code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __lowerCamelCase : Tuple = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off __lowerCamelCase : Union[str, Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] __lowerCamelCase : Dict = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class A__ ( a__ ): _UpperCAmelCase :Dict = "whisper" _UpperCAmelCase :int = ["past_key_values"] _UpperCAmelCase :List[str] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , A_=5_1865 , A_=80 , A_=6 , A_=4 , A_=6 , A_=4 , A_=1536 , A_=1536 , A_=0.0 , A_=0.0 , A_=5_0257 , A_=True , A_=True , A_="gelu" , A_=256 , A_=0.0 , A_=0.0 , A_=0.0 , A_=0.02 , A_=False , A_=1500 , A_=448 , A_=5_0256 , A_=5_0256 , A_=5_0256 , A_=None , A_=[220, 5_0256] , A_=False , A_=256 , A_=False , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_=7 , **A_ , ): '''simple docstring''' UpperCamelCase : List[str] = vocab_size UpperCamelCase : Any = num_mel_bins UpperCamelCase : Any = d_model UpperCamelCase : List[Any] = encoder_layers UpperCamelCase : Optional[int] = encoder_attention_heads UpperCamelCase : Union[str, Any] = decoder_layers UpperCamelCase : Any = decoder_attention_heads UpperCamelCase : Optional[int] = decoder_ffn_dim UpperCamelCase : int = encoder_ffn_dim UpperCamelCase : Optional[int] = dropout UpperCamelCase : int = attention_dropout UpperCamelCase : Any = activation_dropout UpperCamelCase : Union[str, Any] = activation_function UpperCamelCase : Any = init_std UpperCamelCase : List[Any] = encoder_layerdrop UpperCamelCase : int = decoder_layerdrop UpperCamelCase : Dict = use_cache UpperCamelCase : Dict = encoder_layers UpperCamelCase : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase : int = max_source_positions UpperCamelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCamelCase : Optional[Any] = classifier_proj_size UpperCamelCase : List[str] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase : List[str] = apply_spec_augment UpperCamelCase : Optional[int] = mask_time_prob UpperCamelCase : Dict = mask_time_length UpperCamelCase : str = mask_time_min_masks UpperCamelCase : List[str] = mask_feature_prob UpperCamelCase : Union[str, Any] = mask_feature_length UpperCamelCase : int = mask_feature_min_masks UpperCamelCase : int = median_filter_width super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) class A__ ( a__ ): @property def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase : Any = {0: 'batch'} else: UpperCamelCase : Dict = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction="inputs" ) return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 2_2050 , A_ = 5.0 , A_ = 220 , ): '''simple docstring''' UpperCamelCase : Any = OrderedDict() UpperCamelCase : str = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Union[str, Any] = encoder_inputs['input_features'].shape[2] UpperCamelCase : List[str] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCamelCase : Dict = super().generate_dummy_inputs( preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = encoder_inputs.pop("input_features" ) UpperCamelCase : Any = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: UpperCamelCase : Optional[int] = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def __UpperCamelCase( self ): '''simple docstring''' return 1e-3
629
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __UpperCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=None ) -> Optional[Any]: # Recurse if needed if "." in tensor_name: UpperCamelCase : List[Any] = tensor_name.split('.' ) for split in splits[:-1]: UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) UpperCamelCase : Dict = new_module UpperCamelCase : int = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) UpperCamelCase : Union[str, Any] = tensor_name in module._buffers UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) UpperCamelCase : Optional[Any] = False UpperCamelCase : str = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase : List[str] = False UpperCamelCase : Tuple = False else: UpperCamelCase : Union[str, Any] = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) UpperCamelCase : Optional[int] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase : List[Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase : Dict = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): UpperCamelCase : List[Any] = value.to('cpu' ) if value.dtype == torch.inta: UpperCamelCase : Tuple = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: UpperCamelCase : Union[str, Any] = torch.tensor(snake_case__ , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None: UpperCamelCase : Union[str, Any] = new_value.T UpperCamelCase : Union[str, Any] = old_value.__dict__ if is_abit: UpperCamelCase : Optional[Any] = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) elif is_abit: UpperCamelCase : Optional[Any] = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) UpperCamelCase : Dict = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(snake_case__ ) ) else: if value is None: UpperCamelCase : Union[str, Any] = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): UpperCamelCase : List[str] = value.to(snake_case__ ) else: UpperCamelCase : Tuple = torch.tensor(snake_case__ , device=snake_case__ ) if is_buffer: UpperCamelCase : Optional[int] = new_value else: UpperCamelCase : Tuple = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad ) UpperCamelCase : List[str] = new_value def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Any=None , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[str]=False ) -> int: for name, module in model.named_children(): if current_key_name is None: UpperCamelCase : str = [] current_key_name.append(snake_case__ ) if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(snake_case__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(snake_case__ , snake_case__ ): UpperCamelCase , UpperCamelCase : Tuple = module.weight.shape else: UpperCamelCase : Any = module.in_features UpperCamelCase : List[str] = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase : Any = bnb.nn.LinearabitLt( snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) UpperCamelCase : Optional[int] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase : str = bnb.nn.Linearabit( snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) UpperCamelCase : int = True # Store the module class in case we need to transpose the weight later UpperCamelCase : Any = type(snake_case__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(snake_case__ ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase : Optional[int] = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : Dict=None ) -> Optional[Any]: UpperCamelCase : Union[str, Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase : List[str] = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCamelCase ( *snake_case__ : Tuple , **snake_case__ : List[str] ) -> List[str]: warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , snake_case__ , ) return replace_with_bnb_linear(*snake_case__ , **snake_case__ ) def UpperCamelCase ( *snake_case__ : Dict , **snake_case__ : str ) -> Tuple: warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , snake_case__ , ) return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple ) -> List[Any]: UpperCamelCase : int = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase : List[str] = find_tied_parameters(snake_case__ ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__ ): UpperCamelCase : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase : Union[str, Any] = sum(snake_case__ , [] ) UpperCamelCase : Optional[int] = len(snake_case__ ) > 0 # Check if it is a base model UpperCamelCase : str = not hasattr(snake_case__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase : List[Any] = list(model.named_children() ) UpperCamelCase : Optional[Any] = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase : Union[str, Any] = set(snake_case__ ) - set(snake_case__ ) UpperCamelCase : Optional[int] = list(set(snake_case__ ) ) + list(snake_case__ ) # remove ".weight" from the keys UpperCamelCase : Tuple = ['.weight', '.bias'] UpperCamelCase : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase : Optional[int] = name.replace(snake_case__ , '' ) filtered_module_names.append(snake_case__ ) return filtered_module_names
40
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A : List[str] = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def snake_case__ ( _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : Union[str, Any]=8 ): """simple docstring""" UpperCamelCase__ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCamelCase__ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def snake_case__ ( _snake_case : Any , _snake_case : int=5_12 , _snake_case : List[str]=5_12 ): """simple docstring""" UpperCamelCase__ = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) UpperCamelCase__ = np.array(pil_image.convert("RGB" ) ) UpperCamelCase__ = arr.astype(np.floataa ) / 127.5 - 1 UpperCamelCase__ = np.transpose(snake_case__ , [2, 0, 1] ) UpperCamelCase__ = torch.from_numpy(snake_case__ ).unsqueeze(0 ) return image class lowerCAmelCase ( a__ ): '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :Dict , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Any , ) -> Optional[Any]: """simple docstring""" super().__init__() self.register_modules( unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , movq=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self :Tuple , lowerCamelCase_ :Dict , lowerCamelCase_ :List[str] , lowerCamelCase_ :Dict ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = min(int(num_inference_steps * strength ) , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self :Optional[int] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[Any]=None ) -> List[Any]: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(SCREAMING_SNAKE_CASE_ )}' ) UpperCamelCase__ = image.to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCamelCase__ = image else: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_ )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(SCREAMING_SNAKE_CASE_ ) ] UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) else: UpperCamelCase__ = self.movq.encode(SCREAMING_SNAKE_CASE_ ).latent_dist.sample(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.movq.config.scaling_factor * init_latents UpperCamelCase__ = torch.cat([init_latents] , dim=0 ) UpperCamelCase__ = init_latents.shape UpperCamelCase__ = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) # get latents UpperCamelCase__ = self.scheduler.add_noise(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = init_latents return latents def lowerCamelCase__ ( self :str , lowerCamelCase_ :Optional[int]=0 ) -> str: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCamelCase__ = torch.device(f'cuda:{gpu_id}' ) UpperCamelCase__ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCamelCase__ ( self :Union[str, Any] , lowerCamelCase_ :List[str]=0 ) -> Any: """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCamelCase__ = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=SCREAMING_SNAKE_CASE_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCamelCase__ = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCamelCase__ = cpu_offload_with_hook(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prev_module_hook=SCREAMING_SNAKE_CASE_ ) # We'll offload the last model manually. UpperCamelCase__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE_ ) def __call__( self :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :Tuple , lowerCamelCase_ :Dict = 5_1_2 , lowerCamelCase_ :int = 5_1_2 , lowerCamelCase_ :Tuple = 1_0_0 , lowerCamelCase_ :List[Any] = 4.0 , lowerCamelCase_ :List[Any] = 0.3 , lowerCamelCase_ :Optional[int] = 1 , lowerCamelCase_ :int = None , lowerCamelCase_ :str = "pil" , lowerCamelCase_ :List[Any] = True , ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = self._execution_device UpperCamelCase__ = guidance_scale > 1.0 if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) UpperCamelCase__ = image_embeds.shape[0] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) if do_classifier_free_guidance: UpperCamelCase__ = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) UpperCamelCase__ = negative_image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) UpperCamelCase__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [image] if not all(isinstance(SCREAMING_SNAKE_CASE_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f'Input is in incorrect format: {[type(SCREAMING_SNAKE_CASE_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor' ) UpperCamelCase__ = torch.cat([prepare_image(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for i in image] , dim=0 ) UpperCamelCase__ = image.to(dtype=image_embeds.dtype , device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.movq.encode(SCREAMING_SNAKE_CASE_ )['latents'] UpperCamelCase__ = latents.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCamelCase__ = downscale_height_and_width(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.movq_scale_factor ) UpperCamelCase__ = self.prepare_latents( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , image_embeds.dtype , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase__ = {'image_embeds': image_embeds} UpperCamelCase__ = self.unet( sample=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , added_cond_kwargs=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0] if do_classifier_free_guidance: UpperCamelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) UpperCamelCase__ = noise_pred.chunk(2 ) UpperCamelCase__ = variance_pred.chunk(2 ) UpperCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCamelCase__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCamelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , )[0] # post-processing UpperCamelCase__ = self.movq.decode(SCREAMING_SNAKE_CASE_ , force_not_quantize=SCREAMING_SNAKE_CASE_ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: UpperCamelCase__ = image * 0.5 + 0.5 UpperCamelCase__ = image.clamp(0 , 1 ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
516
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( snake_case__ : int ) -> Dict: UpperCamelCase : Optional[Any] = tmp_path / 'file.csv' UpperCamelCase : Optional[Any] = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : List[str] ) -> List[str]: UpperCamelCase : Optional[Any] = tmp_path / 'malformed_file.csv' UpperCamelCase : Any = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : List[Any] ) -> str: UpperCamelCase : Any = tmp_path / 'csv_with_image.csv' UpperCamelCase : Dict = textwrap.dedent( F"""\ image {image_file} """ ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : List[str] ) -> Tuple: UpperCamelCase : List[str] = tmp_path / 'csv_with_label.csv' UpperCamelCase : Dict = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : Dict ) -> List[str]: UpperCamelCase : List[str] = tmp_path / 'csv_with_int_list.csv' UpperCamelCase : Union[str, Any] = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[Any] ) -> List[Any]: UpperCamelCase : str = Csv() UpperCamelCase : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(snake_case__ , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(snake_case__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Optional[int]: with open(snake_case__ , encoding='utf-8' ) as f: UpperCamelCase : List[str] = f.read().splitlines()[1] UpperCamelCase : int = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) UpperCamelCase : Any = csv._generate_tables([[csv_file_with_image]] ) UpperCamelCase : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() UpperCamelCase : str = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( snake_case__ : Any ) -> str: with open(snake_case__ , encoding='utf-8' ) as f: UpperCamelCase : Any = f.read().splitlines()[1:] UpperCamelCase : Union[str, Any] = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) UpperCamelCase : int = csv._generate_tables([[csv_file_with_label]] ) UpperCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() UpperCamelCase : List[str] = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(snake_case__ ) for label in labels] def UpperCamelCase ( snake_case__ : str ) -> List[Any]: UpperCamelCase : str = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda snake_case__ : [int(snake_case__ ) for i in x.split()]} ) UpperCamelCase : List[str] = csv._generate_tables([[csv_file_with_int_list]] ) UpperCamelCase : Union[str, Any] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) UpperCamelCase : str = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
40
0
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _SCREAMING_SNAKE_CASE = "src/transformers" _SCREAMING_SNAKE_CASE = "docs/source/en/tasks" def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> Optional[int]: with open(snake_case__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case = f.readlines() # Find the start prompt. snake_case = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 snake_case = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _SCREAMING_SNAKE_CASE = direct_transformers_import(TRANSFORMERS_PATH) _SCREAMING_SNAKE_CASE = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _SCREAMING_SNAKE_CASE = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def __lowerCamelCase ( __lowerCAmelCase : Optional[int] ) -> Optional[Any]: snake_case = TASK_GUIDE_TO_MODELS[task_guide] snake_case = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) snake_case = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int]=False ) -> Tuple: snake_case = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) snake_case = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' """ to fix this.""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _SCREAMING_SNAKE_CASE = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
369
import math import random def UpperCamelCase ( snake_case__ : float , snake_case__ : bool = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> float: UpperCamelCase : Optional[Any] = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(snake_case__ ): # Forward propagation UpperCamelCase : str = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCamelCase : int = (expected / 100) - layer_a # Error delta UpperCamelCase : List[str] = layer_1_error * sigmoid_function(snake_case__ , snake_case__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input('''Expected value: ''')) __UpperCAmelCase = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
40
0
def a_ ( UpperCamelCase_ : list ) -> list: """simple docstring""" if len(snake_case__ ) <= 1: return lst lowerCamelCase = 1 while i < len(snake_case__ ): if lst[i - 1] <= lst[i]: i += 1 else: lowerCamelCase = lst[i], lst[i - 1] i -= 1 if i == 0: lowerCamelCase = 1 return lst if __name__ == "__main__": _lowerCAmelCase : List[Any] = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase : Union[str, Any] = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
246
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def UpperCamelCase ( snake_case__ : Dict ) -> Optional[int]: return EnvironmentCommand() class lowerCAmelCase_ ( a__ ): @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : List[Any] = parser.add_parser('env' ) download_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = huggingface_hub.__version__ UpperCamelCase : int = 'not installed' UpperCamelCase : Union[str, Any] = 'NA' if is_torch_available(): import torch UpperCamelCase : Any = torch.__version__ UpperCamelCase : str = torch.cuda.is_available() UpperCamelCase : Dict = 'not installed' if is_transformers_available(): import transformers UpperCamelCase : str = transformers.__version__ UpperCamelCase : Optional[Any] = 'not installed' if is_accelerate_available(): import accelerate UpperCamelCase : Dict = accelerate.__version__ UpperCamelCase : List[str] = 'not installed' if is_xformers_available(): import xformers UpperCamelCase : List[str] = xformers.__version__ UpperCamelCase : Dict = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(SCREAMING_SNAKE_CASE_ ) ) return info @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
40
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int]=12 , snake_case__ : Any=7 , snake_case__ : int=True , snake_case__ : List[str]=True , snake_case__ : List[Any]=True , snake_case__ : Any=99 , snake_case__ : List[str]=32 , snake_case__ : int=32 , snake_case__ : int=2 , snake_case__ : Optional[int]=4 , snake_case__ : int=37 , snake_case__ : Dict=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Union[str, Any]=5_12 , snake_case__ : List[str]=0.02 , snake_case__ : Union[str, Any]=0 , snake_case__ : str=None , ): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = projection_dim lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = dropout lowercase = attention_dropout lowercase = max_position_embeddings lowercase = initializer_range lowercase = scope lowercase = bos_token_id def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowercase = input_mask.numpy() lowercase = input_mask.shape lowercase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_ ): lowercase = 1 lowercase = 0 lowercase = self.get_config() return config, input_ids, tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : List[Any] ): lowercase = TFBlipTextModel(config=SCREAMING_SNAKE_CASE_ ) lowercase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) lowercase = model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowercase = self.prepare_config_and_inputs() lowercase = config_and_inputs lowercase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A_ ( a__ , unittest.TestCase ): _A :List[Any] = (TFBlipTextModel,) if is_tf_available() else () _A :int = False _A :Any = False _A :Dict = False def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = BlipTextModelTester(self ) lowercase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : int ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self : Any ): pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def SCREAMING_SNAKE_CASE__ ( self : int ): pass @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = TFBlipTextModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case__ : Tuple=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=SCREAMING_SNAKE_CASE_ )
428
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''▁''' __UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} __UpperCAmelCase = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } __UpperCAmelCase = { '''facebook/xglm-564M''': 2_048, } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None: UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCamelCase : Any = 7 UpperCamelCase : Optional[int] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] UpperCamelCase : Dict = kwargs.get('additional_special_tokens', [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, sp_model_kwargs=self.sp_model_kwargs, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase : Dict = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} UpperCamelCase : Optional[int] = len(self.sp_model ) UpperCamelCase : Any = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: UpperCamelCase : int = self.__dict__.copy() UpperCamelCase : Union[str, Any] = None UpperCamelCase : int = self.sp_model.serialized_model_proto() return state def __setstate__( self, SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : Any = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): UpperCamelCase : Any = {} UpperCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCamelCase : Optional[int] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_, token_ids_a=SCREAMING_SNAKE_CASE_, already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def snake_case_ ( self ) -> int: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_, out_type=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase : Union[str, Any] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : Dict = ''.join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_, ' ' ).strip() return out_string def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_, 'wb' ) as fi: UpperCamelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
40
0
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __A : Optional[Any] = 50_0000 __A , __A : List[str] = os.path.split(__file__) __A : List[str] = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def UpperCamelCase_ ( A__ : datasets.Dataset , **A__ : Any ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = dataset.map(**snake_case__ ) @get_duration def UpperCamelCase_ ( A__ : datasets.Dataset , **A__ : Union[str, Any] ): '''simple docstring''' lowerCAmelCase_ : List[str] = dataset.filter(**snake_case__ ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Any = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ : Optional[Any] = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowerCAmelCase_ : Tuple = generate_example_dataset( os.path.join(snake_case__ , """dataset.arrow""" ) , snake_case__ , num_examples=snake_case__ ) lowerCAmelCase_ : str = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=snake_case__ ) def tokenize(A__ : str ): return tokenizer(examples["""text"""] ) lowerCAmelCase_ : Union[str, Any] = map(snake_case__ ) lowerCAmelCase_ : List[Any] = map(snake_case__ , batched=snake_case__ ) lowerCAmelCase_ : str = map(snake_case__ , function=lambda A__ : None , batched=snake_case__ ) with dataset.formatted_as(type="""numpy""" ): lowerCAmelCase_ : Dict = map(snake_case__ , function=lambda A__ : None , batched=snake_case__ ) with dataset.formatted_as(type="""pandas""" ): lowerCAmelCase_ : int = map(snake_case__ , function=lambda A__ : None , batched=snake_case__ ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): lowerCAmelCase_ : str = map(snake_case__ , function=lambda A__ : None , batched=snake_case__ ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): lowerCAmelCase_ : Optional[int] = map(snake_case__ , function=lambda A__ : None , batched=snake_case__ ) lowerCAmelCase_ : str = map(snake_case__ , function=snake_case__ , batched=snake_case__ ) lowerCAmelCase_ : Any = filter(snake_case__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(snake_case__ , """wb""" ) as f: f.write(json.dumps(snake_case__ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
275
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCAmelCase = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } __UpperCAmelCase = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : str = ["input_ids", "attention_mask"] UpperCAmelCase__ : Dict = RobertaTokenizer def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="replace", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, errors=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, trim_offsets=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase : Dict = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop('type' ) ) UpperCamelCase : List[str] = add_prefix_space UpperCamelCase : Dict = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = add_prefix_space UpperCamelCase : Optional[Any] = 'post_processor' UpperCamelCase : Dict = getattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if tokenizer_component_instance: UpperCamelCase : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase : Optional[Any] = tuple(state['sep'] ) if "cls" in state: UpperCamelCase : Optional[int] = tuple(state['cls'] ) UpperCamelCase : Any = False if state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase : Optional[int] = add_prefix_space UpperCamelCase : List[Any] = True if state.get('trim_offsets', SCREAMING_SNAKE_CASE_ ) != trim_offsets: UpperCamelCase : Dict = trim_offsets UpperCamelCase : Union[str, Any] = True if changes_to_apply: UpperCamelCase : Tuple = getattr(SCREAMING_SNAKE_CASE_, state.pop('type' ) ) UpperCamelCase : Union[str, Any] = component_class(**SCREAMING_SNAKE_CASE_ ) setattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) @property def snake_case_ ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else value UpperCamelCase : List[Any] = value def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCamelCase : Optional[int] = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCamelCase : Dict = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCamelCase : Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Tuple: UpperCamelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
40
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] ) -> Dict: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any]=True ) -> Tuple: '''simple docstring''' model.train() SCREAMING_SNAKE_CASE = model(snake_case__ ) SCREAMING_SNAKE_CASE = F.mse_loss(snake_case__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(snake_case__ ) def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Any=False ) -> List[str]: '''simple docstring''' set_seed(42 ) SCREAMING_SNAKE_CASE = RegressionModel() SCREAMING_SNAKE_CASE = deepcopy(snake_case__ ) SCREAMING_SNAKE_CASE = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE = DataLoader(snake_case__ , batch_size=16 ) model.to(accelerator.device ) if sched: SCREAMING_SNAKE_CASE = AdamW(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE = AdamW(params=ddp_model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE = LambdaLR(snake_case__ , lr_lambda=lambda _UpperCamelCase : epoch**0.65 ) SCREAMING_SNAKE_CASE = LambdaLR(snake_case__ , lr_lambda=lambda _UpperCamelCase : epoch**0.65 ) # Make a copy of `model` if sched: SCREAMING_SNAKE_CASE = accelerator.prepare(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: SCREAMING_SNAKE_CASE = accelerator.prepare(snake_case__ , snake_case__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __lowerCAmelCase ( _UpperCamelCase : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = get_training_setup(snake_case__ ) # Use a single batch SCREAMING_SNAKE_CASE = next(iter(snake_case__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: # Sync grads step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) SCREAMING_SNAKE_CASE = ddp_input[torch.randperm(len(snake_case__ ) )] def __lowerCAmelCase ( _UpperCamelCase : int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = get_training_setup(snake_case__ ) # Use a single batch SCREAMING_SNAKE_CASE = next(iter(snake_case__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: # Sync grads step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) SCREAMING_SNAKE_CASE = ddp_input[torch.randperm(len(snake_case__ ) )] def __lowerCAmelCase ( _UpperCamelCase : Optional[int]=False , _UpperCamelCase : Dict=False ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = Accelerator( split_batches=snake_case__ , dispatch_batches=snake_case__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE = get_training_setup(snake_case__ ) for iteration, batch in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(snake_case__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) SCREAMING_SNAKE_CASE = ddp_input[torch.randperm(len(snake_case__ ) )] GradientState._reset_state() def __lowerCAmelCase ( _UpperCamelCase : Optional[int]=False , _UpperCamelCase : List[Any]=False ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = Accelerator( split_batches=snake_case__ , dispatch_batches=snake_case__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE = get_training_setup(snake_case__ , snake_case__ ) for iteration, batch in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(snake_case__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" SCREAMING_SNAKE_CASE = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(snake_case__ )) if accelerator.num_processes > 1: check_model_parameters(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def __lowerCAmelCase ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = Accelerator() SCREAMING_SNAKE_CASE = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE = DataLoader(snake_case__ , batch_size=16 ) SCREAMING_SNAKE_CASE = RegressionDataset(length=96 ) SCREAMING_SNAKE_CASE = DataLoader(snake_case__ , batch_size=16 ) SCREAMING_SNAKE_CASE = accelerator.prepare(snake_case__ , snake_case__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(snake_case__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case__ ) if iteration < len(snake_case__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(snake_case__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case__ ) if batch_num < len(snake_case__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __lowerCAmelCase ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = Accelerator() SCREAMING_SNAKE_CASE = accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**' ) test_noop_sync(snake_case__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**' ) test_distributed_sync(snake_case__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(snake_case__ , snake_case__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(snake_case__ , snake_case__ ) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' main() if __name__ == "__main__": main()
439
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCAmelCase_ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> Tuple: super().__init__(features=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = torch_tensor_kwargs import torch # noqa import torch at initialization def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict: import torch if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) and column: if all( isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(SCREAMING_SNAKE_CASE_ ) return column def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Any: import torch if isinstance(SCREAMING_SNAKE_CASE_, (str, bytes, type(SCREAMING_SNAKE_CASE_ )) ): return value elif isinstance(SCREAMING_SNAKE_CASE_, (np.character, np.ndarray) ) and np.issubdtype(value.dtype, np.character ): return value.tolist() UpperCamelCase : str = {} if isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.integer ): UpperCamelCase : List[str] = {'dtype': torch.intaa} elif isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.floating ): UpperCamelCase : int = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(SCREAMING_SNAKE_CASE_, PIL.Image.Image ): UpperCamelCase : str = np.asarray(SCREAMING_SNAKE_CASE_ ) return torch.tensor(SCREAMING_SNAKE_CASE_, **{**default_dtype, **self.torch_tensor_kwargs} ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: import torch # support for torch, tf, jax etc. if hasattr(SCREAMING_SNAKE_CASE_, '__array__' ) and not isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ): UpperCamelCase : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] ) elif isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ): return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] ) return self._tensorize(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int: return map_nested(self._recursive_tensorize, SCREAMING_SNAKE_CASE_, map_list=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping: UpperCamelCase : Dict = self.numpy_arrow_extractor().extract_row(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.python_features_decoder.decode_row(SCREAMING_SNAKE_CASE_ ) return self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> "torch.Tensor": UpperCamelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.python_features_decoder.decode_column(SCREAMING_SNAKE_CASE_, pa_table.column_names[0] ) UpperCamelCase : Any = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = self._consolidate(SCREAMING_SNAKE_CASE_ ) return column def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping: UpperCamelCase : List[Any] = self.numpy_arrow_extractor().extract_batch(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.python_features_decoder.decode_batch(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for column_name in batch: UpperCamelCase : str = self._consolidate(batch[column_name] ) return batch
40
0
'''simple docstring''' def __snake_case( _lowerCAmelCase ) -> list: snake_case__ : Optional[int] = [0] * len(snake_case__ ) for i in range(1 , len(snake_case__ ) ): # use last results for better performance - dynamic programming snake_case__ : str = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: snake_case__ : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 snake_case__ : List[Any] = j return prefix_result def __snake_case( _lowerCAmelCase ) -> int: return max(prefix_function(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
374
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) ) def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: UpperCamelCase : int = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(snake_case__ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCamelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(snake_case__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCamelCase : Dict = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(snake_case__ ) UpperCamelCase : List[Any] = [] for value in value_array: UpperCamelCase : Optional[Any] = euclidean(snake_case__ , dataset[0] ) UpperCamelCase : Dict = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCamelCase : Union[str, Any] = euclidean(snake_case__ , snake_case__ ) if dist > temp_dist: UpperCamelCase : str = temp_dist UpperCamelCase : List[str] = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ )) if __name__ == "__main__": import doctest doctest.testmod()
