code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import random from typing import Any def __a ( A__ : list ): for _ in range(len(lowercase__ ) ): SCREAMING_SNAKE_CASE = random.randint(0 , len(lowercase__ ) - 1 ) SCREAMING_SNAKE_CASE = random.randint(0 , len(lowercase__ ) - 1 ) SCREAMING_SNAKE_CASE = data[b], data[a] return data if __name__ == "__main__": __A : Optional[Any] = [0, 1, 2, 3, 4, 5, 6, 7] __A : List[str] = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
16
from __future__ import annotations class lowerCAmelCase_ : """simple docstring""" def __init__( self :List[Any] , lowerCamelCase__ :int = 0 ): UpperCamelCase__ :List[str] = key def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :List[str] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :int , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :int = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Dict = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :List[str] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Any , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :Optional[int] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
45
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
291
import random def A ( lowercase__ : Dict , lowercase__ : str , lowercase__ : Optional[Any] ) -> int: UpperCamelCase__ :List[Any] = a[left_index] UpperCamelCase__ :Dict = left_index + 1 for j in range(left_index + 1 , lowercase__ ): if a[j] < pivot: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = a[i], a[j] i += 1 UpperCamelCase__ , UpperCamelCase__ :Tuple = a[i - 1], a[left_index] return i - 1 def A ( lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Any ) -> Optional[int]: if left < right: UpperCamelCase__ :List[Any] = random.randint(lowercase__ , right - 1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCamelCase__ :int = partition(lowercase__ , lowercase__ , lowercase__ ) quick_sort_random( lowercase__ , lowercase__ , lowercase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowercase__ , pivot_index + 1 , lowercase__ ) # recursive quicksort to the right of the pivot point def A ( ) -> List[Any]: UpperCamelCase__ :str = input("""Enter numbers separated by a comma:\n""" ).strip() UpperCamelCase__ :int = [int(lowercase__ ) for item in user_input.split(""",""" )] quick_sort_random(lowercase__ , 0 , len(lowercase__ ) ) print(lowercase__ ) if __name__ == "__main__": main()
45
0
"""simple docstring""" def a ( __snake_case : int, __snake_case : int ): '''simple docstring''' UpperCAmelCase_ :List[str] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): UpperCAmelCase_ :Any = n - k # Calculate C(n,k) for i in range(lowercase__ ): result *= n - i result //= i + 1 return result def a ( __snake_case : int ): '''simple docstring''' return binomial_coefficient(2 * node_count, lowercase__ ) // (node_count + 1) def a ( __snake_case : int ): '''simple docstring''' if n < 0: raise ValueError('''factorial() not defined for negative values''' ) UpperCAmelCase_ :Union[str, Any] = 1 for i in range(1, n + 1 ): result *= i return result def a ( __snake_case : int ): '''simple docstring''' return catalan_number(lowercase__ ) * factorial(lowercase__ ) if __name__ == "__main__": __lowerCamelCase = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
608
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" _snake_case : Tuple = """dinat""" _snake_case : List[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Optional[int] , lowerCamelCase__ :int=4 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :List[Any]=64 , lowerCamelCase__ :Any=[3, 4, 6, 5] , lowerCamelCase__ :Tuple=[2, 4, 8, 16] , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :Tuple=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowerCamelCase__ :Tuple=3.0 , lowerCamelCase__ :str=True , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :int=0.1 , lowerCamelCase__ :Optional[Any]="gelu" , lowerCamelCase__ :Optional[Any]=0.02 , lowerCamelCase__ :Union[str, Any]=1e-5 , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :List[str]=None , lowerCamelCase__ :str=None , **lowerCamelCase__ :List[Any] , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :Any = patch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :int = embed_dim UpperCamelCase__ :Optional[Any] = depths UpperCamelCase__ :Any = len(lowerCamelCase__ ) UpperCamelCase__ :str = num_heads UpperCamelCase__ :Optional[int] = kernel_size UpperCamelCase__ :Optional[int] = dilations UpperCamelCase__ :Tuple = mlp_ratio UpperCamelCase__ :Dict = qkv_bias UpperCamelCase__ :List[str] = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :Union[str, Any] = drop_path_rate UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :List[Any] = layer_norm_eps UpperCamelCase__ :Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ :Tuple = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) ) UpperCamelCase__ :Tuple = layer_scale_init_value UpperCamelCase__ :Optional[int] = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] UpperCamelCase__ , UpperCamelCase__ :List[str] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
45
0
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __lowerCamelCase : Optional[int] = logging.get_logger(__name__) def A__ ( _a : Optional[Any] , _a : List[Any] , _a : Optional[int] ): '''simple docstring''' return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def A__ ( _a : np.ndarray , _a : Optional[str] , _a : Optional[str] ): '''simple docstring''' snake_case__ : Dict =to_pil_image(lowercase__ ) snake_case__ : Tuple =pil_image.size snake_case__ : Union[str, Any] =pytesseract.image_to_data(lowercase__ , lang=lowercase__ , output_type="""dict""" , config=lowercase__ ) snake_case__ : Dict =data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates snake_case__ : Optional[int] =[idx for idx, word in enumerate(lowercase__ ) if not word.strip()] snake_case__ : List[Any] =[word for idx, word in enumerate(lowercase__ ) if idx not in irrelevant_indices] snake_case__ : List[str] =[coord for idx, coord in enumerate(lowercase__ ) if idx not in irrelevant_indices] snake_case__ : str =[coord for idx, coord in enumerate(lowercase__ ) if idx not in irrelevant_indices] snake_case__ : List[str] =[coord for idx, coord in enumerate(lowercase__ ) if idx not in irrelevant_indices] snake_case__ : Tuple =[coord for idx, coord in enumerate(lowercase__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format snake_case__ : Optional[int] =[] for x, y, w, h in zip(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case__ : Tuple =[x, y, x + w, y + h] actual_boxes.append(lowercase__ ) # finally, normalize the bounding boxes snake_case__ : int =[] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase__ , lowercase__ , lowercase__ ) ) assert len(lowercase__ ) == len(lowercase__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class _lowercase ( _A ): _a : List[str] = ["""pixel_values"""] def __init__( self , a = True , a = None , a = PILImageResampling.BILINEAR , a = True , a = 1 / 2_5_5 , a = True , a = None , a = None , a = True , a = None , a = "" , **a , ): super().__init__(**lowerCamelCase__ ) snake_case__ : str =size if size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case__ : Union[str, Any] =get_size_dict(lowerCamelCase__ ) snake_case__ : Optional[Any] =do_resize snake_case__ : Optional[Any] =size snake_case__ : Any =resample snake_case__ : int =do_rescale snake_case__ : Optional[int] =rescale_value snake_case__ : Union[str, Any] =do_normalize snake_case__ : int =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ : Tuple =image_std if image_std is not None else IMAGENET_STANDARD_STD snake_case__ : Optional[int] =apply_ocr snake_case__ : Tuple =ocr_lang snake_case__ : List[Any] =tesseract_config def lowercase__ ( self , a , a , a = PILImageResampling.BILINEAR , a = None , **a , ): snake_case__ : int =get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) snake_case__ : Any =(size["""height"""], size["""width"""]) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase__ ( self , a , a , a = None , **a , ): return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase__ ( self , a , a , a , a = None , **a , ): return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase__ ( self , a , a = None , a = None , a=None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ): snake_case__ : str =do_resize if do_resize is not None else self.do_resize snake_case__ : str =size if size is not None else self.size snake_case__ : Any =get_size_dict(lowerCamelCase__ ) snake_case__ : List[Any] =resample if resample is not None else self.resample snake_case__ : Optional[int] =do_rescale if do_rescale is not None else self.do_rescale snake_case__ : List[str] =rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ : Any =do_normalize if do_normalize is not None else self.do_normalize snake_case__ : str =image_mean if image_mean is not None else self.image_mean snake_case__ : str =image_std if image_std is not None else self.image_std snake_case__ : List[Any] =apply_ocr if apply_ocr is not None else self.apply_ocr snake_case__ : Union[str, Any] =ocr_lang if ocr_lang is not None else self.ocr_lang snake_case__ : Any =tesseract_config if tesseract_config is not None else self.tesseract_config snake_case__ : Dict =make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""If do_normalize is True, image_mean and image_std must be specified.""" ) # All transformations expect numpy arrays. snake_case__ : List[str] =[to_numpy_array(lowerCamelCase__ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , """pytesseract""" ) snake_case__ : Tuple =[] snake_case__ : List[Any] =[] for image in images: snake_case__ : List[Any] =apply_tesseract(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) words_batch.append(lowerCamelCase__ ) boxes_batch.append(lowerCamelCase__ ) if do_resize: snake_case__ : List[Any] =[self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_rescale: snake_case__ : Any =[self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: snake_case__ : str =[self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] snake_case__ : int =[to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] snake_case__ : int =BatchFeature(data={"""pixel_values""": images} , tensor_type=lowerCamelCase__ ) if apply_ocr: snake_case__ : Optional[Any] =words_batch snake_case__ : Dict =boxes_batch return data
385
def A ( lowercase__ : int , lowercase__ : int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowerCamelCase (unittest.TestCase , __lowerCamelCase ): """simple docstring""" def A_ ( self : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = load_tool("text-to-speech" ) self.tool.setup() def A_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" # SpeechT5 isn't deterministic torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple = self.tool("hey" ) SCREAMING_SNAKE_CASE__ : Optional[int] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3], torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ), ) ) def A_ ( self : int ) -> Dict: """simple docstring""" # SpeechT5 isn't deterministic torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = self.tool("hey" ) SCREAMING_SNAKE_CASE__ : Tuple = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3], torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ), ) )
663
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any]=7 , lowerCamelCase__ :str=3 , lowerCamelCase__ :Optional[Any]=18 , lowerCamelCase__ :List[str]=30 , lowerCamelCase__ :str=4_00 , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :Union[str, Any]=32 , lowerCamelCase__ :int=True , ): UpperCamelCase__ :List[Any] = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :List[str] = image_size UpperCamelCase__ :Dict = min_resolution UpperCamelCase__ :List[str] = max_resolution UpperCamelCase__ :str = do_resize UpperCamelCase__ :int = size_divisor UpperCamelCase__ :Optional[int] = do_rescale def __a ( self :str ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = GLPNImageProcessor if is_vision_available() else None def __a ( self :Dict ): UpperCamelCase__ :Dict = GLPNImageProcessingTester(self ) @property def __a ( self :List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size_divisor""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """resample""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_rescale""" ) ) def __a ( self :Optional[int] ): pass def __a ( self :Tuple ): # Initialize image_processing UpperCamelCase__ :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :str ): # Initialize image_processing UpperCamelCase__ :str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :Any ): # Initialize image_processing UpperCamelCase__ :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
45
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : str = { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/config.json""", # See all XGLM models at https://huggingface.co/models?filter=xglm } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = """xglm""" __UpperCamelCase = ["""past_key_values"""] __UpperCamelCase = { """num_attention_heads""": """attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """num_layers""", } def __init__( self : Any , lowercase_ : int=256008 , lowercase_ : str=2048 , lowercase_ : Dict=1024 , lowercase_ : Union[str, Any]=4096 , lowercase_ : Tuple=24 , lowercase_ : Optional[int]=16 , lowercase_ : str="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : int=0.0 , lowercase_ : Dict=0.0 , lowercase_ : Dict=0.02 , lowercase_ : str=True , lowercase_ : Dict=True , lowercase_ : List[str]=2 , lowercase_ : Optional[int]=1 , lowercase_ : Tuple=0 , lowercase_ : Dict=2 , **lowercase_ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : List[Any] = d_model SCREAMING_SNAKE_CASE_ : int = ffn_dim SCREAMING_SNAKE_CASE_ : List[str] = num_layers SCREAMING_SNAKE_CASE_ : List[Any] = attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = activation_function SCREAMING_SNAKE_CASE_ : Tuple = dropout SCREAMING_SNAKE_CASE_ : str = attention_dropout SCREAMING_SNAKE_CASE_ : Optional[Any] = activation_dropout SCREAMING_SNAKE_CASE_ : List[Any] = layerdrop SCREAMING_SNAKE_CASE_ : Optional[Any] = init_std SCREAMING_SNAKE_CASE_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE_ : str = use_cache super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
512
import math def A ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> Optional[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowercase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase = "Enter the base and the power separated by a comma: " UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase = res(xa, ya) UpperCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
45
0
