ : int = botoa.client("""iam""" ) snake_case__ : Union[str, Any] = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=__magic_name__ , AssumeRolePolicyDocument=json.dumps(__magic_name__ , indent=2 ) ) snake_case__ : Dict = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=__magic_name__ , PolicyName=f"{role_name}_policy_permission" , PolicyDocument=json.dumps(__magic_name__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"role {role_name} already exists. Using existing one" ) def UpperCamelCase__ ( __magic_name__ : Any ) -> Tuple: '''simple docstring''' snake_case__ : List[str] = botoa.client("""iam""" ) return iam_client.get_role(RoleName=__magic_name__ )["Role"]["Arn"] def UpperCamelCase__ ( ) -> Tuple: '''simple docstring''' snake_case__ : Union[str, Any] = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , __magic_name__ , ) snake_case__ : List[Any] = None if credentials_configuration == 0: snake_case__ : Dict = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) snake_case__ : List[str] = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) snake_case__ : List[str] = _ask_field("""AWS Access Key ID: """ ) snake_case__ : int = aws_access_key_id snake_case__ : Optional[Any] = _ask_field("""AWS Secret Access Key: """ ) snake_case__ : List[str] = aws_secret_access_key snake_case__ : Tuple = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) snake_case__ : Optional[int] = aws_region snake_case__ : int = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , __magic_name__ , ) if role_management == 0: snake_case__ : Optional[Any] = _ask_field("""Enter your IAM role name: """ ) else: snake_case__ : Optional[int] = """accelerate_sagemaker_execution_role""" print(f"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(__magic_name__ ) snake_case__ : Dict = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : Any = None if is_custom_docker_image: snake_case__ : str = _ask_field("""Enter your Docker image: """ , lambda __magic_name__ : str(__magic_name__ ).lower() ) snake_case__ : Tuple = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : List[Any] = None if is_sagemaker_inputs_enabled: snake_case__ : str = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , ) snake_case__ : Optional[int] = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : Optional[Any] = None if is_sagemaker_metrics_enabled: snake_case__ : List[Any] = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , ) snake_case__ : Tuple = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) snake_case__ : Any = {} snake_case__ : List[Any] = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) if use_dynamo: snake_case__ : str = """dynamo_""" snake_case__ : Tuple = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) snake_case__ : List[str] = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) if use_custom_options: snake_case__ : str = _ask_options( """Which mode do you want to use?""" , __magic_name__ , lambda __magic_name__ : TORCH_DYNAMO_MODES[int(__magic_name__ )] , default="""default""" , ) snake_case__ : Union[str, Any] = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : str = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : Dict = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: snake_case__ : List[str] = _ask_options( __magic_name__ , __magic_name__ , lambda __magic_name__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__magic_name__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" snake_case__ : Optional[int] = _ask_field(__magic_name__ , lambda __magic_name__ : str(__magic_name__ ).lower() , default="""ml.p3.2xlarge""" ) snake_case__ : Dict = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): snake_case__ : Optional[Any] = _ask_field( """How many machines do you want use? [1]: """ , __magic_name__ , default=1 , ) snake_case__ : Union[str, Any] = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=__magic_name__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__magic_name__ , use_cpu=__magic_name__ , dynamo_config=__magic_name__ , eca_instance_type=__magic_name__ , profile=__magic_name__ , region=__magic_name__ , iam_role_name=__magic_name__ , mixed_precision=__magic_name__ , num_machines=__magic_name__ , sagemaker_inputs_file=__magic_name__ , sagemaker_metrics_file=__magic_name__ , )
38
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Optional[int] = logging.get_logger(__name__) class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : List[str] = '''timm_backbone''' def __init__( self ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = backbone snake_case : Dict = num_channels snake_case : Optional[int] = features_only snake_case : Any = use_pretrained_backbone snake_case : Union[str, Any] = True snake_case : Optional[int] = out_indices if out_indices is not None else (-1,)
36
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def UpperCamelCase__ ( __magic_name__ : str = "laptop" ) -> DataFrame: '''simple docstring''' snake_case__ : Union[str, Any] = f"https://www.amazon.in/laptop/s?k={product}" snake_case__ : List[str] = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } snake_case__ : int = BeautifulSoup(requests.get(__magic_name__ , headers=__magic_name__ ).text ) # Initialize a Pandas dataframe with the column titles snake_case__ : Optional[Any] = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: snake_case__ : Optional[int] = item.ha.text snake_case__ : Any = """https://www.amazon.in/""" + item.ha.a["""href"""] snake_case__ : List[str] = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: snake_case__ : Dict = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: snake_case__ : Optional[int] = """Not available""" try: snake_case__ : Tuple = ( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: snake_case__ : Optional[Any] = """""" try: snake_case__ : str = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 1_00 ) except ValueError: snake_case__ : List[Any] = float("""nan""" ) except AttributeError: pass snake_case__ : str = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] snake_case__ : List[Any] = """ """ snake_case__ : Union[str, Any] = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": A_ : int = "headphones" get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
38
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase : Optional[int] = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } UpperCamelCase : Tuple = { """squeezebert/squeezebert-uncased""": 512, """squeezebert/squeezebert-mnli""": 512, """squeezebert/squeezebert-mnli-headless""": 512, } UpperCamelCase : str = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class A__ ( A__ ): """simple docstring""" _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_INIT_CONFIGURATION _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = SqueezeBertTokenizer def __init__( self : int , lowerCamelCase__ : str=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : Dict="[UNK]" , lowerCamelCase__ : str="[SEP]" , lowerCamelCase__ : Tuple="[PAD]" , lowerCamelCase__ : Tuple="[CLS]" , lowerCamelCase__ : str="[MASK]" , lowerCamelCase__ : Any=True , lowerCamelCase__ : Any=None , **lowerCamelCase__ : Tuple , ): super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) a__ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCamelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCamelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCamelCase__ ) != tokenize_chinese_chars ): a__ : Union[str, Any] = getattr(lowerCamelCase__ , normalizer_state.pop("type" ) ) a__ : List[Any] = do_lower_case a__ : Optional[Any] = strip_accents a__ : str = tokenize_chinese_chars a__ : Any = normalizer_class(**lowerCamelCase__ ) a__ : Any = do_lower_case def _UpperCamelCase( self : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[Any]=None ): a__ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): a__ : List[Any] = [self.sep_token_id] a__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): a__ : List[Any] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
37
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = LongformerTokenizer lowerCamelCase__ = True lowerCamelCase__ = LongformerTokenizerFast lowerCamelCase__ = True def __UpperCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case__ : Optional[int] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) snake_case__ : int = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case__ : Any = {"""unk_token""": """<unk>"""} snake_case__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : str = """lower newer""" snake_case__ : Dict = """lower newer""" return input_text, output_text def __UpperCamelCase ( self ): snake_case__ : int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case__ : Tuple = """lower newer""" snake_case__ : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] snake_case__ : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokens + [tokenizer.unk_token] snake_case__ : List[Any] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Tuple = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) snake_case__ : int = tokenizer.encode("""sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : int = """Encode this sequence.""" snake_case__ : Union[str, Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments snake_case__ : Optional[int] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) snake_case__ : List[str] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens snake_case__ : List[str] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space snake_case__ : Dict = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) snake_case__ : str = """Encode <mask> sequence""" snake_case__ : Tuple = """Encode <mask>sequence""" snake_case__ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = encoded.index(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer.encode(__SCREAMING_SNAKE_CASE ) snake_case__ : str = encoded.index(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """A, <mask> AllenNLP sentence.""" snake_case__ : str = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) snake_case__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) snake_case__ : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def __UpperCamelCase ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): snake_case__ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) snake_case__ : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state["""trim_offsets"""] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : Union[str, Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` snake_case__ : Any = f"{text_of_1_token} {text_of_1_token}" snake_case__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Optional[Any] = f" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) snake_case__ : Dict = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
38
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class snake_case_ ( __A , __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [R"h\.\d+\.attn\.bias", R"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : str , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : int = 5_0_2_5_7 , _UpperCamelCase : int = 1_0_2_4 , _UpperCamelCase : int = 7_6_8 , _UpperCamelCase : int = 1_2 , _UpperCamelCase : int = 1_2 , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "gelu_new" , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 1e-5 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , ) ->Tuple: super().__init__() snake_case_ = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) snake_case_ = prefix_inner_dim snake_case_ = prefix_hidden_dim snake_case_ = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case_ = ( nn.Linear(self.prefix_hidden_dim , _UpperCamelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case_ = GPTaConfig( vocab_size=_UpperCamelCase , n_positions=_UpperCamelCase , n_embd=_UpperCamelCase , n_layer=_UpperCamelCase , n_head=_UpperCamelCase , n_inner=_UpperCamelCase , activation_function=_UpperCamelCase , resid_pdrop=_UpperCamelCase , embd_pdrop=_UpperCamelCase , attn_pdrop=_UpperCamelCase , layer_norm_epsilon=_UpperCamelCase , initializer_range=_UpperCamelCase , scale_attn_weights=_UpperCamelCase , use_cache=_UpperCamelCase , scale_attn_by_inverse_layer_idx=_UpperCamelCase , reorder_and_upcast_attn=_UpperCamelCase , ) snake_case_ = GPTaLMHeadModel(_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : torch.Tensor , _UpperCamelCase : torch.Tensor , _UpperCamelCase : Optional[torch.Tensor] = None , _UpperCamelCase : Optional[torch.Tensor] = None , ) ->Any: snake_case_ = self.transformer.transformer.wte(_UpperCamelCase ) snake_case_ = self.encode_prefix(_UpperCamelCase ) snake_case_ = self.decode_prefix(_UpperCamelCase ) snake_case_ = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: snake_case_ = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) snake_case_ = torch.cat((dummy_token, input_ids) , dim=1 ) snake_case_ = self.transformer(inputs_embeds=_UpperCamelCase , labels=_UpperCamelCase , attention_mask=_UpperCamelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case__( self : Any , _UpperCamelCase : int , _UpperCamelCase : torch.device ) ->torch.Tensor: return torch.zeros(_UpperCamelCase , self.prefix_length , dtype=torch.intaa , device=_UpperCamelCase ) def snake_case__( self : int , _UpperCamelCase : List[str] ) ->List[Any]: return self.encode_prefix(_UpperCamelCase ) @torch.no_grad() def snake_case__( self : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Tuple , _UpperCamelCase : str ) ->Tuple: snake_case_ = torch.split(_UpperCamelCase , 1 , dim=0 ) snake_case_ = [] snake_case_ = [] for feature in features: snake_case_ = self.decode_prefix(feature.to(_UpperCamelCase ) ) # back to the clip feature # Only support beam search for now snake_case_, snake_case_ = self.generate_beam( input_embeds=_UpperCamelCase , device=_UpperCamelCase , eos_token_id=_UpperCamelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) snake_case_ = torch.stack(_UpperCamelCase ) snake_case_ = torch.stack(_UpperCamelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case__( self : Any , _UpperCamelCase : List[Any]=None , _UpperCamelCase : int=None , _UpperCamelCase : List[str]=None , _UpperCamelCase : int = 5 , _UpperCamelCase : int = 6_7 , _UpperCamelCase : float = 1.0 , _UpperCamelCase : Optional[int] = None , ) ->List[str]: snake_case_ = eos_token_id snake_case_ = None snake_case_ = None snake_case_ = torch.ones(_UpperCamelCase , device=_UpperCamelCase , dtype=torch.int ) snake_case_ = torch.zeros(_UpperCamelCase , device=_UpperCamelCase , dtype=torch.bool ) if input_embeds is not None: snake_case_ = input_embeds else: snake_case_ = self.transformer.transformer.wte(_UpperCamelCase ) for i in range(_UpperCamelCase ): snake_case_ = self.transformer(inputs_embeds=_UpperCamelCase ) snake_case_ = outputs.logits snake_case_ = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) snake_case_ = logits.softmax(-1 ).log() if scores is None: snake_case_, snake_case_ = logits.topk(_UpperCamelCase , -1 ) snake_case_ = generated.expand(_UpperCamelCase , *generated.shape[1:] ) snake_case_, snake_case_ = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: snake_case_ = next_tokens else: snake_case_ = tokens.expand(_UpperCamelCase , *tokens.shape[1:] ) snake_case_ = torch.cat((tokens, next_tokens) , dim=1 ) else: snake_case_ = -float(np.inf ) snake_case_ = 0 snake_case_ = scores[:, None] + logits seq_lengths[~is_stopped] += 1 snake_case_ = scores_sum / seq_lengths[:, None] snake_case_, snake_case_ = scores_sum_average.view(-1 ).topk(_UpperCamelCase , -1 ) snake_case_ = next_tokens // scores_sum.shape[1] snake_case_ = seq_lengths[next_tokens_source] snake_case_ = next_tokens % scores_sum.shape[1] snake_case_ = next_tokens.unsqueeze(1 ) snake_case_ = tokens[next_tokens_source] snake_case_ = torch.cat((tokens, next_tokens) , dim=1 ) snake_case_ = generated[next_tokens_source] snake_case_ = scores_sum_average * seq_lengths snake_case_ = is_stopped[next_tokens_source] snake_case_ = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) snake_case_ = torch.cat((generated, next_token_embed) , dim=1 ) snake_case_ = is_stopped + next_tokens.eq(_UpperCamelCase ).squeeze() if is_stopped.all(): break snake_case_ = scores / seq_lengths snake_case_ = scores.argsort(descending=_UpperCamelCase ) # tokens tensors are already padded to max_seq_length snake_case_ = [tokens[i] for i in order] snake_case_ = torch.stack(_UpperCamelCase , dim=0 ) snake_case_ = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