40
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase ( a__ , unittest.TestCase ): """simple docstring""" A__ : List[Any] = ShapEImgaImgPipeline A__ : str = ["image"] A__ : int = ["image"] A__ : Optional[int] = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] A__ : Tuple = False @property def _a ( self : int ): """simple docstring""" return 32 @property def _a ( self : Union[str, Any] ): """simple docstring""" return 32 @property def _a ( self : List[str] ): """simple docstring""" return self.time_input_dim * 4 @property def _a ( self : List[str] ): """simple docstring""" return 8 @property def _a ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) A__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) A__ = CLIPVisionModel(SCREAMING_SNAKE_CASE_ ) return model @property def _a ( self : Optional[int] ): """simple docstring""" A__ = CLIPImageProcessor( crop_size=2_24 , do_center_crop=SCREAMING_SNAKE_CASE_ , do_normalize=SCREAMING_SNAKE_CASE_ , do_resize=SCREAMING_SNAKE_CASE_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , ) return image_processor @property def _a ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) A__ = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } A__ = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def _a ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) A__ = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } A__ = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def _a ( self : Tuple ): """simple docstring""" A__ = self.dummy_prior A__ = self.dummy_image_encoder A__ = self.dummy_image_processor A__ = self.dummy_renderer A__ = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=10_24 , prediction_type='sample' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=1.0 , ) A__ = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def _a ( self : Optional[int] , _snake_case : Tuple , _snake_case : Dict=0 ): """simple docstring""" A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): A__ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: A__ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) A__ = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def _a ( self : Union[str, Any] ): """simple docstring""" A__ = 'cpu' A__ = self.get_dummy_components() A__ = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) A__ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) A__ = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) A__ = output.images[0] A__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) A__ = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self : int ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self : List[Any] ): """simple docstring""" A__ = torch_device == 'cpu' A__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , ) def _a ( self : int ): """simple docstring""" A__ = self.get_dummy_components() A__ = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) A__ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) A__ = 1 A__ = 2 A__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: A__ = batch_size * [inputs[key]] A__ = pipe(**SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Tuple ): """simple docstring""" A__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) A__ = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) A__ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) A__ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) A__ = pipe( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
9
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCAmelCase = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __UpperCAmelCase = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __UpperCAmelCase = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __UpperCAmelCase = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __UpperCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCAmelCase = np.expand_dims(test_image, axis=0) __UpperCAmelCase = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCAmelCase = '''Normal''' if result[0][0] == 1: __UpperCAmelCase = '''Abnormality detected'''
40
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _lowercase = logging.get_logger(__name__) class a_ ( a__ ): lowercase_ : int = "upernet" def __init__( self : str , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : int=5_1_2 , __lowerCAmelCase : Optional[Any]=0.02 , __lowerCAmelCase : List[Any]=[1, 2, 3, 6] , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Optional[int]=0.4 , __lowerCAmelCase : List[Any]=3_8_4 , __lowerCAmelCase : List[str]=2_5_6 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : int=False , __lowerCAmelCase : Optional[int]=2_5_5 , **__lowerCAmelCase : Optional[int] , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) __snake_case = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = backbone_config.get('model_type' ) __snake_case = CONFIG_MAPPING[backbone_model_type] __snake_case = config_class.from_dict(SCREAMING_SNAKE_CASE_ ) __snake_case = backbone_config __snake_case = hidden_size __snake_case = initializer_range __snake_case = pool_scales __snake_case = use_auxiliary_head __snake_case = auxiliary_loss_weight __snake_case = auxiliary_in_channels __snake_case = auxiliary_channels __snake_case = auxiliary_num_convs __snake_case = auxiliary_concat_input __snake_case = loss_ignore_index def lowercase__ ( self : int ): __snake_case = copy.deepcopy(self.__dict__ ) __snake_case = self.backbone_config.to_dict() __snake_case = self.__class__.model_type return output
356
import os import pytest from attr import dataclass __UpperCAmelCase = '''us-east-1''' # defaults region @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : str UpperCAmelCase__ : Tuple = "arn:aws:iam::558105141721:role/sagemaker_execution_role" UpperCAmelCase__ : Union[str, Any] = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 500, "save_steps": 5500, } UpperCAmelCase__ : Dict = {**hyperparameters, "max_steps": 1000} @property def snake_case_ ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def snake_case_ ( self ) -> str: return F"""{self.framework}-transfromers-test""" @property def snake_case_ ( self ) -> str: return F"""./tests/sagemaker/scripts/{self.framework}""" @property def snake_case_ ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def UpperCamelCase ( snake_case__ : Any ) -> Union[str, Any]: UpperCamelCase : Optional[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
40
0
'''simple docstring''' def __UpperCAmelCase (lowercase__ ) -> Optional[int]: '''simple docstring''' a_ = [0] * len(snake_case__ ) a_ = [] a_ = [] a_ = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: a_ = queue.pop(0 ) cnt += 1 topo.append(snake_case__ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(snake_case__ ) if cnt != len(snake_case__ ): print("Cycle exists" ) else: print(snake_case__ ) # Adjacency List of Graph a_ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
685
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __UpperCAmelCase = '''src/transformers''' __UpperCAmelCase = '''docs/source/en/tasks''' def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Any ) -> Optional[int]: with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase : Optional[Any] = f.readlines() # Find the start prompt. UpperCamelCase : List[Any] = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 UpperCamelCase : Optional[Any] = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) __UpperCAmelCase = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __UpperCAmelCase = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def UpperCamelCase ( snake_case__ : Optional[int] ) -> Optional[Any]: UpperCamelCase : Tuple = TASK_GUIDE_TO_MODELS[task_guide] UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) UpperCamelCase : Tuple = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def UpperCamelCase ( snake_case__ : str , snake_case__ : Optional[int]=False ) -> Tuple: UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) UpperCamelCase : Optional[Any] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ' to fix this.' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __UpperCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
40
0
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __lowerCamelCase : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> Optional[Any]: # Recurse if needed if "." in tensor_name: UpperCamelCase : List[Any] = tensor_name.split("." ) for split in splits[:-1]: UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) UpperCamelCase : Dict = new_module UpperCamelCase : int = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) UpperCamelCase : Union[str, Any] = tensor_name in module._buffers UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) UpperCamelCase : Optional[Any] = False UpperCamelCase : str = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase : List[str] = False UpperCamelCase : Tuple = False else: UpperCamelCase : Union[str, Any] = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) UpperCamelCase : Optional[int] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase : List[Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase : Dict = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): UpperCamelCase : List[Any] = value.to("cpu" ) if value.dtype == torch.inta: UpperCamelCase : Tuple = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: UpperCamelCase : Union[str, Any] = torch.tensor(snake_case__ , device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None: UpperCamelCase : Union[str, Any] = new_value.T UpperCamelCase : Union[str, Any] = old_value.__dict__ if is_abit: UpperCamelCase : Optional[Any] = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) elif is_abit: UpperCamelCase : Optional[Any] = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) UpperCamelCase : Dict = new_value if fpaa_statistics is not None: setattr(module.weight , "SCB" , fpaa_statistics.to(snake_case__ ) ) else: if value is None: UpperCamelCase : Union[str, Any] = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): UpperCamelCase : List[str] = value.to(snake_case__ ) else: UpperCamelCase : Tuple = torch.tensor(snake_case__ , device=snake_case__ ) if is_buffer: UpperCamelCase : Optional[int] = new_value else: UpperCamelCase : Tuple = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad ) UpperCamelCase : List[str] = new_value def A_ ( _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=False ) -> int: for name, module in model.named_children(): if current_key_name is None: UpperCamelCase : str = [] current_key_name.append(snake_case__ ) if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(snake_case__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(snake_case__ , snake_case__ ): UpperCamelCase : Tuple = module.weight.shape else: UpperCamelCase : Any = module.in_features UpperCamelCase : List[str] = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase : Any = bnb.nn.LinearabitLt( snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) UpperCamelCase : Optional[int] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase : str = bnb.nn.Linearabit( snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) UpperCamelCase : int = True # Store the module class in case we need to transpose the weight later UpperCamelCase : Any = type(snake_case__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(snake_case__ ) if len(list(module.children() ) ) > 0: UpperCamelCase : Optional[int] = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def A_ ( _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> Optional[Any]: UpperCamelCase : Union[str, Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase : List[str] = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def A_ ( *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , snake_case__ , ) return replace_with_bnb_linear(*snake_case__ , **snake_case__ ) def A_ ( *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , snake_case__ , ) return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ ) def A_ ( _lowerCAmelCase ) -> List[Any]: UpperCamelCase : int = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase : List[str] = find_tied_parameters(snake_case__ ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__ ): UpperCamelCase : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase : Union[str, Any] = sum(snake_case__ , [] ) UpperCamelCase : Optional[int] = len(snake_case__ ) > 0 # Check if it is a base model UpperCamelCase : str = not hasattr(snake_case__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase : List[Any] = list(model.named_children() ) UpperCamelCase : Optional[Any] = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase : Union[str, Any] = set(snake_case__ ) - set(snake_case__ ) UpperCamelCase : Optional[int] = list(set(snake_case__ ) ) + list(snake_case__ ) # remove ".weight" from the keys UpperCamelCase : Tuple = ['.weight', '.bias'] UpperCamelCase : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase : Optional[int] = name.replace(snake_case__ , "" ) filtered_module_names.append(snake_case__ ) return filtered_module_names
629
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : int = IFPipeline UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case_ ( self ) -> str: return self._get_dummy_components() def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case_ ( self ) -> Optional[int]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA' ) def snake_case_ ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case_ ( self ) -> Dict: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case_ ( self ) -> Optional[int]: self._test_save_load_local() def snake_case_ ( self ) -> List[str]: self._test_inference_batch_single_identical( expected_max_diff=1e-2, ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def snake_case_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> List[Any]: # if UpperCamelCase : Union[str, Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0', variant='fp16', torch_dtype=torch.floataa ) UpperCamelCase : str = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0', variant='fp16', torch_dtype=torch.floataa, text_encoder=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) UpperCamelCase , UpperCamelCase : List[str] = pipe_a.encode_prompt('anime turtle', device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCamelCase : int = None UpperCamelCase : Union[str, Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCamelCase : Optional[int] = IFImgaImgPipeline(**pipe_a.components ) UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCamelCase : Union[str, Any] = IFInpaintingPipeline(**pipe_a.components ) UpperCamelCase : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 UpperCamelCase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Tuple = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : int = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : Dict = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : List[Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = floats_tensor((1, 3, 256, 256), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
40
0
"""simple docstring""" def snake_case__ ( _snake_case : str ): """simple docstring""" if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) UpperCamelCase__ = '' while len(snake_case__ ) % 3 != 0: UpperCamelCase__ = '0' + bin_string UpperCamelCase__ = [ bin_string[index : index + 3] for index in range(len(snake_case__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: UpperCamelCase__ = 0 for index, val in enumerate(snake_case__ ): oct_val += int(2 ** (2 - index) * int(snake_case__ ) ) oct_string += str(snake_case__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
516
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def UpperCamelCase ( snake_case__ : Tuple="" ) -> str: UpperCamelCase : Union[str, Any] = tempfile.mkdtemp() return os.path.join(snake_case__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> int: UpperCamelCase : Union[str, Any] = torch.rand(12, dtype=torch.floataa ) - 0.5 UpperCamelCase : Union[str, Any] = AgentAudio(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) # Ensure that the file contains the same value as the original tensor UpperCamelCase , UpperCamelCase : Any = sf.read(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, torch.tensor(SCREAMING_SNAKE_CASE_ ), atol=1e-4 ) ) def snake_case_ ( self ) -> Any: UpperCamelCase : Optional[int] = torch.rand(12, dtype=torch.floataa ) - 0.5 UpperCamelCase : Union[str, Any] = get_new_path(suffix='.wav' ) sf.write(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, 1_6000 ) UpperCamelCase : int = AgentAudio(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) ) self.assertEqual(agent_type.to_string(), SCREAMING_SNAKE_CASE_ ) @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: UpperCamelCase : Dict = torch.randint(0, 256, (64, 64, 3) ) UpperCamelCase : Union[str, Any] = AgentImage(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type._tensor, atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw(), Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' UpperCamelCase : Optional[int] = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ) -> int: UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' UpperCamelCase : Union[str, Any] = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = 'Hey!' UpperCamelCase : Dict = AgentText(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_string() ) self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_raw() ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
40
0
'''simple docstring''' from __future__ import annotations import math def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : bool , __lowerCAmelCase : list[int] , __lowerCAmelCase : float ) -> int: if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(snake_case__ ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , snake_case__ , snake_case__ , snake_case__ ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case__ , snake_case__ , snake_case__ ) , ) return min( minimax(depth + 1 , node_index * 2 , snake_case__ , snake_case__ , snake_case__ ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case__ , snake_case__ , snake_case__ ) , ) def __lowerCamelCase ( ) -> None: snake_case = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case = math.log(len(snake_case__ ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , snake_case__ , snake_case__ , snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
369
def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : Any ) -> Union[str, Any]: UpperCamelCase : int = [1] for i in range(2 , snake_case__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCamelCase : List[Any] = [] UpperCamelCase : List[Any] = list(range(snake_case__ ) ) # Find permutation while factorials: UpperCamelCase : int = factorials.pop() UpperCamelCase , UpperCamelCase : int = divmod(snake_case__ , snake_case__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
40
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCAmelCase ( a__ ): '''simple docstring''' snake_case = "sew-d" def __init__( self : List[Any] , __snake_case : Optional[int]=32 , __snake_case : Optional[int]=768 , __snake_case : Tuple=12 , __snake_case : str=12 , __snake_case : int=3072 , __snake_case : List[Any]=2 , __snake_case : List[Any]=512 , __snake_case : Optional[int]=256 , __snake_case : Any=True , __snake_case : Any=True , __snake_case : Optional[int]=("p2c", "c2p") , __snake_case : str="layer_norm" , __snake_case : List[str]="gelu_python" , __snake_case : Optional[Any]=0.1 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : List[Any]=0.0 , __snake_case : List[str]=0.1 , __snake_case : Optional[int]=0.02 , __snake_case : Optional[int]=1e-7 , __snake_case : int=1e-5 , __snake_case : Optional[int]="group" , __snake_case : List[Any]="gelu" , __snake_case : Any=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __snake_case : str=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __snake_case : List[str]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __snake_case : str=False , __snake_case : List[str]=128 , __snake_case : Tuple=16 , __snake_case : Tuple=True , __snake_case : List[Any]=0.05 , __snake_case : List[str]=10 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : Optional[int]=0 , __snake_case : List[Any]="mean" , __snake_case : List[Any]=False , __snake_case : Union[str, Any]=False , __snake_case : str=256 , __snake_case : int=0 , __snake_case : str=1 , __snake_case : Tuple=2 , **__snake_case : int , ) -> Tuple: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) lowerCamelCase = hidden_size lowerCamelCase = feat_extract_norm lowerCamelCase = feat_extract_activation lowerCamelCase = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase = conv_bias lowerCamelCase = num_conv_pos_embeddings lowerCamelCase = num_conv_pos_embedding_groups lowerCamelCase = len(self.conv_dim ) lowerCamelCase = num_hidden_layers lowerCamelCase = intermediate_size lowerCamelCase = squeeze_factor lowerCamelCase = max_position_embeddings lowerCamelCase = position_buckets lowerCamelCase = share_att_key lowerCamelCase = relative_attention lowerCamelCase = norm_rel_ebd lowerCamelCase = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase = hidden_act lowerCamelCase = num_attention_heads lowerCamelCase = hidden_dropout lowerCamelCase = attention_dropout lowerCamelCase = activation_dropout lowerCamelCase = feat_proj_dropout lowerCamelCase = final_dropout lowerCamelCase = layer_norm_eps lowerCamelCase = feature_layer_norm_eps lowerCamelCase = initializer_range lowerCamelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase = apply_spec_augment lowerCamelCase = mask_time_prob lowerCamelCase = mask_time_length lowerCamelCase = mask_time_min_masks lowerCamelCase = mask_feature_prob lowerCamelCase = mask_feature_length lowerCamelCase = mask_feature_min_masks # ctc loss lowerCamelCase = ctc_loss_reduction lowerCamelCase = ctc_zero_infinity # sequence classification lowerCamelCase = use_weighted_layer_sum lowerCamelCase = classifier_proj_size @property def lowerCamelCase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
246
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase_ ( a__ ): def snake_case_ ( self ) -> Tuple: UpperCamelCase : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'width_multiplier' ) ) class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_="swish", SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=0.25, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, ) -> Any: UpperCamelCase : int = parent UpperCamelCase : int = batch_size UpperCamelCase : List[Any] = image_size UpperCamelCase : List[str] = patch_size UpperCamelCase : Optional[int] = num_channels UpperCamelCase : List[str] = make_divisible(512 * width_multiplier, divisor=8 ) UpperCamelCase : List[str] = hidden_act UpperCamelCase : Optional[int] = conv_kernel_size UpperCamelCase : List[str] = output_stride UpperCamelCase : Union[str, Any] = classifier_dropout_prob UpperCamelCase : List[Any] = use_labels UpperCamelCase : Any = is_training UpperCamelCase : int = num_labels UpperCamelCase : List[Any] = initializer_range UpperCamelCase : Tuple = scope UpperCamelCase : List[str] = width_multiplier UpperCamelCase : Any = ffn_dropout UpperCamelCase : List[Any] = attn_dropout def snake_case_ ( self ) -> int: UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : List[str] = None UpperCamelCase : int = None if self.use_labels: UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels ) UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCamelCase : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ ( self ) -> int: return MobileViTVaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Any = MobileViTVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Optional[int] = self.num_labels UpperCamelCase : Tuple = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Any = self.num_labels UpperCamelCase : Optional[Any] = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = config_and_inputs UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Tuple = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ : Any = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Optional[Any] = False def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Dict = MobileViTVaModelTester(self ) UpperCamelCase : Optional[Any] = MobileViTVaConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def snake_case_ ( self ) -> int: pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def snake_case_ ( self ) -> str: pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case_ ( self ) -> Any: pass def snake_case_ ( self ) -> List[str]: UpperCamelCase , UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : str = [*signature.parameters.keys()] UpperCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Tuple: def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Tuple = outputs.hidden_states UpperCamelCase : Dict = 5 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCamelCase : Any = 2 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2 ) UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> str: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ) -> Optional[Any]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : str = MobileViTVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Tuple: UpperCamelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> str: return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.default_image_processor UpperCamelCase : Any = prepare_img() UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : List[str] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Union[str, Any] = prepare_img() UpperCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = outputs.logits # verify the logits UpperCamelCase : Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ], device=SCREAMING_SNAKE_CASE_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : str = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Optional[int] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Tuple = prepare_img() UpperCamelCase : int = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = outputs.logits.detach().cpu() UpperCamelCase : int = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_, target_sizes=[(50, 60)] ) UpperCamelCase : Optional[int] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ )
40
0
from __future__ import annotations def UpperCamelCase__ ( lowerCAmelCase__ ): # This function is recursive lowercase = len(snake_case__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase = array[0] lowercase = False lowercase = 1 lowercase = [] while not is_found and i < array_length: if array[i] < pivot: lowercase = True lowercase = [element for element in array[i:] if element >= array[i]] lowercase = longest_subsequence(snake_case__ ) if len(snake_case__ ) > len(snake_case__ ): lowercase = temp_array else: i += 1 lowercase = [element for element in array[1:] if element >= pivot] lowercase = [pivot, *longest_subsequence(snake_case__ )] if len(snake_case__ ) > len(snake_case__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
428
def UpperCamelCase ( snake_case__ : Optional[int] ) -> str: UpperCamelCase : List[str] = [0] * len(snake_case__ ) UpperCamelCase : int = [] UpperCamelCase : Optional[int] = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: UpperCamelCase : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCamelCase : Tuple = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
40
0
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __A : int = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") __A : Dict = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("utf-8").split() ) __A : Optional[int] = "|".join(sys.argv[1:]) __A : Optional[Any] = re.compile(RF'''^({joined_dirs}).*?\.py$''') __A : Union[str, Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
275
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
40
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( a__ , unittest.TestCase ): __UpperCamelCase =LEDTokenizer __UpperCamelCase =LEDTokenizerFast __UpperCamelCase =True def UpperCamelCase ( self : Any ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) SCREAMING_SNAKE_CASE = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE_ ) ) def UpperCamelCase ( self : List[Any] , **snake_case__ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( self : Dict , **snake_case__ : int ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] ): """simple docstring""" return "lower newer", "lower newer" @cached_property def UpperCamelCase ( self : List[str] ): """simple docstring""" return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def UpperCamelCase ( self : Dict ): """simple docstring""" return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] SCREAMING_SNAKE_CASE = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE = tokenizer(SCREAMING_SNAKE_CASE_ , max_length=len(SCREAMING_SNAKE_CASE_ ) , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE = batch.input_ids.tolist()[0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @require_torch def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) self.assertIn('input_ids' , SCREAMING_SNAKE_CASE_ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE_ ) self.assertNotIn('labels' , SCREAMING_SNAKE_CASE_ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE_ ) @require_torch def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE = tokenizer(text_target=SCREAMING_SNAKE_CASE_ , max_length=3_2 , padding='max_length' , return_tensors='pt' ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) @require_torch def UpperCamelCase ( self : Dict ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE = tokenizer( ['I am a small frog' * 1_0_2_4, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.'] SCREAMING_SNAKE_CASE = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) SCREAMING_SNAKE_CASE = tokenizer(text_target=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) SCREAMING_SNAKE_CASE = inputs['input_ids'] SCREAMING_SNAKE_CASE = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE = ['Summary of the text.', 'Another summary.'] SCREAMING_SNAKE_CASE = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] SCREAMING_SNAKE_CASE = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = [[0] * len(SCREAMING_SNAKE_CASE_ ) for x in encoded_output['input_ids']] SCREAMING_SNAKE_CASE = tokenizer.pad(SCREAMING_SNAKE_CASE_ ) self.assertSequenceEqual(outputs['global_attention_mask'] , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( self : Any ): """simple docstring""" pass def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
439
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a__ ): """simple docstring""" lowercase = "data2vec-vision" def __init__( self : str , snake_case_ : List[str]=768 , snake_case_ : Optional[int]=12 , snake_case_ : Union[str, Any]=12 , snake_case_ : str=3_072 , snake_case_ : Any="gelu" , snake_case_ : Optional[Any]=0.0 , snake_case_ : str=0.0 , snake_case_ : Union[str, Any]=0.02 , snake_case_ : List[str]=1E-1_2 , snake_case_ : Union[str, Any]=224 , snake_case_ : List[Any]=16 , snake_case_ : Any=3 , snake_case_ : Optional[int]=False , snake_case_ : str=False , snake_case_ : Tuple=False , snake_case_ : List[str]=False , snake_case_ : List[str]=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : Tuple=True , snake_case_ : List[Any]=[3, 5, 7, 11] , snake_case_ : Dict=[1, 2, 3, 6] , snake_case_ : Dict=True , snake_case_ : int=0.4 , snake_case_ : Optional[Any]=256 , snake_case_ : List[str]=1 , snake_case_ : List[Any]=False , snake_case_ : List[str]=255 , **snake_case_ : List[Any] , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) snake_case__ : List[str] = hidden_size snake_case__ : Dict = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Optional[Any] = intermediate_size snake_case__ : Union[str, Any] = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : List[Any] = initializer_range snake_case__ : Any = layer_norm_eps snake_case__ : List[Any] = image_size snake_case__ : int = patch_size snake_case__ : Tuple = num_channels snake_case__ : str = use_mask_token snake_case__ : Union[str, Any] = use_absolute_position_embeddings snake_case__ : int = use_relative_position_bias snake_case__ : Optional[int] = use_shared_relative_position_bias snake_case__ : int = layer_scale_init_value snake_case__ : List[Any] = drop_path_rate snake_case__ : str = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ : List[str] = out_indices snake_case__ : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ : List[str] = use_auxiliary_head snake_case__ : Any = auxiliary_loss_weight snake_case__ : Any = auxiliary_channels snake_case__ : Tuple = auxiliary_num_convs snake_case__ : str = auxiliary_concat_input snake_case__ : Optional[int] = semantic_loss_ignore_index class UpperCAmelCase_ ( a__ ): """simple docstring""" lowercase = version.parse("1.11" ) @property def lowerCamelCase ( self : List[str] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase ( self : str ): return 1E-4
374
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def A ( __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) -> List[Any]: A__ = AutoConfig.from_pretrained(snake_case__ , **snake_case__ ) A__ = AutoModelForSeqaSeqLM.from_config(snake_case__ ) model.save_pretrained(snake_case__ ) AutoTokenizer.from_pretrained(snake_case__ ).save_pretrained(snake_case__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
9
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''ViTFeatureExtractor'''] __UpperCAmelCase = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
0
'''simple docstring''' from __future__ import annotations import queue class a_ : def __init__( self : List[Any] , __lowerCAmelCase : int ): __snake_case = data __snake_case = None __snake_case = None def lowerCamelCase__ ( ): print('\n********Press N to stop entering at any point of time********\n' ) __snake_case = input('Enter the value of the root node: ' ).strip().lower() __snake_case = queue.Queue() __snake_case = TreeNode(int(snake_case__ ) ) q.put(snake_case__ ) while not q.empty(): __snake_case = q.get() __snake_case = f'Enter the left node of {node_found.data}: ' __snake_case = input(snake_case__ ).strip().lower() or 'n' if check == "n": return tree_node __snake_case = TreeNode(int(snake_case__ ) ) __snake_case = left_node q.put(snake_case__ ) __snake_case = f'Enter the right node of {node_found.data}: ' __snake_case = input(snake_case__ ).strip().lower() or 'n' if check == "n": return tree_node __snake_case = TreeNode(int(snake_case__ ) ) __snake_case = right_node q.put(snake_case__ ) raise def lowerCamelCase__ ( a ): if not isinstance(snake_case__ , snake_case__ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase__ ( a ): if not isinstance(snake_case__ , snake_case__ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase__ ( a ): if not isinstance(snake_case__ , snake_case__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase__ ( a ): if not isinstance(snake_case__ , snake_case__ ) or not node: return __snake_case = queue.Queue() q.put(snake_case__ ) while not q.empty(): __snake_case = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase__ ( a ): if not isinstance(snake_case__ , snake_case__ ) or not node: return __snake_case = queue.Queue() q.put(snake_case__ ) while not q.empty(): __snake_case = [] while not q.empty(): __snake_case = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case__ ) def lowerCamelCase__ ( a ): if not isinstance(snake_case__ , snake_case__ ) or not node: return __snake_case = [] __snake_case = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(snake_case__ ) __snake_case = n.left # end of while means current node doesn't have left child __snake_case = stack.pop() # start to traverse its right child __snake_case = n.right def lowerCamelCase__ ( a ): if not isinstance(snake_case__ , snake_case__ ) or not node: return __snake_case = [] __snake_case = node while n or stack: while n: stack.append(snake_case__ ) __snake_case = n.left __snake_case = stack.pop() print(n.data , end=',' ) __snake_case = n.right def lowerCamelCase__ ( a ): if not isinstance(snake_case__ , snake_case__ ) or not node: return __snake_case = [], [] __snake_case = node stacka.append(snake_case__ ) while stacka: # to find the reversed order of post order, store it in stack2 __snake_case = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase__ ( a = "" , a=50 , a="*" ): if not s: return "\n" + width * char __snake_case = divmod(width - len(snake_case__ ) - 2 , 2 ) return f'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) _lowercase = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
356