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCamelCase_ : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_0 , UpperCAmelCase=0.02 , UpperCAmelCase=True , UpperCAmelCase=None , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = use_labels __lowerCamelCase = scope def lowerCamelCase_ ( self ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = self.get_config() return config, input_ids, input_mask, token_labels def lowerCamelCase_ ( self ): return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self ): ( __lowerCamelCase ) = self.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase , ): __lowerCamelCase = BertGenerationEncoder(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase , ): __lowerCamelCase = True __lowerCamelCase = BertGenerationEncoder(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , ) __lowerCamelCase = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase , ): __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = BertGenerationDecoder(config=lowerCamelCase__ ).to(lowerCamelCase__ ).eval() # first forward pass __lowerCamelCase = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ , ) __lowerCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) __lowerCamelCase = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] __lowerCamelCase = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase , ): __lowerCamelCase = BertGenerationDecoder(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): """simple docstring""" A = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () A = (BertGenerationDecoder,) if is_torch_available() else () A = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def lowerCamelCase_ ( self ): __lowerCamelCase = BertGenerationEncoderTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=3_7 ) def lowerCamelCase_ ( self ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = """bert""" self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase__ ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCamelCase__ ) def lowerCamelCase_ ( self ): # This regression test was failing with PyTorch < 1.3 ( __lowerCamelCase ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowerCamelCase = None self.model_tester.create_and_check_model_as_decoder( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) @slow def lowerCamelCase_ ( self ): __lowerCamelCase = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) self.assertIsNotNone(lowerCamelCase__ ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase_ ( self ): __lowerCamelCase = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) __lowerCamelCase = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): __lowerCamelCase = model(lowerCamelCase__ )[0] __lowerCamelCase = torch.Size([1, 8, 1_0_2_4] ) self.assertEqual(output.shape , lowerCamelCase__ ) __lowerCamelCase = torch.tensor( [[[0.17_75, 0.00_83, -0.03_21], [1.60_02, 0.12_87, 0.39_12], [2.14_73, 0.57_91, 0.60_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1E-4 ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase_ ( self ): __lowerCamelCase = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) __lowerCamelCase = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): __lowerCamelCase = model(lowerCamelCase__ )[0] __lowerCamelCase = torch.Size([1, 8, 5_0_3_5_8] ) self.assertEqual(output.shape , lowerCamelCase__ ) __lowerCamelCase = torch.tensor( [[[-0.57_88, -2.59_94, -3.70_54], [0.04_38, 4.79_97, 1.87_95], [1.58_62, 6.64_09, 4.46_38]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1E-4 ) )
479
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :int = 13 UpperCamelCase__ :Optional[int] = 7 UpperCamelCase__ :Dict = True UpperCamelCase__ :Dict = True UpperCamelCase__ :str = True UpperCamelCase__ :List[Any] = True UpperCamelCase__ :Any = True UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Tuple = False UpperCamelCase__ :Optional[int] = 2 UpperCamelCase__ :List[str] = 99 UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Any = 32 UpperCamelCase__ :List[str] = 2 UpperCamelCase__ :int = 4 UpperCamelCase__ :List[str] = 0.1 UpperCamelCase__ :Union[str, Any] = 0.1 UpperCamelCase__ :Union[str, Any] = 5_12 UpperCamelCase__ :List[str] = 16 UpperCamelCase__ :str = 2 UpperCamelCase__ :Optional[int] = 0.02 UpperCamelCase__ :Optional[int] = 3 UpperCamelCase__ :Optional[int] = 4 UpperCamelCase__ :Optional[int] = """last""" UpperCamelCase__ :Tuple = True UpperCamelCase__ :int = None UpperCamelCase__ :Dict = 0 def __a ( self :int ): UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCamelCase__ :Union[str, Any] = None if self.use_input_lengths: UpperCamelCase__ :Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase__ :List[str] = None if self.use_token_type_ids: UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase__ :int = None UpperCamelCase__ :List[str] = None UpperCamelCase__ :List[str] = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :str = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCamelCase__ :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ :List[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , ): UpperCamelCase__ :int = TFFlaubertModel(config=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = [input_ids, input_mask] UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Tuple , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , ): UpperCamelCase__ :List[str] = TFFlaubertWithLMHeadModel(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Dict , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :Tuple , ): UpperCamelCase__ :int = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase__ ) UpperCamelCase__ :int = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , ): UpperCamelCase__ :List[Any] = TFFlaubertForSequenceClassification(lowerCamelCase__ ) UpperCamelCase__ :List[str] = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Any , ): UpperCamelCase__ :Any = self.num_labels UpperCamelCase__ :Tuple = TFFlaubertForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase__ :List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self :Tuple , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = self.num_choices UpperCamelCase__ :Dict = TFFlaubertForMultipleChoice(config=lowerCamelCase__ ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :str = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self :Tuple ): UpperCamelCase__ :str = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :str = config_and_inputs UpperCamelCase__ :Optional[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case : Optional[int] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : List[Any] = False _snake_case : Tuple = False def __a ( self :Optional[int] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :int , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self :List[str] ): UpperCamelCase__ :List[str] = TFFlaubertModelTester(self ) UpperCamelCase__ :Tuple = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 ) def __a ( self :int ): self.config_tester.run_common_tests() def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase__ ) def __a ( self :Tuple ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase__ ) @slow def __a ( self :str ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFFlaubertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :str ): UpperCamelCase__ :Tuple = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCamelCase__ :Optional[int] = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ )[0] UpperCamelCase__ :Optional[int] = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. UpperCamelCase__ :str = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
45
0
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case( UpperCAmelCase ): __snake_case: str = """new-model""" if is_tf_available(): class _snake_case( UpperCAmelCase ): __snake_case: Any = NewModelConfig @require_tf class _snake_case( unittest.TestCase ): @slow def _UpperCamelCase (self : str ) -> Any: """simple docstring""" A__ = """bert-base-cased""" A__ = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) A__ = TFAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def _UpperCamelCase (self : List[Any] ) -> Any: """simple docstring""" A__ = """bert-base-cased""" A__ = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) A__ = TFAutoModelForPreTraining.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def _UpperCamelCase (self : List[Any] ) -> Optional[int]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) A__ = TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ ) A__ = TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def _UpperCamelCase (self : Any ) -> Union[str, Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) A__ = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def _UpperCamelCase (self : Any ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) A__ = TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ ) A__ = TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def _UpperCamelCase (self : str ) -> int: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) A__ = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ) A__ = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def _UpperCamelCase (self : Dict ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: A__ = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) A__ = TFAutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def _UpperCamelCase (self : str ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: A__ = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) A__ = TFAutoModelForQuestionAnswering.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow @require_tensorflow_probability def _UpperCamelCase (self : Optional[Any] ) -> Tuple: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: A__ = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) A__ = TFAutoModelForTableQuestionAnswering.from_pretrained(lowerCamelCase__ ) A__ = TFAutoModelForTableQuestionAnswering.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase (self : int ) -> Tuple: """simple docstring""" A__ = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 1_44_10 ) def _UpperCamelCase (self : str ) -> Tuple: """simple docstring""" A__ = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 1_44_10 ) def _UpperCamelCase (self : Tuple ) -> Union[str, Any]: """simple docstring""" A__ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) A__ = copy.deepcopy(model.config ) A__ = ["""FunnelBaseModel"""] A__ = TFAutoModel.from_config(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ ) A__ = TFAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase (self : Optional[Any] ) -> Optional[int]: """simple docstring""" try: AutoConfig.register('new-model' , lowerCamelCase__ ) A__ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(lowerCamelCase__ ): auto_class.register(lowerCamelCase__ , lowerCamelCase__ ) auto_class.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): auto_class.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ = BertModelTester(self ).get_config() A__ = NewModelConfig(**tiny_config.to_dict() ) A__ = auto_class.from_config(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ ) A__ = auto_class.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def _UpperCamelCase (self : List[str] ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex( lowerCamelCase__ , 'bert-base is not a local folder and is not a valid model identifier' ): A__ = TFAutoModel.from_pretrained('bert-base' ) def _UpperCamelCase (self : int ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex( lowerCamelCase__ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): A__ = TFAutoModel.from_pretrained(lowerCamelCase__ , revision='aaaaaa' ) def _UpperCamelCase (self : Optional[int] ) -> Tuple: """simple docstring""" with self.assertRaisesRegex( lowerCamelCase__ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): A__ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def _UpperCamelCase (self : Tuple ) -> Tuple: """simple docstring""" with self.assertRaisesRegex(lowerCamelCase__ , 'Use `from_pt=True` to load this model' ): A__ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def _UpperCamelCase (self : Optional[int] ) -> str: """simple docstring""" A__ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: A__ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint A__ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: A__ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
531
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCamelCase = False class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :List[Any] ): UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :Any = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :str = generator.manual_seed(0 ) UpperCamelCase__ :str = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __a ( self :Dict ): UpperCamelCase__ :List[Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = """cyberpunk 2077""" UpperCamelCase__ :str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :str = torch.manual_seed(0 ) UpperCamelCase__ :Dict = pipe.dual_guided( prompt=lowerCamelCase__ , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCamelCase__ :Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Any = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :List[Any] = """A painting of a squirrel eating a burger """ UpperCamelCase__ :List[str] = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.text_to_image( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images UpperCamelCase__ :str = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :Optional[int] = pipe.image_variation(lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""numpy""" ).images UpperCamelCase__ :int = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :List[Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
45
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase :int = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCAmelCase :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
561