39
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : int = logging.get_logger(__name__) A_ : Any = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''resnet''' lowerCamelCase__ = ['''basic''', '''bottleneck'''] def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="bottleneck" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) snake_case__ : List[Any] = num_channels snake_case__ : str = embedding_size snake_case__ : List[Any] = hidden_sizes snake_case__ : Dict = depths snake_case__ : List[Any] = layer_type snake_case__ : int = hidden_act snake_case__ : Union[str, Any] = downsample_in_first_stage snake_case__ : Dict = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] snake_case__ , snake_case__ : Any = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = version.parse('''1.11''' ) @property def __UpperCamelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __UpperCamelCase ( self ): return 1e-3
38
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { '''configuration_albert''': ['''ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AlbertConfig''', '''AlbertOnnxConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''AlbertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''AlbertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AlbertForMaskedLM''', '''AlbertForMultipleChoice''', '''AlbertForPreTraining''', '''AlbertForQuestionAnswering''', '''AlbertForSequenceClassification''', '''AlbertForTokenClassification''', '''AlbertModel''', '''AlbertPreTrainedModel''', '''load_tf_weights_in_albert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAlbertForMaskedLM''', '''TFAlbertForMultipleChoice''', '''TFAlbertForPreTraining''', '''TFAlbertForQuestionAnswering''', '''TFAlbertForSequenceClassification''', '''TFAlbertForTokenClassification''', '''TFAlbertMainLayer''', '''TFAlbertModel''', '''TFAlbertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''FlaxAlbertForMaskedLM''', '''FlaxAlbertForMultipleChoice''', '''FlaxAlbertForPreTraining''', '''FlaxAlbertForQuestionAnswering''', '''FlaxAlbertForSequenceClassification''', '''FlaxAlbertForTokenClassification''', '''FlaxAlbertModel''', '''FlaxAlbertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
38
0
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : jnp.ndarray SCREAMING_SNAKE_CASE : jnp.ndarray class lowercase_ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase = self.block_out_channels[i] __lowercase = self.block_out_channels[i + 1] __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = blocks __lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.conv_in(lowercase__ ) __lowercase = nn.silu(lowercase__ ) for block in self.blocks: __lowercase = block(lowercase__ ) __lowercase = nn.silu(lowercase__ ) __lowercase = self.conv_out(lowercase__ ) return embedding @flax_register_to_config class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 3_2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE : int = 1_2_8_0 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = "rgb" SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ): # init input tensors __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase = jnp.ones((1,) ,dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) __lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(lowercase__ ) __lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"] def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time __lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype ) __lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) __lowercase = self.only_cross_attention if isinstance(lowercase__ ,lowercase__ ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = [] __lowercase = block_out_channels[0] __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: __lowercase = FlaxDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowercase__ ) for _ in range(self.layers_per_block ): __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) if not is_final_block: __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) __lowercase = down_blocks __lowercase = controlnet_down_blocks # mid __lowercase = block_out_channels[-1] __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,): __lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase = jnp.flip(lowercase__ ,axis=1 ) # 1. time if not isinstance(lowercase__ ,jnp.ndarray ): __lowercase = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(lowercase__ ,0 ) __lowercase = self.time_proj(lowercase__ ) __lowercase = self.time_embedding(lowercase__ ) # 2. pre-process __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.conv_in(lowercase__ ) __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.controlnet_cond_embedding(lowercase__ ) sample += controlnet_cond # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ ,lowercase__ ): __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) else: __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) # 5. contronet blocks __lowercase = () for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ): __lowercase = controlnet_block(lowercase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase = controlnet_down_block_res_samples __lowercase = self.controlnet_mid_block(lowercase__ ) # 6. scaling __lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
41
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ): snake_case__ : str = [] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_init_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_train_begin""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_train_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_epoch_begin""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_epoch_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_step_begin""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_step_end""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_evaluate""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_predict""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_save""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_log""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): self.events.append("""on_prediction_step""" ) @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Tuple = tempfile.mkdtemp() def __UpperCamelCase ( self ): shutil.rmtree(self.output_dir ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. snake_case__ : List[Any] = RegressionDataset(length=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = RegressionDataset(length=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = RegressionModelConfig(a=__SCREAMING_SNAKE_CASE , b=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = RegressionPreTrainedModel(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = TrainingArguments(self.output_dir , disable_tqdm=__SCREAMING_SNAKE_CASE , report_to=[] , **__SCREAMING_SNAKE_CASE ) return Trainer( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , train_dataset=__SCREAMING_SNAKE_CASE , eval_dataset=__SCREAMING_SNAKE_CASE , callbacks=__SCREAMING_SNAKE_CASE , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) # Order doesn't matter snake_case__ : Tuple = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ ) snake_case__ : List[str] = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ ) for cba, cba in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , cba.__class__ ) elif not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(cba.__class__ , __SCREAMING_SNAKE_CASE ) else: self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = ["""on_init_end""", """on_train_begin"""] snake_case__ : Union[str, Any] = 0 snake_case__ : Dict = len(trainer.get_eval_dataloader() ) snake_case__ : Any = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(__SCREAMING_SNAKE_CASE ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __UpperCamelCase ( self ): snake_case__ : Any = self.get_trainer() snake_case__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) # Callbacks passed at init are added to the default callbacks snake_case__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(__SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback snake_case__ : Optional[Any] = self.get_trainer(disable_tqdm=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] snake_case__ : int = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.remove(__SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = self.get_trainer() snake_case__ : List[str] = trainer.pop_callback(__SCREAMING_SNAKE_CASE ) self.assertEqual(cb.__class__ , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) trainer.add_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.insert(0 , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) # We can also add, pop, or remove by instance snake_case__ : List[Any] = self.get_trainer() snake_case__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.remove(__SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = self.get_trainer() snake_case__ : Any = trainer.callback_handler.callbacks[0] snake_case__ : Optional[Any] = trainer.pop_callback(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) trainer.add_callback(__SCREAMING_SNAKE_CASE ) expected_callbacks.insert(0 , __SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() snake_case__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) # Independent log/save/eval snake_case__ : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() snake_case__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() snake_case__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() snake_case__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() snake_case__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) # A bit of everything snake_case__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() snake_case__ : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: snake_case__ : List[str] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(__SCREAMING_SNAKE_CASE ) in warn_mock.call_args[0][0]
38
0
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ) -> bool: if num < 0: return False lowerCamelCase_ = num lowerCamelCase_ = 0 while num > 0: lowerCamelCase_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
42
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=1_8 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=4_0_0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ): snake_case__ : Any = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case__ : List[Any] = parent snake_case__ : int = batch_size snake_case__ : List[Any] = num_channels snake_case__ : str = image_size snake_case__ : Union[str, Any] = min_resolution snake_case__ : List[Any] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : int = size snake_case__ : Tuple = do_normalize snake_case__ : Dict = image_mean snake_case__ : Union[str, Any] = image_std def __UpperCamelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = DPTImageProcessor if is_vision_available() else None def __UpperCamelCase ( self ): snake_case__ : str = DPTImageProcessingTester(self ) @property def __UpperCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_mean""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_std""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_normalize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """size""" ) ) def __UpperCamelCase ( self ): snake_case__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} ) snake_case__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input snake_case__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input snake_case__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : Any = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
38
0
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[Any] = DownBlockaD # noqa F405 _lowercase : Dict = '''down''' def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" lowercase__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = ResnetDownsampleBlockaD # noqa F405 _lowercase : Tuple = '''down''' def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" lowercase__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = AttnDownBlockaD # noqa F405 _lowercase : List[Any] = '''down''' def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = CrossAttnDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase : str = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = SkipDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnSkipDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : int = DownEncoderBlockaD # noqa F405 _lowercase : List[Any] = '''down''' @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" lowercase__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnDownEncoderBlockaD # noqa F405 _lowercase : int = '''down''' @property def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UNetMidBlockaD # noqa F405 _lowercase : Union[str, Any] = '''mid''' def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = UNetMidBlockaDCrossAttn # noqa F405 _lowercase : str = '''mid''' def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase : str = '''mid''' @property def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = ResnetUpsampleBlockaD # noqa F405 _lowercase : List[Any] = '''up''' @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = CrossAttnUpBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase : Dict = '''up''' @property def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ , include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnUpBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = SkipUpBlockaD # noqa F405 _lowercase : Optional[int] = '''up''' @property def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnSkipUpBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = UpDecoderBlockaD # noqa F405 _lowercase : Tuple = '''up''' @property def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(UpperCamelCase_ )