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __UpperCAmelCase = random.Random() def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : str=1.0 , snake_case__ : int=None , snake_case__ : Union[str, Any]=None ) -> Any: if rng is None: UpperCamelCase : int = global_rng UpperCamelCase : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=2000, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1_6000, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, ) -> List[str]: UpperCamelCase : Dict = parent UpperCamelCase : Dict = batch_size UpperCamelCase : Any = min_seq_length UpperCamelCase : Optional[int] = max_seq_length UpperCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase : Tuple = feature_size UpperCamelCase : Any = padding_value UpperCamelCase : Tuple = sampling_rate UpperCamelCase : Optional[Any] = return_attention_mask UpperCamelCase : Optional[Any] = do_normalize def snake_case_ ( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case_ ( self, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]: def _flatten(SCREAMING_SNAKE_CASE_ ): return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) ) if equal_length: UpperCamelCase : List[str] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Any = WavaVecaFeatureExtractor def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = WavaVecaFeatureExtractionTester(self ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_, axis=0 ) - 1 ) < 1e-3 ) ) def snake_case_ ( self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase : Any = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Dict = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase : List[Any] = feat_extract(speech_inputs[0], return_tensors='np' ).input_values UpperCamelCase : Union[str, Any] = feat_extract(np_speech_inputs[0], return_tensors='np' ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # Test batched UpperCamelCase : List[Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values UpperCamelCase : int = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase : Optional[int] = np.asarray(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values UpperCamelCase : Dict = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) def snake_case_ ( self ) -> int: UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : str = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase : Any = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = feat_extract(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, return_tensors='np' ) UpperCamelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Tuple = range(800, 1400, 200 ) UpperCamelCase : str = [floats_list((1, x) )[0] for x in lengths] UpperCamelCase : int = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase : List[str] = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = feat_extract(SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : int = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='max_length', return_tensors='np' ) UpperCamelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Any = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='longest', return_tensors='np' ) UpperCamelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) UpperCamelCase : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Any = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=2000, padding='longest', return_tensors='np' ) UpperCamelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def snake_case_ ( self ) -> str: import torch UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Dict = np.random.rand(100 ).astype(np.floataa ) UpperCamelCase : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}], return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase : Any = feature_extractor.pad([{'input_values': inputs}], return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def snake_case_ ( self ) -> Tuple: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: UpperCamelCase : int = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == 'layer' )
40
0
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Optional[int]: '''simple docstring''' a_ = Mock() a_ = conn, Mock() a_ = iter([1, None] ) a_ = lambda lowercase__ : next(snake_case__ ) # ===== invoke ===== send_file(filename="mytext.txt" ,testing=snake_case__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
685
def UpperCamelCase ( snake_case__ : int ) -> str: if isinstance(snake_case__ , snake_case__ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(snake_case__ , snake_case__ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" UpperCamelCase : int = False if num < 0: UpperCamelCase : Optional[Any] = True UpperCamelCase : Tuple = -num UpperCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(snake_case__ ) for e in binary ) return "0b" + "".join(str(snake_case__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
40
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowerCamelCase : Dict = logging.get_logger(__name__) class A__ ( a__ ): _UpperCAmelCase :int = ["input_features", "is_longer"] def __init__( self , A_=64 , A_=4_8000 , A_=480 , A_=10 , A_=1024 , A_=0.0 , A_=False , A_ = 0 , A_ = 1_4000 , A_ = None , A_ = "fusion" , A_ = "repeatpad" , **A_ , ): '''simple docstring''' super().__init__( feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Any = top_db UpperCamelCase : Optional[int] = truncation UpperCamelCase : Any = padding UpperCamelCase : Any = fft_window_size UpperCamelCase : Tuple = (fft_window_size >> 1) + 1 UpperCamelCase : List[str] = hop_length UpperCamelCase : Dict = max_length_s UpperCamelCase : List[str] = max_length_s * sampling_rate UpperCamelCase : int = sampling_rate UpperCamelCase : Any = frequency_min UpperCamelCase : Optional[Any] = frequency_max UpperCamelCase : Dict = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=SCREAMING_SNAKE_CASE_ , min_frequency=SCREAMING_SNAKE_CASE_ , max_frequency=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , norm=SCREAMING_SNAKE_CASE_ , mel_scale="htk" , ) UpperCamelCase : Dict = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=SCREAMING_SNAKE_CASE_ , min_frequency=SCREAMING_SNAKE_CASE_ , max_frequency=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , norm="slaney" , mel_scale="slaney" , ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCamelCase : Any = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCamelCase( self , A_ , A_ = None ): '''simple docstring''' UpperCamelCase : Dict = spectrogram( SCREAMING_SNAKE_CASE_ , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=SCREAMING_SNAKE_CASE_ , log_mel="dB" , ) return log_mel_spectrogram.T def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase : Union[str, Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase : Dict = [0] # randomly choose index for each part UpperCamelCase : int = np.random.choice(ranges[0] ) UpperCamelCase : List[Any] = np.random.choice(ranges[1] ) UpperCamelCase : Any = np.random.choice(ranges[2] ) UpperCamelCase : Union[str, Any] = mel[idx_front : idx_front + chunk_frames, :] UpperCamelCase : Union[str, Any] = mel[idx_middle : idx_middle + chunk_frames, :] UpperCamelCase : Optional[int] = mel[idx_back : idx_back + chunk_frames, :] UpperCamelCase : List[Any] = torch.tensor(mel[None, None, :] ) UpperCamelCase : List[Any] = torch.nn.functional.interpolate( SCREAMING_SNAKE_CASE_ , size=[chunk_frames, 64] , mode="bilinear" , align_corners=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = mel_shrink[0][0].numpy() UpperCamelCase : Dict = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __UpperCamelCase( self , A_ , A_ , A_ , A_ ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": UpperCamelCase : Dict = True # random crop to max_length (for compatibility) -> this should be handled by self.pad UpperCamelCase : str = len(SCREAMING_SNAKE_CASE_ ) - max_length UpperCamelCase : Optional[Any] = np.random.randint(0 , overflow + 1 ) UpperCamelCase : int = waveform[idx : idx + max_length] UpperCamelCase : Tuple = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": UpperCamelCase : Tuple = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE_ , self.mel_filters ) UpperCamelCase : Any = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed UpperCamelCase : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. UpperCamelCase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 ) UpperCamelCase : Optional[int] = False else: UpperCamelCase : Optional[int] = self._random_mel_fusion(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: UpperCamelCase : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": UpperCamelCase : Any = int(max_length / len(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Tuple = np.stack(np.tile(SCREAMING_SNAKE_CASE_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": UpperCamelCase : str = int(max_length / len(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : str = np.stack(np.tile(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : List[str] = np.pad(SCREAMING_SNAKE_CASE_ , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": UpperCamelCase : Tuple = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE_ , self.mel_filters ) UpperCamelCase : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: UpperCamelCase : Optional[int] = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , **A_ , ): '''simple docstring''' UpperCamelCase : Optional[int] = truncation if truncation is not None else self.truncation UpperCamelCase : List[str] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) UpperCamelCase : List[Any] = isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : List[str] = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : Tuple = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): UpperCamelCase : Tuple = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Any = [np.asarray(SCREAMING_SNAKE_CASE_ )] # convert to mel spectrogram, truncate and pad if needed. UpperCamelCase : Dict = [ self._get_input_mel(SCREAMING_SNAKE_CASE_ , max_length if max_length else self.nb_max_samples , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for waveform in raw_speech ] UpperCamelCase : str = [] UpperCamelCase : str = [] for mel, longer in padded_inputs: input_mel.append(SCREAMING_SNAKE_CASE_ ) is_longer.append(SCREAMING_SNAKE_CASE_ ) if truncation == "fusion" and sum(SCREAMING_SNAKE_CASE_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer UpperCamelCase : Optional[Any] = np.random.randint(0 , len(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : List[Any] = True if isinstance(input_mel[0] , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool UpperCamelCase : int = [[longer] for longer in is_longer] UpperCamelCase : Any = {'input_features': input_mel, 'is_longer': is_longer} UpperCamelCase : Tuple = BatchFeature(SCREAMING_SNAKE_CASE_ ) if return_tensors is not None: UpperCamelCase : List[str] = input_features.convert_to_tensors(SCREAMING_SNAKE_CASE_ ) return input_features
629
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __UpperCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=None ) -> Optional[Any]: # Recurse if needed if "." in tensor_name: UpperCamelCase : List[Any] = tensor_name.split('.' ) for split in splits[:-1]: UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) UpperCamelCase : Dict = new_module UpperCamelCase : int = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) UpperCamelCase : Union[str, Any] = tensor_name in module._buffers UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) UpperCamelCase : Optional[Any] = False UpperCamelCase : str = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase : List[str] = False UpperCamelCase : Tuple = False else: UpperCamelCase : Union[str, Any] = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) UpperCamelCase : Optional[int] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase : List[Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase : Dict = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): UpperCamelCase : List[Any] = value.to('cpu' ) if value.dtype == torch.inta: UpperCamelCase : Tuple = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: UpperCamelCase : Union[str, Any] = torch.tensor(snake_case__ , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None: UpperCamelCase : Union[str, Any] = new_value.T UpperCamelCase : Union[str, Any] = old_value.__dict__ if is_abit: UpperCamelCase : Optional[Any] = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) elif is_abit: UpperCamelCase : Optional[Any] = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) UpperCamelCase : Dict = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(snake_case__ ) ) else: if value is None: UpperCamelCase : Union[str, Any] = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): UpperCamelCase : List[str] = value.to(snake_case__ ) else: UpperCamelCase : Tuple = torch.tensor(snake_case__ , device=snake_case__ ) if is_buffer: UpperCamelCase : Optional[int] = new_value else: UpperCamelCase : Tuple = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad ) UpperCamelCase : List[str] = new_value def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Any=None , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[str]=False ) -> int: for name, module in model.named_children(): if current_key_name is None: UpperCamelCase : str = [] current_key_name.append(snake_case__ ) if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(snake_case__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(snake_case__ , snake_case__ ): UpperCamelCase , UpperCamelCase : Tuple = module.weight.shape else: UpperCamelCase : Any = module.in_features UpperCamelCase : List[str] = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase : Any = bnb.nn.LinearabitLt( snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) UpperCamelCase : Optional[int] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase : str = bnb.nn.Linearabit( snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) UpperCamelCase : int = True # Store the module class in case we need to transpose the weight later UpperCamelCase : Any = type(snake_case__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(snake_case__ ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase : Optional[int] = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : Dict=None ) -> Optional[Any]: UpperCamelCase : Union[str, Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase : List[str] = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCamelCase ( *snake_case__ : Tuple , **snake_case__ : List[str] ) -> List[str]: warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , snake_case__ , ) return replace_with_bnb_linear(*snake_case__ , **snake_case__ ) def UpperCamelCase ( *snake_case__ : Dict , **snake_case__ : str ) -> Tuple: warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , snake_case__ , ) return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple ) -> List[Any]: UpperCamelCase : int = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase : List[str] = find_tied_parameters(snake_case__ ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__ ): UpperCamelCase : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase : Union[str, Any] = sum(snake_case__ , [] ) UpperCamelCase : Optional[int] = len(snake_case__ ) > 0 # Check if it is a base model UpperCamelCase : str = not hasattr(snake_case__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase : List[Any] = list(model.named_children() ) UpperCamelCase : Optional[Any] = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase : Union[str, Any] = set(snake_case__ ) - set(snake_case__ ) UpperCamelCase : Optional[int] = list(set(snake_case__ ) ) + list(snake_case__ ) # remove ".weight" from the keys UpperCamelCase : Tuple = ['.weight', '.bias'] UpperCamelCase : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase : Optional[int] = name.replace(snake_case__ , '' ) filtered_module_names.append(snake_case__ ) return filtered_module_names
40
0
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) A : Any = logging.getLogger() def snake_case__ ( ): """simple docstring""" UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCamelCase__ = parser.parse_args() return args.f class lowerCAmelCase ( a__ ): '''simple docstring''' def lowerCamelCase__ ( self :Any ) -> None: """simple docstring""" UpperCamelCase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(SCREAMING_SNAKE_CASE_ ) def lowerCamelCase__ ( self :List[Any] , lowerCamelCase_ :Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(SCREAMING_SNAKE_CASE_ , "argv" , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(SCREAMING_SNAKE_CASE_ , 0.666 ) @slow @require_torch_non_multi_gpu def lowerCamelCase__ ( self :Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(SCREAMING_SNAKE_CASE_ )
516
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( snake_case__ : int ) -> Dict: UpperCamelCase : Optional[Any] = tmp_path / 'file.csv' UpperCamelCase : Optional[Any] = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : List[str] ) -> List[str]: UpperCamelCase : Optional[Any] = tmp_path / 'malformed_file.csv' UpperCamelCase : Any = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : List[Any] ) -> str: UpperCamelCase : Any = tmp_path / 'csv_with_image.csv' UpperCamelCase : Dict = textwrap.dedent( F"""\ image {image_file} """ ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : List[str] ) -> Tuple: UpperCamelCase : List[str] = tmp_path / 'csv_with_label.csv' UpperCamelCase : Dict = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : Dict ) -> List[str]: UpperCamelCase : List[str] = tmp_path / 'csv_with_int_list.csv' UpperCamelCase : Union[str, Any] = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[Any] ) -> List[Any]: UpperCamelCase : str = Csv() UpperCamelCase : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(snake_case__ , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(snake_case__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Optional[int]: with open(snake_case__ , encoding='utf-8' ) as f: UpperCamelCase : List[str] = f.read().splitlines()[1] UpperCamelCase : int = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) UpperCamelCase : Any = csv._generate_tables([[csv_file_with_image]] ) UpperCamelCase : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() UpperCamelCase : str = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( snake_case__ : Any ) -> str: with open(snake_case__ , encoding='utf-8' ) as f: UpperCamelCase : Any = f.read().splitlines()[1:] UpperCamelCase : Union[str, Any] = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) UpperCamelCase : int = csv._generate_tables([[csv_file_with_label]] ) UpperCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() UpperCamelCase : List[str] = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(snake_case__ ) for label in labels] def UpperCamelCase ( snake_case__ : str ) -> List[Any]: UpperCamelCase : str = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda snake_case__ : [int(snake_case__ ) for i in x.split()]} ) UpperCamelCase : List[str] = csv._generate_tables([[csv_file_with_int_list]] ) UpperCamelCase : Union[str, Any] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) UpperCamelCase : str = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
40
0
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 32 def __lowerCamelCase ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : int = 16 , __lowerCAmelCase : str = "bert-base-cased" ) -> Union[str, Any]: snake_case = AutoTokenizer.from_pretrained(snake_case__ ) snake_case = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCAmelCase : Any ): # max_length=None => use the model max length (it's actually the default) snake_case = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=snake_case__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCAmelCase : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case__ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(snake_case__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. snake_case = DataLoader( tokenized_datasets["""train"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) snake_case = DataLoader( tokenized_datasets["""validation"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] ) -> Dict: model.eval() snake_case = 0 for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case = model(**snake_case__ ) snake_case = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(snake_case__ ) - 1: snake_case = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) snake_case = metric.compute() return eval_metric["accuracy"] def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] ) -> Optional[int]: # Initialize accelerator snake_case = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case = config['lr'] snake_case = int(config["""num_epochs"""] ) snake_case = int(config["""seed"""] ) snake_case = int(config["""batch_size"""] ) snake_case = args.model_name_or_path set_seed(snake_case__ ) snake_case = get_dataloaders(snake_case__ , snake_case__ , snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case = AutoModelForSequenceClassification.from_pretrained(snake_case__ , return_dict=snake_case__ ) # Instantiate optimizer snake_case = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case = optimizer_cls(params=model.parameters() , lr=snake_case__ ) if accelerator.state.deepspeed_plugin is not None: snake_case = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: snake_case = 1 snake_case = (len(snake_case__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=0 , num_training_steps=snake_case__ , ) else: snake_case = DummyScheduler(snake_case__ , total_num_steps=snake_case__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # We need to keep track of how many total steps we have iterated over snake_case = 0 # We also need to keep track of the stating epoch so files are named properly snake_case = 0 snake_case = evaluate.load("""glue""" , """mrpc""" ) snake_case = num_epochs if args.partial_train_epoch is not None: snake_case = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case = args.resume_from_checkpoint.split("""epoch_""" )[1] snake_case = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case = int(snake_case__ ) + 1 snake_case = evaluation_loop(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) accelerator.print("""resumed checkpoint performance:""" , snake_case__ ) accelerator.print("""resumed checkpoint\'s scheduler\'s lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers\'s lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , """r""" ) as f: snake_case = json.load(snake_case__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case = {} for epoch in range(snake_case__ , snake_case__ ): model.train() for step, batch in enumerate(snake_case__ ): snake_case = model(**snake_case__ ) snake_case = outputs.loss snake_case = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case = F'''epoch_{epoch}''' snake_case = os.path.join(args.output_dir , snake_case__ ) accelerator.save_state(snake_case__ ) snake_case = evaluation_loop(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) snake_case = accuracy snake_case = lr_scheduler.get_lr()[0] snake_case = optimizer.param_groups[0]['lr'] snake_case = epoch snake_case = overall_step accelerator.print(F'''epoch {epoch}:''' , snake_case__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , """w""" ) as f: json.dump(snake_case__ , snake_case__ ) def __lowerCamelCase ( ) -> Union[str, Any]: snake_case = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=snake_case__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=snake_case__ , ) parser.add_argument( """--output_dir""" , type=snake_case__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=snake_case__ , default=snake_case__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=snake_case__ , default=snake_case__ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=snake_case__ , default=2 , help="""Number of train epochs.""" , ) snake_case = parser.parse_args() snake_case = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
369
import math import random def UpperCamelCase ( snake_case__ : float , snake_case__ : bool = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> float: UpperCamelCase : Optional[Any] = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(snake_case__ ): # Forward propagation UpperCamelCase : str = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCamelCase : int = (expected / 100) - layer_a # Error delta UpperCamelCase : List[str] = layer_1_error * sigmoid_function(snake_case__ , snake_case__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input('''Expected value: ''')) __UpperCAmelCase = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
40
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
246
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def UpperCamelCase ( snake_case__ : Dict ) -> Optional[int]: return EnvironmentCommand() class lowerCAmelCase_ ( a__ ): @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : List[Any] = parser.add_parser('env' ) download_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = huggingface_hub.__version__ UpperCamelCase : int = 'not installed' UpperCamelCase : Union[str, Any] = 'NA' if is_torch_available(): import torch UpperCamelCase : Any = torch.__version__ UpperCamelCase : str = torch.cuda.is_available() UpperCamelCase : Dict = 'not installed' if is_transformers_available(): import transformers UpperCamelCase : str = transformers.__version__ UpperCamelCase : Optional[Any] = 'not installed' if is_accelerate_available(): import accelerate UpperCamelCase : Dict = accelerate.__version__ UpperCamelCase : List[str] = 'not installed' if is_xformers_available(): import xformers UpperCamelCase : List[str] = xformers.__version__ UpperCamelCase : Dict = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(SCREAMING_SNAKE_CASE_ ) ) return info @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
40
0
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __SCREAMING_SNAKE_CASE : Dict =16 __SCREAMING_SNAKE_CASE : List[str] =32 def UpperCamelCase__ ( lowerCAmelCase__ ): return int(x / 2**20 ) class A_ : def __enter__( self : List[Any] ): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowercase = torch.cuda.memory_allocated() return self def __exit__( self : str , *snake_case__ : Union[str, Any] ): gc.collect() torch.cuda.empty_cache() lowercase = torch.cuda.memory_allocated() lowercase = torch.cuda.max_memory_allocated() lowercase = bamb(self.end - self.begin ) lowercase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ = 16 ,lowerCAmelCase__ = "bert-base-cased" ,lowerCAmelCase__ = 320 ,lowerCAmelCase__ = 160 ,): lowercase = AutoTokenizer.from_pretrained(snake_case__ ) lowercase = load_dataset( """glue""" ,"""mrpc""" ,split={"""train""": f"""train[:{n_train}]""", """validation""": f"""validation[:{n_val}]"""} ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) lowercase = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=snake_case__ ,max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase = datasets.map( snake_case__ ,batched=snake_case__ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,load_from_cache_file=snake_case__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case__ ,padding="""max_length""" ,max_length=128 ,return_tensors="""pt""" ) return tokenizer.pad(snake_case__ ,padding="""longest""" ,return_tensors="""pt""" ) # Instantiate dataloaders. lowercase = DataLoader( tokenized_datasets["""train"""] ,shuffle=snake_case__ ,collate_fn=snake_case__ ,batch_size=snake_case__ ) lowercase = DataLoader( tokenized_datasets["""validation"""] ,shuffle=snake_case__ ,collate_fn=snake_case__ ,batch_size=snake_case__ ) return train_dataloader, eval_dataloader def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): # Initialize accelerator lowercase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase = config['lr'] lowercase = int(config["""num_epochs"""] ) lowercase = int(config["""seed"""] ) lowercase = int(config["""batch_size"""] ) lowercase = args.model_name_or_path set_seed(snake_case__ ) lowercase = get_dataloaders(snake_case__ ,snake_case__ ,snake_case__ ,args.n_train ,args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase = AutoModelForSequenceClassification.from_pretrained(snake_case__ ,return_dict=snake_case__ ) # Instantiate optimizer lowercase = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase = optimizer_cls(params=model.parameters() ,lr=snake_case__ ) if accelerator.state.deepspeed_plugin is not None: lowercase = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowercase = 1 lowercase = (len(snake_case__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase = get_linear_schedule_with_warmup( optimizer=snake_case__ ,num_warmup_steps=0 ,num_training_steps=snake_case__ ,) else: lowercase = DummyScheduler(snake_case__ ,total_num_steps=snake_case__ ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase = accelerator.prepare( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) # We need to keep track of how many total steps we have iterated over lowercase = 0 # We also need to keep track of the stating epoch so files are named properly lowercase = 0 # Now we train the model lowercase = {} for epoch in range(snake_case__ ,snake_case__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(snake_case__ ): lowercase = model(**snake_case__ ) lowercase = outputs.loss lowercase = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowercase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,"""peak_memory_utilization.json""" ) ,"""w""" ) as f: json.dump(snake_case__ ,snake_case__ ) def UpperCamelCase__ ( ): lowercase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" ,type=snake_case__ ,default="""bert-base-cased""" ,help="""Path to pretrained model or model identifier from huggingface.co/models.""" ,required=snake_case__ ,) parser.add_argument( """--output_dir""" ,type=snake_case__ ,default=""".""" ,help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" ,) parser.add_argument( """--peak_memory_upper_bound""" ,type=snake_case__ ,default=snake_case__ ,help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" ,) parser.add_argument( """--n_train""" ,type=snake_case__ ,default=320 ,help="""Number of training examples to use.""" ,) parser.add_argument( """--n_val""" ,type=snake_case__ ,default=160 ,help="""Number of validation examples to use.""" ,) parser.add_argument( """--num_epochs""" ,type=snake_case__ ,default=1 ,help="""Number of train epochs.""" ,) lowercase = parser.parse_args() lowercase = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(snake_case__ ,snake_case__ ) if __name__ == "__main__": main()
428
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''▁''' __UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} __UpperCAmelCase = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } __UpperCAmelCase = { '''facebook/xglm-564M''': 2_048, } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None: UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCamelCase : Any = 7 UpperCamelCase : Optional[int] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] UpperCamelCase : Dict = kwargs.get('additional_special_tokens', [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, sp_model_kwargs=self.sp_model_kwargs, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase : Dict = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} UpperCamelCase : Optional[int] = len(self.sp_model ) UpperCamelCase : Any = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: UpperCamelCase : int = self.__dict__.copy() UpperCamelCase : Union[str, Any] = None UpperCamelCase : int = self.sp_model.serialized_model_proto() return state def __setstate__( self, SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : Any = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): UpperCamelCase : Any = {} UpperCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCamelCase : Optional[int] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_, token_ids_a=SCREAMING_SNAKE_CASE_, already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def snake_case_ ( self ) -> int: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_, out_type=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase : Union[str, Any] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : Dict = ''.join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_, ' ' ).strip() return out_string def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_, 'wb' ) as fi: UpperCamelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
40
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __A : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __A : Tuple = 25_6047 __A : int = 25_6145 @require_sentencepiece @require_tokenizers class __snake_case ( a__ ,unittest.TestCase): """simple docstring""" lowercase = NllbTokenizer lowercase = NllbTokenizerFast lowercase = True lowercase = True lowercase = {} def __lowercase ( self : Dict ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ : str = NllbTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : Optional[int] ) -> int: lowerCAmelCase_ : int = NllbTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowerCAmelCase_ : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase_ : Optional[int] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase_ : int = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def __lowercase ( self : Union[str, Any] ) -> Dict: lowerCAmelCase_ : Tuple = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase_ : Optional[int] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) lowerCAmelCase_ : Optional[Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCAmelCase_ : List[str] = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase_ : Tuple = tempfile.mkdtemp() lowerCAmelCase_ : int = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCAmelCase_ : str = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase_ : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase_ : Optional[Any] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase_ : Union[str, Any] = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @require_torch def __lowercase ( self : Union[str, Any] ) -> Optional[Any]: if not self.test_seqaseq: return lowerCAmelCase_ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. lowerCAmelCase_ : List[str] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] lowerCAmelCase_ : Optional[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: lowerCAmelCase_ : List[str] = tokenizer.prepare_seqaseq_batch( src_texts=SCREAMING_SNAKE_CASE_ , tgt_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , max_target_length=10 , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified lowerCAmelCase_ : Any = tokenizer.prepare_seqaseq_batch( SCREAMING_SNAKE_CASE_ , tgt_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors="""pt""" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) lowerCAmelCase_ : Optional[int] = tokenizer.prepare_seqaseq_batch( src_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , max_target_length=10 , return_tensors="""pt""" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("""decoder_input_ids""" , SCREAMING_SNAKE_CASE_ ) @unittest.skip("""Unfortunately way too slow to build a BPE with SentencePiece.""" ) def __lowercase ( self : int ) -> Tuple: pass def __lowercase ( self : Dict ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase_ : int = [AddedToken("""<special>""" , lstrip=SCREAMING_SNAKE_CASE_ )] lowerCAmelCase_ : List[str] = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Tuple = tokenizer_r.encode("""Hey this is a <special> token""" ) lowerCAmelCase_ : Optional[int] = tokenizer_r.encode("""<special>""" , add_special_tokens=SCREAMING_SNAKE_CASE_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: lowerCAmelCase_ : Dict = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase_ : Optional[int] = self.tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = tokenizer_p.encode("""Hey this is a <special> token""" ) lowerCAmelCase_ : Any = tokenizer_cr.encode("""Hey this is a <special> token""" ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase): """simple docstring""" lowercase = "facebook/nllb-200-distilled-600M" lowercase = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] lowercase = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] lowercase = [ 25_60_47, 1_62_97, 13_44_08, 81_65, 24_80_66, 1_47_34, 9_50, 11_35, 10_57_21, 35_73, 83, 2_73_52, 1_08, 4_94_86, 2, ] @classmethod def __lowercase ( cls : Union[str, Any] ) -> str: lowerCAmelCase_ : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" ) lowerCAmelCase_ : List[Any] = 1 return cls def __lowercase ( self : List[Any] ) -> Optional[int]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Arab"""] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Latn"""] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""fra_Latn"""] , 25_60_57 ) def __lowercase ( self : Dict ) -> Optional[int]: lowerCAmelCase_ : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) def __lowercase ( self : Tuple ) -> List[Any]: self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) # fmt: off lowerCAmelCase_ : Optional[Any] = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on lowerCAmelCase_ : Optional[Any] = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def __lowercase ( self : List[Any] ) -> Tuple: lowerCAmelCase_ : Union[str, Any] = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = 10 lowerCAmelCase_ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def __lowercase ( self : Tuple ) -> Dict: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_62_03, 3] ) def __lowercase ( self : Optional[int] ) -> List[Any]: lowerCAmelCase_ : Any = tempfile.mkdtemp() lowerCAmelCase_ : Optional[int] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = NllbTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ ) @require_torch def __lowercase ( self : List[Any] ) -> List[str]: lowerCAmelCase_ : Optional[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) lowerCAmelCase_ : List[str] = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["""ron_Latn"""] ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) lowerCAmelCase_ : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __lowercase ( self : Dict ) -> Optional[Any]: lowerCAmelCase_ : Tuple = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors="""pt""" ) lowerCAmelCase_ : Tuple = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10 , return_tensors="""pt""" ) lowerCAmelCase_ : Dict = targets['input_ids'] lowerCAmelCase_ : List[str] = shift_tokens_right( SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __lowercase ( self : List[str] ) -> Tuple: lowerCAmelCase_ : List[Any] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { # A, test, EOS, en_XX """input_ids""": [[25_60_47, 70, 73_56, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_60_57, } , ) @require_torch def __lowercase ( self : List[Any] ) -> str: lowerCAmelCase_ : Any = True lowerCAmelCase_ : int = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) lowerCAmelCase_ : int = False lowerCAmelCase_ : Dict = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