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self :Union[str, Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str]=2 , lowerCamelCase__ :List[str]=3 , lowerCamelCase__ :List[str]=4 , lowerCamelCase__ :str=2 , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Any=True , lowerCamelCase__ :Dict=99 , lowerCamelCase__ :Optional[Any]=36 , lowerCamelCase__ :str=2 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :Optional[Any]=37 , lowerCamelCase__ :Optional[int]="gelu" , lowerCamelCase__ :Any=0.1 , lowerCamelCase__ :List[Any]=0.1 , lowerCamelCase__ :List[Any]=5_12 , lowerCamelCase__ :str=16 , lowerCamelCase__ :Tuple=2 , lowerCamelCase__ :int=0.02 , lowerCamelCase__ :List[Any]=6 , lowerCamelCase__ :List[str]=6 , lowerCamelCase__ :Optional[int]=3 , lowerCamelCase__ :Optional[int]=4 , lowerCamelCase__ :int=None , lowerCamelCase__ :Optional[Any]=10_00 , ): UpperCamelCase__ :Any = parent UpperCamelCase__ :Union[str, Any] = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :Optional[Any] = image_size UpperCamelCase__ :Union[str, Any] = patch_size UpperCamelCase__ :Union[str, Any] = is_training UpperCamelCase__ :str = use_input_mask UpperCamelCase__ :int = use_token_type_ids UpperCamelCase__ :int = use_labels UpperCamelCase__ :List[Any] = vocab_size UpperCamelCase__ :List[str] = hidden_size UpperCamelCase__ :List[Any] = num_hidden_layers UpperCamelCase__ :List[str] = num_attention_heads UpperCamelCase__ :Tuple = intermediate_size UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout_prob UpperCamelCase__ :Tuple = attention_probs_dropout_prob UpperCamelCase__ :Dict = max_position_embeddings UpperCamelCase__ :Tuple = type_vocab_size UpperCamelCase__ :Union[str, Any] = type_sequence_label_size UpperCamelCase__ :int = initializer_range UpperCamelCase__ :List[Any] = coordinate_size UpperCamelCase__ :Tuple = shape_size UpperCamelCase__ :Dict = num_labels UpperCamelCase__ :str = num_choices UpperCamelCase__ :Tuple = scope UpperCamelCase__ :str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase__ :List[str] = text_seq_length UpperCamelCase__ :List[str] = (image_size // patch_size) ** 2 + 1 UpperCamelCase__ :Dict = self.text_seq_length + self.image_seq_length def __a ( self :Tuple ): UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase__ :int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCamelCase__ :str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase__ :List[str] = bbox[i, j, 3] UpperCamelCase__ :Optional[int] = bbox[i, j, 1] UpperCamelCase__ :Optional[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase__ :Tuple = bbox[i, j, 2] UpperCamelCase__ :Optional[Any] = bbox[i, j, 0] UpperCamelCase__ :List[str] = tmp_coordinate UpperCamelCase__ :Dict = tf.constant(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Any = None if self.use_input_mask: UpperCamelCase__ :int = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase__ :Optional[Any] = None if self.use_token_type_ids: UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase__ :List[str] = None UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase__ :Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self :List[Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int , lowerCamelCase__ :Any ): UpperCamelCase__ :Dict = TFLayoutLMvaModel(config=lowerCamelCase__ ) # text + image UpperCamelCase__ :Tuple = model(lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) UpperCamelCase__ :Tuple = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , training=lowerCamelCase__ , ) UpperCamelCase__ :str = model(lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase__ :Tuple = model({"""pixel_values""": pixel_values} , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Optional[Any] = self.num_labels UpperCamelCase__ :List[Any] = TFLayoutLMvaForSequenceClassification(config=lowerCamelCase__ ) UpperCamelCase__ :List[str] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = self.num_labels UpperCamelCase__ :Dict = TFLayoutLMvaForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self :int , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple ): UpperCamelCase__ :Dict = 2 UpperCamelCase__ :Tuple = TFLayoutLMvaForQuestionAnswering(config=lowerCamelCase__ ) UpperCamelCase__ :int = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.prepare_config_and_inputs() ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) :Any = config_and_inputs UpperCamelCase__ :List[str] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _snake_case : Dict = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) _snake_case : Optional[int] = False _snake_case : List[str] = False _snake_case : Tuple = False def __a ( self :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :int ): return True def __a ( self :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int]=False ): UpperCamelCase__ :List[str] = copy.deepcopy(lowerCamelCase__ ) if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = { k: tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCamelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCamelCase__ :Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Tuple = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __a ( self :Dict ): UpperCamelCase__ :List[Any] = TFLayoutLMvaModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Any ): self.config_tester.run_common_tests() def __a ( self :Optional[int] ): UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Optional[int] = model_class(lowerCamelCase__ ) if getattr(lowerCamelCase__ , """hf_compute_loss""" , lowerCamelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCamelCase__ )[0] ] UpperCamelCase__ :Union[str, Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCamelCase__ :List[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) UpperCamelCase__ :List[str] = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: UpperCamelCase__ :List[str] = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCamelCase__ :Optional[Any] = -1_00 UpperCamelCase__ :Union[str, Any] = tf.convert_to_tensor(lowerCamelCase__ ) UpperCamelCase__ :Tuple = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCamelCase__ :Optional[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCamelCase__ :Dict = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) # Get keys that were added with the _prepare_for_class function UpperCamelCase__ :str = prepared_for_class.keys() - inputs_dict.keys() UpperCamelCase__ :Tuple = inspect.signature(model.call ).parameters UpperCamelCase__ :str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCamelCase__ :Any = {0: """input_ids"""} for label_key in label_keys: UpperCamelCase__ :Dict = signature_names.index(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = label_key UpperCamelCase__ :Optional[Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCamelCase__ :Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCamelCase__ :List[str] = prepared_for_class[value] UpperCamelCase__ :Union[str, Any] = tuple(lowerCamelCase__ ) # Send to model UpperCamelCase__ :str = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ :Dict = type self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Tuple ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :Optional[int] ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFLayoutLMvaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( ) -> List[str]: UpperCamelCase__ :List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :Optional[Any] ): return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase__ ) if is_vision_available() else None @slow def __a ( self :Dict ): UpperCamelCase__ :List[str] = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) UpperCamelCase__ :List[Any] = self.default_image_processor UpperCamelCase__ :str = prepare_img() UpperCamelCase__ :Any = image_processor(images=lowerCamelCase__ , return_tensors="""tf""" ).pixel_values UpperCamelCase__ :str = tf.constant([[1, 2]] ) UpperCamelCase__ :Any = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCamelCase__ :Dict = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) # verify the logits UpperCamelCase__ :int = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
45
0
'''simple docstring''' import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class _snake_case : def __init__( self ,_snake_case ,_snake_case=13 ,_snake_case=7 ,_snake_case=True ,_snake_case=True ,_snake_case=True ,_snake_case=True ,_snake_case=99 ,_snake_case=32 ,_snake_case=5 ,_snake_case=4 ,_snake_case=4 ,_snake_case="gelu" ,_snake_case=0.0 ,_snake_case=0.1 ,_snake_case=True ,_snake_case=5_12 ,_snake_case=16 ,_snake_case=2 ,_snake_case=0.02 ,_snake_case=3 ,_snake_case=4 ,_snake_case=None ,): UpperCAmelCase_ : Optional[Any] = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Tuple = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : List[str] = use_input_mask UpperCAmelCase_ : Optional[Any] = use_token_type_ids UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : Tuple = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_multiple_size UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout UpperCAmelCase_ : List[Any] = attention_dropout UpperCAmelCase_ : List[str] = weight_tying UpperCAmelCase_ : List[str] = max_position_embeddings UpperCAmelCase_ : Dict = type_vocab_size UpperCAmelCase_ : List[Any] = type_sequence_label_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Dict = num_choices UpperCAmelCase_ : Any = scope def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : str = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def UpperCamelCase__ ( self ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_multiple_size=self.intermediate_multiple_size ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,weight_tying=self.weight_tying ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase__ ,initializer_range=self.initializer_range ,) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ : Optional[int] = True return config, input_ids, input_mask, token_labels def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : Union[str, Any] = GPTNeoXJapaneseModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ) UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : int = GPTNeoXJapaneseModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : Any = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : List[str] = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # first forward pass UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,use_cache=lowerCamelCase__ ) UpperCAmelCase_ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ : List[Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and UpperCAmelCase_ : Union[str, Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) UpperCAmelCase_ : Optional[int] = torch.cat([input_mask, next_mask] ,dim=-1 ) UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,output_hidden_states=lowerCamelCase__ ) UpperCAmelCase_ : Optional[int] = output_from_no_past["""hidden_states"""][0] UpperCAmelCase_ : Union[str, Any] = model( lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,past_key_values=lowerCamelCase__ ,output_hidden_states=lowerCamelCase__ ,)["""hidden_states"""][0] # select random slice UpperCAmelCase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item() UpperCAmelCase_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ ,lowerCamelCase__ ,atol=1E-3 ) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = self.prepare_config_and_inputs() UpperCAmelCase_ : List[Any] = config_and_inputs UpperCAmelCase_ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _snake_case (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Dict =(GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () __A : int =(GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () __A : str =( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) __A : Union[str, Any] =False __A : Dict =False __A : List[str] =False __A : Optional[int] =False def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = GPTNeoXJapaneseModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self ,config_class=lowerCamelCase__ ,hidden_size=37 ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def UpperCamelCase__ ( self ): # This regression test was failing with PyTorch < 1.3 UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase_ : Dict = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) @slow def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = """abeja/gpt-neox-japanese-2.7b""" UpperCAmelCase_ : List[Any] = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] UpperCAmelCase_ : Union[str, Any] = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] UpperCAmelCase_ : Any = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCamelCase__ ) UpperCAmelCase_ : List[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCamelCase__ ) UpperCAmelCase_ : Optional[Any] = [] for prompt in prompts: UpperCAmelCase_ : str = tokenizer(lowerCamelCase__ ,return_tensors="pt" ).input_ids UpperCAmelCase_ : Union[str, Any] = model.generate(lowerCamelCase__ ,max_length=50 ) UpperCAmelCase_ : Dict = tokenizer.batch_decode(lowerCamelCase__ ,skip_special_tokens=lowerCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ )
71
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The column name of the images in the files."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the training data."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the validation data."""} ) _snake_case : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __a ( self :List[str] ): UpperCamelCase__ :Optional[Any] = {} if self.train_dir is not None: UpperCamelCase__ :int = self.train_dir if self.validation_dir is not None: UpperCamelCase__ :List[str] = self.validation_dir UpperCamelCase__ :Optional[int] = data_files if data_files else None @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = field( default=lowercase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _snake_case : str = field(default=lowercase , metadata={"""help""": """Name or path of preprocessor config."""} ) _snake_case : bool = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _snake_case : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) _snake_case : bool = field( default=lowercase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def A ( lowercase__ : Union[str, Any] ) -> Dict: UpperCamelCase__ :Union[str, Any] = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def A ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ :List[str] = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCamelCase__ :Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ :List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCamelCase__ :Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase__ :int = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: UpperCamelCase__ :Optional[Any] = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCamelCase__ :Union[str, Any] = split["""train"""] UpperCamelCase__ :Any = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ :Optional[int] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase__ :Any = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Optional[Any] = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCamelCase__ :str = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Tuple = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCamelCase__ :Any = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase__ :Optional[int] = ViTMAEForPreTraining(lowercase__ ) if training_args.do_train: UpperCamelCase__ :Optional[Any] = ds["""train"""].column_names else: UpperCamelCase__ :Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCamelCase__ :Union[str, Any] = data_args.image_column_name elif "image" in column_names: UpperCamelCase__ :Optional[Any] = """image""" elif "img" in column_names: UpperCamelCase__ :List[str] = """img""" else: UpperCamelCase__ :List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCamelCase__ :List[str] = image_processor.size["""shortest_edge"""] else: UpperCamelCase__ :int = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCamelCase__ :Any = Compose( [ Lambda(lambda lowercase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ : Tuple ): UpperCamelCase__ :List[Any] = [transforms(lowercase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCamelCase__ :Optional[int] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCamelCase__ :Optional[Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Compute absolute learning rate UpperCamelCase__ :Tuple = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCamelCase__ :Any = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCamelCase__ :Union[str, Any] = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: UpperCamelCase__ :Any = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ :int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ :Dict = last_checkpoint UpperCamelCase__ :Union[str, Any] = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ :int = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase__ ) trainer.save_metrics("""eval""" , lowercase__ ) # Write model card and (optionally) push to hub UpperCamelCase__ :Optional[int] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def A ( lowercase__ : Union[str, Any] ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