43
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """embed_dim""" ) ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """num_heads""" ) ) class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1_6, 4_8, 9_6] , __SCREAMING_SNAKE_CASE=[1, 3, 6] , __SCREAMING_SNAKE_CASE=[1, 2, 1_0] , __SCREAMING_SNAKE_CASE=[7, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2] , __SCREAMING_SNAKE_CASE=[2, 1, 1] , __SCREAMING_SNAKE_CASE=[2, 2, 2] , __SCREAMING_SNAKE_CASE=[False, False, True] , __SCREAMING_SNAKE_CASE=[0.0, 0.0, 0.0] , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=2 , ): snake_case__ : List[str] = parent snake_case__ : Tuple = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : List[Any] = patch_sizes snake_case__ : Optional[int] = patch_stride snake_case__ : Optional[Any] = patch_padding snake_case__ : Any = is_training snake_case__ : int = use_labels snake_case__ : Dict = num_labels snake_case__ : Optional[Any] = num_channels snake_case__ : Optional[Any] = embed_dim snake_case__ : Optional[int] = num_heads snake_case__ : Optional[int] = stride_kv snake_case__ : int = depth snake_case__ : Optional[Any] = cls_token snake_case__ : List[Any] = attention_drop_rate snake_case__ : Union[str, Any] = initializer_range snake_case__ : List[Any] = layer_norm_eps def __UpperCamelCase ( self ): snake_case__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : List[Any] = None if self.use_labels: # create a random int32 tensor of given shape snake_case__ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : List[str] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : int = TFCvtModel(config=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = (self.image_size, self.image_size) snake_case__ , snake_case__ : str = image_size[0], image_size[1] for i in range(len(self.depth ) ): snake_case__ : Any = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) snake_case__ : Optional[int] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = self.num_labels snake_case__ : str = TFCvtForImageClassification(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs snake_case__ : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowerCamelCase__ = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = TFCvtModelTester(self ) snake_case__ : Any = TFCvtConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def __UpperCamelCase ( self ): pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def __UpperCamelCase ( self ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def __UpperCamelCase ( self ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def __UpperCamelCase ( self ): super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def __UpperCamelCase ( self ): snake_case__ : List[str] = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(__SCREAMING_SNAKE_CASE ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[Any] = [*signature.parameters.keys()] snake_case__ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) snake_case__ : Optional[int] = outputs.hidden_states snake_case__ : Tuple = len(self.model_tester.depth ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[Any] = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[str] = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def __UpperCamelCase ( self ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : str = TFCvtModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> str: '''simple docstring''' snake_case__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case__ : Union[str, Any] = self.default_image_processor snake_case__ : int = prepare_img() snake_case__ : Dict = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""tf""" ) # forward pass snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ) # verify the logits snake_case__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : int = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
38
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ : def __init__( self : List[str],__A : int,__A : Optional[int]=1_3,__A : Any=7,__A : Union[str, Any]=True,__A : Optional[int]=True,__A : List[str]=True,__A : Tuple=True,__A : Any=9_9,__A : Any=3_2,__A : Any=5,__A : Tuple=4,__A : List[str]=3_7,__A : Union[str, Any]="gelu",__A : Tuple=0.1,__A : Tuple=0.1,__A : Optional[int]=5_1_2,__A : Union[str, Any]=1_6,__A : Dict=2,__A : Any=0.02,__A : Optional[Any]=3,__A : int=4,__A : Optional[Any]=None,): _lowerCamelCase : Optional[int] = parent _lowerCamelCase : List[str] = batch_size _lowerCamelCase : Any = seq_length _lowerCamelCase : int = is_training _lowerCamelCase : int = use_input_mask _lowerCamelCase : Any = use_token_type_ids _lowerCamelCase : int = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : str = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : List[Any] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Dict = type_sequence_label_size _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : str = num_labels _lowerCamelCase : List[str] = num_choices _lowerCamelCase : Dict = scope def lowerCamelCase_ ( self : Any ): _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : int = None if self.use_input_mask: _lowerCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[int] = None if self.use_token_type_ids: _lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Dict = None _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Dict = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) _lowerCamelCase : Any = ids_tensor([self.batch_size],self.num_choices ) _lowerCamelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : List[Any] ): return NystromformerConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) def lowerCamelCase_ ( self : str,__A : str,__A : Dict,__A : List[str],__A : List[Any],__A : Dict,__A : Optional[Any],__A : Any ): _lowerCamelCase : int = NystromformerModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = model(__A,attention_mask=__A,token_type_ids=__A ) _lowerCamelCase : Optional[Any] = model(__A,token_type_ids=__A ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : Any,__A : Union[str, Any],__A : Dict,__A : Union[str, Any],__A : Optional[int],__A : Tuple,__A : Union[str, Any],__A : List[Any] ): _lowerCamelCase : str = NystromformerForMaskedLM(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A,token_type_ids=__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Union[str, Any],__A : List[Any],__A : Any,__A : Tuple,__A : List[str],__A : Union[str, Any],__A : Tuple,__A : Optional[int] ): _lowerCamelCase : str = NystromformerForQuestionAnswering(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Any = model( __A,attention_mask=__A,token_type_ids=__A,start_positions=__A,end_positions=__A,) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Dict,__A : Dict,__A : str,__A : List[Any],__A : List[str],__A : Union[str, Any],__A : Tuple,__A : Any ): _lowerCamelCase : List[Any] = self.num_labels _lowerCamelCase : int = NystromformerForSequenceClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A,attention_mask=__A,token_type_ids=__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : List[Any],__A : str,__A : Dict,__A : Tuple,__A : Optional[int],__A : Any,__A : Optional[Any],__A : List[Any] ): _lowerCamelCase : int = self.num_labels _lowerCamelCase : str = NystromformerForTokenClassification(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,attention_mask=__A,token_type_ids=__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Union[str, Any],__A : int,__A : str,__A : List[Any],__A : Union[str, Any],__A : Optional[int],__A : Tuple,__A : List[str] ): _lowerCamelCase : Optional[int] = self.num_choices _lowerCamelCase : Dict = NystromformerForMultipleChoice(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : List[Any] = model( __A,attention_mask=__A,token_type_ids=__A,labels=__A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Any = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Any = config_and_inputs _lowerCamelCase : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase_ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = NystromformerModelTester(self ) _lowerCamelCase : Union[str, Any] = ConfigTester(self,config_class=__A,hidden_size=3_7 ) def lowerCamelCase_ ( self : int ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : List[str] = type self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def lowerCamelCase_ ( self : str ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = NystromformerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Dict = NystromformerModel.from_pretrained("uw-madison/nystromformer-512" ) _lowerCamelCase : Optional[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _lowerCamelCase : Optional[int] = model(__A )[0] _lowerCamelCase : int = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape,__A ) _lowerCamelCase : str = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3],__A,atol=1e-4 ) ) @slow def lowerCamelCase_ ( self : str ): _lowerCamelCase : Optional[int] = "the [MASK] of Belgium is Brussels" _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512" ) _lowerCamelCase : Dict = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512" ) _lowerCamelCase : Optional[Any] = tokenizer(__A,return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : Union[str, Any] = model(encoding.input_ids ).logits _lowerCamelCase : Optional[Any] = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(__A ),"capital" )
44
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. snake_case__ : int = [[1, 2, 4], [1, 2, 3, 4]] snake_case__ : Any = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) self.assertTrue(isinstance(dc.token_ids , __SCREAMING_SNAKE_CASE ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __UpperCamelCase ( self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). snake_case__ : Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) # fails here def __UpperCamelCase ( self ): snake_case__ : List[str] = [[1, 2, 3], [1, 2, 4]] snake_case__ : Optional[int] = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ , snake_case__ : Any = dc.update(1 ) snake_case__ : Any = stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) snake_case__ , snake_case__ , snake_case__ : Tuple = dc.update(2 ) snake_case__ : Tuple = stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = dc.update(3 ) snake_case__ : List[str] = stepped is True and completed is True and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] snake_case__ : int = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ , snake_case__ : str = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) snake_case__ , snake_case__ , snake_case__ : str = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) snake_case__ , snake_case__ , snake_case__ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
38
0
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self :Union[str, Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str]=2 , lowerCamelCase__ :List[str]=3 , lowerCamelCase__ :List[str]=4 , lowerCamelCase__ :str=2 , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Any=True , lowerCamelCase__ :Dict=99 , lowerCamelCase__ :Optional[Any]=36 , lowerCamelCase__ :str=2 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :Optional[Any]=37 , lowerCamelCase__ :Optional[int]="gelu" , lowerCamelCase__ :Any=0.1 , lowerCamelCase__ :List[Any]=0.1 , lowerCamelCase__ :List[Any]=5_12 , lowerCamelCase__ :str=16 , lowerCamelCase__ :Tuple=2 , lowerCamelCase__ :int=0.02 , lowerCamelCase__ :List[Any]=6 , lowerCamelCase__ :List[str]=6 , lowerCamelCase__ :Optional[int]=3 , lowerCamelCase__ :Optional[int]=4 , lowerCamelCase__ :int=None , lowerCamelCase__ :Optional[Any]=10_00 , ): UpperCamelCase__ :Any = parent UpperCamelCase__ :Union[str, Any] = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :Optional[Any] = image_size UpperCamelCase__ :Union[str, Any] = patch_size UpperCamelCase__ :Union[str, Any] = is_training UpperCamelCase__ :str = use_input_mask UpperCamelCase__ :int = use_token_type_ids UpperCamelCase__ :int = use_labels UpperCamelCase__ :List[Any] = vocab_size UpperCamelCase__ :List[str] = hidden_size UpperCamelCase__ :List[Any] = num_hidden_layers UpperCamelCase__ :List[str] = num_attention_heads UpperCamelCase__ :Tuple = intermediate_size UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout_prob UpperCamelCase__ :Tuple = attention_probs_dropout_prob UpperCamelCase__ :Dict = max_position_embeddings UpperCamelCase__ :Tuple = type_vocab_size UpperCamelCase__ :Union[str, Any] = type_sequence_label_size UpperCamelCase__ :int = initializer_range UpperCamelCase__ :List[Any] = coordinate_size UpperCamelCase__ :Tuple = shape_size UpperCamelCase__ :Dict = num_labels UpperCamelCase__ :str = num_choices UpperCamelCase__ :Tuple = scope UpperCamelCase__ :str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase__ :List[str] = text_seq_length UpperCamelCase__ :List[str] = (image_size // patch_size) ** 2 + 1 UpperCamelCase__ :Dict = self.text_seq_length + self.image_seq_length def __a ( self :Tuple ): UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase__ :int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCamelCase__ :str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase__ :List[str] = bbox[i, j, 3] UpperCamelCase__ :Optional[int] = bbox[i, j, 1] UpperCamelCase__ :Optional[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase__ :Tuple = bbox[i, j, 2] UpperCamelCase__ :Optional[Any] = bbox[i, j, 0] UpperCamelCase__ :List[str] = tmp_coordinate UpperCamelCase__ :Dict = tf.constant(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Any = None if self.use_input_mask: UpperCamelCase__ :int = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase__ :Optional[Any] = None if self.use_token_type_ids: UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase__ :List[str] = None UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase__ :Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self :List[Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int , lowerCamelCase__ :Any ): UpperCamelCase__ :Dict = TFLayoutLMvaModel(config=lowerCamelCase__ ) # text + image UpperCamelCase__ :Tuple = model(lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) UpperCamelCase__ :Tuple = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , training=lowerCamelCase__ , ) UpperCamelCase__ :str = model(lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase__ :Tuple = model({"""pixel_values""": pixel_values} , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Optional[Any] = self.num_labels UpperCamelCase__ :List[Any] = TFLayoutLMvaForSequenceClassification(config=lowerCamelCase__ ) UpperCamelCase__ :List[str] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = self.num_labels UpperCamelCase__ :Dict = TFLayoutLMvaForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self :int , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple ): UpperCamelCase__ :Dict = 2 UpperCamelCase__ :Tuple = TFLayoutLMvaForQuestionAnswering(config=lowerCamelCase__ ) UpperCamelCase__ :int = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.prepare_config_and_inputs() ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) :Any = config_and_inputs UpperCamelCase__ :List[str] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _snake_case : Dict = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) _snake_case : Optional[int] = False _snake_case : List[str] = False _snake_case : Tuple = False def __a ( self :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :int ): return True def __a ( self :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int]=False ): UpperCamelCase__ :List[str] = copy.deepcopy(lowerCamelCase__ ) if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = { k: tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCamelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCamelCase__ :Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Tuple = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __a ( self :Dict ): UpperCamelCase__ :List[Any] = TFLayoutLMvaModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Any ): self.config_tester.run_common_tests() def __a ( self :Optional[int] ): UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Optional[int] = model_class(lowerCamelCase__ ) if getattr(lowerCamelCase__ , """hf_compute_loss""" , lowerCamelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCamelCase__ )[0] ] UpperCamelCase__ :Union[str, Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCamelCase__ :List[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) UpperCamelCase__ :List[str] = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: UpperCamelCase__ :List[str] = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCamelCase__ :Optional[Any] = -1_00 UpperCamelCase__ :Union[str, Any] = tf.convert_to_tensor(lowerCamelCase__ ) UpperCamelCase__ :Tuple = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCamelCase__ :Optional[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCamelCase__ :Dict = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) # Get keys that were added with the _prepare_for_class function UpperCamelCase__ :str = prepared_for_class.keys() - inputs_dict.keys() UpperCamelCase__ :Tuple = inspect.signature(model.call ).parameters UpperCamelCase__ :str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCamelCase__ :Any = {0: """input_ids"""} for label_key in label_keys: UpperCamelCase__ :Dict = signature_names.index(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = label_key UpperCamelCase__ :Optional[Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCamelCase__ :Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCamelCase__ :List[str] = prepared_for_class[value] UpperCamelCase__ :Union[str, Any] = tuple(lowerCamelCase__ ) # Send to model UpperCamelCase__ :str = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ :Dict = type self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Tuple ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :Optional[int] ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFLayoutLMvaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( ) -> List[str]: UpperCamelCase__ :List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :Optional[Any] ): return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase__ ) if is_vision_available() else None @slow def __a ( self :Dict ): UpperCamelCase__ :List[str] = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) UpperCamelCase__ :List[Any] = self.default_image_processor UpperCamelCase__ :str = prepare_img() UpperCamelCase__ :Any = image_processor(images=lowerCamelCase__ , return_tensors="""tf""" ).pixel_values UpperCamelCase__ :str = tf.constant([[1, 2]] ) UpperCamelCase__ :Any = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCamelCase__ :Dict = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) # verify the logits UpperCamelCase__ :int = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
45
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : Tuple = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''segformer''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[2, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[8, 4, 2, 1] , __SCREAMING_SNAKE_CASE=[3_2, 6_4, 1_6_0, 2_5_6] , __SCREAMING_SNAKE_CASE=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[1, 2, 5, 8] , __SCREAMING_SNAKE_CASE=[4, 4, 4, 4] , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1e-6 , __SCREAMING_SNAKE_CASE=2_5_6 , __SCREAMING_SNAKE_CASE=2_5_5 , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __SCREAMING_SNAKE_CASE , ) snake_case__ : Dict = num_channels snake_case__ : Optional[Any] = num_encoder_blocks snake_case__ : Any = depths snake_case__ : Optional[int] = sr_ratios snake_case__ : Tuple = hidden_sizes snake_case__ : List[str] = patch_sizes snake_case__ : str = strides snake_case__ : Optional[int] = mlp_ratios snake_case__ : Optional[Any] = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : Optional[int] = hidden_dropout_prob snake_case__ : List[str] = attention_probs_dropout_prob snake_case__ : List[Any] = classifier_dropout_prob snake_case__ : int = initializer_range snake_case__ : List[str] = drop_path_rate snake_case__ : int = layer_norm_eps snake_case__ : List[Any] = decoder_hidden_size snake_case__ : List[Any] = kwargs.get("""reshape_last_stage""" , __SCREAMING_SNAKE_CASE ) snake_case__ : Dict = semantic_loss_ignore_index class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = version.parse('''1.11''' ) @property def __UpperCamelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __UpperCamelCase ( self ): return 1e-4 @property def __UpperCamelCase ( self ): return 1_2
38
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' if len(_lowerCamelCase ) <= 1 or n <= 1: return insert_next(_lowerCamelCase , n - 1 ) rec_insertion_sort(_lowerCamelCase , n - 1 ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' if index >= len(_lowerCamelCase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _lowerCamelCase, _lowerCamelCase : Dict = ( collection[index], collection[index - 1], ) insert_next(_lowerCamelCase , index + 1 ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = input('''Enter integers separated by spaces: ''') _lowerCAmelCase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
46
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : List[Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = None if token is not None: snake_case__ : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : List[Any] = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ ).json() snake_case__ : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__magic_name__ ): snake_case__ : Tuple = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=None ) -> List[str]: '''simple docstring''' snake_case__ : Optional[Any] = None if token is not None: snake_case__ : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : Dict = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" snake_case__ : Union[str, Any] = requests.get(__magic_name__ , headers=__magic_name__ ).json() snake_case__ : Dict = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__magic_name__ ): snake_case__ : Dict = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = None if token is not None: snake_case__ : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ , allow_redirects=__magic_name__ ) snake_case__ : Any = result.headers["""Location"""] snake_case__ : Tuple = requests.get(__magic_name__ , allow_redirects=__magic_name__ ) snake_case__ : int = os.path.join(__magic_name__ , f"{artifact_name}.zip" ) with open(__magic_name__ , """wb""" ) as fp: fp.write(response.content ) def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : str=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Any = [] snake_case__ : Union[str, Any] = [] snake_case__ : Any = None with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__magic_name__ ) as f: for line in f: snake_case__ : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs snake_case__ : str = line[: line.index(""": """ )] snake_case__ : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed snake_case__ : Dict = line[len("""FAILED """ ) :] failed_tests.append(__magic_name__ ) elif filename == "job_name.txt": snake_case__ : Optional[Any] = line if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError( f"`errors` and `failed_tests` should have the same number of elements. Got {len(__magic_name__ )} for `errors` " f"and {len(__magic_name__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" """ problem.""" ) snake_case__ : Optional[Any] = None if job_name and job_links: snake_case__ : Optional[Any] = job_links.get(__magic_name__ , __magic_name__ ) # A list with elements of the form (line of error, error, failed test) snake_case__ : List[Any] = [x + [y] + [job_link] for x, y in zip(__magic_name__ , __magic_name__ )] return result def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : Union[str, Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = [] snake_case__ : Dict = [os.path.join(__magic_name__ , __magic_name__ ) for p in os.listdir(__magic_name__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(__magic_name__ , job_links=__magic_name__ ) ) return errors def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=None ) -> List[Any]: '''simple docstring''' snake_case__ : Any = Counter() counter.update([x[1] for x in logs] ) snake_case__ : Dict = counter.most_common() snake_case__ : Any = {} for error, count in counts: if error_filter is None or error not in error_filter: snake_case__ : int = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) ) return r def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> List[Any]: '''simple docstring''' snake_case__ : str = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): snake_case__ : Tuple = test.split("""/""" )[2] else: snake_case__ : Any = None return test def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Union[str, Any]=None ) -> List[str]: '''simple docstring''' snake_case__ : List[str] = [(x[0], x[1], get_model(x[2] )) for x in logs] snake_case__ : List[Any] = [x for x in logs if x[2] is not None] snake_case__ : Any = {x[2] for x in logs} snake_case__ : Optional[Any] = {} for test in tests: snake_case__ : str = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) snake_case__ : Optional[int] = counter.most_common() snake_case__ : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} snake_case__ : int = sum(error_counts.values() ) if n_errors > 0: snake_case__ : str = {"""count""": n_errors, """errors""": error_counts} snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) ) return r def UpperCamelCase__ ( __magic_name__ : int ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[Any] = """| no. | error | status |""" snake_case__ : int = """|-:|:-|:-|""" snake_case__ : int = [header, sep] for error in reduced_by_error: snake_case__ : Union[str, Any] = reduced_by_error[error]["""count"""] snake_case__ : Dict = f"| {count} | {error[:1_00]} | |" lines.append(__magic_name__ ) return "\n".join(__magic_name__ ) def UpperCamelCase__ ( __magic_name__ : Dict ) -> List[Any]: '''simple docstring''' snake_case__ : List[Any] = """| model | no. of errors | major error | count |""" snake_case__ : Optional[int] = """|-:|-:|-:|-:|""" snake_case__ : Dict = [header, sep] for model in reduced_by_model: snake_case__ : Tuple = reduced_by_model[model]["""count"""] snake_case__ , snake_case__ : Tuple = list(reduced_by_model[model]["""errors"""].items() )[0] snake_case__ : Optional[int] = f"| {model} | {count} | {error[:60]} | {_count} |" lines.append(__magic_name__ ) return "\n".join(__magic_name__ ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") A_ : int = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) A_ : Optional[int] = get_job_links(args.workflow_run_id, token=args.token) A_ : Optional[Any] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: A_ : int = k.find(" / ") A_ : List[Any] = k[index + len(" / ") :] A_ : List[str] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) A_ : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) A_ : str = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error A_ : List[str] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors A_ : Any = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) A_ : Any = reduce_by_error(errors) A_ : Union[str, Any] = reduce_by_model(errors) A_ : Any = make_github_table(reduced_by_error) A_ : Optional[Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
38
0
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
47