275
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCAmelCase = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } __UpperCAmelCase = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : str = ["input_ids", "attention_mask"] UpperCAmelCase__ : Dict = RobertaTokenizer def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="replace", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, errors=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, trim_offsets=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase : Dict = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop('type' ) ) UpperCamelCase : List[str] = add_prefix_space UpperCamelCase : Dict = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = add_prefix_space UpperCamelCase : Optional[Any] = 'post_processor' UpperCamelCase : Dict = getattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if tokenizer_component_instance: UpperCamelCase : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase : Optional[Any] = tuple(state['sep'] ) if "cls" in state: UpperCamelCase : Optional[int] = tuple(state['cls'] ) UpperCamelCase : Any = False if state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase : Optional[int] = add_prefix_space UpperCamelCase : List[Any] = True if state.get('trim_offsets', SCREAMING_SNAKE_CASE_ ) != trim_offsets: UpperCamelCase : Dict = trim_offsets UpperCamelCase : Union[str, Any] = True if changes_to_apply: UpperCamelCase : Tuple = getattr(SCREAMING_SNAKE_CASE_, state.pop('type' ) ) UpperCamelCase : Union[str, Any] = component_class(**SCREAMING_SNAKE_CASE_ ) setattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) @property def snake_case_ ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else value UpperCamelCase : List[Any] = value def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCamelCase : Optional[int] = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCamelCase : Dict = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCamelCase : Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Tuple: UpperCamelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
40
0
from __future__ import annotations a_ : Any = [] def __lowerCAmelCase ( _UpperCamelCase : list[list[int]] , _UpperCamelCase : int , _UpperCamelCase : int ) -> bool: '''simple docstring''' for i in range(len(snake_case__ ) ): if board[row][i] == 1: return False for i in range(len(snake_case__ ) ): if board[i][column] == 1: return False for i, j in zip(range(snake_case__ , -1 , -1 ) , range(snake_case__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(snake_case__ , -1 , -1 ) , range(snake_case__ , len(snake_case__ ) ) ): if board[i][j] == 1: return False return True def __lowerCAmelCase ( _UpperCamelCase : list[list[int]] , _UpperCamelCase : int ) -> bool: '''simple docstring''' if row >= len(snake_case__ ): solution.append(snake_case__ ) printboard(snake_case__ ) print() return True for i in range(len(snake_case__ ) ): if is_safe(snake_case__ , snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE = 1 solve(snake_case__ , row + 1 ) SCREAMING_SNAKE_CASE = 0 return False def __lowerCAmelCase ( _UpperCamelCase : list[list[int]] ) -> None: '''simple docstring''' for i in range(len(snake_case__ ) ): for j in range(len(snake_case__ ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) a_ : int = 8 a_ : Optional[Any] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
439
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCAmelCase_ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> Tuple: super().__init__(features=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = torch_tensor_kwargs import torch # noqa import torch at initialization def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict: import torch if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) and column: if all( isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(SCREAMING_SNAKE_CASE_ ) return column def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Any: import torch if isinstance(SCREAMING_SNAKE_CASE_, (str, bytes, type(SCREAMING_SNAKE_CASE_ )) ): return value elif isinstance(SCREAMING_SNAKE_CASE_, (np.character, np.ndarray) ) and np.issubdtype(value.dtype, np.character ): return value.tolist() UpperCamelCase : str = {} if isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.integer ): UpperCamelCase : List[str] = {'dtype': torch.intaa} elif isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.floating ): UpperCamelCase : int = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(SCREAMING_SNAKE_CASE_, PIL.Image.Image ): UpperCamelCase : str = np.asarray(SCREAMING_SNAKE_CASE_ ) return torch.tensor(SCREAMING_SNAKE_CASE_, **{**default_dtype, **self.torch_tensor_kwargs} ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: import torch # support for torch, tf, jax etc. if hasattr(SCREAMING_SNAKE_CASE_, '__array__' ) and not isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ): UpperCamelCase : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] ) elif isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ): return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] ) return self._tensorize(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int: return map_nested(self._recursive_tensorize, SCREAMING_SNAKE_CASE_, map_list=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping: UpperCamelCase : Dict = self.numpy_arrow_extractor().extract_row(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.python_features_decoder.decode_row(SCREAMING_SNAKE_CASE_ ) return self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> "torch.Tensor": UpperCamelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.python_features_decoder.decode_column(SCREAMING_SNAKE_CASE_, pa_table.column_names[0] ) UpperCamelCase : Any = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = self._consolidate(SCREAMING_SNAKE_CASE_ ) return column def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping: UpperCamelCase : List[Any] = self.numpy_arrow_extractor().extract_batch(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.python_features_decoder.decode_batch(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for column_name in batch: UpperCamelCase : str = self._consolidate(batch[column_name] ) return batch
40
0
'''simple docstring''' import datasets __a = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" __a = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" __a = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n" def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Any: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def lowerCamelCase ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def lowerCamelCase ( self : List[Any] , snake_case_ : str , snake_case_ : Any ): return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}
374
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) ) def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: UpperCamelCase : int = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(snake_case__ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCamelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(snake_case__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCamelCase : Dict = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(snake_case__ ) UpperCamelCase : List[Any] = [] for value in value_array: UpperCamelCase : Optional[Any] = euclidean(snake_case__ , dataset[0] ) UpperCamelCase : Dict = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCamelCase : Union[str, Any] = euclidean(snake_case__ , snake_case__ ) if dist > temp_dist: UpperCamelCase : str = temp_dist UpperCamelCase : List[str] = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ )) if __name__ == "__main__": import doctest doctest.testmod()
40
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE__ = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , ) -> Optional[int]: if attention_mask is None: A__ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: A__ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: A__ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : Optional[int]=13 , _snake_case : str=7 , _snake_case : Optional[int]=True , _snake_case : Tuple=False , _snake_case : List[str]=99 , _snake_case : Dict=16 , _snake_case : Union[str, Any]=2 , _snake_case : Tuple=4 , _snake_case : Tuple=4 , _snake_case : Optional[Any]="gelu" , _snake_case : Optional[int]=0.1 , _snake_case : Dict=0.1 , _snake_case : Any=32 , _snake_case : Union[str, Any]=2 , _snake_case : List[str]=1 , _snake_case : List[str]=0 , _snake_case : str=0.02 , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id A__ = initializer_range def _a ( self : Dict ): """simple docstring""" A__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) A__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) A__ = shift_tokens_right(SCREAMING_SNAKE_CASE_ , 1 , 2 ) A__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , ) A__ = prepare_blenderbot_inputs_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return config, inputs_dict def _a ( self : Any ): """simple docstring""" A__ = self.prepare_config_and_inputs() return config, inputs_dict def _a ( self : Dict , _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : Optional[int] ): """simple docstring""" A__ = 20 A__ = model_class_name(SCREAMING_SNAKE_CASE_ ) A__ = model.encode(inputs_dict['input_ids'] ) A__ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) A__ = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) A__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A__ = model.decode( decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , decoder_position_ids=SCREAMING_SNAKE_CASE_ , ) A__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) A__ = model.decode( decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=SCREAMING_SNAKE_CASE_ , ) A__ = model.decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def _a ( self : Union[str, Any] , _snake_case : Any , _snake_case : List[Any] , _snake_case : int ): """simple docstring""" A__ = 20 A__ = model_class_name(SCREAMING_SNAKE_CASE_ ) A__ = model.encode(inputs_dict['input_ids'] ) A__ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) A__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) A__ = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A__ = model.decode( decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , decoder_position_ids=SCREAMING_SNAKE_CASE_ , ) A__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) A__ = model.decode( decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , decoder_position_ids=SCREAMING_SNAKE_CASE_ , ) A__ = model.decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ ) A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : List[str] = 99 def _a ( self : Optional[int] ): """simple docstring""" A__ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) A__ = input_ids.shape[0] A__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _a ( self : Optional[Any] ): """simple docstring""" A__ = self._get_config_and_data() A__ = FlaxBlenderbotForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) A__ = lm_model(input_ids=SCREAMING_SNAKE_CASE_ ) A__ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , SCREAMING_SNAKE_CASE_ ) def _a ( self : Tuple ): """simple docstring""" A__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) A__ = FlaxBlenderbotForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) A__ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) A__ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) A__ = lm_model(input_ids=SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ ) A__ = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , SCREAMING_SNAKE_CASE_ ) def _a ( self : Any ): """simple docstring""" A__ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) A__ = shift_tokens_right(SCREAMING_SNAKE_CASE_ , 1 , 2 ) A__ = np.equal(SCREAMING_SNAKE_CASE_ , 1 ).astype(np.floataa ).sum() A__ = np.equal(SCREAMING_SNAKE_CASE_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(SCREAMING_SNAKE_CASE_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __lowerCAmelCase ( a__ , unittest.TestCase , a__ ): """simple docstring""" A__ : Any = True A__ : List[Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) A__ : Optional[Any] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _a ( self : Optional[int] ): """simple docstring""" A__ = FlaxBlenderbotModelTester(self ) def _a ( self : int ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a ( self : int ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a ( self : Dict ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A__ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A__ = model_class(SCREAMING_SNAKE_CASE_ ) @jax.jit def encode_jitted(_snake_case : Any , _snake_case : Optional[int]=None , **_snake_case : Optional[Any] ): return model.encode(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) with self.subTest('JIT Enabled' ): A__ = encode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): A__ = encode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape , output.shape ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A__ = model_class(SCREAMING_SNAKE_CASE_ ) A__ = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) A__ = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Any ): return model.decode( decoder_input_ids=SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , encoder_outputs=SCREAMING_SNAKE_CASE_ , ) with self.subTest('JIT Enabled' ): A__ = decode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): A__ = decode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _a ( self : Dict ): """simple docstring""" for model_class_name in self.all_model_classes: A__ = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids A__ = np.ones((1, 1) ) * model.config.eos_token_id A__ = model(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def _a ( self : Tuple ): """simple docstring""" A__ = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} A__ = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} A__ = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=SCREAMING_SNAKE_CASE_ ) A__ = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) A__ = ['Sam'] A__ = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='jax' ) A__ = model.generate(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) A__ = 'Sam is a great name. It means "sun" in Gaelic.' A__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) assert generated_txt[0].strip() == tgt_text
9
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCAmelCase = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __UpperCAmelCase = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __UpperCAmelCase = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __UpperCAmelCase = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __UpperCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCAmelCase = np.expand_dims(test_image, axis=0) __UpperCAmelCase = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCAmelCase = '''Normal''' if result[0][0] == 1: __UpperCAmelCase = '''Abnormality detected'''
40
0
'''simple docstring''' def lowerCamelCase__ ( a ): __snake_case = len(snake_case__ ) __snake_case = len(matrix[0] ) __snake_case = min(snake_case__ , snake_case__ ) for row in range(snake_case__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , snake_case__ ): __snake_case = matrix[col][row] / matrix[row][row] for i in range(snake_case__ , snake_case__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __snake_case = True for i in range(row + 1 , snake_case__ ): if matrix[i][row] != 0: __snake_case = matrix[i], matrix[row] __snake_case = False break if reduce: rank -= 1 for i in range(snake_case__ ): __snake_case = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
356
import os import pytest from attr import dataclass __UpperCAmelCase = '''us-east-1''' # defaults region @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : str UpperCAmelCase__ : Tuple = "arn:aws:iam::558105141721:role/sagemaker_execution_role" UpperCAmelCase__ : Union[str, Any] = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 500, "save_steps": 5500, } UpperCAmelCase__ : Dict = {**hyperparameters, "max_steps": 1000} @property def snake_case_ ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def snake_case_ ( self ) -> str: return F"""{self.framework}-transfromers-test""" @property def snake_case_ ( self ) -> str: return F"""./tests/sagemaker/scripts/{self.framework}""" @property def snake_case_ ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def UpperCamelCase ( snake_case__ : Any ) -> Union[str, Any]: UpperCamelCase : Optional[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
40
0
'''simple docstring''' def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> None: '''simple docstring''' a_ = len(snake_case__ ) print("The following activities are selected:" ) # The first activity is always selected a_ = 0 print(snake_case__ ,end="," ) # Consider rest of the activities for j in range(snake_case__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case__ ,end="," ) a_ = j if __name__ == "__main__": import doctest doctest.testmod() a_ = [1, 3, 0, 5, 8, 5] a_ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
685
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __UpperCAmelCase = '''src/transformers''' __UpperCAmelCase = '''docs/source/en/tasks''' def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Any ) -> Optional[int]: with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase : Optional[Any] = f.readlines() # Find the start prompt. UpperCamelCase : List[Any] = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 UpperCamelCase : Optional[Any] = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) __UpperCAmelCase = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __UpperCAmelCase = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def UpperCamelCase ( snake_case__ : Optional[int] ) -> Optional[Any]: UpperCamelCase : Tuple = TASK_GUIDE_TO_MODELS[task_guide] UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) UpperCamelCase : Tuple = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def UpperCamelCase ( snake_case__ : str , snake_case__ : Optional[int]=False ) -> Tuple: UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) UpperCamelCase : Optional[Any] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ' to fix this.' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __UpperCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
40
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class A__ : def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , A_=0 , ): '''simple docstring''' UpperCamelCase : Union[str, Any] = parent UpperCamelCase : List[str] = batch_size UpperCamelCase : Union[str, Any] = seq_length UpperCamelCase : Union[str, Any] = is_training UpperCamelCase : Union[str, Any] = use_input_mask UpperCamelCase : Dict = use_token_type_ids UpperCamelCase : List[str] = use_labels UpperCamelCase : Optional[int] = vocab_size UpperCamelCase : int = hidden_size UpperCamelCase : Any = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : List[str] = intermediate_size UpperCamelCase : str = hidden_act UpperCamelCase : Union[str, Any] = hidden_dropout_prob UpperCamelCase : List[Any] = attention_probs_dropout_prob UpperCamelCase : List[str] = max_position_embeddings UpperCamelCase : Optional[Any] = type_vocab_size UpperCamelCase : List[Any] = type_sequence_label_size UpperCamelCase : List[str] = initializer_range UpperCamelCase : str = num_labels UpperCamelCase : List[str] = num_choices UpperCamelCase : Tuple = scope UpperCamelCase : Any = projection_dim def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : str = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Union[str, Any] = None if self.use_token_type_ids: UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase : str = None UpperCamelCase : Any = None UpperCamelCase : int = None if self.use_labels: UpperCamelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : List[Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) UpperCamelCase : str = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = TFDPRContextEncoder(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Dict = TFDPRQuestionEncoder(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Tuple = TFDPRReader(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.prepare_config_and_inputs() ( UpperCamelCase ) : Tuple = config_and_inputs UpperCamelCase : Optional[Any] = {'input_ids': input_ids} return config, inputs_dict @require_tf class A__ ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase :List[Any] = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _UpperCAmelCase :List[Any] = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} _UpperCAmelCase :int = False _UpperCAmelCase :str = False _UpperCAmelCase :Any = False _UpperCAmelCase :Optional[int] = False _UpperCAmelCase :Any = False def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = TFDPRModelTester(self ) UpperCamelCase : Tuple = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def __UpperCamelCase( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*SCREAMING_SNAKE_CASE_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*SCREAMING_SNAKE_CASE_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*SCREAMING_SNAKE_CASE_ ) @slow def __UpperCamelCase( self ): '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Any = TFDPRContextEncoder.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : List[Any] = TFDPRContextEncoder.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : List[Any] = TFDPRQuestionEncoder.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Optional[int] = TFDPRReader.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_tf class A__ ( unittest.TestCase ): @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) UpperCamelCase : Dict = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. UpperCamelCase : List[Any] = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
629
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : int = IFPipeline UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case_ ( self ) -> str: return self._get_dummy_components() def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case_ ( self ) -> Optional[int]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA' ) def snake_case_ ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case_ ( self ) -> Dict: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case_ ( self ) -> Optional[int]: self._test_save_load_local() def snake_case_ ( self ) -> List[str]: self._test_inference_batch_single_identical( expected_max_diff=1e-2, ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def snake_case_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> List[Any]: # if UpperCamelCase : Union[str, Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0', variant='fp16', torch_dtype=torch.floataa ) UpperCamelCase : str = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0', variant='fp16', torch_dtype=torch.floataa, text_encoder=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) UpperCamelCase , UpperCamelCase : List[str] = pipe_a.encode_prompt('anime turtle', device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCamelCase : int = None UpperCamelCase : Union[str, Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCamelCase : Optional[int] = IFImgaImgPipeline(**pipe_a.components ) UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCamelCase : Union[str, Any] = IFInpaintingPipeline(**pipe_a.components ) UpperCamelCase : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 UpperCamelCase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Tuple = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : int = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : Dict = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : List[Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = floats_tensor((1, 3, 256, 256), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
40
0
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin A : Optional[Any] = logging.get_logger(__name__) enable_full_determinism() class lowerCAmelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' A = UNetaDModel A = "sample" @property def lowerCamelCase__ ( self :Any ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = 4 UpperCamelCase__ = 3 UpperCamelCase__ = (3_2, 3_2) UpperCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor([1_0] ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__ ( self :Any ) -> List[str]: """simple docstring""" return (3, 3_2, 3_2) @property def lowerCamelCase__ ( self :Tuple ) -> str: """simple docstring""" return (3, 3_2, 3_2) def lowerCamelCase__ ( self :List[Any] ) -> Any: """simple docstring""" UpperCamelCase__ = { 'block_out_channels': (3_2, 6_4), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 3_2, } UpperCamelCase__ = self.dummy_input return init_dict, inputs_dict class lowerCAmelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' A = UNetaDModel A = "sample" @property def lowerCamelCase__ ( self :int ) -> Any: """simple docstring""" UpperCamelCase__ = 4 UpperCamelCase__ = 4 UpperCamelCase__ = (3_2, 3_2) UpperCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor([1_0] ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__ ( self :Tuple ) -> Optional[int]: """simple docstring""" return (4, 3_2, 3_2) @property def lowerCamelCase__ ( self :Optional[Any] ) -> Union[str, Any]: """simple docstring""" return (4, 3_2, 3_2) def lowerCamelCase__ ( self :Any ) -> str: """simple docstring""" UpperCamelCase__ = { 'sample_size': 3_2, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (3_2, 6_4), 'attention_head_dim': 3_2, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } UpperCamelCase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__ ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def lowerCamelCase__ ( self :Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase__ = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def lowerCamelCase__ ( self :Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase__ = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=SCREAMING_SNAKE_CASE_ ) model_accelerate.to(SCREAMING_SNAKE_CASE_ ) model_accelerate.eval() UpperCamelCase__ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCamelCase__ = noise.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor([1_0] * noise.shape[0] ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model_accelerate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCamelCase__ = UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update" , output_loading_info=SCREAMING_SNAKE_CASE_ , low_cpu_mem_usage=SCREAMING_SNAKE_CASE_ ) model_normal_load.to(SCREAMING_SNAKE_CASE_ ) model_normal_load.eval() UpperCamelCase__ = model_normal_load(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )['sample'] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-3 ) def lowerCamelCase__ ( self :Any ) -> List[str]: """simple docstring""" UpperCamelCase__ = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" ) model.eval() model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCamelCase__ = noise.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor([1_0] * noise.shape[0] ).to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase__ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCamelCase__ = torch.tensor([-13.3_258, -20.1_100, -15.9_873, -17.6_617, -23.0_596, -17.9_419, -13.3_675, -16.1_889, -12.3_800] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-3 ) ) class lowerCAmelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' A = UNetaDModel A = "sample" @property def lowerCamelCase__ ( self :Optional[int] , lowerCamelCase_ :List[Any]=(3_2, 3_2) ) -> Any: """simple docstring""" UpperCamelCase__ = 4 UpperCamelCase__ = 3 UpperCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor(batch_size * [1_0] ).to(dtype=torch.intaa , device=SCREAMING_SNAKE_CASE_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__ ( self :Optional[Any] ) -> str: """simple docstring""" return (3, 3_2, 3_2) @property def lowerCamelCase__ ( self :List[str] ) -> Optional[Any]: """simple docstring""" return (3, 3_2, 3_2) def lowerCamelCase__ ( self :Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase__ = { 'block_out_channels': [3_2, 6_4, 6_4, 6_4], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1e-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } UpperCamelCase__ = self.dummy_input return init_dict, inputs_dict @slow def lowerCamelCase__ ( self :Any ) -> Any: """simple docstring""" UpperCamelCase__ = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.dummy_input UpperCamelCase__ = floats_tensor((4, 3) + (2_5_6, 2_5_6) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = noise UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ) assert image is not None, "Make sure output is not None" @slow def lowerCamelCase__ ( self :List[Any] ) -> List[str]: """simple docstring""" UpperCamelCase__ = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 4 UpperCamelCase__ = 3 UpperCamelCase__ = (2_5_6, 2_5_6) UpperCamelCase__ = torch.ones((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor(batch_size * [1e-4] ).to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCamelCase__ = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) ) def lowerCamelCase__ ( self :Any ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update" ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 4 UpperCamelCase__ = 3 UpperCamelCase__ = (3_2, 3_2) UpperCamelCase__ = torch.ones((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor(batch_size * [1e-4] ).to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCamelCase__ = torch.tensor([-0.0_325, -0.0_900, -0.0_869, -0.0_332, -0.0_725, -0.0_270, -0.0_101, 0.0_227, 0.0_256] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) ) def lowerCamelCase__ ( self :Any ) -> Optional[int]: """simple docstring""" pass
516
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def UpperCamelCase ( snake_case__ : Tuple="" ) -> str: UpperCamelCase : Union[str, Any] = tempfile.mkdtemp() return os.path.join(snake_case__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> int: UpperCamelCase : Union[str, Any] = torch.rand(12, dtype=torch.floataa ) - 0.5 UpperCamelCase : Union[str, Any] = AgentAudio(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) # Ensure that the file contains the same value as the original tensor UpperCamelCase , UpperCamelCase : Any = sf.read(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, torch.tensor(SCREAMING_SNAKE_CASE_ ), atol=1e-4 ) ) def snake_case_ ( self ) -> Any: UpperCamelCase : Optional[int] = torch.rand(12, dtype=torch.floataa ) - 0.5 UpperCamelCase : Union[str, Any] = get_new_path(suffix='.wav' ) sf.write(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, 1_6000 ) UpperCamelCase : int = AgentAudio(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) ) self.assertEqual(agent_type.to_string(), SCREAMING_SNAKE_CASE_ ) @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: UpperCamelCase : Dict = torch.randint(0, 256, (64, 64, 3) ) UpperCamelCase : Union[str, Any] = AgentImage(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type._tensor, atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw(), Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' UpperCamelCase : Optional[int] = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ) -> int: UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' UpperCamelCase : Union[str, Any] = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = 'Hey!' UpperCamelCase : Dict = AgentText(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_string() ) self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_raw() ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
40
0
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ) -> Dict: snake_case = 0 if start < end: snake_case = randint(snake_case__ , snake_case__ ) snake_case = a[end] snake_case = a[pivot] snake_case = temp snake_case = _in_place_partition(snake_case__ , snake_case__ , snake_case__ ) count += _in_place_quick_sort(snake_case__ , snake_case__ , p - 1 ) count += _in_place_quick_sort(snake_case__ , p + 1 , snake_case__ ) return count def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] ) -> Tuple: snake_case = 0 snake_case = randint(snake_case__ , snake_case__ ) snake_case = a[end] snake_case = a[pivot] snake_case = temp snake_case = start - 1 for index in range(snake_case__ , snake_case__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case = new_pivot_index + 1 snake_case = a[new_pivot_index] snake_case = a[index] snake_case = temp snake_case = a[new_pivot_index + 1] snake_case = a[end] snake_case = temp return new_pivot_index + 1, count _SCREAMING_SNAKE_CASE = TemporaryFile() _SCREAMING_SNAKE_CASE = 100 # 1000 elements are to be sorted _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0, 1 # mean and standard deviation _SCREAMING_SNAKE_CASE = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _SCREAMING_SNAKE_CASE = np.load(outfile) _SCREAMING_SNAKE_CASE = len(M) - 1 _SCREAMING_SNAKE_CASE = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
369
def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : Any ) -> Union[str, Any]: UpperCamelCase : int = [1] for i in range(2 , snake_case__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCamelCase : List[Any] = [] UpperCamelCase : List[Any] = list(range(snake_case__ ) ) # Find permutation while factorials: UpperCamelCase : int = factorials.pop() UpperCamelCase , UpperCamelCase : int = divmod(snake_case__ , snake_case__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
40
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : str = torch.device('cpu') def a_ ( ) -> Tuple: """simple docstring""" lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im def a_ ( UpperCamelCase_ : str ) -> int: """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def a_ ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] ) -> str: """simple docstring""" lowerCamelCase = dct.pop(snake_case__ ) lowerCamelCase = val def a_ ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase = [] for k in state_dict.keys(): lowerCamelCase = k if ".pwconv" in k: lowerCamelCase = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: lowerCamelCase = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: lowerCamelCase = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: lowerCamelCase = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: lowerCamelCase = k_new.split('.' ) if ls[2].isdigit(): lowerCamelCase = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: lowerCamelCase = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def a_ ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str ) -> List[Any]: """simple docstring""" lowerCamelCase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowerCamelCase = 1_0_0_0 lowerCamelCase = 'huggingface/label-files' lowerCamelCase = 'imagenet-1k-id2label.json' lowerCamelCase = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) lowerCamelCase = {int(snake_case__ ): v for k, v in idalabel.items()} lowerCamelCase = idalabel lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowerCamelCase = [3, 3, 6, 4] lowerCamelCase = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": lowerCamelCase = [3, 3, 9, 6] lowerCamelCase = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": lowerCamelCase = [4, 3, 1_0, 5] lowerCamelCase = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": lowerCamelCase = [4, 4, 1_2, 6] lowerCamelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): lowerCamelCase = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' , check_hash=snake_case__ ) else: lowerCamelCase = torch.load(snake_case__ , map_location='cpu' ) lowerCamelCase = checkpoint lowerCamelCase = create_rename_keys(snake_case__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # load HuggingFace model lowerCamelCase = SwiftFormerForImageClassification(snake_case__ ).eval() hf_model.load_state_dict(snake_case__ ) # prepare test inputs lowerCamelCase = prepare_img() lowerCamelCase = ViTImageProcessor.from_pretrained('preprocessor_config' ) lowerCamelCase = processor(images=snake_case__ , return_tensors='pt' ) # compare outputs from both models lowerCamelCase = get_expected_output(snake_case__ ) lowerCamelCase = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , snake_case__ , atol=1E-3 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _lowerCAmelCase : List[Any] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