45
0
def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: str ): """simple docstring""" UpperCAmelCase_: int = 0 UpperCAmelCase_: Any = len(lowercase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase_: Dict = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase__ ): return None UpperCAmelCase_: List[Any] = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase_: List[Any] = left UpperCAmelCase_: Tuple = point elif point > right: UpperCAmelCase_: str = right UpperCAmelCase_: Tuple = point else: if item < current_item: UpperCAmelCase_: Dict = point - 1 else: UpperCAmelCase_: List[Any] = point + 1 return None def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: Tuple , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: Optional[int] ): """simple docstring""" if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase_: Tuple = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) elif point > right: return interpolation_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowercase__ , lowercase__ , lowercase__ , point - 1 ) else: return interpolation_search_by_recursion( lowercase__ , lowercase__ , point + 1 , lowercase__ ) def lowerCAmelCase_ (lowerCAmelCase__: int ): """simple docstring""" if collection != sorted(lowercase__ ): raise ValueError("""Collection must be ascending sorted""" ) return True if __name__ == "__main__": import sys a : Any = 0 if debug == 1: a : List[str] = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') a : Union[str, Any] = 67 a : Optional[int] = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print('Not found')
556
from __future__ import annotations def A ( lowercase__ : int ) -> list[int]: UpperCamelCase__ :Union[str, Any] = [True] * limit UpperCamelCase__ :int = False UpperCamelCase__ :Optional[Any] = False UpperCamelCase__ :str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCamelCase__ :List[Any] = i * 2 while index < limit: UpperCamelCase__ :Tuple = False UpperCamelCase__ :Tuple = index + i UpperCamelCase__ :str = [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def A ( lowercase__ : int = 100_0000 ) -> int: UpperCamelCase__ :Any = prime_sieve(lowercase__ ) UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :Optional[Any] = 0 for i in range(len(lowercase__ ) ): for j in range(i + length , len(lowercase__ ) ): UpperCamelCase__ :Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCamelCase__ :Union[str, Any] = j - i UpperCamelCase__ :Any = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
45
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __A : Union[str, Any] = logging.get_logger(__name__) __A : str = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = """longformer""" def __init__( self : List[str] , __lowerCamelCase : Union[List[int], int] = 512 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 1 , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 30522 , __lowerCamelCase : int = 768 , __lowerCamelCase : int = 12 , __lowerCamelCase : int = 12 , __lowerCamelCase : int = 3072 , __lowerCamelCase : str = "gelu" , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : int = 512 , __lowerCamelCase : int = 2 , __lowerCamelCase : float = 0.02 , __lowerCamelCase : float = 1e-12 , __lowerCamelCase : bool = False , **__lowerCamelCase : Tuple , ): super().__init__(pad_token_id=lowerCamelCase__ , **lowerCamelCase__ ) SCREAMING_SNAKE_CASE = attention_window SCREAMING_SNAKE_CASE = sep_token_id SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = onnx_export class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : "PretrainedConfig" , __lowerCamelCase : str = "default" , __lowerCamelCase : "List[PatchingSpec]" = None ): super().__init__(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) SCREAMING_SNAKE_CASE = True @property def _snake_case ( self : Optional[Any] ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE = {0: """batch"""} return outputs @property def _snake_case ( self : List[Any] ): return 1e-4 @property def _snake_case ( self : Tuple ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def _snake_case ( self : List[Any] , __lowerCamelCase : "PreTrainedTokenizerBase" , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE = super().generate_dummy_inputs( preprocessor=lowerCamelCase__ , batch_size=lowerCamelCase__ , seq_length=lowerCamelCase__ , is_pair=lowerCamelCase__ , framework=lowerCamelCase__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE = torch.zeros_like(inputs["input_ids"] ) # make every second token global SCREAMING_SNAKE_CASE = 1 return inputs
16
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple=13 , lowerCamelCase__ :Tuple=7 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :List[str]=99 , lowerCamelCase__ :int=32 , lowerCamelCase__ :List[Any]=5 , lowerCamelCase__ :Tuple=4 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :str="gelu" , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :str=True , lowerCamelCase__ :Dict=5_12 , lowerCamelCase__ :Optional[Any]=16 , lowerCamelCase__ :Optional[Any]=2 , lowerCamelCase__ :Union[str, Any]=0.02 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :int=4 , lowerCamelCase__ :str=None , ): UpperCamelCase__ :Optional[Any] = parent UpperCamelCase__ :Dict = batch_size UpperCamelCase__ :Tuple = seq_length UpperCamelCase__ :Dict = is_training UpperCamelCase__ :List[str] = use_input_mask UpperCamelCase__ :Optional[Any] = use_token_type_ids UpperCamelCase__ :Tuple = use_labels UpperCamelCase__ :int = vocab_size UpperCamelCase__ :Tuple = hidden_size UpperCamelCase__ :Optional[Any] = num_hidden_layers UpperCamelCase__ :int = num_attention_heads UpperCamelCase__ :Optional[int] = intermediate_multiple_size UpperCamelCase__ :Optional[Any] = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout UpperCamelCase__ :List[Any] = attention_dropout UpperCamelCase__ :List[str] = weight_tying UpperCamelCase__ :List[str] = max_position_embeddings UpperCamelCase__ :Dict = type_vocab_size UpperCamelCase__ :List[Any] = type_sequence_label_size UpperCamelCase__ :List[str] = initializer_range UpperCamelCase__ :int = num_labels UpperCamelCase__ :Dict = num_choices UpperCamelCase__ :Any = scope def __a ( self :Any ): UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :str = None if self.use_input_mask: UpperCamelCase__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self :Union[str, Any] ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def __a ( self :Union[str, Any] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase__ :Optional[int] = True return config, input_ids, input_mask, token_labels def __a ( self :List[str] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Any ): UpperCamelCase__ :Union[str, Any] = GPTNeoXJapaneseModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[Any] ): UpperCamelCase__ :List[str] = True UpperCamelCase__ :int = GPTNeoXJapaneseModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :List[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Any = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Any , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :List[str] = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # first forward pass UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ :List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ :Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ :Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ :Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = output_from_no_past["""hidden_states"""][0] UpperCamelCase__ :Union[str, Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] # select random slice UpperCamelCase__ :int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ :str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ :Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def __a ( self :Tuple ): UpperCamelCase__ :int = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = config_and_inputs UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _snake_case : int = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _snake_case : str = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _snake_case : Union[str, Any] = False _snake_case : Dict = False _snake_case : List[str] = False _snake_case : Optional[int] = False def __a ( self :List[Any] ): UpperCamelCase__ :Tuple = GPTNeoXJapaneseModelTester(self ) UpperCamelCase__ :Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Dict ): self.config_tester.run_common_tests() def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): # This regression test was failing with PyTorch < 1.3 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase__ :Dict = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) @slow def __a ( self :int ): UpperCamelCase__ :int = """abeja/gpt-neox-japanese-2.7b""" UpperCamelCase__ :List[Any] = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] UpperCamelCase__ :Union[str, Any] = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] UpperCamelCase__ :Any = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = [] for prompt in prompts: UpperCamelCase__ :str = tokenizer(lowerCamelCase__ , return_tensors="""pt""" ).input_ids UpperCamelCase__ :Union[str, Any] = model.generate(lowerCamelCase__ , max_length=50 ) UpperCamelCase__ :Dict = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
45
0
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowercase_ = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
291
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def A ( lowercase__ : dict ) -> tuple: return (data["data"], data["target"]) def A ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ) -> XGBClassifier: UpperCamelCase__ :Tuple = XGBClassifier() classifier.fit(lowercase__ , lowercase__ ) return classifier def A ( ) -> None: UpperCamelCase__ :str = load_iris() UpperCamelCase__ , UpperCamelCase__ :int = data_handling(lowercase__ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = train_test_split( lowercase__ , lowercase__ , test_size=0.25 ) UpperCamelCase__ :Optional[int] = iris["""target_names"""] # Create an XGBoost Classifier from the training data UpperCamelCase__ :Optional[Any] = xgboost(lowercase__ , lowercase__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase__ , lowercase__ , lowercase__ , display_labels=lowercase__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
45
0
"""simple docstring""" import string import numpy def a ( __snake_case : int, __snake_case : int ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a, lowercase__ ) class _snake_case : '''simple docstring''' UpperCamelCase__ =string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCamelCase__ =numpy.vectorize(lambda A__ : x % 36 ) UpperCamelCase__ =numpy.vectorize(A__ ) def __init__( self : Optional[Any] , snake_case : numpy.ndarray ): UpperCAmelCase_ :Dict = self.modulus(lowerCamelCase__ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key UpperCAmelCase_ :Any = encrypt_key.shape[0] def snake_case_ ( self : List[Any] , snake_case : str ): return self.key_string.index(lowerCamelCase__ ) def snake_case_ ( self : List[Any] , snake_case : int ): return self.key_string[round(lowerCamelCase__ )] def snake_case_ ( self : List[str] ): UpperCAmelCase_ :Optional[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: UpperCAmelCase_ :str = det % len(self.key_string ) UpperCAmelCase_ :int = len(self.key_string ) if greatest_common_divisor(lowerCamelCase__ , len(self.key_string ) ) != 1: UpperCAmelCase_ :int = ( f'determinant modular {req_l} of encryption key({det}) ' f'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(lowerCamelCase__ ) def snake_case_ ( self : int , snake_case : str ): UpperCAmelCase_ :str = [char for char in text.upper() if char in self.key_string] UpperCAmelCase_ :int = chars[-1] while len(lowerCamelCase__ ) % self.break_key != 0: chars.append(lowerCamelCase__ ) return "".join(lowerCamelCase__ ) def snake_case_ ( self : Tuple , snake_case : str ): UpperCAmelCase_ :Optional[int] = self.process_text(text.upper() ) UpperCAmelCase_ :Optional[int] = """""" for i in range(0 , len(lowerCamelCase__ ) - self.break_key + 1 , self.break_key ): UpperCAmelCase_ :Optional[Any] = text[i : i + self.break_key] UpperCAmelCase_ :Any = [self.replace_letters(lowerCamelCase__ ) for char in batch] UpperCAmelCase_ :Any = numpy.array([vec] ).T UpperCAmelCase_ :Optional[int] = self.modulus(self.encrypt_key.dot(lowerCamelCase__ ) ).T.tolist()[ 0 ] UpperCAmelCase_ :Dict = """""".join( self.replace_digits(lowerCamelCase__ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def snake_case_ ( self : Optional[int] ): UpperCAmelCase_ :int = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: UpperCAmelCase_ :int = det % len(self.key_string ) UpperCAmelCase_ :List[Any] = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: UpperCAmelCase_ :Optional[Any] = i break UpperCAmelCase_ :Optional[int] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(lowerCamelCase__ ) ) def snake_case_ ( self : Tuple , snake_case : str ): UpperCAmelCase_ :List[str] = self.make_decrypt_key() UpperCAmelCase_ :Dict = self.process_text(text.upper() ) UpperCAmelCase_ :Any = """""" for i in range(0 , len(lowerCamelCase__ ) - self.break_key + 1 , self.break_key ): UpperCAmelCase_ :List[str] = text[i : i + self.break_key] UpperCAmelCase_ :Dict = [self.replace_letters(lowerCamelCase__ ) for char in batch] UpperCAmelCase_ :List[str] = numpy.array([vec] ).T UpperCAmelCase_ :Optional[Any] = self.modulus(decrypt_key.dot(lowerCamelCase__ ) ).T.tolist()[0] UpperCAmelCase_ :str = """""".join( self.replace_digits(lowerCamelCase__ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def a ( ): '''simple docstring''' UpperCAmelCase_ :str = int(input('''Enter the order of the encryption key: ''' ) ) UpperCAmelCase_ :List[Any] = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(lowercase__ ): UpperCAmelCase_ :Any = [int(lowercase__ ) for x in input().split()] hill_matrix.append(lowercase__ ) UpperCAmelCase_ :Dict = HillCipher(numpy.array(lowercase__ ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) UpperCAmelCase_ :Optional[int] = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": UpperCAmelCase_ :List[str] = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(lowercase__ ) ) elif option == "2": UpperCAmelCase_ :Any = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
608
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A ( lowercase__ : Optional[int] ) -> Optional[Any]: UpperCamelCase__ :Union[str, Any] = {} UpperCamelCase__ :Optional[int] = tokenizer(example["""content"""] , truncation=lowercase__ )["""input_ids"""] UpperCamelCase__ :int = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