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version A_ : Tuple = get_logger(__name__) class __snake_case : '''simple docstring''' lowerCamelCase__ = '''dummy_data''' lowerCamelCase__ = '''datasets''' lowerCamelCase__ = False def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , ): snake_case__ : List[Any] = 0 snake_case__ : Union[str, Any] = dataset_name snake_case__ : Optional[int] = cache_dir snake_case__ : Union[str, Any] = use_local_dummy_data snake_case__ : int = config # download_callbacks take a single url as input snake_case__ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root snake_case__ : Union[str, Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general snake_case__ : Union[str, Any] = str(__SCREAMING_SNAKE_CASE ) # to be downloaded snake_case__ : List[str] = None snake_case__ : List[str] = None @property def __UpperCamelCase ( self ): if self._dummy_file is None: snake_case__ : List[str] = self.download_dummy_data() return self._dummy_file @property def __UpperCamelCase ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def __UpperCamelCase ( self ): return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) snake_case__ : Optional[int] = cached_path( __SCREAMING_SNAKE_CASE , cache_dir=self.cache_dir , extract_compressed_file=__SCREAMING_SNAKE_CASE , force_extract=__SCREAMING_SNAKE_CASE ) return os.path.join(__SCREAMING_SNAKE_CASE , self.dummy_file_name ) @property def __UpperCamelCase ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __UpperCamelCase ( self ): if self._bucket_url is None: snake_case__ : List[str] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def __UpperCamelCase ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ): if self.load_existing_dummy_data: # dummy data is downloaded and tested snake_case__ : List[Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned snake_case__ : List[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return self.create_dummy_data_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): return self.create_dummy_data_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: return self.create_dummy_data_single(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ): return self.download_and_extract(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return self.download_and_extract(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): return path def __UpperCamelCase ( self ): return {} def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : int = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for single_url in single_urls: download_callback(__SCREAMING_SNAKE_CASE ) else: snake_case__ : List[str] = single_urls download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = [os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) for x in single_urls] else: snake_case__ : List[Any] = single_urls snake_case__ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) snake_case__ : Optional[int] = value # make sure that values are unique if all(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique snake_case__ : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one snake_case__ : Tuple = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , __SCREAMING_SNAKE_CASE ) ) for url in data_url ) snake_case__ : List[Any] = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): snake_case__ : List[str] = [data_url[0]] * len(__SCREAMING_SNAKE_CASE ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus snake_case__ : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(__SCREAMING_SNAKE_CASE ) return dummy_data_list def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for download_callback in self.download_callbacks: download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus snake_case__ : Any = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(__SCREAMING_SNAKE_CASE ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): def _iter_archive_members(__SCREAMING_SNAKE_CASE ): # this preserves the order of the members inside the ZIP archive snake_case__ : List[str] = Path(self.dummy_file ).parent snake_case__ : Dict = path.relative_to(__SCREAMING_SNAKE_CASE ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: snake_case__ : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = Path(__SCREAMING_SNAKE_CASE ) snake_case__ : int = _iter_archive_members(__SCREAMING_SNAKE_CASE ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(__SCREAMING_SNAKE_CASE ).as_posix(), file_path.open("""rb""" ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[int] = [paths] for path in paths: if os.path.isfile(__SCREAMING_SNAKE_CASE ): if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__SCREAMING_SNAKE_CASE ): if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(__SCREAMING_SNAKE_CASE ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
38
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class A ( unittest.TestCase ): snake_case__ :List[Any] = ViTImageProcessor if is_vision_available() else None @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = (3, 32, 128) lowerCAmelCase__ = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__magic_name__ ) + "\n" ) lowerCAmelCase__ = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 32, "width": 128}, } lowerCAmelCase__ = os.path.join(self.tmpdirname , __magic_name__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , **__magic_name__ : Optional[int] ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , **__magic_name__ : Optional[int] ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) lowerCAmelCase__ = Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) return image_input def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__magic_name__ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase__ = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 ) lowerCAmelCase__ = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__magic_name__ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(__magic_name__ , return_tensors="np" ) lowerCAmelCase__ = processor(images=__magic_name__ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) lowerCAmelCase__ = "test" lowerCAmelCase__ = processor(text=__magic_name__ ) lowerCAmelCase__ = tokenizer(__magic_name__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) lowerCAmelCase__ = "test" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.char_decode(__magic_name__ ) lowerCAmelCase__ = tokenizer.batch_decode(__magic_name__ ) lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) lowerCAmelCase__ = None lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) lowerCAmelCase__ = torch.randn(1 , 27 , 38 ) lowerCAmelCase__ = torch.randn(1 , 27 , 50257 ) lowerCAmelCase__ = torch.randn(1 , 27 , 30522 ) lowerCAmelCase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
48
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = IFImgaImgSuperResolutionPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def __UpperCamelCase ( self ): return self._get_superresolution_dummy_components() def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): snake_case__ : List[Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: snake_case__ : Tuple = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __UpperCamelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __UpperCamelCase ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def __UpperCamelCase ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __UpperCamelCase ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __UpperCamelCase ( self ): self._test_save_load_local() def __UpperCamelCase ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
38
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[str] = CycleDiffusionPipeline a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } a__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) a__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def a ( self : Optional[int] ): torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCAmelCase = CLIPTextModel(_lowercase ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a ( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=0 ): __UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) __UpperCAmelCase = image / 2 + 0.5 if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def a ( self : Optional[int] ): __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def a ( self : Optional[int] ): __UpperCAmelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowercase , '''half''' ): __UpperCAmelCase = module.half() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a ( self : Tuple ): return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def a ( self : List[str] ): return super().test_inference_batch_single_identical() @skip_mps def a ( self : int ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def a ( self : str ): return super().test_save_load_optional_components() @skip_mps def a ( self : int ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained( _lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def a ( self : Optional[Any] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images assert np.abs(image - expected_image ).max() < 2E-2
49
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu A_ : Dict = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : List[Any]=None , __magic_name__ : List[str]=None , __magic_name__ : List[str]=None ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = True while ask_again: snake_case__ : Optional[Any] = input(__magic_name__ ) try: if default is not None and len(__magic_name__ ) == 0: return default return convert_value(__magic_name__ ) if convert_value is not None else result except Exception: if error_message is not None: print(__magic_name__ ) def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Any=[] , __magic_name__ : Optional[int]=None , __magic_name__ : int=0 ) -> Optional[int]: '''simple docstring''' snake_case__ : Union[str, Any] = BulletMenu(__magic_name__ , __magic_name__ ) snake_case__ : Optional[Any] = menu.run(default_choice=__magic_name__ ) return convert_value(__magic_name__ ) if convert_value is not None else result def UpperCamelCase__ ( __magic_name__ : Any ) -> int: '''simple docstring''' snake_case__ : Tuple = int(__magic_name__ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCamelCase__ ( __magic_name__ : str ) -> Tuple: '''simple docstring''' snake_case__ : List[Any] = int(__magic_name__ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCamelCase__ ( __magic_name__ : List[str] ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = int(__magic_name__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase__ ( __magic_name__ : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[Any] = int(__magic_name__ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCamelCase__ ( __magic_name__ : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ : Optional[Any] = int(__magic_name__ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCamelCase__ ( __magic_name__ : Dict ) -> Tuple: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class __snake_case ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : str = super()._format_usage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : str = usage.replace("""<command> [<args>] """ , """""" ) return usage
38
0
'''simple docstring''' from __future__ import annotations UpperCamelCase : List[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = graph # mapping node to its parent in resulting breadth first tree lowerCamelCase__ = {} lowerCamelCase__ = source_vertex def UpperCamelCase_ ( self ): lowerCamelCase__ = {self.source_vertex} lowerCamelCase__ = None lowerCamelCase__ = [self.source_vertex] # first in first out queue while queue: lowerCamelCase__ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_lowerCAmelCase ) lowerCamelCase__ = vertex queue.append(_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if target_vertex == self.source_vertex: return self.source_vertex lowerCamelCase__ = self.parent.get(_lowerCAmelCase ) if target_vertex_parent is None: lowerCamelCase__ = ( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(_lowerCAmelCase ) return self.shortest_path(_lowerCAmelCase ) + F'''->{target_vertex}''' if __name__ == "__main__": UpperCamelCase : List[Any] = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
50
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( __magic_name__ : list ) -> float: '''simple docstring''' if not nums: raise ValueError("""List is empty""" ) return sum(__magic_name__ ) / len(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
38
0
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =CTRLTokenizer _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] UpperCAmelCase = dict(zip(a__ , range(len(a__ ) ) ) ) UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] UpperCAmelCase = {'''unk_token''': '''<unk>'''} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(a__ ) ) def __snake_case ( self : Union[str, Any] , **a__ : int ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __snake_case ( self : List[str] , a__ : List[Any] ): UpperCAmelCase = '''adapt react readapt apt''' UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def __snake_case ( self : int ): UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase = '''adapt react readapt apt''' UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() UpperCAmelCase = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = tokens + [tokenizer.unk_token] UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ )
51
'''simple docstring''' from __future__ import annotations A_ : str = "Muhammad Umer Farooq" A_ : Optional[Any] = "MIT" A_ : int = "1.0.0" A_ : int = "Muhammad Umer Farooq" A_ : int = "[email protected]" A_ : Dict = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): super().__init__() snake_case__ : list[str] = [] snake_case__ : List[Any] = domain def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: snake_case__ : str = parse.urljoin(self.domain , __SCREAMING_SNAKE_CASE ) self.urls.append(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' return ".".join(get_sub_domain_name(__magic_name__ ).split(""".""" )[-2:] ) def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' return parse.urlparse(__magic_name__ ).netloc def UpperCamelCase__ ( __magic_name__ : str = "https://github.com" ) -> list[str]: '''simple docstring''' snake_case__ : List[str] = get_domain_name(__magic_name__ ) # Initialize the parser snake_case__ : Optional[Any] = Parser(__magic_name__ ) try: # Open URL snake_case__ : Any = requests.get(__magic_name__ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through snake_case__ : List[str] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: snake_case__ : Tuple = requests.get(__magic_name__ ) # Get the valid email. snake_case__ : List[str] = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__magic_name__ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__magic_name__ ) if __name__ == "__main__": A_ : str = emails_from_url("https://github.com") print(F'{len(emails)} emails found:') print("\n".join(sorted(emails)))
38
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A = imread(r'''digital_image_processing/image_data/lena_small.jpg''') A = cvtColor(img, COLOR_BGR2GRAY) def __A ( ) -> Optional[int]: __a : List[str] = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def __A ( ) -> List[Any]: with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def __A ( ) -> List[Any]: __a : int = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def __A ( ) -> Dict: __a : Dict = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() __a : List[str] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def __A ( ) -> Dict: assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def __A ( ) -> str: # laplace diagonals __a : Dict = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]]) __a : Optional[int] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def __A ( ) -> Dict: assert med.median_filter(a_ , 3).any() def __A ( ) -> Union[str, Any]: __a , __a : List[Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def __A ( ) -> Tuple: __a : Dict = sp.make_sepia(a_ , 20) assert sepia.all() def __A ( a_ :str = "digital_image_processing/image_data/lena_small.jpg") -> Tuple: __a : Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def __A ( a_ :str = "digital_image_processing/image_data/lena_small.jpg" , ) -> str: __a : List[Any] = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def __A ( ) -> List[Any]: __a : List[Any] = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. __a : Union[str, Any] = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None __a : Union[str, Any] = 0 __a : Union[str, Any] = 0 __a : List[Any] = image[x_coordinate][y_coordinate] __a : Optional[int] = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __a : str = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): __a : Dict = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
52