246
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase_ ( a__ ): def snake_case_ ( self ) -> Tuple: UpperCamelCase : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'width_multiplier' ) ) class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_="swish", SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=0.25, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, ) -> Any: UpperCamelCase : int = parent UpperCamelCase : int = batch_size UpperCamelCase : List[Any] = image_size UpperCamelCase : List[str] = patch_size UpperCamelCase : Optional[int] = num_channels UpperCamelCase : List[str] = make_divisible(512 * width_multiplier, divisor=8 ) UpperCamelCase : List[str] = hidden_act UpperCamelCase : Optional[int] = conv_kernel_size UpperCamelCase : List[str] = output_stride UpperCamelCase : Union[str, Any] = classifier_dropout_prob UpperCamelCase : List[Any] = use_labels UpperCamelCase : Any = is_training UpperCamelCase : int = num_labels UpperCamelCase : List[Any] = initializer_range UpperCamelCase : Tuple = scope UpperCamelCase : List[str] = width_multiplier UpperCamelCase : Any = ffn_dropout UpperCamelCase : List[Any] = attn_dropout def snake_case_ ( self ) -> int: UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : List[str] = None UpperCamelCase : int = None if self.use_labels: UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels ) UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCamelCase : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ ( self ) -> int: return MobileViTVaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Any = MobileViTVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Optional[int] = self.num_labels UpperCamelCase : Tuple = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Any = self.num_labels UpperCamelCase : Optional[Any] = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = config_and_inputs UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Tuple = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ : Any = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Optional[Any] = False def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Dict = MobileViTVaModelTester(self ) UpperCamelCase : Optional[Any] = MobileViTVaConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def snake_case_ ( self ) -> int: pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def snake_case_ ( self ) -> str: pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case_ ( self ) -> Any: pass def snake_case_ ( self ) -> List[str]: UpperCamelCase , UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : str = [*signature.parameters.keys()] UpperCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Tuple: def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Tuple = outputs.hidden_states UpperCamelCase : Dict = 5 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCamelCase : Any = 2 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2 ) UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> str: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ) -> Optional[Any]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : str = MobileViTVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Tuple: UpperCamelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> str: return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.default_image_processor UpperCamelCase : Any = prepare_img() UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : List[str] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Union[str, Any] = prepare_img() UpperCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = outputs.logits # verify the logits UpperCamelCase : Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ], device=SCREAMING_SNAKE_CASE_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : str = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Optional[int] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Tuple = prepare_img() UpperCamelCase : int = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = outputs.logits.detach().cpu() UpperCamelCase : int = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_, target_sizes=[(50, 60)] ) UpperCamelCase : Optional[int] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ )
40
0
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class A_ ( unittest.TestCase ): def __init__( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : str=13 , snake_case__ : Optional[Any]=7 , snake_case__ : List[str]=True , snake_case__ : Union[str, Any]=True , snake_case__ : Any=True , snake_case__ : int=True , snake_case__ : Dict=99 , snake_case__ : str=32 , snake_case__ : Tuple=5 , snake_case__ : Dict=4 , snake_case__ : Optional[int]=37 , snake_case__ : str="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : Optional[Any]=5_12 , snake_case__ : List[str]=16 , snake_case__ : Optional[Any]=2 , snake_case__ : List[str]=0.02 , snake_case__ : int=4 , ): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_attention_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_choices def SCREAMING_SNAKE_CASE__ ( self : Any ): lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_attention_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = self.prepare_config_and_inputs() lowercase = config_and_inputs lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowercase = self.prepare_config_and_inputs() lowercase = config_and_inputs lowercase = True lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class A_ ( a__ , unittest.TestCase ): _A :List[str] = True _A :Union[str, Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowercase = FlaxRobertaPreLayerNormModelTester(self ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): for model_class_name in self.all_model_classes: lowercase = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE_ ) lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_flax class A_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE_ ) lowercase = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) lowercase = model(SCREAMING_SNAKE_CASE_ )[0] lowercase = [1, 11, 5_02_65] self.assertEqual(list(output.shape ) , SCREAMING_SNAKE_CASE_ ) # compare the actual values for a slice. lowercase = np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowercase = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE_ ) lowercase = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) lowercase = model(SCREAMING_SNAKE_CASE_ )[0] # compare the actual values for a slice. lowercase = np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
428
def UpperCamelCase ( snake_case__ : Optional[int] ) -> str: UpperCamelCase : List[str] = [0] * len(snake_case__ ) UpperCamelCase : int = [] UpperCamelCase : Optional[int] = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: UpperCamelCase : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCamelCase : Tuple = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
40
0
'''simple docstring''' def UpperCamelCase_ ( A__ : Tuple ): # noqa: E741 '''simple docstring''' lowerCAmelCase_ : str = len(snake_case__ ) lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : List[Any] = [0] * n lowerCAmelCase_ : str = [False] * n lowerCAmelCase_ : List[Any] = [False] * n def dfs(A__ : Any , A__ : Optional[int] , A__ : str , A__ : int ): if parent == root: out_edge_count += 1 lowerCAmelCase_ : Dict = True lowerCAmelCase_ : str = at for to in l[at]: if to == parent: pass elif not visited[to]: lowerCAmelCase_ : Dict = dfs(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase_ : Optional[Any] = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: lowerCAmelCase_ : Tuple = True # AP found via cycle if at == low[to]: lowerCAmelCase_ : Tuple = True else: lowerCAmelCase_ : Optional[Any] = min(low[at] , snake_case__ ) return out_edge_count for i in range(snake_case__ ): if not visited[i]: lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : List[Any] = dfs(snake_case__ , snake_case__ , -1 , snake_case__ ) lowerCAmelCase_ : Optional[int] = out_edge_count > 1 for x in range(len(snake_case__ ) ): if is_art[x] is True: print(snake_case__ ) # Adjacency list of graph __A : Union[str, Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
275
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
40
0
import operator as op def __lowerCAmelCase ( _UpperCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = lambda _UpperCamelCase , _UpperCamelCase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(snake_case__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(snake_case__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(snake_case__ ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(snake_case__ ) , sep=' | ' ) SCREAMING_SNAKE_CASE = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(snake_case__ ) , sep=' | ' ) stack.append( str(opr[x](int(snake_case__ ) , int(snake_case__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(snake_case__ ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": a_ : Optional[Any] = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", solve(Postfix))
439
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { '''configuration_m2m_100''': ['''M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''M2M100Config''', '''M2M100OnnxConfig'''], '''tokenization_m2m_100''': ['''M2M100Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST''', '''M2M100ForConditionalGeneration''', '''M2M100Model''', '''M2M100PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
41
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase__ = logging.getLogger(__name__) def _A ( A__ , A__ ): """simple docstring""" return (preds == labels).mean() @dataclass class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowerCamelCase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowerCamelCase__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowerCamelCase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) SCREAMING_SNAKE_CASE : str = field(metadata={'help': 'Should contain the data files for the task.'} ) SCREAMING_SNAKE_CASE : int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _A ( ): """simple docstring""" __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , A__ ) # Set seed set_seed(training_args.seed ) try: __lowercase = processors[data_args.task_name]() __lowercase = processor.get_labels() __lowercase = len(A__ ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , ) # Get datasets __lowercase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=A__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __lowercase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=A__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(A__ ) -> Dict: __lowercase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(A__ , p.label_ids )} # Data collator __lowercase = DataCollatorWithPadding(A__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __lowercase = Trainer( model=A__ , args=A__ , train_dataset=A__ , eval_dataset=A__ , compute_metrics=A__ , data_collator=A__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(A__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , A__ , A__ ) writer.write('''%s = %s\n''' % (key, value) ) results.update(A__ ) return results def _A ( A__ ): """simple docstring""" main() if __name__ == "__main__": main()
41
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(A__ ): __lowercase = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = '''a''' * 1000 + '''.lock''' __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
41
1
'''simple docstring''' from PIL import Image def _A ( A__ , A__ ): """simple docstring""" __lowercase = (259 * (level + 255)) / (255 * (259 - level)) def contrast(A__ ) -> int: return int(128 + factor * (c - 128) ) return img.point(A__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change contrast to 170 lowerCAmelCase__ = change_contrast(img, 170) cont_img.save('''image_data/lena_high_contrast.png''', format='''png''')
41
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
1
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def _A ( A__ , A__ , A__ , A__=5 ): """simple docstring""" assert masked_input.count('''<mask>''' ) == 1 __lowercase = torch.tensor(tokenizer.encode(A__ , add_special_tokens=A__ ) ).unsqueeze(0 ) # Batch size 1 __lowercase = model(A__ )[0] # The last hidden-state is the first element of the output tuple __lowercase = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __lowercase = logits[0, masked_index, :] __lowercase = logits.softmax(dim=0 ) __lowercase , __lowercase = prob.topk(k=A__ , dim=0 ) __lowercase = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(A__ ) )] ) __lowercase = tokenizer.mask_token __lowercase = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): __lowercase = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(A__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(A__ ) , A__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(A__ , A__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs lowerCAmelCase__ = CamembertTokenizer.from_pretrained('''camembert-base''') lowerCAmelCase__ = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() lowerCAmelCase__ = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
41
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = 'trocr' SCREAMING_SNAKE_CASE : Optional[Any] = ['past_key_values'] SCREAMING_SNAKE_CASE : Optional[int] = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self : Union[str, Any] ,lowercase__ : Dict=5_0_2_6_5 ,lowercase__ : Dict=1_0_2_4 ,lowercase__ : Union[str, Any]=1_2 ,lowercase__ : Optional[int]=1_6 ,lowercase__ : int=4_0_9_6 ,lowercase__ : str="gelu" ,lowercase__ : Any=5_1_2 ,lowercase__ : List[str]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : Optional[Any]=0.0 ,lowercase__ : int=2 ,lowercase__ : List[Any]=0.0_2 ,lowercase__ : Optional[Any]=0.0 ,lowercase__ : int=True ,lowercase__ : str=False ,lowercase__ : List[str]=True ,lowercase__ : str=True ,lowercase__ : Any=1 ,lowercase__ : Any=0 ,lowercase__ : Union[str, Any]=2 ,**lowercase__ : Union[str, Any] ,): __lowercase = vocab_size __lowercase = d_model __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = activation_function __lowercase = max_position_embeddings __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = init_std __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = scale_embedding __lowercase = use_learned_position_embeddings __lowercase = layernorm_embedding super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,decoder_start_token_id=lowercase__ ,**lowercase__ ,)
41
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
1
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example lowerCAmelCase__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowerCAmelCase__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _A ( A__ ): """simple docstring""" __lowercase = [] for i in range(len(A__ ) ): __lowercase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __lowercase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(A__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(A__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(A__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __lowercase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(A__ ) return next_generation def _A ( A__ , A__ ): """simple docstring""" __lowercase = [] for _ in range(A__ ): # Create output image __lowercase = Image.new('''RGB''' , (len(cells[0] ), len(A__ )) ) __lowercase = img.load() # Save cells to image for x in range(len(A__ ) ): for y in range(len(cells[0] ) ): __lowercase = 255 - cells[y][x] * 255 __lowercase = (colour, colour, colour) # Save image images.append(A__ ) __lowercase = new_generation(A__ ) return images if __name__ == "__main__": lowerCAmelCase__ = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
41
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
1
'''simple docstring''' import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase__ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowerCAmelCase__ = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"config.{attribute}" in modeling_source or F"getattr(config, \"{attribute}\"" in modeling_source or F"getattr(self.config, \"{attribute}\"" in modeling_source ): __lowercase = True # Deal with multi-line cases elif ( re.search( RF"getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"" , A__ , ) is not None ): __lowercase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: __lowercase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files __lowercase = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] __lowercase = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed __lowercase = True if not attribute_used: __lowercase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: __lowercase = True elif attribute in ["tie_word_embeddings"] and default_value is False: __lowercase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: __lowercase = True elif attribute.endswith('''_token_id''' ): __lowercase = True # configuration class specific cases if not case_allowed: __lowercase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) __lowercase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def _A ( A__ ): """simple docstring""" __lowercase = dict(inspect.signature(config_class.__init__ ).parameters ) __lowercase = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] __lowercase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass __lowercase = {} if len(config_class.attribute_map ) > 0: __lowercase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files __lowercase = inspect.getsourcefile(A__ ) __lowercase = os.path.dirname(A__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. __lowercase = [os.path.join(A__ , A__ ) for fn in os.listdir(A__ ) if fn.startswith('''modeling_''' )] # Get the source code strings __lowercase = [] for path in modeling_paths: if os.path.isfile(A__ ): with open(A__ ) as fp: modeling_sources.append(fp.read() ) __lowercase = [] for config_param, default_value in zip(A__ , A__ ): # `attributes` here is all the variant names for `config_param` __lowercase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(A__ , A__ , A__ , A__ ): unused_attributes.append(attributes[0] ) return sorted(A__ ) def _A ( ): """simple docstring""" __lowercase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) __lowercase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda A__ : inspect.isclass(A__ ) and issubclass(A__ , A__ ) and inspect.getmodule(A__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: __lowercase = check_config_attributes_being_used(A__ ) if len(A__ ) > 0: __lowercase = unused_attributes if len(A__ ) > 0: __lowercase = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"{name}: {attributes}\n" raise ValueError(A__ ) if __name__ == "__main__": check_config_attributes()
41
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
1
'''simple docstring''' def _A ( A__ ): """simple docstring""" if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] __lowercase = grid[0] for row_n in range(1 , len(A__ ) ): __lowercase = grid[row_n] __lowercase = fill_row(A__ , A__ ) __lowercase = grid[row_n] return grid[-1][-1] def _A ( A__ , A__ ): """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(A__ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
41
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
1
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''', } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 'mvp' SCREAMING_SNAKE_CASE : str = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : int ,lowercase__ : str=5_0_2_6_7 ,lowercase__ : List[str]=1_0_2_4 ,lowercase__ : Union[str, Any]=1_2 ,lowercase__ : Optional[int]=4_0_9_6 ,lowercase__ : Tuple=1_6 ,lowercase__ : Union[str, Any]=1_2 ,lowercase__ : Union[str, Any]=4_0_9_6 ,lowercase__ : Optional[int]=1_6 ,lowercase__ : int=0.0 ,lowercase__ : Any=0.0 ,lowercase__ : Optional[int]="gelu" ,lowercase__ : Dict=1_0_2_4 ,lowercase__ : List[str]=0.1 ,lowercase__ : Optional[int]=0.0 ,lowercase__ : Optional[int]=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Any=0.0 ,lowercase__ : List[str]=False ,lowercase__ : List[str]=True ,lowercase__ : Optional[int]=1 ,lowercase__ : int=0 ,lowercase__ : List[Any]=2 ,lowercase__ : str=True ,lowercase__ : Dict=2 ,lowercase__ : str=2 ,lowercase__ : Tuple=False ,lowercase__ : List[str]=1_0_0 ,lowercase__ : int=8_0_0 ,**lowercase__ : Union[str, Any] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = classifier_dropout __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase = use_prompt __lowercase = prompt_length __lowercase = prompt_mid_dim super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' ,lowercase__ ): __lowercase = self.bos_token_id warnings.warn( F"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " '''The config can simply be saved and uploaded again to be fixed.''' )
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b ) __lowercase = a // b return (y, x - k * y) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _A ( A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) if b < 0: __lowercase = (b % n + n) % n return b def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
1
'''simple docstring''' import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ = logging.getLogger() def _A ( A__ ): """simple docstring""" __lowercase = {} __lowercase = os.path.join(A__ , '''all_results.json''' ) if os.path.exists(A__ ): with open(A__ , '''r''' ) as f: __lowercase = json.load(A__ ) else: raise ValueError(F"can't find {path}" ) return results lowerCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowercase_ (lowerCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Any ): import xla_spawn __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(lowercase__ ,'''argv''' ,lowercase__ ): __lowercase = time() xla_spawn.main() __lowercase = time() __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.7_5 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start ,5_0_0 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): import xla_spawn __lowercase = ''' ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py '''.split() with patch.object(lowercase__ ,'''argv''' ,lowercase__ ): xla_spawn.main()
41
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
1
'''simple docstring''' import os import string import sys lowerCAmelCase__ = 1 << 8 lowerCAmelCase__ = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } lowerCAmelCase__ = KEYMAP['''up'''] lowerCAmelCase__ = KEYMAP['''left'''] if sys.platform == "win32": lowerCAmelCase__ = [] lowerCAmelCase__ = { b'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, b'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase__ = ord(str(i)) def _A ( ): """simple docstring""" if os.name == "nt": import msvcrt __lowercase = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(A__ ) == 0: # Read the keystroke __lowercase = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __lowercase = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __lowercase = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(A__ ) if ord(A__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) __lowercase = chr(KEYMAP['''esc'''] ) except KeyError: __lowercase = cha[1] else: __lowercase = ch.decode(A__ ) else: __lowercase = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __lowercase = sys.stdin.fileno() __lowercase = termios.tcgetattr(A__ ) try: tty.setraw(A__ ) __lowercase = sys.stdin.read(1 ) finally: termios.tcsetattr(A__ , termios.TCSADRAIN , A__ ) return ch def _A ( ): """simple docstring""" __lowercase = get_raw_chars() if ord(A__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(A__ ) == KEYMAP["esc"]: __lowercase = get_raw_chars() if ord(A__ ) == KEYMAP["mod_int"]: __lowercase = get_raw_chars() if ord(A__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(A__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(A__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
41
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ): __lowercase = NezhaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,): __lowercase = True __lowercase = NezhaModel(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,) __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = NezhaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): __lowercase = NezhaForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ): __lowercase = NezhaForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ): __lowercase = NezhaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ): __lowercase = self.num_labels __lowercase = NezhaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = NezhaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = self.num_choices __lowercase = NezhaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = True def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ): __lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ ) __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = NezhaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = NezhaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
41
1
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowerCAmelCase__ = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Path ,lowercase__ : Union[str, None] = None ,lowercase__ : Union[List[str], None] = None ,lowercase__ : Union[str, List[str], None] = None ,lowercase__ : bool = True ,): __lowercase = [file for file in os.listdir(lowercase__ ) if os.path.isfile(os.path.join(lowercase__ ,lowercase__ ) )] if identifier is not None: __lowercase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase__ ,lowercase__ ): for n_ in n_identifier: __lowercase = [file for file in files if n_ not in file] else: __lowercase = [file for file in files if n_identifier not in file] __lowercase = ignore_files or [] ignore_files.append('''__init__.py''' ) __lowercase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' ,lowercase__ ) if only_modules: __lowercase = file.split('''.''' )[0] try: __lowercase = getattr(lowercase__ ,lowercase__ ) __lowercase = doctest.DocTestSuite(lowercase__ ) __lowercase = unittest.TextTestRunner().run(lowercase__ ) self.assertIs(len(result.failures ) ,0 ) except AttributeError: logger.info(F"{module_identifier} is not a module." ) else: __lowercase = doctest.testfile(str('''..''' / directory / file ) ,optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed ,0 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = Path('''src/transformers''' ) __lowercase = '''modeling''' __lowercase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(lowercase__ ,identifier=lowercase__ ,ignore_files=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = Path('''src/transformers''' ) __lowercase = '''tokenization''' self.analyze_directory(lowercase__ ,identifier=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = Path('''src/transformers''' ) __lowercase = '''configuration''' self.analyze_directory(lowercase__ ,identifier=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = Path('''src/transformers''' ) __lowercase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(lowercase__ ,n_identifier=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = Path('''docs/source''' ) __lowercase = ['''favicon.ico'''] self.analyze_directory(lowercase__ ,ignore_files=lowercase__ ,only_modules=lowercase__ )
41
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
1
'''simple docstring''' lowerCAmelCase__ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
41
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,**lowercase__ : Tuple ): super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,'''vision''' ) self.check_model_type(lowercase__ ) def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,): if "text_queries" in kwargs: __lowercase = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ ,(str, Image.Image) ): __lowercase = {'''image''': image, '''candidate_labels''': candidate_labels} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs['''threshold'''] if "top_k" in kwargs: __lowercase = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = load_image(inputs['''image'''] ) __lowercase = inputs['''candidate_labels'''] if isinstance(lowercase__ ,lowercase__ ): __lowercase = candidate_labels.split(''',''' ) __lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): __lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework ) __lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = model_inputs.pop('''target_size''' ) __lowercase = model_inputs.pop('''candidate_label''' ) __lowercase = model_inputs.pop('''is_last''' ) __lowercase = self.model(**lowercase__ ) __lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ): __lowercase = [] for model_output in model_outputs: __lowercase = model_output['''candidate_label'''] __lowercase = BaseModelOutput(lowercase__ ) __lowercase = self.image_processor.post_process_object_detection( outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): __lowercase = outputs['''scores'''][index].item() __lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] ) __lowercase = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ ) if top_k: __lowercase = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) __lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist() __lowercase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
41
1
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets lowerCAmelCase__ = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowerCAmelCase__ = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' lowerCAmelCase__ = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[Any] ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' ,id='''sequence''' ) ,id='''references''' ), } ) ,codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] ,reference_urls=[ '''https://github.com/m-popovic/chrF''', ] ,) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : str ,lowercase__ : List[Any] ,lowercase__ : int = CHRF.CHAR_ORDER ,lowercase__ : int = CHRF.WORD_ORDER ,lowercase__ : int = CHRF.BETA ,lowercase__ : bool = False ,lowercase__ : bool = False ,lowercase__ : bool = False ,): __lowercase = len(references[0] ) if any(len(lowercase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __lowercase = [[refs[i] for refs in references] for i in range(lowercase__ )] __lowercase = CHRF(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = sb_chrf.corpus_score(lowercase__ ,lowercase__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
41
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm lowerCAmelCase__ = logging.get_logger(__name__) @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : int ,**lowercase__ : Optional[Any] ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __lowercase = deprecated_arg[3:] setattr(self ,lowercase__ ,not kwargs.pop(lowercase__ ) ) logger.warning( F"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or" F" {positive_arg}={kwargs[positive_arg]}" ) __lowercase = kwargs.pop('''torchscript''' ,self.torchscript ) __lowercase = kwargs.pop('''torch_xla_tpu_print_metrics''' ,self.torch_xla_tpu_print_metrics ) __lowercase = kwargs.pop('''fp16_opt_level''' ,self.fpaa_opt_level ) super().__init__(**lowercase__ ) SCREAMING_SNAKE_CASE : bool = field(default=lowerCamelCase__ , metadata={'help': 'Trace the models using torchscript'} ) SCREAMING_SNAKE_CASE : bool = field(default=lowerCamelCase__ , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) SCREAMING_SNAKE_CASE : str = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): requires_backends(self ,['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: __lowercase = torch.device('''cpu''' ) __lowercase = 0 elif is_torch_tpu_available(): __lowercase = xm.xla_device() __lowercase = 0 else: __lowercase = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) __lowercase = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE ( self : int ): return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): requires_backends(self ,['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE ( self : str ): requires_backends(self ,['''torch'''] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): requires_backends(self ,['''torch'''] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE ( self : Dict ): return self.n_gpu > 0
41
'''simple docstring''' from collections.abc import Callable class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ): # Stores actual heap items. __lowercase = [] # Stores indexes of each item for supporting updates and deletion. __lowercase = {} # Stores current size of heap. __lowercase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowercase = key or (lambda lowercase__ : x) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ): __lowercase , __lowercase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowercase , __lowercase = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._left(lowercase__ ) __lowercase = self._right(lowercase__ ) __lowercase = i if left is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = left if right is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = right return valid_parent def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._parent(lowercase__ ) while parent is not None and not self._cmp(lowercase__ ,lowercase__ ): self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = parent, self._parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = self._get_valid_parent(lowercase__ ) while valid_parent != index: self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] __lowercase = [item, self.key(lowercase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] del self.pos_map[item] __lowercase = self.arr[self.size - 1] __lowercase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowercase__ )] ) else: __lowercase = [item, self.key(lowercase__ )] __lowercase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _A ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
41
1