45
0
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : str = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""") @require_sentencepiece @require_tokenizers class _lowercase ( _A , unittest.TestCase ): _a : List[str] = GPTSwaTokenizer _a : Dict = False _a : str = True _a : int = False def lowercase__ ( self ): super().setUp() # We have a SentencePiece fixture for testing snake_case__ : int =GPTSwaTokenizer(lowerCamelCase__ , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self , a ): snake_case__ : List[Any] ="""This is a test""" snake_case__ : Optional[Any] ="""This is a test""" return input_text, output_text def lowercase__ ( self ): snake_case__ : int ="""<s>""" snake_case__ : Optional[int] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase__ ( self ): snake_case__ : Tuple =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(lowerCamelCase__ ) , 2_0_0_0 ) def lowercase__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2_0_0_0 ) def lowercase__ ( self ): snake_case__ : Union[str, Any] =GPTSwaTokenizer(lowerCamelCase__ ) snake_case__ : Optional[int] =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2] ) snake_case__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( lowerCamelCase__ , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on snake_case__ : Tuple =tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0] , ) snake_case__ : Optional[Any] =tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) # fmt: off self.assertListEqual( lowerCamelCase__ , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def lowercase__ ( self ): snake_case__ : Dict =GPTSwaTokenizer(lowerCamelCase__ ) snake_case__ : List[str] =["""This is a test""", """I was born in 92000, and this is falsé."""] snake_case__ : Union[str, Any] =[ [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2], [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertListEqual(tokenizer.encode_fast(lowerCamelCase__ ) , lowerCamelCase__ ) # Test that decode_fast returns the input text for text, token_ids in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(tokenizer.decode_fast(lowerCamelCase__ ) , lowerCamelCase__ ) @slow def lowercase__ ( self ): snake_case__ : Tuple =[ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off snake_case__ : str ={"""input_ids""": [[6_3_4_2_3, 5, 6_8_1_1, 1_4_9_5_4, 2_8_2, 8_1_6, 3_8_2_1, 6_3_4_6_6, 6_3_4_2_5, 6_3_4_6_2, 1_8, 6_3_9_7_8, 6_7_8, 3_0_1, 1_3_2_0, 6_3_4_2_3, 6_3_4_5_5, 6_3_4_5_8, 1_8, 6_3_9_8_2, 4_2_4_6, 3_9_4_0, 1_9_0_1, 4_7_7_8_9, 5_5_4_7, 1_8_9_9_4], [1_9_6_3_0, 1_1_0_0, 6_3_4_4_6, 1_3_4_2, 6_3_3, 5_4_4, 4_4_8_8, 5_9_3, 5_1_0_2, 2_4_1_6, 6_3_4_9_5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_6_5_2, 4_2_8, 2_6_8, 1_9_3_6, 5_1_5, 2_6_8, 5_8_5_9_3, 2_2_4_1_3, 9_1_0_6, 5_4_6, 2_6_8, 3_3_2_1_3, 6_3_9_7_9, 6_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5_1_3_0, 6_3_4_5_0, 9_2_4, 6_3_4_4_9, 2_2_4_9, 4_0_6_2, 1_5_5_8, 3_1_8, 6_3_5_0_4, 2_1_4_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_0_9, 3_7_7, 2_8_2_7, 2_5_5_9, 3_3_2, 6_5_7_5, 6_3_4_4_3, 2_6_8_0_1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=lowerCamelCase__ , )
385
def A ( lowercase__ : int ) -> Optional[Any]: stooge(lowercase__ , 0 , len(lowercase__ ) - 1 ) return arr def A ( lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : str ) -> List[str]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCamelCase__ , UpperCamelCase__ :List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCamelCase__ :Optional[int] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowercase__ , i + t , (lowercase__) ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
45
0
_lowerCamelCase : List[str] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def _a ( SCREAMING_SNAKE_CASE__ : bytes ) -> bytes: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE__ : Dict = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(lowercase__ ) SCREAMING_SNAKE_CASE__ : Any = """""".join(bin(lowercase__ )[2:].zfill(8 ) for byte in data ) SCREAMING_SNAKE_CASE__ : Optional[Any] = len(lowercase__ ) % 6 != 0 if padding_needed: # The padding that will be added later SCREAMING_SNAKE_CASE__ : int = b"""=""" * ((6 - len(lowercase__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(lowercase__ ) % 6) else: SCREAMING_SNAKE_CASE__ : List[Any] = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(lowercase__ ) , 6 ) ).encode() + padding ) def _a ( SCREAMING_SNAKE_CASE__ : str ) -> bytes: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) and not isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE__ : Dict = ( """argument should be a bytes-like object or ASCII string, """ f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(lowercase__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(lowercase__ , lowercase__ ): try: SCREAMING_SNAKE_CASE__ : List[str] = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) SCREAMING_SNAKE_CASE__ : int = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(lowercase__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one SCREAMING_SNAKE_CASE__ : int = encoded_data[:-padding] SCREAMING_SNAKE_CASE__ : Optional[int] = """""".join( bin(B64_CHARSET.index(lowercase__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: SCREAMING_SNAKE_CASE__ : List[str] = """""".join( bin(B64_CHARSET.index(lowercase__ ) )[2:].zfill(6 ) for char in encoded_data ) SCREAMING_SNAKE_CASE__ : Optional[int] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(lowercase__ ) , 8 ) ] return bytes(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
663
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCamelCase = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def A ( lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Dict ) -> List[Any]: UpperCamelCase__ :str = SavedModel() UpperCamelCase__ :List[str] = [] with open(os.path.join(lowercase__ , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f: UpperCamelCase__ :str = json.load(lowercase__ )["""opsets"""] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowercase__ )] ) with open(lowercase__ , """rb""" ) as f: saved_model.ParseFromString(f.read() ) UpperCamelCase__ :Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCamelCase__ :Union[str, Any] = sorted(lowercase__ ) UpperCamelCase__ :List[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowercase__ ) if strict and len(lowercase__ ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(lowercase__ ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*lowercase__ , sep="""\n""" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) UpperCamelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
45
0
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = """ClapFeatureExtractor""" __UpperCamelCase = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Optional[Any] , lowercase_ : List[str] , lowercase_ : List[Any]): '''simple docstring''' super().__init__(lowerCamelCase__ , lowerCamelCase__) def __call__( self : List[Any] , lowercase_ : List[Any]=None , lowercase_ : Optional[int]=None , lowercase_ : Dict=None , **lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('''sampling_rate''' , lowerCamelCase__) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''') if text is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__) if audios is not None: SCREAMING_SNAKE_CASE_ : str = self.feature_extractor( lowerCamelCase__ , sampling_rate=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__) if text is not None and audios is not None: SCREAMING_SNAKE_CASE_ : Tuple = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase__) , tensor_type=lowerCamelCase__) def _SCREAMING_SNAKE_CASE ( self : Any , *lowercase_ : List[str] , **lowercase_ : Any): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__) def _SCREAMING_SNAKE_CASE ( self : int , *lowercase_ : Any , **lowercase_ : Optional[int]): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__) @property def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ : Tuple = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
512
from __future__ import annotations def A ( lowercase__ : str , lowercase__ : list[str] | None = None , lowercase__ : dict[str, float] | None = None , lowercase__ : bool = False , ) -> tuple[int, float, str]: UpperCamelCase__ :Dict = cipher_alphabet or [chr(lowercase__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCamelCase__ :Optional[Any] = { """a""": 0.08497, """b""": 0.01492, """c""": 0.02202, """d""": 0.04253, """e""": 0.11162, """f""": 0.02228, """g""": 0.02015, """h""": 0.06094, """i""": 0.07546, """j""": 0.00153, """k""": 0.01292, """l""": 0.04025, """m""": 0.02406, """n""": 0.06749, """o""": 0.07507, """p""": 0.01929, """q""": 0.00095, """r""": 0.07587, """s""": 0.06327, """t""": 0.09356, """u""": 0.02758, """v""": 0.00978, """w""": 0.02560, """x""": 0.00150, """y""": 0.01994, """z""": 0.00077, } else: # Custom frequencies dictionary UpperCamelCase__ :Optional[int] = frequencies_dict if not case_sensitive: UpperCamelCase__ :int = ciphertext.lower() # Chi squared statistic values UpperCamelCase__ :dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowercase__ ) ): UpperCamelCase__ :int = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCamelCase__ :int = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCamelCase__ :Optional[int] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCamelCase__ :Optional[int] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :Optional[int] = decrypted_with_shift.lower().count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :Dict = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :List[str] = decrypted_with_shift.count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Union[str, Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :List[str] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCamelCase__ :Union[str, Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowercase__ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCamelCase__ :int = min( lowercase__ , key=lowercase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
45
0
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } _a : Any = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } _a : Any = {'facebook/blenderbot_small-90M': 5_12} def UpperCamelCase__ ( _A: Optional[int] ): '''simple docstring''' __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char __lowerCamelCase = set(lowercase__ ) return pairs class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="__start__" , UpperCAmelCase="__end__" , UpperCAmelCase="__unk__" , UpperCAmelCase="__null__" , **UpperCAmelCase , ): super().__init__(unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , **lowerCamelCase__ ) with open(lowerCamelCase__ , encoding="""utf-8""" ) as vocab_handle: __lowerCamelCase = json.load(lowerCamelCase__ ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase__ , encoding="""utf-8""" ) as merges_handle: __lowerCamelCase = merges_handle.read().split("""\n""" )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in merges] __lowerCamelCase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __lowerCamelCase = {} @property def lowerCamelCase_ ( self ): return len(self.encoder ) def lowerCamelCase_ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self , UpperCAmelCase ): if token in self.cache: return self.cache[token] __lowerCamelCase = re.sub("""([.,!?()])""" , r""" \1""" , lowerCamelCase__ ) __lowerCamelCase = re.sub("""(')""" , r""" \1 """ , lowerCamelCase__ ) __lowerCamelCase = re.sub(r"""\s{2,}""" , """ """ , lowerCamelCase__ ) if "\n" in token: __lowerCamelCase = token.replace("""\n""" , """ __newln__""" ) __lowerCamelCase = token.split(""" """ ) __lowerCamelCase = [] for token in tokens: if not len(lowerCamelCase__ ): continue __lowerCamelCase = token.lower() __lowerCamelCase = tuple(lowerCamelCase__ ) __lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) __lowerCamelCase = get_pairs(lowerCamelCase__ ) if not pairs: words.append(lowerCamelCase__ ) continue while True: __lowerCamelCase = min(lowerCamelCase__ , key=lambda UpperCAmelCase : self.bpe_ranks.get(lowerCamelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(lowerCamelCase__ ): try: __lowerCamelCase = word.index(lowerCamelCase__ , lowerCamelCase__ ) new_word.extend(word[i:j] ) __lowerCamelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(lowerCamelCase__ ) __lowerCamelCase = new_word if len(lowerCamelCase__ ) == 1: break else: __lowerCamelCase = get_pairs(lowerCamelCase__ ) __lowerCamelCase = """@@ """.join(lowerCamelCase__ ) __lowerCamelCase = word[:-4] __lowerCamelCase = word words.append(lowerCamelCase__ ) return " ".join(lowerCamelCase__ ) def lowerCamelCase_ ( self , UpperCAmelCase ): __lowerCamelCase = [] __lowerCamelCase = re.findall(r"""\S+\n?""" , lowerCamelCase__ ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase__ ).split(""" """ ) ) ) return split_tokens def lowerCamelCase_ ( self , UpperCAmelCase ): __lowerCamelCase = token.lower() return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self , UpperCAmelCase ): return self.decoder.get(lowerCamelCase__ , self.unk_token ) def lowerCamelCase_ ( self , UpperCAmelCase ): __lowerCamelCase = """ """.join(lowerCamelCase__ ).replace("""@@ """ , """""" ).strip() return out_string def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = None ): if not os.path.isdir(lowerCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) + """\n""" ) __lowerCamelCase = 0 with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) __lowerCamelCase = token_index writer.write(""" """.join(lowerCamelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file
479
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Union[str, Any] , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :Dict ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
45
0
'''simple docstring''' def _A ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' A__ = len(lowercase__ ) print('The following activities are selected:' ) # The first activity is always selected A__ = 0 print(lowercase__ ,end=',' ) # Consider rest of the activities for j in range(lowercase__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase__ ,end=',' ) A__ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ = [1, 3, 0, 5, 8, 5] lowerCAmelCase_ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
531