'''simple docstring''' def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> Tuple: '''simple docstring''' if not head: return True # split the list to two parts snake_case__ , snake_case__ : Dict = head.next, head while fast and fast.next: snake_case__ : Any = fast.next.next snake_case__ : int = slow.next snake_case__ : Dict = slow.next snake_case__ : List[str] = None # Don't forget here! But forget still works! # reverse the second part snake_case__ : Tuple = None while second: snake_case__ : Tuple = second.next snake_case__ : Any = node snake_case__ : str = second snake_case__ : Optional[Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False snake_case__ : List[Any] = node.next snake_case__ : int = head.next return True def UpperCamelCase__ ( __magic_name__ : Any ) -> Optional[Any]: '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) snake_case__ : List[Any] = head while fast and fast.next: snake_case__ , snake_case__ : Any = fast.next.next, slow.next # 2. Push the second half into the stack snake_case__ : Tuple = [slow.val] while slow.next: snake_case__ : Optional[Any] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False snake_case__ : str = cur.next return True def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Tuple: '''simple docstring''' if not head or not head.next: return True snake_case__ : int = {} snake_case__ : Union[str, Any] = 0 while head: if head.val in d: d[head.val].append(__magic_name__ ) else: snake_case__ : Tuple = [pos] snake_case__ : Optional[Any] = head.next pos += 1 snake_case__ : int = pos - 1 snake_case__ : str = 0 for v in d.values(): if len(__magic_name__ ) % 2 != 0: middle += 1 else: snake_case__ : List[str] = 0 for i in range(0 , len(__magic_name__ ) ): if v[i] + v[len(__magic_name__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
38
0
def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): __lowerCAmelCase = '' for i in table: res += inp[i - 1] return res def a_ ( lowerCAmelCase_ : Union[str, Any] ): return data[1:] + data[0] def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = '' for i in range(len(lowerCAmelCase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : List[str] ): __lowerCAmelCase = int('0b' + data[0] + data[-1], 2 ) __lowerCAmelCase = int('0b' + data[1:3], 2 ) return bin(s[row][col] )[2:] def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Any ): __lowerCAmelCase = message[:4] __lowerCAmelCase = message[4:] __lowerCAmelCase = apply_table(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = xor(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = apply_sbox(lowerCAmelCase_, temp[:4] ) # noqa: E741 __lowerCAmelCase = apply_sbox(lowerCAmelCase_, temp[4:] ) __lowerCAmelCase = '0' * (2 - len(lowerCAmelCase_ )) + l # noqa: E741 __lowerCAmelCase = '0' * (2 - len(lowerCAmelCase_ )) + r __lowerCAmelCase = apply_table(l + r, lowerCAmelCase_ ) __lowerCAmelCase = xor(lowerCAmelCase_, lowerCAmelCase_ ) return temp + right if __name__ == "__main__": _snake_case : str = input('Enter 10 bit key: ') _snake_case : Any = input('Enter 8 bit message: ') _snake_case : Tuple = [6, 3, 7, 4, 8, 5, 10, 9] _snake_case : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _snake_case : List[Any] = [2, 4, 3, 1] _snake_case : Tuple = [2, 6, 3, 1, 4, 8, 5, 7] _snake_case : Union[str, Any] = [4, 1, 3, 5, 7, 2, 8, 6] _snake_case : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1] _snake_case : Optional[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _snake_case : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _snake_case : Optional[Any] = apply_table(key, paa_table) _snake_case : Any = temp[:5] _snake_case : Dict = temp[5:] _snake_case : Dict = left_shift(left) _snake_case : Any = left_shift(right) _snake_case : Optional[int] = apply_table(left + right, pa_table) _snake_case : Optional[Any] = left_shift(left) _snake_case : Any = left_shift(right) _snake_case : Tuple = left_shift(left) _snake_case : List[str] = left_shift(right) _snake_case : Optional[Any] = apply_table(left + right, pa_table) # encryption _snake_case : Any = apply_table(message, IP) _snake_case : Optional[Any] = function(expansion, sa, sa, keya, temp) _snake_case : Optional[int] = temp[4:] + temp[:4] _snake_case : Optional[Any] = function(expansion, sa, sa, keya, temp) _snake_case : str = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption _snake_case : Tuple = apply_table(CT, IP) _snake_case : Dict = function(expansion, sa, sa, keya, temp) _snake_case : Optional[int] = temp[4:] + temp[:4] _snake_case : Any = function(expansion, sa, sa, keya, temp) _snake_case : Optional[Any] = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
53
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A_ : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A_ : str = 250004 A_ : str = 250020 @require_sentencepiece @require_tokenizers class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MBartTokenizer lowerCamelCase__ = MBartTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def __UpperCamelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self ): snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) snake_case__ : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case__ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case__ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def __UpperCamelCase ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case__ : Optional[int] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = tempfile.mkdtemp() snake_case__ : int = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) snake_case__ : List[str] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way snake_case__ : Tuple = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True snake_case__ : Any = tempfile.mkdtemp() snake_case__ : Optional[int] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) snake_case__ : int = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way snake_case__ : List[Any] = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False snake_case__ : Dict = tempfile.mkdtemp() snake_case__ : Union[str, Any] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case__ : Dict = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = '''facebook/mbart-large-en-ro''' lowerCamelCase__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] lowerCamelCase__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] lowerCamelCase__ = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def __UpperCamelCase ( cls ): snake_case__ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) snake_case__ : Any = 1 return cls def __UpperCamelCase ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 2_5_0_0_2_0 ) def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): self.assertIn(__SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids ) snake_case__ : List[str] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] snake_case__ : List[Any] = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = ["""this is gunna be a long sentence """ * 2_0] assert isinstance(src_text[0] , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = 1_0 snake_case__ : int = self.tokenizer(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = tempfile.mkdtemp() snake_case__ : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = MBartTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __SCREAMING_SNAKE_CASE ) @require_torch def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) snake_case__ : int = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) snake_case__ : List[str] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) snake_case__ : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.tokenizer(self.src_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=3 , return_tensors="""pt""" ) snake_case__ : Optional[int] = self.tokenizer( text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=1_0 , return_tensors="""pt""" ) snake_case__ : str = targets["""input_ids"""] snake_case__ : Optional[Any] = shift_tokens_right(__SCREAMING_SNAKE_CASE , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , { # A, test, EOS, en_XX """input_ids""": [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 2_5_0_0_0_1, } , )
38
0
class A : def __init__( self: List[Any] ) -> None: '''simple docstring''' UpperCAmelCase_ ={} # Mapping from char to TrieNode UpperCAmelCase_ =False def lowerCAmelCase__ ( self: int , _lowerCAmelCase: list[str] ) -> None: '''simple docstring''' for word in words: self.insert(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: str ) -> None: '''simple docstring''' UpperCAmelCase_ =self for char in word: if char not in curr.nodes: UpperCAmelCase_ =TrieNode() UpperCAmelCase_ =curr.nodes[char] UpperCAmelCase_ =True def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: str ) -> bool: '''simple docstring''' UpperCAmelCase_ =self for char in word: if char not in curr.nodes: return False UpperCAmelCase_ =curr.nodes[char] return curr.is_leaf def lowerCAmelCase__ ( self: str , _lowerCAmelCase: str ) -> None: '''simple docstring''' def _delete(_lowerCAmelCase: TrieNode , _lowerCAmelCase: str , _lowerCAmelCase: int ) -> bool: if index == len(_lowerCAmelCase ): # If word does not exist if not curr.is_leaf: return False UpperCAmelCase_ =False return len(curr.nodes ) == 0 UpperCAmelCase_ =word[index] UpperCAmelCase_ =curr.nodes.get(_lowerCAmelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCAmelCase_ =_delete(_lowerCAmelCase , _lowerCAmelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _lowerCAmelCase , 0 ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if node.is_leaf: print(lowercase__ , end=" " ) for key, value in node.nodes.items(): print_words(lowercase__ , word + key ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ ="banana bananas bandana band apple all beast".split() UpperCAmelCase_ =TrieNode() root.insert_many(lowercase__ ) # print_words(root, "") assert all(root.find(lowercase__ ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' print(str(lowercase__ ) , "works!" if passes else "doesn't work :(" ) def a__ ( ): '''simple docstring''' assert test_trie() def a__ ( ): '''simple docstring''' print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
54
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : int = logging.get_logger(__name__) A_ : Dict = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''bit''' lowerCamelCase__ = ['''preactivation''', '''bottleneck'''] lowerCamelCase__ = ['''SAME''', '''VALID'''] def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="preactivation" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case__ : Tuple = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) snake_case__ : List[str] = num_channels snake_case__ : Tuple = embedding_size snake_case__ : str = hidden_sizes snake_case__ : Optional[Any] = depths snake_case__ : List[Any] = layer_type snake_case__ : Dict = hidden_act snake_case__ : Union[str, Any] = global_padding snake_case__ : List[str] = num_groups snake_case__ : str = drop_path_rate snake_case__ : List[Any] = embedding_dynamic_padding snake_case__ : List[str] = output_stride snake_case__ : Dict = width_factor snake_case__ : List[str] = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] snake_case__ , snake_case__ : Dict = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
38
0
from manim import * class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : str ): __A = Rectangle(height=0.5 ,width=0.5 ) __A = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) __A = [mem.copy() for i in range(6 )] __A = [mem.copy() for i in range(6 )] __A = VGroup(*A ).arrange(A ,buff=0 ) __A = VGroup(*A ).arrange(A ,buff=0 ) __A = VGroup(A ,A ).arrange(A ,buff=0 ) __A = Text("CPU" ,font_size=24 ) __A = Group(A ,A ).arrange(A ,buff=0.5 ,aligned_edge=A ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A ) __A = [mem.copy() for i in range(1 )] __A = VGroup(*A ).arrange(A ,buff=0 ) __A = Text("GPU" ,font_size=24 ) __A = Group(A ,A ).arrange(A ,buff=0.5 ,aligned_edge=A ) gpu.align_to(A ,A ) gpu.set_x(gpu.get_x() - 1 ) self.add(A ) __A = [mem.copy() for i in range(6 )] __A = VGroup(*A ).arrange(A ,buff=0 ) __A = Text("Model" ,font_size=24 ) __A = Group(A ,A ).arrange(A ,buff=0.5 ,aligned_edge=A ) model.move_to([3, -1.0, 0] ) self.play( Create(A ,run_time=1 ) ,Create(A ,run_time=1 ) ,Create(A ,run_time=1 ) ,) __A = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) __A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __A = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(A ,run_time=2.5 ) ,Write(A ) ,Write(A ) ) self.add(A ) __A = [] __A = [] __A = [] for i, rect in enumerate(A ): __A = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(A ,opacity=0.7 ) cpu_target.move_to(A ) cpu_target.generate_target() __A = 0.46 / 4 __A = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=A ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=A ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=A ,buff=0.0 ) cpu_targs.append(A ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(A ) ) second_animations.append(MoveToTarget(A ,run_time=1.5 ) ) self.play(*A ) self.play(*A ) self.wait()
55
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A_ : Optional[int] = logging.get_logger(__name__) def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=False ) -> Tuple: '''simple docstring''' snake_case__ : int = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Tuple=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: snake_case__ : int = """""" else: snake_case__ : Dict = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : int = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case__ : Union[str, Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Optional[int] = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size] snake_case__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Optional[int] = in_proj_bias[-config.hidden_size :] def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case__ : str = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : str ) -> Union[str, Any]: '''simple docstring''' snake_case__ : List[str] = dct.pop(__magic_name__ ) snake_case__ : Dict = val def UpperCamelCase__ ( ) -> str: '''simple docstring''' snake_case__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : int=False ) -> Optional[int]: '''simple docstring''' snake_case__ : int = BitConfig( global_padding="""same""" , layer_type="""bottleneck""" , depths=(3, 4, 9) , out_features=["""stage3"""] , embedding_dynamic_padding=__magic_name__ , ) snake_case__ : Optional[int] = ViTHybridConfig(backbone_config=__magic_name__ , image_size=3_84 , num_labels=10_00 ) snake_case__ : Union[str, Any] = False # load original model from timm snake_case__ : List[Any] = timm.create_model(__magic_name__ , pretrained=__magic_name__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[int] = timm_model.state_dict() if base_model: remove_classification_head_(__magic_name__ ) snake_case__ : int = create_rename_keys(__magic_name__ , __magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , __magic_name__ ) snake_case__ : str = """huggingface/label-files""" snake_case__ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case__ : Dict = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : List[Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case__ : int = idalabel snake_case__ : str = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ : str = ViTHybridModel(__magic_name__ ).eval() else: snake_case__ : Union[str, Any] = ViTHybridForImageClassification(__magic_name__ ).eval() model.load_state_dict(__magic_name__ ) # create image processor snake_case__ : Optional[Any] = create_transform(**resolve_data_config({} , model=__magic_name__ ) ) snake_case__ : Union[str, Any] = transform.transforms snake_case__ : Tuple = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } snake_case__ : Any = ViTHybridImageProcessor( do_resize=__magic_name__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__magic_name__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=__magic_name__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) snake_case__ : Any = prepare_img() snake_case__ : int = transform(__magic_name__ ).unsqueeze(0 ) snake_case__ : List[str] = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(__magic_name__ , __magic_name__ ) # verify logits with torch.no_grad(): snake_case__ : Optional[Any] = model(__magic_name__ ) snake_case__ : Union[str, Any] = outputs.logits print("""Predicted class:""" , logits.argmax(-1 ).item() ) if base_model: snake_case__ : Dict = timm_model.forward_features(__magic_name__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__magic_name__ , outputs.pooler_output , atol=1E-3 ) else: snake_case__ : int = timm_model(__magic_name__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__magic_name__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(__magic_name__ ) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(f"ybelkada/{vit_name}" ) processor.push_to_hub(f"ybelkada/{vit_name}" ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) A_ : Union[str, Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