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] lowerCAmelCase__ = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCAmelCase__ = f'down_blocks.{i}.resnets.{j}.' lowerCAmelCase__ = f'input_blocks.{3*i + j + 1}.0.' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCAmelCase__ = f'down_blocks.{i}.attentions.{j}.' lowerCAmelCase__ = f'input_blocks.{3*i + j + 1}.1.' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCAmelCase__ = f'up_blocks.{i}.resnets.{j}.' lowerCAmelCase__ = f'output_blocks.{3*i + j}.0.' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCAmelCase__ = f'up_blocks.{i}.attentions.{j}.' lowerCAmelCase__ = f'output_blocks.{3*i + j}.1.' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCAmelCase__ = f'down_blocks.{i}.downsamplers.0.conv.' lowerCAmelCase__ = f'input_blocks.{3*(i+1)}.0.op.' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCAmelCase__ = f'up_blocks.{i}.upsamplers.0.' lowerCAmelCase__ = f'output_blocks.{3*i + 2}.{1 if i == 0 else 2}.' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCAmelCase__ = '''mid_block.attentions.0.''' lowerCAmelCase__ = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCAmelCase__ = f'mid_block.resnets.{j}.' lowerCAmelCase__ = f'middle_block.{2*j}.' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _A ( A__ ): """simple docstring""" __lowercase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: __lowercase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: __lowercase = v.replace(A__ , A__ ) __lowercase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: __lowercase = v.replace(A__ , A__ ) __lowercase = v __lowercase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCAmelCase__ = f'encoder.down_blocks.{i}.resnets.{j}.' lowerCAmelCase__ = f'encoder.down.{i}.block.{j}.' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCAmelCase__ = f'down_blocks.{i}.downsamplers.0.' lowerCAmelCase__ = f'down.{i}.downsample.' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCAmelCase__ = f'up_blocks.{i}.upsamplers.0.' lowerCAmelCase__ = f'up.{3-i}.upsample.' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCAmelCase__ = f'decoder.up_blocks.{i}.resnets.{j}.' lowerCAmelCase__ = f'decoder.up.{3-i}.block.{j}.' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCAmelCase__ = f'mid_block.resnets.{i}.' lowerCAmelCase__ = f'mid.block_{i+1}.' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def _A ( A__ ): """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def _A ( A__ ): """simple docstring""" __lowercase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: __lowercase = v.replace(A__ , A__ ) __lowercase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: __lowercase = v.replace(A__ , A__ ) __lowercase = v __lowercase = {v: vae_state_dict[k] for k, v in mapping.items()} __lowercase = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F"mid.attn_1.{weight_name}.weight" in k: print(F"Reshaping {k} for SD format" ) __lowercase = reshape_weight_for_sd(A__ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] lowerCAmelCase__ = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCAmelCase__ = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCAmelCase__ = {'''q''': 0, '''k''': 1, '''v''': 2} def _A ( A__ ): """simple docstring""" __lowercase = {} __lowercase = {} __lowercase = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): __lowercase = k[: -len('''.q_proj.weight''' )] __lowercase = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: __lowercase = [None, None, None] __lowercase = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): __lowercase = k[: -len('''.q_proj.bias''' )] __lowercase = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: __lowercase = [None, None, None] __lowercase = v continue __lowercase = textenc_pattern.sub(lambda A__ : protected[re.escape(m.group(0 ) )] , A__ ) __lowercase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) __lowercase = textenc_pattern.sub(lambda A__ : protected[re.escape(m.group(0 ) )] , A__ ) __lowercase = torch.cat(A__ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) __lowercase = textenc_pattern.sub(lambda A__ : protected[re.escape(m.group(0 ) )] , A__ ) __lowercase = torch.cat(A__ ) return new_state_dict def _A ( A__ ): """simple docstring""" return text_enc_dict if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) lowerCAmelCase__ = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCAmelCase__ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') lowerCAmelCase__ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') lowerCAmelCase__ = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCAmelCase__ = load_file(unet_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') lowerCAmelCase__ = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): lowerCAmelCase__ = load_file(vae_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') lowerCAmelCase__ = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): lowerCAmelCase__ = load_file(text_enc_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') lowerCAmelCase__ = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model lowerCAmelCase__ = convert_unet_state_dict(unet_state_dict) lowerCAmelCase__ = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCAmelCase__ = convert_vae_state_dict(vae_state_dict) lowerCAmelCase__ = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCAmelCase__ = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCAmelCase__ = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} lowerCAmelCase__ = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCAmelCase__ = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: lowerCAmelCase__ = convert_text_enc_state_dict(text_enc_dict) lowerCAmelCase__ = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCAmelCase__ = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCAmelCase__ = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCAmelCase__ = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
41
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
1
'''simple docstring''' from importlib import import_module from .logging import get_logger lowerCAmelCase__ = get_logger(__name__) class lowercase_ : """simple docstring""" def __init__( self : Union[str, Any] ,lowercase__ : Dict ,lowercase__ : Union[str, Any]=None ): __lowercase = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self ,lowercase__ ,getattr(lowercase__ ,lowercase__ ) ) __lowercase = module._original_module if isinstance(lowercase__ ,_PatchedModuleObj ) else module class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : str = [] def __init__( self : Tuple ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Any=None ): __lowercase = obj __lowercase = target __lowercase = new __lowercase = target.split('''.''' )[0] __lowercase = {} __lowercase = attrs or [] def __enter__( self : Union[str, Any] ): *__lowercase , __lowercase = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowercase__ ) ): try: __lowercase = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __lowercase = getattr(self.obj ,lowercase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowercase__ ,_PatchedModuleObj ) and obj_attr._original_module is submodule) ): __lowercase = obj_attr # patch at top level setattr(self.obj ,lowercase__ ,_PatchedModuleObj(lowercase__ ,attrs=self.attrs ) ) __lowercase = getattr(self.obj ,lowercase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowercase__ ,lowercase__ ,_PatchedModuleObj(getattr(lowercase__ ,lowercase__ ,lowercase__ ) ,attrs=self.attrs ) ) __lowercase = getattr(lowercase__ ,lowercase__ ) # finally set the target attribute setattr(lowercase__ ,lowercase__ ,self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __lowercase = getattr(import_module('''.'''.join(lowercase__ ) ) ,lowercase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj ,lowercase__ ) is attr_value: __lowercase = getattr(self.obj ,lowercase__ ) setattr(self.obj ,lowercase__ ,self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __lowercase = globals()['''__builtins__'''][target_attr] setattr(self.obj ,lowercase__ ,self.new ) else: raise RuntimeError(F"Tried to patch attribute {target_attr} instead of a submodule." ) def __exit__( self : Tuple ,*lowercase__ : Any ): for attr in list(self.original ): setattr(self.obj ,lowercase__ ,self.original.pop(lowercase__ ) ) def SCREAMING_SNAKE_CASE ( self : int ): self.__enter__() self._active_patches.append(self ) def SCREAMING_SNAKE_CASE ( self : Dict ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
41
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : jnp.ndarray SCREAMING_SNAKE_CASE : jnp.ndarray class lowercase_ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase = self.block_out_channels[i] __lowercase = self.block_out_channels[i + 1] __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = blocks __lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.conv_in(lowercase__ ) __lowercase = nn.silu(lowercase__ ) for block in self.blocks: __lowercase = block(lowercase__ ) __lowercase = nn.silu(lowercase__ ) __lowercase = self.conv_out(lowercase__ ) return embedding @flax_register_to_config class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 3_2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE : int = 1_2_8_0 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = "rgb" SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ): # init input tensors __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase = jnp.ones((1,) ,dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) __lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(lowercase__ ) __lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"] def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time __lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype ) __lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) __lowercase = self.only_cross_attention if isinstance(lowercase__ ,lowercase__ ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = [] __lowercase = block_out_channels[0] __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: __lowercase = FlaxDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowercase__ ) for _ in range(self.layers_per_block ): __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) if not is_final_block: __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) __lowercase = down_blocks __lowercase = controlnet_down_blocks # mid __lowercase = block_out_channels[-1] __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,): __lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase = jnp.flip(lowercase__ ,axis=1 ) # 1. time if not isinstance(lowercase__ ,jnp.ndarray ): __lowercase = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(lowercase__ ,0 ) __lowercase = self.time_proj(lowercase__ ) __lowercase = self.time_embedding(lowercase__ ) # 2. pre-process __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.conv_in(lowercase__ ) __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.controlnet_cond_embedding(lowercase__ ) sample += controlnet_cond # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ ,lowercase__ ): __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) else: __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) # 5. contronet blocks __lowercase = () for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ): __lowercase = controlnet_block(lowercase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase = controlnet_down_block_res_samples __lowercase = self.controlnet_mid_block(lowercase__ ) # 6. scaling __lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
41
1
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : Any=None ,**lowercase__ : List[str] ): warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' ,lowercase__ ,) super().__init__(args=lowercase__ ,**lowercase__ )
41
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(lowercase__ ,lowercase__ ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ = { '''vocab_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ = { '''yjernite/retribert-base-uncased''': 512, } lowerCAmelCase__ = { '''yjernite/retribert-base-uncased''': {'''do_lower_case''': True}, } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = RetriBertTokenizer SCREAMING_SNAKE_CASE : int = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] ,lowercase__ : Optional[int]=None ,lowercase__ : Dict=None ,lowercase__ : Tuple=True ,lowercase__ : Dict="[UNK]" ,lowercase__ : str="[SEP]" ,lowercase__ : List[Any]="[PAD]" ,lowercase__ : int="[CLS]" ,lowercase__ : Optional[Any]="[MASK]" ,lowercase__ : Dict=True ,lowercase__ : List[Any]=None ,**lowercase__ : Optional[Any] ,): super().__init__( lowercase__ ,tokenizer_file=lowercase__ ,do_lower_case=lowercase__ ,unk_token=lowercase__ ,sep_token=lowercase__ ,pad_token=lowercase__ ,cls_token=lowercase__ ,mask_token=lowercase__ ,tokenize_chinese_chars=lowercase__ ,strip_accents=lowercase__ ,**lowercase__ ,) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,lowercase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' ,lowercase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,lowercase__ ) != tokenize_chinese_chars ): __lowercase = getattr(lowercase__ ,normalizer_state.pop('''type''' ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**lowercase__ ) __lowercase = do_lower_case def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : str=None ): __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : str ,lowercase__ : Optional[str] = None ): __lowercase = self._tokenizer.model.save(lowercase__ ,name=lowercase__ ) return tuple(lowercase__ )
41
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
41
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Union[str, Any] ,lowercase__ : AutoencoderKL ,lowercase__ : CLIPTextModel ,lowercase__ : CLIPTokenizer ,lowercase__ : UNetaDConditionModel ,lowercase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] ,lowercase__ : StableDiffusionSafetyChecker ,lowercase__ : CLIPImageProcessor ,): super().__init__() self.register_modules( vae=lowercase__ ,text_encoder=lowercase__ ,tokenizer=lowercase__ ,unet=lowercase__ ,scheduler=lowercase__ ,safety_checker=lowercase__ ,feature_extractor=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): self.enable_attention_slicing(lowercase__ ) @torch.no_grad() def __call__( self : List[str] ,lowercase__ : Union[str, List[str]] ,lowercase__ : int = 5_1_2 ,lowercase__ : int = 5_1_2 ,lowercase__ : int = 5_0 ,lowercase__ : float = 7.5 ,lowercase__ : Optional[Union[str, List[str]]] = None ,lowercase__ : Optional[int] = 1 ,lowercase__ : float = 0.0 ,lowercase__ : Optional[torch.Generator] = None ,lowercase__ : Optional[torch.FloatTensor] = None ,lowercase__ : Optional[str] = "pil" ,lowercase__ : bool = True ,lowercase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,lowercase__ : int = 1 ,lowercase__ : Optional[torch.FloatTensor] = None ,**lowercase__ : List[str] ,): if isinstance(lowercase__ ,lowercase__ ): __lowercase = 1 elif isinstance(lowercase__ ,lowercase__ ): __lowercase = len(lowercase__ ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase__ ,lowercase__ ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowercase__ )}." ) # get prompt text embeddings __lowercase = self.tokenizer( lowercase__ ,padding='''max_length''' ,max_length=self.tokenizer.model_max_length ,return_tensors='''pt''' ,) __lowercase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowercase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __lowercase = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __lowercase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __lowercase , __lowercase , __lowercase = text_embeddings.shape __lowercase = text_embeddings.repeat(1 ,lowercase__ ,1 ) __lowercase = text_embeddings.view(bs_embed * num_images_per_prompt ,lowercase__ ,-1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = 42 if negative_prompt is None: __lowercase = [''''''] elif type(lowercase__ ) is not type(lowercase__ ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase__ )} !=" F" {type(lowercase__ )}." ) elif isinstance(lowercase__ ,lowercase__ ): __lowercase = [negative_prompt] elif batch_size != len(lowercase__ ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase__ )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: __lowercase = negative_prompt __lowercase = text_input_ids.shape[-1] __lowercase = self.tokenizer( lowercase__ ,padding='''max_length''' ,max_length=lowercase__ ,truncation=lowercase__ ,return_tensors='''pt''' ,) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowercase = uncond_embeddings.shape[1] __lowercase = uncond_embeddings.repeat(lowercase__ ,lowercase__ ,1 ) __lowercase = uncond_embeddings.view(batch_size * num_images_per_prompt ,lowercase__ ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 6_4, 6_4) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __lowercase = torch.randn( lowercase__ ,generator=lowercase__ ,device='''cpu''' ,dtype=lowercase__ ).to(self.device ) __lowercase = torch.randn(lowercase__ ,generator=lowercase__ ,device='''cpu''' ,dtype=lowercase__ ).to( self.device ) else: __lowercase = torch.randn( lowercase__ ,generator=lowercase__ ,device=self.device ,dtype=lowercase__ ) __lowercase = torch.randn(lowercase__ ,generator=lowercase__ ,device=self.device ,dtype=lowercase__ ) else: if latents_reference.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) __lowercase = latents_reference.to(self.device ) __lowercase = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __lowercase = (latents_shape[3] - latents_shape_reference[3]) // 2 __lowercase = (latents_shape[2] - latents_shape_reference[2]) // 2 __lowercase = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __lowercase = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __lowercase = 0 if dx < 0 else dx __lowercase = 0 if dy < 0 else dy __lowercase = max(-dx ,0 ) __lowercase = max(-dy ,0 ) # import pdb # pdb.set_trace() __lowercase = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowercase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __lowercase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta for i, t in enumerate(self.progress_bar(lowercase__ ) ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(lowercase__ ,lowercase__ ) # predict the noise residual __lowercase = self.unet(lowercase__ ,lowercase__ ,encoder_hidden_states=lowercase__ ).sample # perform guidance if do_classifier_free_guidance: __lowercase , __lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = 1 / 0.1_8_2_1_5 * latents __lowercase = self.vae.decode(lowercase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowercase = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if self.safety_checker is not None: __lowercase = self.feature_extractor(self.numpy_to_pil(lowercase__ ) ,return_tensors='''pt''' ).to( self.device ) __lowercase , __lowercase = self.safety_checker( images=lowercase__ ,clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __lowercase = None if output_type == "pil": __lowercase = self.numpy_to_pil(lowercase__ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowercase__ ,nsfw_content_detected=lowercase__ )
41
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
1
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Dict ): debug_launcher(test_script.main ) def SCREAMING_SNAKE_CASE ( self : Any ): debug_launcher(test_ops.main )
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
1
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ): __lowercase = NezhaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,): __lowercase = True __lowercase = NezhaModel(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,) __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = NezhaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): __lowercase = NezhaForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ): __lowercase = NezhaForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ): __lowercase = NezhaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ): __lowercase = self.num_labels __lowercase = NezhaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = NezhaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = self.num_choices __lowercase = NezhaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = True def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ): __lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ ) __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = NezhaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = NezhaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
41
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } lowerCAmelCase__ = '''▁''' class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Union[str, Any] = BigBirdTokenizer SCREAMING_SNAKE_CASE : Optional[Any] = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : Union[str, Any] ,lowercase__ : str=None ,lowercase__ : List[str]=None ,lowercase__ : Dict="<unk>" ,lowercase__ : Dict="<s>" ,lowercase__ : Tuple="</s>" ,lowercase__ : int="<pad>" ,lowercase__ : Optional[Any]="[SEP]" ,lowercase__ : List[str]="[MASK]" ,lowercase__ : Tuple="[CLS]" ,**lowercase__ : List[str] ,): __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else bos_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else eos_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else unk_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else pad_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else cls_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else mask_token super().__init__( lowercase__ ,tokenizer_file=lowercase__ ,bos_token=lowercase__ ,eos_token=lowercase__ ,unk_token=lowercase__ ,sep_token=lowercase__ ,pad_token=lowercase__ ,cls_token=lowercase__ ,mask_token=lowercase__ ,**lowercase__ ,) __lowercase = vocab_file __lowercase = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ,lowercase__ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(lowercase__ )) + [1] return [1] + ([0] * len(lowercase__ )) + [1] + ([0] * len(lowercase__ )) + [1] def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowercase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( lowercase__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file ,lowercase__ ) return (out_vocab_file,)
41
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(A__ ): __lowercase = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = '''a''' * 1000 + '''.lock''' __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
41
1
'''simple docstring''' from __future__ import annotations import pandas as pd def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = [0] * no_of_processes __lowercase = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(A__ ): __lowercase = burst_time[i] __lowercase = 0 __lowercase = 0 __lowercase = 999999999 __lowercase = 0 __lowercase = False # Process until all processes are completed while complete != no_of_processes: for j in range(A__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __lowercase = remaining_time[j] __lowercase = j __lowercase = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __lowercase = remaining_time[short] if minm == 0: __lowercase = 999999999 if remaining_time[short] == 0: complete += 1 __lowercase = False # Find finish time of current process __lowercase = increment_time + 1 # Calculate waiting time __lowercase = finish_time - arrival_time[short] __lowercase = finar - burst_time[short] if waiting_time[short] < 0: __lowercase = 0 # Increment time increment_time += 1 return waiting_time def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = [0] * no_of_processes for i in range(A__ ): __lowercase = burst_time[i] + waiting_time[i] return turn_around_time def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i in range(A__ ): __lowercase = total_waiting_time + waiting_time[i] __lowercase = total_turn_around_time + turn_around_time[i] print(F"Average waiting time = {total_waiting_time / no_of_processes:.5f}" ) print('''Average turn around time =''' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') lowerCAmelCase__ = int(input()) lowerCAmelCase__ = [0] * no_of_processes lowerCAmelCase__ = [0] * no_of_processes lowerCAmelCase__ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) lowerCAmelCase__ , lowerCAmelCase__ = map(int, input().split()) lowerCAmelCase__ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCAmelCase__ = burst_time lowerCAmelCase__ = no_of_processes lowerCAmelCase__ = waiting_time lowerCAmelCase__ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) lowerCAmelCase__ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
41
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
1
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowerCAmelCase__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' lowerCAmelCase__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' lowerCAmelCase__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _A ( A__ , A__ ): """simple docstring""" return float((preds == labels).mean() ) def _A ( A__ , A__ , A__="binary" ): """simple docstring""" __lowercase = simple_accuracy(A__ , A__ ) __lowercase = float(fa_score(y_true=A__ , y_pred=A__ , average=A__ ) ) return { "accuracy": acc, "f1": fa, } def _A ( A__ , A__ ): """simple docstring""" __lowercase = {} for id_pred, label in zip(A__ , A__ ): __lowercase = F"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}" __lowercase = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: __lowercase = [(pred, label)] __lowercase , __lowercase = [], [] for question, preds_labels in question_map.items(): __lowercase , __lowercase = zip(*A__ ) __lowercase = fa_score(y_true=A__ , y_pred=A__ , average='''macro''' ) fas.append(A__ ) __lowercase = int(sum(pred == label for pred, label in preds_labels ) == len(A__ ) ) ems.append(A__ ) __lowercase = float(sum(A__ ) / len(A__ ) ) __lowercase = sum(A__ ) / len(A__ ) __lowercase = float(fa_score(y_true=A__ , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : str ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None ,) def SCREAMING_SNAKE_CASE ( self : Tuple ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : Tuple ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(lowercase__ ,lowercase__ )} elif self.config_name == "cb": return acc_and_fa(lowercase__ ,lowercase__ ,fa_avg='''macro''' ) elif self.config_name == "record": __lowercase = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] __lowercase = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(lowercase__ ,lowercase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(lowercase__ ,lowercase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(lowercase__ ,lowercase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
41
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE : int = 'CLIPImageProcessor' SCREAMING_SNAKE_CASE : Union[str, Any] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self : int ,lowercase__ : int=None ,lowercase__ : List[str]=None ,**lowercase__ : Tuple ): __lowercase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,lowercase__ ,) __lowercase = kwargs.pop('''feature_extractor''' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase__ ,lowercase__ ) def __call__( self : List[str] ,lowercase__ : List[Any]=None ,lowercase__ : Tuple=None ,lowercase__ : List[str]=None ,**lowercase__ : Union[str, Any] ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __lowercase = self.tokenizer(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) if images is not None: __lowercase = self.image_processor(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) ,tensor_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,*lowercase__ : Dict ,**lowercase__ : Optional[int] ): return self.tokenizer.batch_decode(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,*lowercase__ : List[str] ,**lowercase__ : Dict ): return self.tokenizer.decode(*lowercase__ ,**lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
41
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
1
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = CpmAntTokenizer SCREAMING_SNAKE_CASE : Dict = False def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): super().setUp() __lowercase = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) __lowercase = '''今天天气真好!''' __lowercase = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __lowercase = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = '''今天天气真好!''' __lowercase = [tokenizer.bos_token] + tokens __lowercase = [6, 9_8_0_2, 1_4_9_6_2, 2_0_8_2, 8_3_1, 2_4_4] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) ,lowercase__ ) __lowercase = tokenizer.decode(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ )
41
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
1
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers lowerCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def _A ( ): """simple docstring""" __lowercase = os.path.dirname(os.path.realpath(A__ ) ) __lowercase = os.path.join(A__ , '''words.txt''' ) __lowercase = '''''' with open(A__ ) as f: __lowercase = f.readline() __lowercase = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] __lowercase = [ word for word in [sum(ord(A__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(A__ ) if __name__ == "__main__": print(solution())
41
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
1
'''simple docstring''' def _A ( A__ ): """simple docstring""" __lowercase = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _A ( A__ ): """simple docstring""" __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(A__ ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(A__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(A__ ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def _A ( A__ , A__ ): """simple docstring""" return "".join(cipher_map.get(A__ , A__ ) for ch in message.upper() ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(A__ , A__ ) for ch in message.upper() ) def _A ( ): """simple docstring""" __lowercase = input('''Enter message to encode or decode: ''' ).strip() __lowercase = input('''Enter keyword: ''' ).strip() __lowercase = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: __lowercase = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) __lowercase = create_cipher_map(A__ ) print(func(A__ , A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
41
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
1
'''simple docstring''' from typing import Any import numpy as np def _A ( A__ ): """simple docstring""" return np.array_equal(A__ , matrix.conjugate().T ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = v.conjugate().T __lowercase = v_star.dot(A__ ) assert isinstance(A__ , np.ndarray ) return (v_star_dot.dot(A__ )) / (v_star.dot(A__ )) def _A ( ): """simple docstring""" __lowercase = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) __lowercase = np.array([[1], [2], [3]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." print(rayleigh_quotient(A__ , A__ ) ) __lowercase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." assert rayleigh_quotient(A__ , A__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b ) __lowercase = a // b return (y, x - k * y) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _A ( A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) if b < 0: __lowercase = (b % n + n) % n return b def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
1
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowercase_ (lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" @register_to_config def __init__( self : List[Any] ,lowercase__ : int = 1_2_8 ,lowercase__ : int = 2_5_6 ,lowercase__ : float = 2_0_0_0.0 ,lowercase__ : int = 7_6_8 ,lowercase__ : int = 1_2 ,lowercase__ : int = 1_2 ,lowercase__ : int = 6_4 ,lowercase__ : int = 2_0_4_8 ,lowercase__ : float = 0.1 ,): super().__init__() __lowercase = nn.Sequential( nn.Linear(lowercase__ ,d_model * 4 ,bias=lowercase__ ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=lowercase__ ) ,nn.SiLU() ,) __lowercase = nn.Embedding(lowercase__ ,lowercase__ ) __lowercase = False __lowercase = nn.Linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) __lowercase = nn.Dropout(p=lowercase__ ) __lowercase = nn.ModuleList() for lyr_num in range(lowercase__ ): # FiLM conditional T5 decoder __lowercase = DecoderLayer(d_model=lowercase__ ,d_kv=lowercase__ ,num_heads=lowercase__ ,d_ff=lowercase__ ,dropout_rate=lowercase__ ) self.decoders.append(lowercase__ ) __lowercase = TaLayerNorm(lowercase__ ) __lowercase = nn.Dropout(p=lowercase__ ) __lowercase = nn.Linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ): __lowercase = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ): __lowercase , __lowercase , __lowercase = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __lowercase = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) __lowercase = self.conditioning_emb(lowercase__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __lowercase = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __lowercase = torch.broadcast_to( torch.arange(lowercase__ ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) __lowercase = self.position_encoding(lowercase__ ) __lowercase = self.continuous_inputs_projection(lowercase__ ) inputs += position_encodings __lowercase = self.dropout(lowercase__ ) # decoder: No padding present. __lowercase = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. __lowercase = [(x, self.encoder_decoder_mask(lowercase__ ,lowercase__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings __lowercase = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) __lowercase = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: __lowercase = lyr( lowercase__ ,conditioning_emb=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,)[0] __lowercase = self.decoder_norm(lowercase__ ) __lowercase = self.post_dropout(lowercase__ ) __lowercase = self.spec_out(lowercase__ ) return spec_out class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : str ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : str ,lowercase__ : Optional[int] ,lowercase__ : int ,lowercase__ : List[Any]=1e-6 ): super().__init__() __lowercase = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowercase__ ,d_kv=lowercase__ ,num_heads=lowercase__ ,dropout_rate=lowercase__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowercase__ ,d_kv=lowercase__ ,num_heads=lowercase__ ,dropout_rate=lowercase__ ,layer_norm_epsilon=lowercase__ ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowercase__ ,d_ff=lowercase__ ,dropout_rate=lowercase__ ,layer_norm_epsilon=lowercase__ ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : Tuple=None ,lowercase__ : List[Any]=None ,lowercase__ : Any=None ,lowercase__ : Tuple=None ,lowercase__ : Tuple=None ,): __lowercase = self.layer[0]( lowercase__ ,conditioning_emb=lowercase__ ,attention_mask=lowercase__ ,) if encoder_hidden_states is not None: __lowercase = torch.where(encoder_attention_mask > 0 ,0 ,-1e1_0 ).to( encoder_hidden_states.dtype ) __lowercase = self.layer[1]( lowercase__ ,key_value_states=lowercase__ ,attention_mask=lowercase__ ,) # Apply Film Conditional Feed Forward layer __lowercase = self.layer[-1](lowercase__ ,lowercase__ ) return (hidden_states,) class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Any ,lowercase__ : Optional[int] ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Optional[Any] ): super().__init__() __lowercase = TaLayerNorm(lowercase__ ) __lowercase = TaFiLMLayer(in_features=d_model * 4 ,out_features=lowercase__ ) __lowercase = Attention(query_dim=lowercase__ ,heads=lowercase__ ,dim_head=lowercase__ ,out_bias=lowercase__ ,scale_qk=lowercase__ ) __lowercase = nn.Dropout(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : int=None ,lowercase__ : List[Any]=None ,): # pre_self_attention_layer_norm __lowercase = self.layer_norm(lowercase__ ) if conditioning_emb is not None: __lowercase = self.FiLMLayer(lowercase__ ,lowercase__ ) # Self-attention block __lowercase = self.attention(lowercase__ ) __lowercase = hidden_states + self.dropout(lowercase__ ) return hidden_states class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Any ): super().__init__() __lowercase = Attention(query_dim=lowercase__ ,heads=lowercase__ ,dim_head=lowercase__ ,out_bias=lowercase__ ,scale_qk=lowercase__ ) __lowercase = TaLayerNorm(lowercase__ ,eps=lowercase__ ) __lowercase = nn.Dropout(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Any ,lowercase__ : Dict=None ,lowercase__ : Any=None ,): __lowercase = self.layer_norm(lowercase__ ) __lowercase = self.attention( lowercase__ ,encoder_hidden_states=lowercase__ ,attention_mask=attention_mask.squeeze(1 ) ,) __lowercase = hidden_states + self.dropout(lowercase__ ) return layer_output class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : List[str] ,lowercase__ : str ,lowercase__ : List[Any] ,lowercase__ : int ,lowercase__ : int ): super().__init__() __lowercase = TaDenseGatedActDense(d_model=lowercase__ ,d_ff=lowercase__ ,dropout_rate=lowercase__ ) __lowercase = TaFiLMLayer(in_features=d_model * 4 ,out_features=lowercase__ ) __lowercase = TaLayerNorm(lowercase__ ,eps=lowercase__ ) __lowercase = nn.Dropout(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Tuple ,lowercase__ : Tuple=None ): __lowercase = self.layer_norm(lowercase__ ) if conditioning_emb is not None: __lowercase = self.film(lowercase__ ,lowercase__ ) __lowercase = self.DenseReluDense(lowercase__ ) __lowercase = hidden_states + self.dropout(lowercase__ ) return hidden_states class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[Any] ,lowercase__ : List[str] ): super().__init__() __lowercase = nn.Linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) __lowercase = nn.Linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) __lowercase = nn.Linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) __lowercase = nn.Dropout(lowercase__ ) __lowercase = NewGELUActivation() def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : List[str] ): __lowercase = self.act(self.wi_a(lowercase__ ) ) __lowercase = self.wi_a(lowercase__ ) __lowercase = hidden_gelu * hidden_linear __lowercase = self.dropout(lowercase__ ) __lowercase = self.wo(lowercase__ ) return hidden_states class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Any ,lowercase__ : str=1e-6 ): super().__init__() __lowercase = nn.Parameter(torch.ones(lowercase__ ) ) __lowercase = eps def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 __lowercase = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=lowercase__ ) __lowercase = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __lowercase = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowercase_ (nn.Module ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(lowercase__ ,3.0 )) )) class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Dict ,lowercase__ : Optional[Any] ,lowercase__ : Union[str, Any] ): super().__init__() __lowercase = nn.Linear(lowercase__ ,out_features * 2 ,bias=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : Tuple ): __lowercase = self.scale_bias(lowercase__ ) __lowercase , __lowercase = torch.chunk(lowercase__ ,2 ,-1 ) __lowercase = x * (1 + scale) + shift return x
41
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
1