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCamelCase = get_tests_dir("fixtures") UpperCamelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") UpperCamelCase = get_tests_dir("fixtures/dummy-config.json") class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[int] = 0 def __a ( self :str ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ :List[str] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase__ :Tuple = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase__ :Union[str, Any] = WavaVecaFeatureExtractor(**lowerCamelCase__ ) # save in new folder model_config.save_pretrained(lowerCamelCase__ ) config.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) # make sure private variable is not incorrectly saved UpperCamelCase__ :Tuple = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): with self.assertRaisesRegex( lowerCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def __a ( self :List[Any] ): with self.assertRaisesRegex( lowerCamelCase__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , revision="""aaaaaa""" ) def __a ( self :int ): with self.assertRaisesRegex( lowerCamelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __a ( self :Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Any = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def __a ( self :Dict ): try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase__ :Any = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __a ( self :Optional[int] ): class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Optional[int] = True try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # If remote code is not set, the default is to use local UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
45
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase :List[str] = logging.get_logger(__name__) lowerCAmelCase :Dict = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Optional[Any] = """vit_msn""" def __init__( self : Union[str, Any] , _A : Optional[int]=768 , _A : List[str]=12 , _A : Optional[Any]=12 , _A : Tuple=3072 , _A : Optional[Any]="gelu" , _A : Any=0.0 , _A : List[str]=0.0 , _A : str=0.02 , _A : str=1E-06 , _A : Tuple=224 , _A : Any=16 , _A : int=3 , _A : List[str]=True , **_A : Union[str, Any] , ) -> Union[str, Any]: super().__init__(**lowerCamelCase__ ) __magic_name__ : str = hidden_size __magic_name__ : Optional[int] = num_hidden_layers __magic_name__ : List[str] = num_attention_heads __magic_name__ : str = intermediate_size __magic_name__ : Optional[int] = hidden_act __magic_name__ : Any = hidden_dropout_prob __magic_name__ : str = attention_probs_dropout_prob __magic_name__ : Optional[Any] = initializer_range __magic_name__ : List[Any] = layer_norm_eps __magic_name__ : Any = image_size __magic_name__ : Tuple = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : Tuple = qkv_bias
561
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :DDPMScheduler , lowerCamelCase__ :List[Any] , ): super().__init__() UpperCamelCase__ :Tuple = value_function UpperCamelCase__ :Optional[int] = unet UpperCamelCase__ :List[str] = scheduler UpperCamelCase__ :Dict = env UpperCamelCase__ :Dict = env.get_dataset() UpperCamelCase__ :Union[str, Any] = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].mean() except: # noqa: E722 pass UpperCamelCase__ :Any = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].std() except: # noqa: E722 pass UpperCamelCase__ :List[Any] = env.observation_space.shape[0] UpperCamelCase__ :List[str] = env.action_space.shape[0] def __a ( self :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str ): return (x_in - self.means[key]) / self.stds[key] def __a ( self :int , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): return x_in * self.stds[key] + self.means[key] def __a ( self :Any , lowerCamelCase__ :int ): if type(lowerCamelCase__ ) is dict: return {k: self.to_torch(lowerCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase__ , device=self.unet.device ) def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): for key, val in cond.items(): UpperCamelCase__ :str = val.clone() return x_in def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] ): UpperCamelCase__ :Any = x.shape[0] UpperCamelCase__ :List[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCamelCase__ :Optional[Any] = torch.full((batch_size,) , lowerCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCamelCase__ :Dict = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample UpperCamelCase__ :List[Any] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCamelCase__ :Union[str, Any] = self.scheduler._get_variance(lowerCamelCase__ ) UpperCamelCase__ :Any = torch.exp(0.5 * posterior_variance ) UpperCamelCase__ :Dict = model_std * grad UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Dict = x.detach() UpperCamelCase__ :int = x + scale * grad UpperCamelCase__ :int = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[str] = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCamelCase__ :List[str] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , predict_epsilon=lowerCamelCase__ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCamelCase__ :Optional[Any] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :Optional[int] = self.to_torch(lowerCamelCase__ ) return x, y def __call__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :str=64 , lowerCamelCase__ :Tuple=32 , lowerCamelCase__ :Dict=2 , lowerCamelCase__ :str=0.1 ): # normalize the observations and create batch dimension UpperCamelCase__ :List[str] = self.normalize(lowerCamelCase__ , """observations""" ) UpperCamelCase__ :List[str] = obs[None].repeat(lowerCamelCase__ , axis=0 ) UpperCamelCase__ :int = {0: self.to_torch(lowerCamelCase__ )} UpperCamelCase__ :Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCamelCase__ :Any = randn_tensor(lowerCamelCase__ , device=self.unet.device ) UpperCamelCase__ :Optional[int] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[Any] = self.to_torch(lowerCamelCase__ ) # run the diffusion process UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.run_diffusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # sort output trajectories by value UpperCamelCase__ :List[Any] = y.argsort(0 , descending=lowerCamelCase__ ).squeeze() UpperCamelCase__ :Dict = x[sorted_idx] UpperCamelCase__ :Tuple = sorted_values[:, :, : self.action_dim] UpperCamelCase__ :Optional[Any] = actions.detach().cpu().numpy() UpperCamelCase__ :Optional[int] = self.de_normalize(lowerCamelCase__ , key="""actions""" ) # select the action with the highest value if y is not None: UpperCamelCase__ :List[str] = 0 else: # if we didn't run value guiding, select a random action UpperCamelCase__ :Dict = np.random.randint(0 , lowerCamelCase__ ) UpperCamelCase__ :Tuple = denorm_actions[selected_index, 0] return denorm_actions
45
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCamelCase = logging.get_logger(__name__) class _snake_case (__SCREAMING_SNAKE_CASE): def __init__( self ,*_snake_case ,**_snake_case ): warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." ,lowerCamelCase__ ,) super().__init__(*lowerCamelCase__ ,**lowerCamelCase__ )
71
def A ( lowercase__ : int ) -> bool: if num < 0: return False UpperCamelCase__ :int = num UpperCamelCase__ :int = 0 while num > 0: UpperCamelCase__ :Optional[int] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
45
0
from PIL import Image def lowerCAmelCase_ (lowerCAmelCase__: Image , lowerCAmelCase__: float ): """simple docstring""" def brightness(lowerCAmelCase__: int ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(lowercase__ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 a : int = change_brightness(img, 100) brigt_img.save('image_data/lena_brightness.png', format='png')
556
from __future__ import annotations def A ( lowercase__ : list[int] ) -> bool: return len(set(lowercase__ ) ) == len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __A : str = None __A : Dict = logging.get_logger(__name__) __A : Optional[Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __A : Tuple = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } __A : List[Any] = { 'moussaKam/mbarthez': 1_0_2_4, 'moussaKam/barthez': 1_0_2_4, 'moussaKam/barthez-orangesum-title': 1_0_2_4, } __A : List[Any] = '▁' class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] lowerCamelCase__ = BarthezTokenizer def __init__( self : Union[str, Any] , __lowerCamelCase : str=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]="<s>" , __lowerCamelCase : Optional[int]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Optional[int]="<s>" , __lowerCamelCase : List[Any]="<unk>" , __lowerCamelCase : Union[str, Any]="<pad>" , __lowerCamelCase : int="<mask>" , **__lowerCamelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , **lowerCamelCase__ , ) SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = False if not self.vocab_file else True def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCamelCase__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
16
from __future__ import annotations class lowerCAmelCase_ : """simple docstring""" def __init__( self :List[Any] , lowerCamelCase__ :int = 0 ): UpperCamelCase__ :List[str] = key def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :List[str] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :int , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :int = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase__ ) ^ key ) for ch in content] def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Dict = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :List[str] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Any , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCamelCase__ :Optional[int] = """""" for ch in content: ans += chr(ord(lowerCamelCase__ ) ^ key ) return ans def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :int = 0 ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) try: with open(lowerCamelCase__ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCamelCase__ , lowerCamelCase__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
45
0
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowercase_ = logging.getLogger(__name__) lowercase_ = 'pytorch_model.bin' @dataclasses.dataclass class __lowerCAmelCase : _a = dataclasses.field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models."""} ) _a = dataclasses.field( default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co."""} , ) @dataclasses.dataclass class __lowerCAmelCase : _a = dataclasses.field(metadata={"""help""": """A csv or a json file containing the training data."""} ) _a = dataclasses.field(metadata={"""help""": """A csv or a json file containing the data to predict on."""} ) _a = dataclasses.field( default=SCREAMING_SNAKE_CASE , metadata={"""help""": """A csv or a json file containing the validation data."""} ) _a = dataclasses.field( default=SCREAMING_SNAKE_CASE , metadata={"""help""": """The name of the task to train on."""} , ) _a = dataclasses.field( default=SCREAMING_SNAKE_CASE , metadata={"""help""": """The list of labels for the task."""} ) @dataclasses.dataclass class __lowerCAmelCase : _a = dataclasses.field( metadata={"""help""": """The output directory where the model predictions and checkpoints will be written."""} ) _a = dataclasses.field( default="""accuracy""" , metadata={"""help""": """The evaluation metric used for the task."""} ) _a = dataclasses.field( default="""no""" , metadata={ """help""": """The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]""" } , ) _a = dataclasses.field( default=10 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) _a = dataclasses.field( default=0.0 , metadata={ """help""": """How much the specified evaluation metric must improve to satisfy early stopping conditions.""" } , ) _a = dataclasses.field( default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the confidence score."""} , ) _a = dataclasses.field( default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the validation performance."""} , ) _a = dataclasses.field( default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to fine-tune on labeled data after pseudo training."""} , ) _a = dataclasses.field( default=0.0 , metadata={"""help""": """Confidence threshold for pseudo-labeled data filtering."""} , ) _a = dataclasses.field( default=100 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) _a = dataclasses.field( default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Random seed for initialization."""} , ) def a ( A__ : List[Any] , A__ : Tuple , A__ : int , A__ : Optional[int] , A__ : Dict , A__ : Optional[Any] ) -> List[str]: """simple docstring""" _lowercase =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _lowercase =dataset.filter(lambda A__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _lowercase =int(eval_result * len(lowercase__ ) ) print(lowercase__ ) _lowercase =dataset.sort('probability' , reverse=lowercase__ ) _lowercase =dataset.select(range(lowercase__ ) ) _lowercase =dataset.remove_columns(['label', 'probability'] ) _lowercase =dataset.rename_column('prediction' , 'label' ) _lowercase =dataset.map(lambda A__ : {"label": idalabel[example["label"]]} ) _lowercase =dataset.shuffle(seed=args.seed ) _lowercase =os.path.join(lowercase__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(lowercase__ , index=lowercase__ ) else: dataset.to_json(lowercase__ ) def a ( A__ : Tuple , A__ : Optional[Any] , A__ : Optional[Any] , A__ : Dict , **A__ : Dict ) -> Tuple: """simple docstring""" _lowercase =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _lowercase =STModelArguments(model_name_or_path=lowercase__ ) _lowercase =STDataArguments(train_file=lowercase__ , infer_file=lowercase__ ) _lowercase =STTrainingArguments(output_dir=lowercase__ ) _lowercase =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowercase__ ).items(): setattr(lowercase__ , lowercase__ , lowercase__ ) for key, value in kwargs.items(): if hasattr(lowercase__ , lowercase__ ): setattr(lowercase__ , lowercase__ , lowercase__ ) # Sanity checks _lowercase ={} _lowercase =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _lowercase =args.train_file _lowercase =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _lowercase =args.eval_file for key in data_files: _lowercase =data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: _lowercase =extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) _lowercase =F'''{args.output_dir}/self-train_iter-{{}}'''.format _lowercase =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=lowercase__ ) os.makedirs(lowercase__ , exist_ok=lowercase__ ) accelerator.wait_for_everyone() _lowercase =None _lowercase =None _lowercase =0 _lowercase =False # Show the progress bar _lowercase =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _lowercase =data_dir_format(lowercase__ ) assert os.path.exists(lowercase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _lowercase =os.path.join(lowercase__ , 'stage-1' ) _lowercase ={ """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowercase__ , lowercase__ ): arguments_dict.update({key: value} ) _lowercase =os.path.join(lowercase__ , 'best-checkpoint' , lowercase__ ) if os.path.exists(lowercase__ ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , lowercase__ , lowercase__ , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , lowercase__ ) finetune(**lowercase__ ) accelerator.wait_for_everyone() assert os.path.exists(lowercase__ ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , lowercase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _lowercase =os.path.join(lowercase__ , 'best-checkpoint' ) _lowercase =os.path.join(lowercase__ , 'stage-2' ) # Update arguments_dict _lowercase =model_path _lowercase =data_files["""train"""] _lowercase =current_output_dir _lowercase =os.path.join(lowercase__ , 'best-checkpoint' , lowercase__ ) if os.path.exists(lowercase__ ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , lowercase__ , lowercase__ , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , lowercase__ ) finetune(**lowercase__ ) accelerator.wait_for_everyone() assert os.path.exists(lowercase__ ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , lowercase__ ) _lowercase =iteration _lowercase =data_dir_format(iteration + 1 ) _lowercase =AutoConfig.from_pretrained(os.path.join(lowercase__ , 'best-checkpoint' ) ) _lowercase =config.idalabel _lowercase =os.path.join(lowercase__ , 'eval_results_best-checkpoint.json' ) _lowercase =os.path.join(lowercase__ , 'test_results_best-checkpoint.json' ) assert os.path.exists(lowercase__ ) with open(lowercase__ , 'r' ) as f: _lowercase =float(json.load(lowercase__ )[args.eval_metric] ) _lowercase =os.path.join(lowercase__ , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(lowercase__ ) # Loading the dataset from local csv or json files. _lowercase =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )["""data"""] _lowercase =load_dataset('csv' , data_files={'data': infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(lowercase__ , exist_ok=lowercase__ ) shutil.copy(lowercase__ , os.path.join(lowercase__ , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(lowercase__ ): shutil.copy(lowercase__ , os.path.join(lowercase__ , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) accelerator.wait_for_everyone() _lowercase =os.path.join(lowercase__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: _lowercase =eval_result if best_iteration is None: _lowercase =new_iteration _lowercase =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _lowercase =new_iteration _lowercase =new_eval_result _lowercase =0 else: if new_eval_result == best_eval_result: _lowercase =new_iteration _lowercase =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _lowercase =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , lowercase__ ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , lowercase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(lowercase__ , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , lowercase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(lowercase__ , 'eval_results_best-iteration.json' ) , )