38
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "sentencepiece.bpe.model"} _a : List[Any] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } _a : Union[str, Any] = { "moussaKam/mbarthez": 1_024, "moussaKam/barthez": 1_024, "moussaKam/barthez-orangesum-title": 1_024, } _a : Dict = "▁" class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[str] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int]="<s>" , SCREAMING_SNAKE_CASE_ : Optional[int]="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="</s>" , SCREAMING_SNAKE_CASE_ : Tuple="<s>" , SCREAMING_SNAKE_CASE_ : List[str]="<unk>" , SCREAMING_SNAKE_CASE_ : Any="<pad>" , SCREAMING_SNAKE_CASE_ : str="<mask>" , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __snake_case = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token __snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) __snake_case = vocab_file __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) __snake_case = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} __snake_case = len(self.sp_model ) - 1 __snake_case = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case = [self.cls_token_id] __snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a ( self : List[str] ) -> Dict: return len(self.sp_model ) def a ( self : Optional[int] ) -> List[str]: __snake_case = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a ( self : Dict , SCREAMING_SNAKE_CASE_ : str ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple ) -> List[str]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __snake_case = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) return spm_id if spm_id else self.unk_token_id def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]: __snake_case = [] __snake_case = '' __snake_case = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token __snake_case = True __snake_case = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) __snake_case = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def __getstate__( self : List[str] ) -> Tuple: __snake_case = self.__dict__.copy() __snake_case = None return state def __setstate__( self : str , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: __snake_case = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case = {} __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __snake_case = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as fi: __snake_case = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
56
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = 42 class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE=True , ): super().__init__() snake_case__ : str = layers_per_block snake_case__ : int = torch.nn.Convad( __SCREAMING_SNAKE_CASE , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) snake_case__ : List[Any] = None snake_case__ : List[Any] = nn.ModuleList([] ) # down snake_case__ : Union[str, Any] = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = output_channel snake_case__ : Union[str, Any] = block_out_channels[i] snake_case__ : int = i == len(__SCREAMING_SNAKE_CASE ) - 1 snake_case__ : str = get_down_block( __SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , ) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid snake_case__ : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , ) # out snake_case__ : Tuple = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 ) snake_case__ : Tuple = nn.SiLU() snake_case__ : str = 2 * out_channels if double_z else out_channels snake_case__ : int = nn.Convad(block_out_channels[-1] , __SCREAMING_SNAKE_CASE , 3 , padding=1 ) snake_case__ : Union[str, Any] = False def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = x snake_case__ : int = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) # middle snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: snake_case__ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # middle snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: snake_case__ : List[str] = down_block(__SCREAMING_SNAKE_CASE ) # middle snake_case__ : str = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process snake_case__ : Any = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = self.conv_act(__SCREAMING_SNAKE_CASE ) snake_case__ : str = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE="group" , ): super().__init__() snake_case__ : Any = layers_per_block snake_case__ : Optional[Any] = nn.Convad( __SCREAMING_SNAKE_CASE , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) snake_case__ : Union[str, Any] = None snake_case__ : Dict = nn.ModuleList([] ) snake_case__ : Optional[int] = in_channels if norm_type == """spatial""" else None # mid snake_case__ : Tuple = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , ) # up snake_case__ : List[Any] = list(reversed(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Optional[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = output_channel snake_case__ : Optional[Any] = reversed_block_out_channels[i] snake_case__ : List[str] = i == len(__SCREAMING_SNAKE_CASE ) - 1 snake_case__ : int = get_up_block( __SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block + 1 , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , prev_output_channel=__SCREAMING_SNAKE_CASE , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , resnet_time_scale_shift=__SCREAMING_SNAKE_CASE , ) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) snake_case__ : int = output_channel # out if norm_type == "spatial": snake_case__ : List[Any] = SpatialNorm(block_out_channels[0] , __SCREAMING_SNAKE_CASE ) else: snake_case__ : Any = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 ) snake_case__ : Tuple = nn.SiLU() snake_case__ : Union[str, Any] = nn.Convad(block_out_channels[0] , __SCREAMING_SNAKE_CASE , 3 , padding=1 ) snake_case__ : int = False def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): snake_case__ : Union[str, Any] = z snake_case__ : Any = self.conv_in(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle snake_case__ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) snake_case__ : int = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: snake_case__ : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle snake_case__ : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: # middle snake_case__ : List[Any] = self.mid_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: snake_case__ : Dict = up_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: snake_case__ : Optional[Any] = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: snake_case__ : str = self.conv_norm_out(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Any = self.conv_act(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="random" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True ): super().__init__() snake_case__ : int = n_e snake_case__ : Optional[int] = vq_embed_dim snake_case__ : int = beta snake_case__ : Optional[int] = legacy snake_case__ : Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) snake_case__ : List[str] = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) snake_case__ : Optional[Any] = self.used.shape[0] snake_case__ : List[str] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": snake_case__ : Dict = self.re_embed snake_case__ : List[str] = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: snake_case__ : Union[str, Any] = n_e snake_case__ : str = sane_index_shape def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 snake_case__ : Dict = inds.reshape(ishape[0] , -1 ) snake_case__ : Any = self.used.to(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = (inds[:, :, None] == used[None, None, ...]).long() snake_case__ : List[Any] = match.argmax(-1 ) snake_case__ : List[str] = match.sum(2 ) < 1 if self.unknown_index == "random": snake_case__ : List[str] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: snake_case__ : Optional[Any] = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 snake_case__ : int = inds.reshape(ishape[0] , -1 ) snake_case__ : Optional[int] = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token snake_case__ : List[Any] = 0 # simply set to zero snake_case__ : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): # reshape z -> (batch, height, width, channel) and flatten snake_case__ : Any = z.permute(0 , 2 , 3 , 1 ).contiguous() snake_case__ : Optional[Any] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z snake_case__ : Dict = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE , self.embedding.weight ) , dim=1 ) snake_case__ : Union[str, Any] = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) snake_case__ : List[str] = None snake_case__ : Union[str, Any] = None # compute loss for embedding if not self.legacy: snake_case__ : Tuple = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: snake_case__ : List[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients snake_case__ : Any = z + (z_q - z).detach() # reshape back to match original input shape snake_case__ : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: snake_case__ : List[Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis snake_case__ : str = self.remap_to_used(__SCREAMING_SNAKE_CASE ) snake_case__ : str = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: snake_case__ : Tuple = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # shape specifying (batch, height, width, channel) if self.remap is not None: snake_case__ : List[Any] = indices.reshape(shape[0] , -1 ) # add batch axis snake_case__ : Optional[int] = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = indices.reshape(-1 ) # flatten again # get quantized latent vectors snake_case__ : int = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: snake_case__ : str = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape snake_case__ : str = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): snake_case__ : Tuple = parameters snake_case__ , snake_case__ : Any = torch.chunk(__SCREAMING_SNAKE_CASE , 2 , dim=1 ) snake_case__ : Union[str, Any] = torch.clamp(self.logvar , -30.0 , 20.0 ) snake_case__ : Optional[int] = deterministic snake_case__ : Optional[int] = torch.exp(0.5 * self.logvar ) snake_case__ : Any = torch.exp(self.logvar ) if self.deterministic: snake_case__ : List[str] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE = None ): # make sure sample is on the same device as the parameters and has same dtype snake_case__ : Dict = randn_tensor( self.mean.shape , generator=__SCREAMING_SNAKE_CASE , device=self.parameters.device , dtype=self.parameters.dtype ) snake_case__ : Optional[int] = self.mean + self.std * sample return x def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) snake_case__ : Any = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): return self.mean
38
0
def snake_case () -> str: UpperCamelCase_: Optional[Any] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] UpperCamelCase_: List[str] = 6 UpperCamelCase_: Optional[Any] = 1 UpperCamelCase_: Tuple = 1_9_0_1 UpperCamelCase_: List[str] = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 UpperCamelCase_: Optional[Any] = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 UpperCamelCase_: Dict = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 UpperCamelCase_: Dict = day - days_per_month[month - 2] if month > 1_2: year += 1 UpperCamelCase_: Dict = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
57
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1, 3_8_4, 2_4, 2_4] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , ): snake_case__ : str = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : Optional[int] = patch_size snake_case__ : List[str] = num_channels snake_case__ : Any = is_training snake_case__ : int = use_labels snake_case__ : str = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : str = backbone_out_indices snake_case__ : List[Any] = num_attention_heads snake_case__ : Dict = intermediate_size snake_case__ : Optional[Any] = hidden_act snake_case__ : str = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : Dict = initializer_range snake_case__ : Optional[int] = num_labels snake_case__ : str = backbone_featmap_shape snake_case__ : List[Any] = scope snake_case__ : Optional[Any] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) snake_case__ : List[Any] = (image_size // patch_size) ** 2 snake_case__ : Union[str, Any] = num_patches + 1 def __UpperCamelCase ( self ): snake_case__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : str = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): snake_case__ : Any = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [9_6, 1_9_2, 3_8_4, 7_6_8], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = DPTModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = self.num_labels snake_case__ : str = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = self.num_labels snake_case__ : Dict = DPTForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : str = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs snake_case__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCamelCase__ = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : List[Any] = DPTModelTester(self ) snake_case__ : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Tuple = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : List[str] = [*signature.parameters.keys()] snake_case__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : int = True if model_class in get_values(__SCREAMING_SNAKE_CASE ): continue snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() snake_case__ : Optional[Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Union[str, Any] = False snake_case__ : str = True if model_class in get_values(__SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() snake_case__ : List[str] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCamelCase ( self ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : str = _config_zero_init(__SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: snake_case__ : Any = model_class(config=__SCREAMING_SNAKE_CASE ) # Skip the check for the backbone snake_case__ : str = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": snake_case__ : Optional[int] = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __UpperCamelCase ( self ): pass @slow def __UpperCamelCase ( self ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: snake_case__ : List[str] = DPTModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = """add""" with self.assertRaises(__SCREAMING_SNAKE_CASE ): snake_case__ : List[str] = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> Dict: '''simple docstring''' snake_case__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Dict = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) snake_case__ : Union[str, Any] = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = prepare_img() snake_case__ : Optional[int] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : Dict = model(**__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = outputs.predicted_depth # verify the predicted depth snake_case__ : Any = torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