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = MobileBertTokenizer SCREAMING_SNAKE_CASE : int = MobileBertTokenizerFast SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[Any] = filter_non_english SCREAMING_SNAKE_CASE : Any = 'google/mobilebert-uncased' def SCREAMING_SNAKE_CASE ( self : Any ): super().setUp() __lowercase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __lowercase = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ): __lowercase = '''UNwant\u00E9d,running''' __lowercase = '''unwanted, running''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowercase__ ,['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) ,[9, 6, 7, 1_2, 1_0, 1_1] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): if not self.test_rust_tokenizer: return __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = '''UNwant\u00E9d,running''' __lowercase = tokenizer.tokenize(lowercase__ ) __lowercase = rust_tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) __lowercase = rust_tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(lowercase__ ) __lowercase = rust_tokenizer.encode(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) # With lower casing __lowercase = self.get_tokenizer(do_lower_case=lowercase__ ) __lowercase = self.get_rust_tokenizer(do_lower_case=lowercase__ ) __lowercase = '''UNwant\u00E9d,running''' __lowercase = tokenizer.tokenize(lowercase__ ) __lowercase = rust_tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) __lowercase = rust_tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(lowercase__ ) __lowercase = rust_tokenizer.encode(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) ,['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = BasicTokenizer(do_lower_case=lowercase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) ,['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = BasicTokenizer(do_lower_case=lowercase__ ,strip_accents=lowercase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''h\u00E9llo'''] ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = BasicTokenizer(do_lower_case=lowercase__ ,strip_accents=lowercase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = BasicTokenizer(do_lower_case=lowercase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = BasicTokenizer(do_lower_case=lowercase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = BasicTokenizer(do_lower_case=lowercase__ ,strip_accents=lowercase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = BasicTokenizer(do_lower_case=lowercase__ ,strip_accents=lowercase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = BasicTokenizer(do_lower_case=lowercase__ ,never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __lowercase = {} for i, token in enumerate(lowercase__ ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=lowercase__ ,unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) ,[] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) ,['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) ,['''[UNK]''', '''runn''', '''##ing'''] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def SCREAMING_SNAKE_CASE ( self : int ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowercase__ ) for t in ['''Test''', '''\xad''', '''test''']] ,[['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowercase__ ) for t in ['''Test''', '''\xad''', '''test''']] ,[['''[UNK]'''], [], ['''[UNK]''']] ) @slow def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) __lowercase = tokenizer.encode('''sequence builders''' ,add_special_tokens=lowercase__ ) __lowercase = tokenizer.encode('''multi-sequence build''' ,add_special_tokens=lowercase__ ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowercase__ ,lowercase__ ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = self.rust_tokenizer_class.from_pretrained(lowercase__ ,**lowercase__ ) __lowercase = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." __lowercase = tokenizer_r.encode_plus( lowercase__ ,return_attention_mask=lowercase__ ,return_token_type_ids=lowercase__ ,return_offsets_mapping=lowercase__ ,add_special_tokens=lowercase__ ,) __lowercase = tokenizer_r.do_lower_case if hasattr(lowercase__ ,'''do_lower_case''' ) else False __lowercase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''Allen'''), ((2_1, 2_3), '''##NL'''), ((2_3, 2_4), '''##P'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''allen'''), ((2_1, 2_3), '''##nl'''), ((2_3, 2_4), '''##p'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens['''offset_mapping'''] ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = ['''的''', '''人''', '''有'''] __lowercase = ''''''.join(lowercase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = True __lowercase = self.tokenizer_class.from_pretrained(lowercase__ ,**lowercase__ ) __lowercase = self.rust_tokenizer_class.from_pretrained(lowercase__ ,**lowercase__ ) __lowercase = tokenizer_p.encode(lowercase__ ,add_special_tokens=lowercase__ ) __lowercase = tokenizer_r.encode(lowercase__ ,add_special_tokens=lowercase__ ) __lowercase = tokenizer_r.convert_ids_to_tokens(lowercase__ ) __lowercase = tokenizer_p.convert_ids_to_tokens(lowercase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowercase__ ,lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = False __lowercase = self.rust_tokenizer_class.from_pretrained(lowercase__ ,**lowercase__ ) __lowercase = self.tokenizer_class.from_pretrained(lowercase__ ,**lowercase__ ) __lowercase = tokenizer_r.encode(lowercase__ ,add_special_tokens=lowercase__ ) __lowercase = tokenizer_p.encode(lowercase__ ,add_special_tokens=lowercase__ ) __lowercase = tokenizer_r.convert_ids_to_tokens(lowercase__ ) __lowercase = tokenizer_p.convert_ids_to_tokens(lowercase__ ) # it is expected that only the first Chinese character is not preceded by "##". __lowercase = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(lowercase__ ) ] self.assertListEqual(lowercase__ ,lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ )
41
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ): __lowercase = NezhaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,): __lowercase = True __lowercase = NezhaModel(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,) __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = NezhaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): __lowercase = NezhaForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ): __lowercase = NezhaForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ): __lowercase = NezhaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ): __lowercase = self.num_labels __lowercase = NezhaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = NezhaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = self.num_choices __lowercase = NezhaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = True def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ): __lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ ) __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = NezhaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = NezhaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
41
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def _A ( A__ , A__=False ): """simple docstring""" __lowercase = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('''head''' ): __lowercase = '''segformer.encoder.''' + key if key.startswith('''backbone''' ): __lowercase = key.replace('''backbone''' , '''segformer.encoder''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __lowercase = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] __lowercase = key.replace(F"patch_embed{idx}" , F"patch_embeddings.{int(A__ )-1}" ) if "norm" in key: __lowercase = key.replace('''norm''' , '''layer_norm''' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __lowercase = key[key.find('''segformer.encoder.layer_norm''' ) + len('''segformer.encoder.layer_norm''' )] __lowercase = key.replace(F"layer_norm{idx}" , F"layer_norm.{int(A__ )-1}" ) if "layer_norm1" in key: __lowercase = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: __lowercase = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 __lowercase = key[key.find('''block''' ) + len('''block''' )] __lowercase = key.replace(F"block{idx}" , F"block.{int(A__ )-1}" ) if "attn.q" in key: __lowercase = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: __lowercase = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: __lowercase = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: __lowercase = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: __lowercase = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: __lowercase = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: __lowercase = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) __lowercase = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __lowercase = key[key.find('''linear_c''' ) + len('''linear_c''' )] __lowercase = key.replace(F"linear_c{idx}" , F"linear_c.{int(A__ )-1}" ) if key.startswith('''head''' ): __lowercase = key.replace('''head''' , '''classifier''' ) __lowercase = value return new_state_dict def _A ( A__ , A__ ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __lowercase = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.weight" ) __lowercase = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict __lowercase = kv_weight[ : config.hidden_sizes[i], : ] __lowercase = kv_bias[: config.hidden_sizes[i]] __lowercase = kv_weight[ config.hidden_sizes[i] :, : ] __lowercase = kv_bias[ config.hidden_sizes[i] : ] def _A ( ): """simple docstring""" __lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase = Image.open(requests.get(A__ , stream=A__ ).raw ) return image @torch.no_grad() def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = SegformerConfig() __lowercase = False # set attributes based on model_name __lowercase = '''huggingface/label-files''' if "segformer" in model_name: __lowercase = model_name[len('''segformer.''' ) : len('''segformer.''' ) + 2] if "ade" in model_name: __lowercase = 150 __lowercase = '''ade20k-id2label.json''' __lowercase = (1, 150, 128, 128) elif "city" in model_name: __lowercase = 19 __lowercase = '''cityscapes-id2label.json''' __lowercase = (1, 19, 128, 128) else: raise ValueError(F"Model {model_name} not supported" ) elif "mit" in model_name: __lowercase = True __lowercase = model_name[4:6] __lowercase = 1000 __lowercase = '''imagenet-1k-id2label.json''' __lowercase = (1, 1000) else: raise ValueError(F"Model {model_name} not supported" ) # set config attributes __lowercase = json.load(open(hf_hub_download(A__ , A__ , repo_type='''dataset''' ) , '''r''' ) ) __lowercase = {int(A__ ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": __lowercase = [64, 128, 320, 512] __lowercase = 256 elif size == "b2": __lowercase = [64, 128, 320, 512] __lowercase = 768 __lowercase = [3, 4, 6, 3] elif size == "b3": __lowercase = [64, 128, 320, 512] __lowercase = 768 __lowercase = [3, 4, 18, 3] elif size == "b4": __lowercase = [64, 128, 320, 512] __lowercase = 768 __lowercase = [3, 8, 27, 3] elif size == "b5": __lowercase = [64, 128, 320, 512] __lowercase = 768 __lowercase = [3, 6, 40, 3] else: raise ValueError(F"Size {size} not supported" ) # load image processor (only resize + normalize) __lowercase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=A__ , align=A__ , do_random_crop=A__ ) # prepare image __lowercase = prepare_img() __lowercase = image_processor(images=A__ , return_tensors='''pt''' ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict if encoder_only: __lowercase = torch.load(A__ , map_location=torch.device('''cpu''' ) ) else: __lowercase = torch.load(A__ , map_location=torch.device('''cpu''' ) )['''state_dict'''] # rename keys __lowercase = rename_keys(A__ , encoder_only=A__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(A__ , A__ ) # create HuggingFace model and load state dict if encoder_only: __lowercase = False __lowercase = SegformerForImageClassification(A__ ) else: __lowercase = SegformerForSemanticSegmentation(A__ ) model.load_state_dict(A__ ) model.eval() # forward pass __lowercase = model(A__ ) __lowercase = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": __lowercase = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": __lowercase = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": __lowercase = torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": __lowercase = torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": __lowercase = torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": __lowercase = torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": __lowercase = torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": __lowercase = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": __lowercase = torch.tensor( [ [ [-1.13_72e01, -1.27_87e01, -1.34_77e01], [-1.25_36e01, -1.41_94e01, -1.44_09e01], [-1.32_17e01, -1.48_88e01, -1.53_27e01], ], [ [-1.47_91e01, -1.71_22e01, -1.82_77e01], [-1.71_63e01, -1.91_92e01, -1.95_33e01], [-1.78_97e01, -1.99_91e01, -2.03_15e01], ], [ [7.67_23e-01, 4.19_21e-01, -7.78_78e-02], [4.77_72e-01, 9.55_57e-03, -2.80_82e-01], [3.60_32e-01, -2.48_26e-01, -5.11_68e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": __lowercase = torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": __lowercase = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": __lowercase = torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": __lowercase = torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": __lowercase = torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": __lowercase = torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: __lowercase = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , A__ , atol=1e-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
41
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
1
'''simple docstring''' import os import sys lowerCAmelCase__ = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase__ = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def _A ( *A__ , **A__ ): """simple docstring""" return AutoConfig.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _A ( *A__ , **A__ ): """simple docstring""" return AutoTokenizer.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModel.__doc__ ) def _A ( *A__ , **A__ ): """simple docstring""" return AutoModel.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _A ( *A__ , **A__ ): """simple docstring""" return AutoModelForCausalLM.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _A ( *A__ , **A__ ): """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _A ( *A__ , **A__ ): """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _A ( *A__ , **A__ ): """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*A__ , **A__ )
41
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,**lowercase__ : Tuple ): super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,'''vision''' ) self.check_model_type(lowercase__ ) def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,): if "text_queries" in kwargs: __lowercase = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ ,(str, Image.Image) ): __lowercase = {'''image''': image, '''candidate_labels''': candidate_labels} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs['''threshold'''] if "top_k" in kwargs: __lowercase = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = load_image(inputs['''image'''] ) __lowercase = inputs['''candidate_labels'''] if isinstance(lowercase__ ,lowercase__ ): __lowercase = candidate_labels.split(''',''' ) __lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): __lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework ) __lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = model_inputs.pop('''target_size''' ) __lowercase = model_inputs.pop('''candidate_label''' ) __lowercase = model_inputs.pop('''is_last''' ) __lowercase = self.model(**lowercase__ ) __lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ): __lowercase = [] for model_output in model_outputs: __lowercase = model_output['''candidate_label'''] __lowercase = BaseModelOutput(lowercase__ ) __lowercase = self.image_processor.post_process_object_detection( outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): __lowercase = outputs['''scores'''][index].item() __lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] ) __lowercase = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ ) if top_k: __lowercase = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) __lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist() __lowercase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
41
1
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration lowerCAmelCase__ = pytest.mark.integration lowerCAmelCase__ = {'''comet'''} lowerCAmelCase__ = importlib.util.find_spec('''fairseq''') is not None lowerCAmelCase__ = {'''code_eval'''} lowerCAmelCase__ = os.name == '''nt''' lowerCAmelCase__ = {'''bertscore''', '''frugalscore''', '''perplexity'''} lowerCAmelCase__ = importlib.util.find_spec('''transformers''') is not None def _A ( A__ ): """simple docstring""" @wraps(A__ ) def wrapper(self , A__ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''"test requires Fairseq"''' ) else: test_case(self , A__ ) return wrapper def _A ( A__ ): """simple docstring""" @wraps(A__ ) def wrapper(self , A__ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''"test requires transformers"''' ) else: test_case(self , A__ ) return wrapper def _A ( A__ ): """simple docstring""" @wraps(A__ ) def wrapper(self , A__ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''"test not supported on Windows"''' ) else: test_case(self , A__ ) return wrapper def _A ( ): """simple docstring""" __lowercase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @local class lowercase_ (parameterized.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : Tuple = None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : str ): __lowercase = '''[...]''' __lowercase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' ,lowercase__ ) ).module_path ) __lowercase = datasets.load.import_main_class(metric_module.__name__ ,dataset=lowercase__ ) # check parameters __lowercase = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(lowercase__ ,metric_module.__name__ ): with self.use_local_metrics(): try: __lowercase = doctest.testmod(lowercase__ ,verbose=lowercase__ ,raise_on_error=lowercase__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed ,0 ) self.assertGreater(results.attempted ,1 ) @slow def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[Any] ): __lowercase = '''[...]''' __lowercase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' ,lowercase__ ) ).module_path ) # run doctest with self.use_local_metrics(): __lowercase = doctest.testmod(lowercase__ ,verbose=lowercase__ ,raise_on_error=lowercase__ ) self.assertEqual(results.failed ,0 ) self.assertGreater(results.attempted ,1 ) @contextmanager def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ,lowercase__ : Dict ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowercase__ ): yield else: yield @contextmanager def SCREAMING_SNAKE_CASE ( self : List[str] ): def load_local_metric(lowercase__ : Optional[int] ,*lowercase__ : List[Any] ,**lowercase__ : Any ): return load_metric(os.path.join('''metrics''' ,lowercase__ ) ,*lowercase__ ,**lowercase__ ) with patch('''datasets.load_metric''' ) as mock_load_metric: __lowercase = load_local_metric yield @classmethod def SCREAMING_SNAKE_CASE ( cls : Any ,lowercase__ : Optional[int] ): def wrapper(lowercase__ : List[Any] ): __lowercase = contextmanager(lowercase__ ) __lowercase = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def _A ( A__ ): """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags class lowercase_ (lowerCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : List[Any] ): assert len(input_dict['''input_ids'''] ) == 2 return np.array([1.0_3, 1.0_4] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: __lowercase = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def _A ( A__ ): """simple docstring""" import torch def bert_cos_score_idf(A__ , A__ , *A__ , **A__ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(A__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: __lowercase = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def _A ( A__ ): """simple docstring""" def load_from_checkpoint(A__ ): class lowercase_ : """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Dict ,*lowercase__ : List[str] ,**lowercase__ : Union[str, Any] ): assert len(lowercase__ ) == 2 __lowercase = [0.1_9, 0.9_2] return scores, sum(lowercase__ ) / len(lowercase__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: __lowercase = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: __lowercase = load_from_checkpoint yield def _A ( ): """simple docstring""" __lowercase = load_metric(os.path.join('''metrics''' , '''seqeval''' ) ) __lowercase = '''ERROR''' __lowercase = F"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}" with pytest.raises(A__ , match=re.escape(A__ ) ): metric.compute(predictions=[] , references=[] , scheme=A__ )
41
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
1
'''simple docstring''' def _A ( A__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 __lowercase = 1 __lowercase = 1 while repunit: __lowercase = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _A ( A__ = 1000000 ): """simple docstring""" __lowercase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(A__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'{solution() = }')
41
'''simple docstring''' from collections.abc import Callable class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ): # Stores actual heap items. __lowercase = [] # Stores indexes of each item for supporting updates and deletion. __lowercase = {} # Stores current size of heap. __lowercase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowercase = key or (lambda lowercase__ : x) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ): __lowercase , __lowercase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowercase , __lowercase = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._left(lowercase__ ) __lowercase = self._right(lowercase__ ) __lowercase = i if left is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = left if right is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = right return valid_parent def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._parent(lowercase__ ) while parent is not None and not self._cmp(lowercase__ ,lowercase__ ): self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = parent, self._parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = self._get_valid_parent(lowercase__ ) while valid_parent != index: self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] __lowercase = [item, self.key(lowercase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] del self.pos_map[item] __lowercase = self.arr[self.size - 1] __lowercase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowercase__ )] ) else: __lowercase = [item, self.key(lowercase__ )] __lowercase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _A ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
41
1
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowercase_ (unittest.TestCase ): """simple docstring""" def __init__( self : Any ,lowercase__ : Tuple ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 3_2 ,lowercase__ : bool = True ,lowercase__ : Union[int, float] = 1 / 2_5_5 ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] ,lowercase__ : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] ,lowercase__ : bool = True ,lowercase__ : Any=7 ,lowercase__ : Optional[int]=3_0 ,lowercase__ : Tuple=4_0_0 ,lowercase__ : List[Any]=3 ,): __lowercase = parent __lowercase = do_resize __lowercase = size if size is not None else {'''shortest_edge''': 2_8_8} __lowercase = size_divisor __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = do_center_crop __lowercase = image_mean __lowercase = image_std __lowercase = do_pad __lowercase = batch_size __lowercase = num_channels __lowercase = min_resolution __lowercase = max_resolution def SCREAMING_SNAKE_CASE ( self : List[str] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int]=False ): if not batched: __lowercase = self.size['''shortest_edge'''] __lowercase = image_inputs[0] if isinstance(lowercase__ ,Image.Image ): __lowercase , __lowercase = image.size else: __lowercase , __lowercase = image.shape[1], image.shape[2] __lowercase = size / min(lowercase__ ,lowercase__ ) if h < w: __lowercase , __lowercase = size, scale * w else: __lowercase , __lowercase = scale * h, size __lowercase = int((1_3_3_3 / 8_0_0) * size ) if max(lowercase__ ,lowercase__ ) > max_size: __lowercase = max_size / max(lowercase__ ,lowercase__ ) __lowercase = newh * scale __lowercase = neww * scale __lowercase , __lowercase = int(newh + 0.5 ), int(neww + 0.5 ) __lowercase , __lowercase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowercase = [] for image in image_inputs: __lowercase , __lowercase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowercase = max(lowercase__ ,key=lambda lowercase__ : item[0] )[0] __lowercase = max(lowercase__ ,key=lambda lowercase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = BridgeTowerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = BridgeTowerImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ ,'''image_mean''' ) ) self.assertTrue(hasattr(lowercase__ ,'''image_std''' ) ) self.assertTrue(hasattr(lowercase__ ,'''do_normalize''' ) ) self.assertTrue(hasattr(lowercase__ ,'''do_resize''' ) ) self.assertTrue(hasattr(lowercase__ ,'''size''' ) ) self.assertTrue(hasattr(lowercase__ ,'''size_divisor''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): # Initialize image processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowercase__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched __lowercase = image_processing(lowercase__ ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowercase__ ,batched=lowercase__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def SCREAMING_SNAKE_CASE ( self : Dict ): # Initialize image processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ,numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowercase__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched __lowercase = image_processing(lowercase__ ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowercase__ ,batched=lowercase__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ): # Initialize image processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ,torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowercase__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched __lowercase = image_processing(lowercase__ ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowercase__ ,batched=lowercase__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,)
41
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
1
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def _A ( A__ ): """simple docstring""" def decorator(A__ ): __lowercase = getattr(A__ , '''handle_key''' , [] ) handle += [key] setattr(A__ , '''handle_key''' , A__ ) return func return decorator def _A ( *A__ ): """simple docstring""" def decorator(A__ ): __lowercase = getattr(A__ , '''handle_key''' , [] ) handle += keys setattr(A__ , '''handle_key''' , A__ ) return func return decorator class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __new__( cls : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ): __lowercase = super().__new__(cls ,lowercase__ ,lowercase__ ,lowercase__ ) if not hasattr(lowercase__ ,'''key_handler''' ): setattr(lowercase__ ,'''key_handler''' ,{} ) setattr(lowercase__ ,'''handle_input''' ,KeyHandler.handle_input ) for value in attrs.values(): __lowercase = getattr(lowercase__ ,'''handle_key''' ,[] ) for key in handled_keys: __lowercase = value return new_cls @staticmethod def SCREAMING_SNAKE_CASE ( cls : List[str] ): __lowercase = get_character() if char != KEYMAP["undefined"]: __lowercase = ord(lowercase__ ) __lowercase = cls.key_handler.get(lowercase__ ) if handler: __lowercase = char return handler(cls ) else: return None def _A ( cls ): """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
41
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : jnp.ndarray SCREAMING_SNAKE_CASE : jnp.ndarray class lowercase_ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase = self.block_out_channels[i] __lowercase = self.block_out_channels[i + 1] __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = blocks __lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.conv_in(lowercase__ ) __lowercase = nn.silu(lowercase__ ) for block in self.blocks: __lowercase = block(lowercase__ ) __lowercase = nn.silu(lowercase__ ) __lowercase = self.conv_out(lowercase__ ) return embedding @flax_register_to_config class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 3_2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE : int = 1_2_8_0 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = "rgb" SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ): # init input tensors __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase = jnp.ones((1,) ,dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) __lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(lowercase__ ) __lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"] def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time __lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype ) __lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) __lowercase = self.only_cross_attention if isinstance(lowercase__ ,lowercase__ ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = [] __lowercase = block_out_channels[0] __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: __lowercase = FlaxDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowercase__ ) for _ in range(self.layers_per_block ): __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) if not is_final_block: __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) __lowercase = down_blocks __lowercase = controlnet_down_blocks # mid __lowercase = block_out_channels[-1] __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,): __lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase = jnp.flip(lowercase__ ,axis=1 ) # 1. time if not isinstance(lowercase__ ,jnp.ndarray ): __lowercase = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(lowercase__ ,0 ) __lowercase = self.time_proj(lowercase__ ) __lowercase = self.time_embedding(lowercase__ ) # 2. pre-process __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.conv_in(lowercase__ ) __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.controlnet_cond_embedding(lowercase__ ) sample += controlnet_cond # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ ,lowercase__ ): __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) else: __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) # 5. contronet blocks __lowercase = () for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ): __lowercase = controlnet_block(lowercase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase = controlnet_down_block_res_samples __lowercase = self.controlnet_mid_block(lowercase__ ) # 6. scaling __lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
41
1
'''simple docstring''' from __future__ import annotations def _A ( A__ ): """simple docstring""" __lowercase = 2 __lowercase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(A__ ) if n > 1: factors.append(A__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
41
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
1
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(lowercase__ ,lowercase__ ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = 1 __lowercase = 3 __lowercase = (3_2, 3_2) __lowercase = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(lowercase__ ) return image @property def SCREAMING_SNAKE_CASE ( self : str ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=3_2 ,) return model @property def SCREAMING_SNAKE_CASE ( self : List[str] ): torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) return model @property def SCREAMING_SNAKE_CASE ( self : str ): torch.manual_seed(0 ) __lowercase = RobertaSeriesConfig( hidden_size=3_2 ,project_dim=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=5_0_0_6 ,) return RobertaSeriesModelWithTransformation(lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): def extract(*lowercase__ : int ,**lowercase__ : Union[str, Any] ): class lowercase_ : """simple docstring""" def __init__( self : str ): __lowercase = torch.ones([0] ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ): self.pixel_values.to(lowercase__ ) return self return Out() return extract def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.dummy_cond_unet __lowercase = PNDMScheduler(skip_prk_steps=lowercase__ ) __lowercase = self.dummy_vae __lowercase = self.dummy_text_encoder __lowercase = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) __lowercase = 7_7 __lowercase = self.dummy_image.to(lowercase__ ) __lowercase = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk __lowercase = AltDiffusionImgaImgPipeline( unet=lowercase__ ,scheduler=lowercase__ ,vae=lowercase__ ,text_encoder=lowercase__ ,tokenizer=lowercase__ ,safety_checker=lowercase__ ,feature_extractor=self.dummy_extractor ,) __lowercase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=lowercase__ ) __lowercase = alt_pipe.to(lowercase__ ) alt_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = '''A painting of a squirrel eating a burger''' __lowercase = torch.Generator(device=lowercase__ ).manual_seed(0 ) __lowercase = alt_pipe( [prompt] ,generator=lowercase__ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='''np''' ,image=lowercase__ ,) __lowercase = output.images __lowercase = torch.Generator(device=lowercase__ ).manual_seed(0 ) __lowercase = alt_pipe( [prompt] ,generator=lowercase__ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='''np''' ,image=lowercase__ ,return_dict=lowercase__ ,)[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __lowercase = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != '''cuda''' ,'''This test requires a GPU''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.dummy_cond_unet __lowercase = PNDMScheduler(skip_prk_steps=lowercase__ ) __lowercase = self.dummy_vae __lowercase = self.dummy_text_encoder __lowercase = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) __lowercase = 7_7 __lowercase = self.dummy_image.to(lowercase__ ) # put models in fp16 __lowercase = unet.half() __lowercase = vae.half() __lowercase = bert.half() # make sure here that pndm scheduler skips prk __lowercase = AltDiffusionImgaImgPipeline( unet=lowercase__ ,scheduler=lowercase__ ,vae=lowercase__ ,text_encoder=lowercase__ ,tokenizer=lowercase__ ,safety_checker=lowercase__ ,feature_extractor=self.dummy_extractor ,) __lowercase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=lowercase__ ) __lowercase = alt_pipe.to(lowercase__ ) alt_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = '''A painting of a squirrel eating a burger''' __lowercase = torch.manual_seed(0 ) __lowercase = alt_pipe( [prompt] ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''np''' ,image=lowercase__ ,).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' ,'''This test requires a GPU''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 __lowercase = init_image.resize((7_6_0, 5_0_4) ) __lowercase = '''BAAI/AltDiffusion''' __lowercase = AltDiffusionImgaImgPipeline.from_pretrained( lowercase__ ,safety_checker=lowercase__ ,) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() __lowercase = '''A fantasy landscape, trending on artstation''' __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=lowercase__ ,image=lowercase__ ,strength=0.7_5 ,guidance_scale=7.5 ,generator=lowercase__ ,output_type='''np''' ,) __lowercase = output.images[0] __lowercase = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) __lowercase = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __lowercase = init_image.resize((7_6_8, 5_1_2) ) __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) __lowercase = '''BAAI/AltDiffusion''' __lowercase = AltDiffusionImgaImgPipeline.from_pretrained( lowercase__ ,safety_checker=lowercase__ ,) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() __lowercase = '''A fantasy landscape, trending on artstation''' __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=lowercase__ ,image=lowercase__ ,strength=0.7_5 ,guidance_scale=7.5 ,generator=lowercase__ ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
41
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
41
1
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _A ( A__ ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(A__ , 0 , A__ , args=(A__) )[0] def _A ( A__ , A__ ): """simple docstring""" return math.pow(A__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
41
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
1
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
1