291
import random def A ( lowercase__ : Dict , lowercase__ : str , lowercase__ : Optional[Any] ) -> int: UpperCamelCase__ :List[Any] = a[left_index] UpperCamelCase__ :Dict = left_index + 1 for j in range(left_index + 1 , lowercase__ ): if a[j] < pivot: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = a[i], a[j] i += 1 UpperCamelCase__ , UpperCamelCase__ :Tuple = a[i - 1], a[left_index] return i - 1 def A ( lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Any ) -> Optional[int]: if left < right: UpperCamelCase__ :List[Any] = random.randint(lowercase__ , right - 1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCamelCase__ :int = partition(lowercase__ , lowercase__ , lowercase__ ) quick_sort_random( lowercase__ , lowercase__ , lowercase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowercase__ , pivot_index + 1 , lowercase__ ) # recursive quicksort to the right of the pivot point def A ( ) -> List[Any]: UpperCamelCase__ :str = input("""Enter numbers separated by a comma:\n""" ).strip() UpperCamelCase__ :int = [int(lowercase__ ) for item in user_input.split(""",""" )] quick_sort_random(lowercase__ , 0 , len(lowercase__ ) ) print(lowercase__ ) if __name__ == "__main__": main()
45
0
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __lowerCamelCase = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __lowerCamelCase = logging.get_logger(__name__) class _snake_case ( A__ ): '''simple docstring''' UpperCamelCase__ ="""maskformer""" UpperCamelCase__ ={"""hidden_size""": """mask_feature_size"""} UpperCamelCase__ =["""resnet""", """swin"""] UpperCamelCase__ =["""detr"""] def __init__( self : Any , snake_case : int = 256 , snake_case : int = 256 , snake_case : float = 0.1 , snake_case : bool = False , snake_case : Optional[Dict] = None , snake_case : Optional[Dict] = None , snake_case : float = 0.02 , snake_case : float = 1.0 , snake_case : float = 1.0 , snake_case : float = 1.0 , snake_case : float = 20.0 , snake_case : Optional[bool] = None , **snake_case : str , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCAmelCase_ :Optional[Any] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase_ :List[Any] = backbone_config.pop('''model_type''' ) UpperCAmelCase_ :Any = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ :Optional[int] = config_class.from_dict(lowerCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' f'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCAmelCase_ :Tuple = DetrConfig() else: # verify that the decoder is supported UpperCAmelCase_ :Optional[Any] = ( decoder_config.pop('''model_type''' ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'Transformer Decoder {decoder_type} not supported, please use one of' f' {",".join(self.decoders_supported )}' ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase_ :Any = CONFIG_MAPPING[decoder_type] UpperCAmelCase_ :Optional[Any] = config_class.from_dict(lowerCamelCase__ ) UpperCAmelCase_ :Tuple = backbone_config UpperCAmelCase_ :Optional[int] = decoder_config # main feature dimension for the model UpperCAmelCase_ :Union[str, Any] = fpn_feature_size UpperCAmelCase_ :int = mask_feature_size # initializer UpperCAmelCase_ :Union[str, Any] = init_std UpperCAmelCase_ :Tuple = init_xavier_std # Hungarian matcher && loss UpperCAmelCase_ :Dict = cross_entropy_weight UpperCAmelCase_ :int = dice_weight UpperCAmelCase_ :Optional[Any] = mask_weight UpperCAmelCase_ :int = use_auxiliary_loss UpperCAmelCase_ :List[str] = no_object_weight UpperCAmelCase_ :Any = output_auxiliary_logits UpperCAmelCase_ :Union[str, Any] = self.decoder_config.encoder_attention_heads UpperCAmelCase_ :Any = self.decoder_config.num_hidden_layers super().__init__(**lowerCamelCase__ ) @classmethod def snake_case_ ( cls : Tuple , snake_case : PretrainedConfig , snake_case : PretrainedConfig , **snake_case : List[Any] ): return cls( backbone_config=lowerCamelCase__ , decoder_config=lowerCamelCase__ , **lowerCamelCase__ , ) def snake_case_ ( self : List[Any] ): UpperCAmelCase_ :List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ :Dict = self.backbone_config.to_dict() UpperCAmelCase_ :str = self.decoder_config.to_dict() UpperCAmelCase_ :Optional[int] = self.__class__.model_type return output
608
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" _snake_case : Tuple = """dinat""" _snake_case : List[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Optional[int] , lowerCamelCase__ :int=4 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :List[Any]=64 , lowerCamelCase__ :Any=[3, 4, 6, 5] , lowerCamelCase__ :Tuple=[2, 4, 8, 16] , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :Tuple=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowerCamelCase__ :Tuple=3.0 , lowerCamelCase__ :str=True , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :int=0.1 , lowerCamelCase__ :Optional[Any]="gelu" , lowerCamelCase__ :Optional[Any]=0.02 , lowerCamelCase__ :Union[str, Any]=1e-5 , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :List[str]=None , lowerCamelCase__ :str=None , **lowerCamelCase__ :List[Any] , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :Any = patch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :int = embed_dim UpperCamelCase__ :Optional[Any] = depths UpperCamelCase__ :Any = len(lowerCamelCase__ ) UpperCamelCase__ :str = num_heads UpperCamelCase__ :Optional[int] = kernel_size UpperCamelCase__ :Optional[int] = dilations UpperCamelCase__ :Tuple = mlp_ratio UpperCamelCase__ :Dict = qkv_bias UpperCamelCase__ :List[str] = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :Union[str, Any] = drop_path_rate UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :List[Any] = layer_norm_eps UpperCamelCase__ :Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ :Tuple = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) ) UpperCamelCase__ :Tuple = layer_scale_init_value UpperCamelCase__ :Optional[int] = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] UpperCamelCase__ , UpperCamelCase__ :List[str] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
45
0
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) __lowerCamelCase : List[Any] = """bert-base-cased""" __lowerCamelCase : Dict = """fp16""" __lowerCamelCase : List[Any] = """bf16""" __lowerCamelCase : List[Any] = [FPaa, BFaa] @require_fsdp @require_cuda class _lowercase ( _A ): def lowercase__ ( self ): super().setUp() snake_case__ : str =dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def lowercase__ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(lowerCamelCase__ ): snake_case__ : Optional[int] =self.dist_env.copy() snake_case__ : List[Any] =F"{i + 1}" snake_case__ : List[Any] =strategy with mockenv_context(**lowerCamelCase__ ): snake_case__ : Tuple =FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def lowercase__ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(lowerCamelCase__ ): snake_case__ : Optional[int] =self.dist_env.copy() snake_case__ : Optional[int] =prefetch_policy with mockenv_context(**lowerCamelCase__ ): snake_case__ : Dict =FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def lowercase__ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(lowerCamelCase__ ): snake_case__ : Optional[int] =self.dist_env.copy() snake_case__ : Tuple =state_dict_type with mockenv_context(**lowerCamelCase__ ): snake_case__ : List[str] =FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def lowercase__ ( self ): snake_case__ : List[Any] =AutoModel.from_pretrained(lowerCamelCase__ ) for policy in FSDP_AUTO_WRAP_POLICY: snake_case__ : Optional[int] =self.dist_env.copy() snake_case__ : int =policy if policy == "TRANSFORMER_BASED_WRAP": snake_case__ : Optional[Any] ="""BertLayer""" elif policy == "SIZE_BASED_WRAP": snake_case__ : Union[str, Any] ="""2000""" with mockenv_context(**lowerCamelCase__ ): snake_case__ : int =FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowerCamelCase__ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) snake_case__ : Optional[int] =self.dist_env.copy() snake_case__ : str ="""TRANSFORMER_BASED_WRAP""" snake_case__ : Union[str, Any] ="""T5Layer""" with mockenv_context(**lowerCamelCase__ ): snake_case__ : Any =FullyShardedDataParallelPlugin() with self.assertRaises(lowerCamelCase__ ) as cm: fsdp_plugin.set_auto_wrap_policy(lowerCamelCase__ ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) snake_case__ : Dict =self.dist_env.copy() snake_case__ : int ="""SIZE_BASED_WRAP""" snake_case__ : Union[str, Any] ="""0""" with mockenv_context(**lowerCamelCase__ ): snake_case__ : Optional[Any] =FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowerCamelCase__ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def lowercase__ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: snake_case__ : Dict =self.dist_env.copy() snake_case__ : Dict =mp_dtype with mockenv_context(**lowerCamelCase__ ): snake_case__ : Optional[Any] =Accelerator() if mp_dtype == "fp16": snake_case__ : Tuple =torch.floataa elif mp_dtype == "bf16": snake_case__ : Tuple =torch.bfloataa snake_case__ : int =MixedPrecision(param_dtype=lowerCamelCase__ , reduce_dtype=lowerCamelCase__ , buffer_dtype=lowerCamelCase__ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , lowerCamelCase__ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , lowerCamelCase__ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(lowerCamelCase__ ) def lowercase__ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: snake_case__ : List[str] =self.dist_env.copy() snake_case__ : Dict =str(lowerCamelCase__ ).lower() with mockenv_context(**lowerCamelCase__ ): snake_case__ : List[str] =FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=lowerCamelCase__ ) ) @require_fsdp @require_multi_gpu @slow class _lowercase ( _A ): def lowercase__ ( self ): super().setUp() snake_case__ : str =0.82 snake_case__ : int =[ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] snake_case__ : int ={ """multi_gpu_fp16""": 3_2_0_0, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2_0_0_0, """fsdp_full_shard_transformer_based_wrap_fp16""": 1_9_0_0, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } snake_case__ : Optional[Any] =1_6_0 snake_case__ : List[str] =1_6_0 snake_case__ : Union[str, Any] =inspect.getfile(accelerate.test_utils ) snake_case__ : Dict =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def lowercase__ ( self ): snake_case__ : int =os.path.join(self.test_scripts_folder , """test_performance.py""" ) snake_case__ : List[str] =["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: snake_case__ : Optional[Any] =cmd.copy() for i, strategy in enumerate(lowerCamelCase__ ): if strategy.lower() in config: cmd_config.append(F"--fsdp_sharding_strategy={i+1}" ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"--fsdp_auto_wrap_policy={policy}" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, F"--output_dir={self.tmpdir}", F"--performance_lower_bound={self.performance_lower_bound}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) def lowercase__ ( self ): snake_case__ : List[Any] =os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) snake_case__ : Any =[ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(lowerCamelCase__ ): snake_case__ : Optional[Any] =cmd.copy() cmd_config.append(F"--fsdp_sharding_strategy={i+1}" ) if strategy != "FULL_SHARD": continue snake_case__ : Optional[int] =len(lowerCamelCase__ ) for state_dict_type in FSDP_STATE_DICT_TYPE: snake_case__ : Tuple =cmd_config[:state_dict_config_index] cmd_config.append(F"--fsdp_state_dict_type={state_dict_type}" ) cmd_config.extend( [ self.test_file_path, F"--output_dir={self.tmpdir}", """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) snake_case__ : List[Any] =cmd_config[:-1] snake_case__ : Tuple =os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ F"--resume_from_checkpoint={resume_from_checkpoint}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) def lowercase__ ( self ): snake_case__ : List[str] =os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) snake_case__ : Optional[int] =[ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): snake_case__ : Optional[int] =cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(lowerCamelCase__ ): if strategy.lower() in spec: cmd_config.append(F"--fsdp_sharding_strategy={i+1}" ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"--fsdp_auto_wrap_policy={policy}" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, F"--output_dir={self.tmpdir}", F"--peak_memory_upper_bound={peak_mem_upper_bound}", F"--n_train={self.n_train}", F"--n_val={self.n_val}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() )
385
def A ( lowercase__ : int , lowercase__ : int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
0