38
0
"""simple docstring""" import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _lowerCAmelCase : """simple docstring""" @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return self.get_dummy_input() @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(f'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' ) def UpperCAmelCase__ ( self , _lowercase=True , _lowercase=False , _lowercase=False , _lowercase=False , ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = 4 snake_case_ : Optional[Any] = 3_2 snake_case_ : int = (3_2, 3_2) snake_case_ : List[Any] = torch.manual_seed(0 ) snake_case_ : Union[str, Any] = torch.device(_lowercase ) snake_case_ : Union[str, Any] = (batch_size, num_channels) + sizes snake_case_ : List[Any] = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase ) snake_case_ : str = {"""hidden_states""": hidden_states} if include_temb: snake_case_ : Union[str, Any] = 1_2_8 snake_case_ : Dict = randn_tensor((batch_size, temb_channels) , generator=_lowercase , device=_lowercase ) if include_res_hidden_states_tuple: snake_case_ : Any = torch.manual_seed(1 ) snake_case_ : Tuple = (randn_tensor(_lowercase , generator=_lowercase , device=_lowercase ),) if include_encoder_hidden_states: snake_case_ : Optional[Any] = floats_tensor((batch_size, 3_2, 3_2) ).to(_lowercase ) if include_skip_sample: snake_case_ : List[str] = randn_tensor(((batch_size, 3) + sizes) , generator=_lowercase , device=_lowercase ) return dummy_input def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Dict = { """in_channels""": 3_2, """out_channels""": 3_2, """temb_channels""": 1_2_8, } if self.block_type == "up": snake_case_ : Optional[int] = 3_2 if self.block_type == "mid": init_dict.pop("""out_channels""" ) snake_case_ : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self , _lowercase ) -> List[str]: '''simple docstring''' snake_case_ , snake_case_ : str = self.prepare_init_args_and_inputs_for_common() snake_case_ : int = self.block_class(**_lowercase ) unet_block.to(_lowercase ) unet_block.eval() with torch.no_grad(): snake_case_ : Dict = unet_block(**_lowercase ) if isinstance(_lowercase , _lowercase ): snake_case_ : Dict = output[0] self.assertEqual(output.shape , self.output_shape ) snake_case_ : int = output[0, -1, -3:, -3:] snake_case_ : Dict = torch.tensor(_lowercase ).to(_lowercase ) assert torch_all_close(output_slice.flatten() , _lowercase , atol=5E-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ , snake_case_ : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() snake_case_ : Union[str, Any] = self.block_class(**_lowercase ) model.to(_lowercase ) model.train() snake_case_ : Optional[int] = model(**_lowercase ) if isinstance(_lowercase , _lowercase ): snake_case_ : List[str] = output[0] snake_case_ : int = torch.device(_lowercase ) snake_case_ : Dict = randn_tensor(output.shape , device=_lowercase ) snake_case_ : Optional[Any] = torch.nn.functional.mse_loss(_lowercase , _lowercase ) loss.backward()
58
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Dict: '''simple docstring''' snake_case__ : int = botoa.client("""iam""" ) snake_case__ : Union[str, Any] = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=__magic_name__ , AssumeRolePolicyDocument=json.dumps(__magic_name__ , indent=2 ) ) snake_case__ : Dict = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=__magic_name__ , PolicyName=f"{role_name}_policy_permission" , PolicyDocument=json.dumps(__magic_name__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"role {role_name} already exists. Using existing one" ) def UpperCamelCase__ ( __magic_name__ : Any ) -> Tuple: '''simple docstring''' snake_case__ : List[str] = botoa.client("""iam""" ) return iam_client.get_role(RoleName=__magic_name__ )["Role"]["Arn"] def UpperCamelCase__ ( ) -> Tuple: '''simple docstring''' snake_case__ : Union[str, Any] = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , __magic_name__ , ) snake_case__ : List[Any] = None if credentials_configuration == 0: snake_case__ : Dict = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) snake_case__ : List[str] = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) snake_case__ : List[str] = _ask_field("""AWS Access Key ID: """ ) snake_case__ : int = aws_access_key_id snake_case__ : Optional[Any] = _ask_field("""AWS Secret Access Key: """ ) snake_case__ : List[str] = aws_secret_access_key snake_case__ : Tuple = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) snake_case__ : Optional[int] = aws_region snake_case__ : int = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , __magic_name__ , ) if role_management == 0: snake_case__ : Optional[Any] = _ask_field("""Enter your IAM role name: """ ) else: snake_case__ : Optional[int] = """accelerate_sagemaker_execution_role""" print(f"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(__magic_name__ ) snake_case__ : Dict = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : Any = None if is_custom_docker_image: snake_case__ : str = _ask_field("""Enter your Docker image: """ , lambda __magic_name__ : str(__magic_name__ ).lower() ) snake_case__ : Tuple = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : List[Any] = None if is_sagemaker_inputs_enabled: snake_case__ : str = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , ) snake_case__ : Optional[int] = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : Optional[Any] = None if is_sagemaker_metrics_enabled: snake_case__ : List[Any] = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , ) snake_case__ : Tuple = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) snake_case__ : Any = {} snake_case__ : List[Any] = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) if use_dynamo: snake_case__ : str = """dynamo_""" snake_case__ : Tuple = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) snake_case__ : List[str] = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) if use_custom_options: snake_case__ : str = _ask_options( """Which mode do you want to use?""" , __magic_name__ , lambda __magic_name__ : TORCH_DYNAMO_MODES[int(__magic_name__ )] , default="""default""" , ) snake_case__ : Union[str, Any] = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : str = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : Dict = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: snake_case__ : List[str] = _ask_options( __magic_name__ , __magic_name__ , lambda __magic_name__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__magic_name__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" snake_case__ : Optional[int] = _ask_field(__magic_name__ , lambda __magic_name__ : str(__magic_name__ ).lower() , default="""ml.p3.2xlarge""" ) snake_case__ : Dict = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): snake_case__ : Optional[Any] = _ask_field( """How many machines do you want use? [1]: """ , __magic_name__ , default=1 , ) snake_case__ : Union[str, Any] = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=__magic_name__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__magic_name__ , use_cpu=__magic_name__ , dynamo_config=__magic_name__ , eca_instance_type=__magic_name__ , profile=__magic_name__ , region=__magic_name__ , iam_role_name=__magic_name__ , mixed_precision=__magic_name__ , num_machines=__magic_name__ , sagemaker_inputs_file=__magic_name__ , sagemaker_metrics_file=__magic_name__ , )
38
0
import inspect import unittest class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[Any]: '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps lowerCamelCase__: Optional[Any] =inspect.getmembers(UpperCAmelCase_ , inspect.isclass) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": lowerCamelCase__: Tuple ="k-diffusion" elif backend == "invisible_watermark": lowerCamelCase__: List[Any] ="invisible-watermark" assert backend in deps, F"""{backend} is not in the deps table!"""
59
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def UpperCamelCase__ ( __magic_name__ : str = "laptop" ) -> DataFrame: '''simple docstring''' snake_case__ : Union[str, Any] = f"https://www.amazon.in/laptop/s?k={product}" snake_case__ : List[str] = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } snake_case__ : int = BeautifulSoup(requests.get(__magic_name__ , headers=__magic_name__ ).text ) # Initialize a Pandas dataframe with the column titles snake_case__ : Optional[Any] = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: snake_case__ : Optional[int] = item.ha.text snake_case__ : Any = """https://www.amazon.in/""" + item.ha.a["""href"""] snake_case__ : List[str] = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: snake_case__ : Dict = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: snake_case__ : Optional[int] = """Not available""" try: snake_case__ : Tuple = ( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: snake_case__ : Optional[Any] = """""" try: snake_case__ : str = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 1_00 ) except ValueError: snake_case__ : List[Any] = float("""nan""" ) except AttributeError: pass snake_case__ : str = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] snake_case__ : List[Any] = """ """ snake_case__ : Union[str, Any] = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": A_ : int = "headphones" get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
38
0
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : Any = (boundary[1] - boundary[0]) / steps snake_case_ : List[Any] = boundary[0] snake_case_ : Tuple = boundary[1] snake_case_ : Any = make_points(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case_ : int = 0.0 y += (h / 2.0) * f(_UpperCamelCase ) for i in x_i: # print(i) y += h * f(_UpperCamelCase ) y += (h / 2.0) * f(_UpperCamelCase ) return y def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : Optional[int] = a + h while x < (b - h): yield x snake_case_ : List[Any] = x + h def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: # enter your function here """simple docstring""" snake_case_ : Any = (x - 0) * (x - 0) return y def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" snake_case_ : List[str] = 0.0 # Lower bound of integration snake_case_ : Dict = 1.0 # Upper bound of integration snake_case_ : List[Any] = 10.0 # define number of steps or resolution snake_case_ : Tuple = [a, b] # define boundary of integration snake_case_ : str = method_a(_UpperCamelCase , _UpperCamelCase ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
60
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = LongformerTokenizer lowerCamelCase__ = True lowerCamelCase__ = LongformerTokenizerFast lowerCamelCase__ = True def __UpperCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case__ : Optional[int] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) snake_case__ : int = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case__ : Any = {"""unk_token""": """<unk>"""} snake_case__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : str = """lower newer""" snake_case__ : Dict = """lower newer""" return input_text, output_text def __UpperCamelCase ( self ): snake_case__ : int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case__ : Tuple = """lower newer""" snake_case__ : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] snake_case__ : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokens + [tokenizer.unk_token] snake_case__ : List[Any] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Tuple = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) snake_case__ : int = tokenizer.encode("""sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : int = """Encode this sequence.""" snake_case__ : Union[str, Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments snake_case__ : Optional[int] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) snake_case__ : List[str] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens snake_case__ : List[str] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space snake_case__ : Dict = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) snake_case__ : str = """Encode <mask> sequence""" snake_case__ : Tuple = """Encode <mask>sequence""" snake_case__ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = encoded.index(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer.encode(__SCREAMING_SNAKE_CASE ) snake_case__ : str = encoded.index(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """A, <mask> AllenNLP sentence.""" snake_case__ : str = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) snake_case__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) snake_case__ : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def __UpperCamelCase ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): snake_case__ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) snake_case__ : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state["""trim_offsets"""] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : Union[str, Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` snake_case__ : Any = f"{text_of_1_token} {text_of_1_token}" snake_case__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Optional[Any] = f" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) snake_case__ : Dict = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
38
0