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : Tuple=1_3 ,lowercase__ : int=3 ,lowercase__ : Union[str, Any]=True ,lowercase__ : Dict=True ,lowercase__ : Any=0.1 ,lowercase__ : int=0.1 ,lowercase__ : List[Any]=2_2_4 ,lowercase__ : Union[str, Any]=1_0_0_0 ,lowercase__ : Optional[Any]=[3, 3, 6, 4] ,lowercase__ : int=[4_8, 5_6, 1_1_2, 2_2_0] ,): __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = num_labels __lowercase = image_size __lowercase = layer_depths __lowercase = embed_dims def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : List[str] ): return SwiftFormerConfig( depths=self.layer_depths ,embed_dims=self.embed_dims ,mlp_ratio=4 ,downsamples=[True, True, True, True] ,hidden_act='''gelu''' ,num_labels=self.num_labels ,down_patch_size=3 ,down_stride=2 ,down_pad=1 ,drop_rate=0.0 ,drop_path_rate=0.0 ,use_layer_scale=lowercase__ ,layer_scale_init_value=1e-5 ,) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Any ,lowercase__ : Dict ,lowercase__ : int ): __lowercase = SwiftFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.embed_dims[-1], 7, 7) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : Any ): __lowercase = self.num_labels __lowercase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) __lowercase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): ((__lowercase) , (__lowercase) , (__lowercase)) = self.prepare_config_and_inputs() __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE : List[Any] = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : int = False def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = SwiftFormerModelTester(self ) __lowercase = ConfigTester( self ,config_class=lowercase__ ,has_text_modality=lowercase__ ,hidden_size=3_7 ,num_attention_heads=1_2 ,num_hidden_layers=1_2 ,) def SCREAMING_SNAKE_CASE ( self : Dict ): self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ ,nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = SwiftFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): def check_hidden_states_output(lowercase__ : Any ,lowercase__ : Dict ,lowercase__ : Tuple ): __lowercase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) __lowercase = outputs.hidden_states __lowercase = 8 self.assertEqual(len(lowercase__ ) ,lowercase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase__ ) ): self.assertEqual( hidden_states[i].shape ,torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) ,) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): def _config_zero_init(lowercase__ : Any ): __lowercase = copy.deepcopy(lowercase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase__ ,lowercase__ ,1e-1_0 ) if isinstance(getattr(lowercase__ ,lowercase__ ,lowercase__ ) ,lowercase__ ): __lowercase = _config_zero_init(getattr(lowercase__ ,lowercase__ ) ) setattr(lowercase__ ,lowercase__ ,lowercase__ ) return configs_no_init __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: __lowercase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() ,[0.0, 1.0] ,msg=F"Parameter {name} of model {model_class} seems not properly initialized" ,) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass def _A ( ): """simple docstring""" __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self : Dict ): return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __lowercase = model(**lowercase__ ) # verify the logits __lowercase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape ,lowercase__ ) __lowercase = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowercase__ ,atol=1e-4 ) )
41
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
1
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge lowerCAmelCase__ = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] lowerCAmelCase__ = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def _A ( ): """simple docstring""" __lowercase = calculate_rouge(A__ , A__ , bootstrap_aggregation=A__ , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(A__ , A__ ) __lowercase = calculate_rouge(A__ , A__ , bootstrap_aggregation=A__ , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def _A ( ): """simple docstring""" __lowercase = '''rougeLsum''' __lowercase = calculate_rouge(A__ , A__ , newline_sep=A__ , rouge_keys=[k] )[k] __lowercase = calculate_rouge(A__ , A__ , newline_sep=A__ , rouge_keys=[k] )[k] assert score > score_no_sep def _A ( ): """simple docstring""" __lowercase = ['''rouge1''', '''rouge2''', '''rougeL'''] __lowercase = calculate_rouge(A__ , A__ , newline_sep=A__ , rouge_keys=A__ ) __lowercase = calculate_rouge(A__ , A__ , newline_sep=A__ , rouge_keys=A__ ) assert score_sep == score_no_sep def _A ( ): """simple docstring""" __lowercase = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] __lowercase = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(A__ , A__ , newline_sep=A__ ) == calculate_rouge(A__ , A__ , newline_sep=A__ ) def _A ( ): """simple docstring""" __lowercase = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] __lowercase = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] __lowercase = calculate_rouge(A__ , A__ , rouge_keys=['''rougeLsum'''] , newline_sep=A__ )['''rougeLsum'''] __lowercase = calculate_rouge(A__ , A__ , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def _A ( ): """simple docstring""" __lowercase = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) __lowercase = calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(A__ , A__ ) __lowercase = calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=A__ ) assert isinstance(A__ , A__ )
41
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(A__ ): __lowercase = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = '''a''' * 1000 + '''.lock''' __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
41
1
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
1
'''simple docstring''' import operator as op lowerCAmelCase__ = '''scaler.pt''' lowerCAmelCase__ = '''pytorch_model''' lowerCAmelCase__ = '''random_states''' lowerCAmelCase__ = '''optimizer''' lowerCAmelCase__ = '''scheduler''' lowerCAmelCase__ = '''pytorch_model.bin''' lowerCAmelCase__ = '''pytorch_model.bin.index.json''' lowerCAmelCase__ = '''model.safetensors''' lowerCAmelCase__ = '''model.safetensors.index.json''' lowerCAmelCase__ = '''1.10.2''' lowerCAmelCase__ = '''py38''' lowerCAmelCase__ = '''4.17.0''' lowerCAmelCase__ = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] lowerCAmelCase__ = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] lowerCAmelCase__ = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] lowerCAmelCase__ = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] lowerCAmelCase__ = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] lowerCAmelCase__ = '''2.0.1''' lowerCAmelCase__ = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] lowerCAmelCase__ = ['''default''', '''reduce-overhead''', '''max-autotune'''] lowerCAmelCase__ = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 lowerCAmelCase__ = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] lowerCAmelCase__ = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] lowerCAmelCase__ = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
41
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
1
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
1
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class lowercase_ (unittest.TestCase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = ort.SessionOptions() __lowercase = False return options def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __lowercase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' ,revision='''onnx''' ,safety_checker=lowercase__ ,feature_extractor=lowercase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = '''A red cat sitting on a park bench''' __lowercase = np.random.RandomState(0 ) __lowercase = pipe( prompt=lowercase__ ,image=lowercase__ ,mask_image=lowercase__ ,guidance_scale=7.5 ,num_inference_steps=1_0 ,generator=lowercase__ ,output_type='''np''' ,) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __lowercase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' ,subfolder='''scheduler''' ,revision='''onnx''' ) __lowercase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' ,revision='''onnx''' ,scheduler=lowercase__ ,safety_checker=lowercase__ ,feature_extractor=lowercase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = '''A red cat sitting on a park bench''' __lowercase = np.random.RandomState(0 ) __lowercase = pipe( prompt=lowercase__ ,image=lowercase__ ,mask_image=lowercase__ ,guidance_scale=7.5 ,num_inference_steps=2_0 ,generator=lowercase__ ,output_type='''np''' ,) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
41
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
1
'''simple docstring''' import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowercase_ (unittest.TestCase ): """simple docstring""" def __init__( self : str ,lowercase__ : List[str] ,lowercase__ : int=1_3 ,lowercase__ : List[Any]=7 ,lowercase__ : List[str]=True ,lowercase__ : Dict=True ,lowercase__ : Optional[int]=True ,lowercase__ : Any=True ,lowercase__ : List[str]=9_9 ,lowercase__ : Tuple=3_2 ,lowercase__ : str=5 ,lowercase__ : Any=4 ,lowercase__ : Optional[int]=3_7 ,lowercase__ : str="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : int=0.1 ,lowercase__ : Dict=5_1_2 ,lowercase__ : Union[str, Any]=1_6 ,lowercase__ : Tuple=2 ,lowercase__ : str=0.0_2 ,lowercase__ : List[str]=4 ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_attention_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_choices def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_attention_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = BertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : Any = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = FlaxBertModelTester(self ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. __lowercase = FlaxBertModel.from_pretrained('''bert-base-cased''' ) __lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase__ )
41
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
1
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _A ( A__ , A__ ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' ) __lowercase = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository __lowercase = {} for k, v in state_dict.items(): if "pred_layer" in k: __lowercase = v else: __lowercase = v __lowercase = chkpt['''params'''] __lowercase = {n: v for n, v in config.items() if not isinstance(A__ , (torch.FloatTensor, numpy.ndarray) )} __lowercase = chkpt['''dico_word2id'''] __lowercase = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model __lowercase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME __lowercase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME __lowercase = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(A__ , A__ ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(A__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(A__ , indent=2 ) + '''\n''' ) print(F"Save vocab file to {pytorch_config_dump_path}" ) with open(A__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(A__ , indent=2 ) + '''\n''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
41
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
1
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: lowerCAmelCase__ = None try: import msvcrt except ImportError: lowerCAmelCase__ = None try: import fcntl except ImportError: lowerCAmelCase__ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCAmelCase__ = OSError # Data # ------------------------------------------------ lowerCAmelCase__ = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowerCAmelCase__ = '''3.0.12''' lowerCAmelCase__ = None def _A ( ): """simple docstring""" global _logger __lowercase = _logger or logging.getLogger(__name__ ) return _logger class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Any ,lowercase__ : Optional[Any] ): __lowercase = lock_file return None def __str__( self : Optional[int] ): __lowercase = F"The file lock '{self.lock_file}' could not be acquired." return temp class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : int ): __lowercase = lock return None def __enter__( self : int ): return self.lock def __exit__( self : Any ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Optional[Any] ): self.lock.release() return None class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Union[str, Any] ,lowercase__ : int=-1 ,lowercase__ : List[Any]=None ): __lowercase = max_filename_length if max_filename_length is not None else 2_5_5 # Hash the filename if it's too long __lowercase = self.hash_filename_if_too_long(lowercase__ ,lowercase__ ) # The path to the lock file. __lowercase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase = None # The default timeout value. __lowercase = timeout # We use this lock primarily for the lock counter. __lowercase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase = 0 return None @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self._lock_file @property def SCREAMING_SNAKE_CASE ( self : Dict ): return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Optional[Any] ): __lowercase = float(lowercase__ ) return None def SCREAMING_SNAKE_CASE ( self : List[Any] ): raise NotImplementedError() def SCREAMING_SNAKE_CASE ( self : str ): raise NotImplementedError() @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[int]=None ,lowercase__ : Dict=0.0_5 ): # Use the default timeout, if no timeout is provided. if timeout is None: __lowercase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase = id(self ) __lowercase = self._lock_file __lowercase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(lowercase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase = max(0 ,self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : List[Any]=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase = id(self ) __lowercase = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __lowercase = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : List[Any] ): self.acquire() return self def __exit__( self : Any ,lowercase__ : str ,lowercase__ : int ,lowercase__ : int ): self.release() return None def __del__( self : int ): self.release(force=lowercase__ ) return None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : int ): __lowercase = os.path.basename(lowercase__ ) if len(lowercase__ ) > max_length and max_length > 0: __lowercase = os.path.dirname(lowercase__ ) __lowercase = str(hash(lowercase__ ) ) __lowercase = filename[: max_length - len(lowercase__ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(lowercase__ ,lowercase__ ) else: return path class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Union[str, Any] ,lowercase__ : str ,lowercase__ : Optional[Any]=-1 ,lowercase__ : List[str]=None ): from .file_utils import relative_to_absolute_path super().__init__(lowercase__ ,timeout=lowercase__ ,max_filename_length=lowercase__ ) __lowercase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase = os.open(self._lock_file ,lowercase__ ) except OSError: pass else: try: msvcrt.locking(lowercase__ ,msvcrt.LK_NBLCK ,1 ) except OSError: os.close(lowercase__ ) else: __lowercase = fd return None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self._lock_file_fd __lowercase = None msvcrt.locking(lowercase__ ,msvcrt.LK_UNLCK ,1 ) os.close(lowercase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int ,lowercase__ : Union[str, Any]=-1 ,lowercase__ : Union[str, Any]=None ): __lowercase = os.statvfs(os.path.dirname(lowercase__ ) ).f_namemax super().__init__(lowercase__ ,timeout=lowercase__ ,max_filename_length=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase = os.open(self._lock_file ,lowercase__ ) try: fcntl.flock(lowercase__ ,fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowercase__ ) else: __lowercase = fd return None def SCREAMING_SNAKE_CASE ( self : List[Any] ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __lowercase = self._lock_file_fd __lowercase = None fcntl.flock(lowercase__ ,fcntl.LOCK_UN ) os.close(lowercase__ ) return None class lowercase_ (lowerCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase = os.open(self._lock_file ,lowercase__ ) except OSError: pass else: __lowercase = fd return None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): os.close(self._lock_file_fd ) __lowercase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCAmelCase__ = None if msvcrt: lowerCAmelCase__ = WindowsFileLock elif fcntl: lowerCAmelCase__ = UnixFileLock else: lowerCAmelCase__ = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b ) __lowercase = a // b return (y, x - k * y) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _A ( A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) if b < 0: __lowercase = (b % n + n) % n return b def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
1
'''simple docstring''' import math def _A ( A__ , A__ = 0 , A__ = 0 ): """simple docstring""" __lowercase = end or len(A__ ) for i in range(A__ , A__ ): __lowercase = i __lowercase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __lowercase = array[temp_index - 1] temp_index -= 1 __lowercase = temp_index_value return array def _A ( A__ , A__ , A__ ): # Max Heap """simple docstring""" __lowercase = index __lowercase = 2 * index + 1 # Left Node __lowercase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __lowercase = left_index if right_index < heap_size and array[largest] < array[right_index]: __lowercase = right_index if largest != index: __lowercase , __lowercase = array[largest], array[index] heapify(A__ , A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase = len(A__ ) for i in range(n // 2 , -1 , -1 ): heapify(A__ , A__ , A__ ) for i in range(n - 1 , 0 , -1 ): __lowercase , __lowercase = array[0], array[i] heapify(A__ , 0 , A__ ) return array def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = low __lowercase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __lowercase , __lowercase = array[j], array[i] i += 1 def _A ( A__ ): """simple docstring""" if len(A__ ) == 0: return array __lowercase = 2 * math.ceil(math.loga(len(A__ ) ) ) __lowercase = 16 return intro_sort(A__ , 0 , len(A__ ) , A__ , A__ ) def _A ( A__ , A__ , A__ , A__ , A__ ): """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(A__ ) max_depth -= 1 __lowercase = median_of_a(A__ , A__ , start + ((end - start) // 2) + 1 , end - 1 ) __lowercase = partition(A__ , A__ , A__ , A__ ) intro_sort(A__ , A__ , A__ , A__ , A__ ) __lowercase = p return insertion_sort(A__ , A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = input('''Enter numbers separated by a comma : ''').strip() lowerCAmelCase__ = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
41
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ): __lowercase = NezhaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,): __lowercase = True __lowercase = NezhaModel(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,) __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = NezhaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): __lowercase = NezhaForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ): __lowercase = NezhaForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ): __lowercase = NezhaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ): __lowercase = self.num_labels __lowercase = NezhaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = NezhaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = self.num_choices __lowercase = NezhaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = True def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ): __lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ ) __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = NezhaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = NezhaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
41
1
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def _A ( A__ , A__ ): """simple docstring""" __lowercase = int(A__ ) assert noofclusters < len(A__ ) # Find out the dimensionality __lowercase = len(vectors[0] ) # Will help select random centroids from among the available vectors __lowercase = list(range(len(A__ ) ) ) shuffle(A__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __lowercase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __lowercase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __lowercase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(A__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __lowercase = tf.placeholder('''float64''' , [dim] ) __lowercase = [] for centroid in centroids: cent_assigns.append(tf.assign(A__ , A__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __lowercase = [tf.Variable(0 ) for i in range(len(A__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __lowercase = tf.placeholder('''int32''' ) __lowercase = [] for assignment in assignments: cluster_assigns.append(tf.assign(A__ , A__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __lowercase = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __lowercase = tf.reduce_mean(A__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __lowercase = tf.placeholder('''float''' , [dim] ) __lowercase = tf.placeholder('''float''' , [dim] ) __lowercase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(A__ , A__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __lowercase = tf.placeholder('''float''' , [noofclusters] ) __lowercase = tf.argmin(A__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __lowercase = tf.initialize_all_variables() # Initialize all variables sess.run(A__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __lowercase = 100 for _ in range(A__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(A__ ) ): __lowercase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __lowercase = [ sess.run(A__ , feed_dict={va: vect, va: sess.run(A__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __lowercase = sess.run( A__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(A__ ): # Collect all the vectors assigned to this cluster __lowercase = [ vectors[i] for i in range(len(A__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __lowercase = sess.run( A__ , feed_dict={mean_input: array(A__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __lowercase = sess.run(A__ ) __lowercase = sess.run(A__ ) return centroids, assignments
41
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
1
'''simple docstring''' class lowercase_ : # Public class to implement a graph """simple docstring""" def __init__( self : Tuple ,lowercase__ : int ,lowercase__ : int ,lowercase__ : list[list[bool]] ): __lowercase = row __lowercase = col __lowercase = graph def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ,lowercase__ : int ,lowercase__ : list[list[bool]] ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ,lowercase__ : int ,lowercase__ : list[list[bool]] ): # Checking all 8 elements surrounding nth element __lowercase = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __lowercase = [-1, 0, 1, -1, 1, -1, 0, 1] __lowercase = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] ,j + col_nbr[k] ,lowercase__ ): self.diffs(i + row_nbr[k] ,j + col_nbr[k] ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): # And finally, count all islands. __lowercase = [[False for j in range(self.COL )] for i in range(self.ROW )] __lowercase = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowercase__ ,lowercase__ ,lowercase__ ) count += 1 return count
41
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,**lowercase__ : Tuple ): super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,'''vision''' ) self.check_model_type(lowercase__ ) def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,): if "text_queries" in kwargs: __lowercase = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ ,(str, Image.Image) ): __lowercase = {'''image''': image, '''candidate_labels''': candidate_labels} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs['''threshold'''] if "top_k" in kwargs: __lowercase = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = load_image(inputs['''image'''] ) __lowercase = inputs['''candidate_labels'''] if isinstance(lowercase__ ,lowercase__ ): __lowercase = candidate_labels.split(''',''' ) __lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): __lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework ) __lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = model_inputs.pop('''target_size''' ) __lowercase = model_inputs.pop('''candidate_label''' ) __lowercase = model_inputs.pop('''is_last''' ) __lowercase = self.model(**lowercase__ ) __lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ): __lowercase = [] for model_output in model_outputs: __lowercase = model_output['''candidate_label'''] __lowercase = BaseModelOutput(lowercase__ ) __lowercase = self.image_processor.post_process_object_detection( outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): __lowercase = outputs['''scores'''][index].item() __lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] ) __lowercase = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ ) if top_k: __lowercase = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) __lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist() __lowercase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
41
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ['image_processor', 'feature_extractor'] SCREAMING_SNAKE_CASE : Dict = 'TvltImageProcessor' SCREAMING_SNAKE_CASE : Dict = 'TvltFeatureExtractor' def __init__( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Union[str, Any] ): super().__init__(image_processor=lowercase__ ,feature_extractor=lowercase__ ) __lowercase = image_processor __lowercase = feature_extractor def __call__( self : List[str] ,lowercase__ : str=None ,lowercase__ : Optional[int]=None ,lowercase__ : Any=None ,lowercase__ : Dict=None ,lowercase__ : Tuple=False ,lowercase__ : List[str]=False ,*lowercase__ : Optional[Any] ,**lowercase__ : Union[str, Any] ,): if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''' ) __lowercase = None if images is not None: __lowercase = self.image_processor(lowercase__ ,mask_pixel=lowercase__ ,*lowercase__ ,**lowercase__ ) if images_mixed is not None: __lowercase = self.image_processor(lowercase__ ,is_mixed=lowercase__ ,*lowercase__ ,**lowercase__ ) if audio is not None: __lowercase = self.feature_extractor( lowercase__ ,*lowercase__ ,sampling_rate=lowercase__ ,mask_audio=lowercase__ ,**lowercase__ ) __lowercase = {} if audio is not None: output_dict.update(lowercase__ ) if images is not None: output_dict.update(lowercase__ ) if images_mixed_dict is not None: output_dict.update(lowercase__ ) return output_dict @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.image_processor.model_input_names __lowercase = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
41
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCAmelCase__ = random.Random() def _A ( A__ , A__=1.0 , A__=None , A__=None ): """simple docstring""" if rng is None: __lowercase = global_rng __lowercase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : str=7 ,lowercase__ : List[str]=4_0_0 ,lowercase__ : Optional[Any]=2_0_0_0 ,lowercase__ : int=1 ,lowercase__ : Optional[Any]=0.0 ,lowercase__ : Tuple=1_6_0_0_0 ,lowercase__ : str=True ,lowercase__ : Optional[int]=8_0 ,lowercase__ : List[str]=1_6 ,lowercase__ : Optional[Any]=6_4 ,lowercase__ : Dict="hann_window" ,lowercase__ : Tuple=8_0 ,lowercase__ : Tuple=7_6_0_0 ,lowercase__ : int=1e-1_0 ,lowercase__ : Dict=True ,): __lowercase = parent __lowercase = batch_size __lowercase = min_seq_length __lowercase = max_seq_length __lowercase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowercase = feature_size __lowercase = padding_value __lowercase = sampling_rate __lowercase = do_normalize __lowercase = num_mel_bins __lowercase = hop_length __lowercase = win_length __lowercase = win_function __lowercase = fmin __lowercase = fmax __lowercase = mel_floor __lowercase = return_attention_mask def SCREAMING_SNAKE_CASE ( self : Tuple ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Optional[int]=False ,lowercase__ : Any=False ): def _flatten(lowercase__ : List[str] ): return list(itertools.chain(*lowercase__ ) ) if equal_length: __lowercase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __lowercase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: __lowercase = [np.asarray(lowercase__ ) for x in speech_inputs] return speech_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Dict=False ,lowercase__ : Optional[Any]=False ): if equal_length: __lowercase = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowercase = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: __lowercase = [np.asarray(lowercase__ ) for x in speech_inputs] return speech_inputs @require_torch class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaFeatureExtractor def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = SpeechTaFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ): self.assertTrue(np.all(np.mean(lowercase__ ,axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase__ ,axis=0 ) - 1 ) < 1e-3 ) ) def SCREAMING_SNAKE_CASE ( self : Dict ): # Tests that all call wrap to encode_plus and batch_encode_plus __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowercase = [floats_list((1, x) )[0] for x in range(8_0_0 ,1_4_0_0 ,2_0_0 )] __lowercase = [np.asarray(lowercase__ ) for speech_input in speech_inputs] # Test not batched input __lowercase = feat_extract(speech_inputs[0] ,return_tensors='''np''' ).input_values __lowercase = feat_extract(np_speech_inputs[0] ,return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowercase__ ,lowercase__ ,atol=1e-3 ) ) # Test batched __lowercase = feat_extract(lowercase__ ,return_tensors='''np''' ).input_values __lowercase = feat_extract(lowercase__ ,return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowercase__ ,lowercase__ ): self.assertTrue(np.allclose(lowercase__ ,lowercase__ ,atol=1e-3 ) ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = [floats_list((1, x) )[0] for x in range(8_0_0 ,1_4_0_0 ,2_0_0 )] __lowercase = ['''longest''', '''max_length''', '''do_not_pad'''] __lowercase = [None, 1_6_0_0, None] for max_length, padding in zip(lowercase__ ,lowercase__ ): __lowercase = feat_extract(lowercase__ ,padding=lowercase__ ,max_length=lowercase__ ,return_tensors='''np''' ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = range(8_0_0 ,1_4_0_0 ,2_0_0 ) __lowercase = [floats_list((1, x) )[0] for x in lengths] __lowercase = ['''longest''', '''max_length''', '''do_not_pad'''] __lowercase = [None, 1_6_0_0, None] for max_length, padding in zip(lowercase__ ,lowercase__ ): __lowercase = feat_extract(lowercase__ ,max_length=lowercase__ ,padding=lowercase__ ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = [floats_list((1, x) )[0] for x in range(8_0_0 ,1_4_0_0 ,2_0_0 )] __lowercase = feat_extract( lowercase__ ,truncation=lowercase__ ,max_length=1_0_0_0 ,padding='''max_length''' ,return_tensors='''np''' ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = [floats_list((1, x) )[0] for x in range(8_0_0 ,1_4_0_0 ,2_0_0 )] __lowercase = feat_extract( lowercase__ ,truncation=lowercase__ ,max_length=1_0_0_0 ,padding='''longest''' ,return_tensors='''np''' ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) __lowercase = [floats_list((1, x) )[0] for x in range(8_0_0 ,1_4_0_0 ,2_0_0 )] __lowercase = feat_extract( lowercase__ ,truncation=lowercase__ ,max_length=2_0_0_0 ,padding='''longest''' ,return_tensors='''np''' ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = np.random.rand(1_0_0 ).astype(np.floataa ) __lowercase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowercase = feature_extractor.pad([{'''input_values''': inputs}] ,return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __lowercase = feature_extractor.pad([{'''input_values''': inputs}] ,return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowercase = [floats_list((1, x) )[0] for x in range(8_0_0 ,1_4_0_0 ,2_0_0 )] __lowercase = [np.asarray(lowercase__ ) for speech_input in speech_inputs] # Test feature size __lowercase = feature_extractor(audio_target=lowercase__ ,padding=lowercase__ ,return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input __lowercase = feature_extractor(speech_inputs[0] ,return_tensors='''np''' ).input_values __lowercase = feature_extractor(np_speech_inputs[0] ,return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowercase__ ,lowercase__ ,atol=1e-3 ) ) # Test batched __lowercase = feature_extractor(lowercase__ ,return_tensors='''np''' ).input_values __lowercase = feature_extractor(lowercase__ ,return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowercase__ ,lowercase__ ): self.assertTrue(np.allclose(lowercase__ ,lowercase__ ,atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __lowercase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] __lowercase = np.asarray(lowercase__ ) __lowercase = feature_extractor(lowercase__ ,return_tensors='''np''' ).input_values __lowercase = feature_extractor(lowercase__ ,return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowercase__ ,lowercase__ ): self.assertTrue(np.allclose(lowercase__ ,lowercase__ ,atol=1e-3 ) ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.feat_extract_tester.prepare_inputs_for_target() __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowercase__ ) == len(lowercase__ ) for x, y in zip(lowercase__ ,processed_features[input_name] ) ) ) __lowercase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowercase__ ) __lowercase = BatchFeature({input_name: speech_inputs} ,tensor_type='''np''' ) __lowercase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowercase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowercase__ ) __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ,tensor_type='''pt''' ) __lowercase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowercase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = self.feat_extract_tester.prepare_inputs_for_target() __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = feat_extract.num_mel_bins # hack! __lowercase = feat_extract.pad(lowercase__ ,padding='''longest''' ,return_tensors='''np''' )[input_name] __lowercase = feat_extract.pad(lowercase__ ,padding='''longest''' ,return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.feat_extract_dict __lowercase = True __lowercase = self.feature_extraction_class(**lowercase__ ) __lowercase = self.feat_extract_tester.prepare_inputs_for_target() __lowercase = [len(lowercase__ ) for x in speech_inputs] __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = feat_extract.num_mel_bins # hack! __lowercase = feat_extract.pad(lowercase__ ,padding='''longest''' ,return_tensors='''np''' ) self.assertIn('''attention_mask''' ,lowercase__ ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.feat_extract_dict __lowercase = True __lowercase = self.feature_extraction_class(**lowercase__ ) __lowercase = self.feat_extract_tester.prepare_inputs_for_target() __lowercase = [len(lowercase__ ) for x in speech_inputs] __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = min(lowercase__ ) __lowercase = feat_extract.num_mel_bins # hack! __lowercase = feat_extract.pad( lowercase__ ,padding='''max_length''' ,max_length=lowercase__ ,truncation=lowercase__ ,return_tensors='''np''' ) self.assertIn('''attention_mask''' ,lowercase__ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : str ): from datasets import load_dataset __lowercase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' ,'''clean''' ,split='''validation''' ) # automatic decoding with librispeech __lowercase = ds.sort('''id''' ).select(range(lowercase__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): # fmt: off __lowercase = torch.tensor( [2.3_8_0_4e-0_3, 2.0_7_5_2e-0_3, 1.9_8_3_6e-0_3, 2.1_0_5_7e-0_3, 1.6_1_7_4e-0_3, 3.0_5_1_8e-0_4, 9.1_5_5_3e-0_5, 3.3_5_6_9e-0_4, 9.7_6_5_6e-0_4, 1.8_3_1_1e-0_3, 2.0_1_4_2e-0_3, 2.1_0_5_7e-0_3, 1.7_3_9_5e-0_3, 4.5_7_7_6e-0_4, -3.9_6_7_3e-0_4, 4.5_7_7_6e-0_4, 1.0_0_7_1e-0_3, 9.1_5_5_3e-0_5, 4.8_8_2_8e-0_4, 1.1_5_9_7e-0_3, 7.3_2_4_2e-0_4, 9.4_6_0_4e-0_4, 1.8_0_0_5e-0_3, 1.8_3_1_1e-0_3, 8.8_5_0_1e-0_4, 4.2_7_2_5e-0_4, 4.8_8_2_8e-0_4, 7.3_2_4_2e-0_4, 1.0_9_8_6e-0_3, 2.1_0_5_7e-0_3] ) # fmt: on __lowercase = self._load_datasamples(1 ) __lowercase = SpeechTaFeatureExtractor() __lowercase = feature_extractor(lowercase__ ,return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape ,(1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] ,lowercase__ ,atol=1e-6 ) ) def SCREAMING_SNAKE_CASE ( self : int ): # fmt: off __lowercase = torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on __lowercase = self._load_datasamples(1 ) __lowercase = SpeechTaFeatureExtractor() __lowercase = feature_extractor(audio_target=lowercase__ ,return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape ,(1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] ,lowercase__ ,atol=1e-4 ) )
41
'''simple docstring''' from collections.abc import Callable class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ): # Stores actual heap items. __lowercase = [] # Stores indexes of each item for supporting updates and deletion. __lowercase = {} # Stores current size of heap. __lowercase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowercase = key or (lambda lowercase__ : x) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ): __lowercase , __lowercase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowercase , __lowercase = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._left(lowercase__ ) __lowercase = self._right(lowercase__ ) __lowercase = i if left is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = left if right is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = right return valid_parent def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._parent(lowercase__ ) while parent is not None and not self._cmp(lowercase__ ,lowercase__ ): self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = parent, self._parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = self._get_valid_parent(lowercase__ ) while valid_parent != index: self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] __lowercase = [item, self.key(lowercase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] del self.pos_map[item] __lowercase = self.arr[self.size - 1] __lowercase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowercase__ )] ) else: __lowercase = [item, self.key(lowercase__ )] __lowercase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _A ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
41
1