class lowerCamelCase : """simple docstring""" def __init__( self : List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = """""" SCREAMING_SNAKE_CASE__ : Optional[Any] = """""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] def A_ ( self : List[str], _UpperCAmelCase : int, _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: SCREAMING_SNAKE_CASE__ : str = self.__min_dist_top_down_dp(m - 1, n - 1 ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.__min_dist_top_down_dp(lowerCamelCase__, n - 1 ) SCREAMING_SNAKE_CASE__ : List[Any] = self.__min_dist_top_down_dp(m - 1, lowerCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple = self.__min_dist_top_down_dp(m - 1, n - 1 ) SCREAMING_SNAKE_CASE__ : List[Any] = 1 + min(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) return self.dp[m][n] def A_ ( self : Tuple, _UpperCAmelCase : str, _UpperCAmelCase : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = worda SCREAMING_SNAKE_CASE__ : Union[str, Any] = worda SCREAMING_SNAKE_CASE__ : str = [[-1 for _ in range(len(lowerCamelCase__ ) )] for _ in range(len(lowerCamelCase__ ) )] return self.__min_dist_top_down_dp(len(lowerCamelCase__ ) - 1, len(lowerCamelCase__ ) - 1 ) def A_ ( self : List[Any], _UpperCAmelCase : str, _UpperCAmelCase : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = worda SCREAMING_SNAKE_CASE__ : str = worda SCREAMING_SNAKE_CASE__ : Dict = len(lowerCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] = len(lowerCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty SCREAMING_SNAKE_CASE__ : str = j elif j == 0: # second string is empty SCREAMING_SNAKE_CASE__ : List[Any] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal SCREAMING_SNAKE_CASE__ : Tuple = self.dp[i - 1][j - 1] else: SCREAMING_SNAKE_CASE__ : Optional[int] = self.dp[i][j - 1] SCREAMING_SNAKE_CASE__ : str = self.dp[i - 1][j] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.dp[i - 1][j - 1] SCREAMING_SNAKE_CASE__ : List[str] = 1 + min(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) return self.dp[m][n] if __name__ == "__main__": _lowerCamelCase : List[Any] = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() _lowerCamelCase : Optional[int] = input('''Enter the first string: ''').strip() _lowerCamelCase : Any = input('''Enter the second string: ''').strip() print() print(f"The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}") print(f"The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}") print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
663
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any]=7 , lowerCamelCase__ :str=3 , lowerCamelCase__ :Optional[Any]=18 , lowerCamelCase__ :List[str]=30 , lowerCamelCase__ :str=4_00 , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :Union[str, Any]=32 , lowerCamelCase__ :int=True , ): UpperCamelCase__ :List[Any] = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :List[str] = image_size UpperCamelCase__ :Dict = min_resolution UpperCamelCase__ :List[str] = max_resolution UpperCamelCase__ :str = do_resize UpperCamelCase__ :int = size_divisor UpperCamelCase__ :Optional[int] = do_rescale def __a ( self :str ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = GLPNImageProcessor if is_vision_available() else None def __a ( self :Dict ): UpperCamelCase__ :Dict = GLPNImageProcessingTester(self ) @property def __a ( self :List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size_divisor""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """resample""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_rescale""" ) ) def __a ( self :Optional[int] ): pass def __a ( self :Tuple ): # Initialize image_processing UpperCamelCase__ :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :str ): # Initialize image_processing UpperCamelCase__ :str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :Any ): # Initialize image_processing UpperCamelCase__ :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
45
0
"""simple docstring""" import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap UpperCAmelCase_ : List[str] = """Usage of script: script_name <size_of_canvas:int>""" UpperCAmelCase_ : List[Any] = [0] * 100 + [1] * 10 random.shuffle(choice) def _A (__a ) -> list[list[bool]]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[False for i in range(lowercase__ )] for j in range(lowercase__ )] return canvas def _A (__a ) -> None: """simple docstring""" for i, row in enumerate(lowercase__ ): for j, _ in enumerate(lowercase__ ): SCREAMING_SNAKE_CASE_ : Tuple = bool(random.getrandbits(1 ) ) def _A (__a ) -> list[list[bool]]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.array(lowercase__ ) SCREAMING_SNAKE_CASE_ : Dict = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(lowercase__ ): for c, pt in enumerate(lowercase__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = __judge_point( lowercase__ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) SCREAMING_SNAKE_CASE_ : Dict = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. SCREAMING_SNAKE_CASE_ : list[list[bool]] = current_canvas.tolist() return return_canvas def _A (__a , __a ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 0 SCREAMING_SNAKE_CASE_ : Any = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. SCREAMING_SNAKE_CASE_ : List[Any] = pt if pt: if alive < 2: SCREAMING_SNAKE_CASE_ : List[str] = False elif alive == 2 or alive == 3: SCREAMING_SNAKE_CASE_ : int = True elif alive > 3: SCREAMING_SNAKE_CASE_ : List[Any] = False else: if alive == 3: SCREAMING_SNAKE_CASE_ : Any = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) UpperCAmelCase_ : Optional[Any] = int(sys.argv[1]) # main working structure of this module. UpperCAmelCase_ : Union[str, Any] = create_canvas(canvas_size) seed(c) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = plt.subplots() fig.show() UpperCAmelCase_ : Union[str, Any] = ListedColormap(["""w""", """k"""]) try: while True: UpperCAmelCase_ : Optional[int] = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
512
import math def A ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> Optional[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowercase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase = "Enter the base and the power separated by a comma: " UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase = res(xa, ya) UpperCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
45
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase_ ( __UpperCamelCase ,unittest.TestCase ): """simple docstring""" A = KandinskyInpaintPipeline A = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] A = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] A = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] A = False @property def lowerCamelCase_ ( self ): return 3_2 @property def lowerCamelCase_ ( self ): return 3_2 @property def lowerCamelCase_ ( self ): return self.time_input_dim @property def lowerCamelCase_ ( self ): return self.time_input_dim * 4 @property def lowerCamelCase_ ( self ): return 1_0_0 @property def lowerCamelCase_ ( self ): __lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowerCamelCase_ ( self ): torch.manual_seed(0 ) __lowerCamelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) __lowerCamelCase = MultilingualCLIP(lowerCamelCase__ ) __lowerCamelCase = text_encoder.eval() return text_encoder @property def lowerCamelCase_ ( self ): torch.manual_seed(0 ) __lowerCamelCase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __lowerCamelCase = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def lowerCamelCase_ ( self ): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase_ ( self ): torch.manual_seed(0 ) __lowerCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase_ ( self ): __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_unet __lowerCamelCase = self.dummy_movq __lowerCamelCase = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="""linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=lowerCamelCase__ , ) __lowerCamelCase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase=0 ): __lowerCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __lowerCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCamelCase__ ) # create init_image __lowerCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert("""RGB""" ).resize((2_5_6, 2_5_6) ) # create mask __lowerCamelCase = np.ones((6_4, 6_4) , dtype=np.floataa ) __lowerCamelCase = 0 if str(lowerCamelCase__ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) else: __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __lowerCamelCase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def lowerCamelCase_ ( self ): __lowerCamelCase = """cpu""" __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**lowerCamelCase__ ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) __lowerCamelCase = output.images __lowerCamelCase = pipe( **self.get_dummy_inputs(lowerCamelCase__ ) , return_dict=lowerCamelCase__ , )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 6_4, 6_4, 3) __lowerCamelCase = np.array( [0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def lowerCamelCase_ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ): __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __lowerCamelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) __lowerCamelCase = 0 __lowerCamelCase = """a hat""" __lowerCamelCase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) __lowerCamelCase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __lowerCamelCase = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCamelCase = pipe_prior( lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __lowerCamelCase = pipeline( lowerCamelCase__ , image=lowerCamelCase__ , mask_image=lowerCamelCase__ , image_embeds=lowerCamelCase__ , negative_image_embeds=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
479
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :int = 13 UpperCamelCase__ :Optional[int] = 7 UpperCamelCase__ :Dict = True UpperCamelCase__ :Dict = True UpperCamelCase__ :str = True UpperCamelCase__ :List[Any] = True UpperCamelCase__ :Any = True UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Tuple = False UpperCamelCase__ :Optional[int] = 2 UpperCamelCase__ :List[str] = 99 UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Any = 32 UpperCamelCase__ :List[str] = 2 UpperCamelCase__ :int = 4 UpperCamelCase__ :List[str] = 0.1 UpperCamelCase__ :Union[str, Any] = 0.1 UpperCamelCase__ :Union[str, Any] = 5_12 UpperCamelCase__ :List[str] = 16 UpperCamelCase__ :str = 2 UpperCamelCase__ :Optional[int] = 0.02 UpperCamelCase__ :Optional[int] = 3 UpperCamelCase__ :Optional[int] = 4 UpperCamelCase__ :Optional[int] = """last""" UpperCamelCase__ :Tuple = True UpperCamelCase__ :int = None UpperCamelCase__ :Dict = 0 def __a ( self :int ): UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCamelCase__ :Union[str, Any] = None if self.use_input_lengths: UpperCamelCase__ :Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase__ :List[str] = None if self.use_token_type_ids: UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase__ :int = None UpperCamelCase__ :List[str] = None UpperCamelCase__ :List[str] = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :str = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCamelCase__ :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ :List[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , ): UpperCamelCase__ :int = TFFlaubertModel(config=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = [input_ids, input_mask] UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Tuple , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , ): UpperCamelCase__ :List[str] = TFFlaubertWithLMHeadModel(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Dict , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :Tuple , ): UpperCamelCase__ :int = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase__ ) UpperCamelCase__ :int = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , ): UpperCamelCase__ :List[Any] = TFFlaubertForSequenceClassification(lowerCamelCase__ ) UpperCamelCase__ :List[str] = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Any , ): UpperCamelCase__ :Any = self.num_labels UpperCamelCase__ :Tuple = TFFlaubertForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase__ :List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self :Tuple , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = self.num_choices UpperCamelCase__ :Dict = TFFlaubertForMultipleChoice(config=lowerCamelCase__ ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :str = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self :Tuple ): UpperCamelCase__ :str = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :str = config_and_inputs UpperCamelCase__ :Optional[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case : Optional[int] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : List[Any] = False _snake_case : Tuple = False def __a ( self :Optional[int] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :int , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self :List[str] ): UpperCamelCase__ :List[str] = TFFlaubertModelTester(self ) UpperCamelCase__ :Tuple = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 ) def __a ( self :int ): self.config_tester.run_common_tests() def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase__ ) def __a ( self :Tuple ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase__ ) @slow def __a ( self :str ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFFlaubertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :str ): UpperCamelCase__ :Tuple = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCamelCase__ :Optional[int] = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ )[0] UpperCamelCase__ :Optional[int] = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. UpperCamelCase__ :str = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
45
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def _A ( UpperCAmelCase ): '''simple docstring''' A__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(lowercase__ ,lowercase__ ) def _A ( UpperCAmelCase ): '''simple docstring''' A__ = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: A__ = s_dict.pop(lowercase__ ) elif "subsample" in key: A__ = s_dict.pop(lowercase__ ) def _A ( UpperCAmelCase ): '''simple docstring''' A__ = emb.weight.shape A__ = nn.Linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) A__ = emb.weight.data return lin_layer def _A ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' A__ = torch.load(lowercase__ ,map_location='cpu' ) A__ = mam_aaa["""args"""] A__ = mam_aaa["""model"""] A__ = state_dict["""decoder.output_projection.weight"""] remove_ignore_keys_(lowercase__ ) rename_keys(lowercase__ ) A__ = state_dict["""decoder.embed_tokens.weight"""].shape[0] A__ = args.share_decoder_input_output_embed A__ = [int(lowercase__ ) for i in args.conv_kernel_sizes.split(',' )] A__ = SpeechaTextConfig( vocab_size=lowercase__ ,max_source_positions=args.max_source_positions ,max_target_positions=args.max_target_positions ,encoder_layers=args.encoder_layers ,decoder_layers=args.decoder_layers ,encoder_attention_heads=args.encoder_attention_heads ,decoder_attention_heads=args.decoder_attention_heads ,encoder_ffn_dim=args.encoder_ffn_embed_dim ,decoder_ffn_dim=args.decoder_ffn_embed_dim ,d_model=args.encoder_embed_dim ,dropout=args.dropout ,attention_dropout=args.attention_dropout ,activation_dropout=args.activation_dropout ,activation_function='relu' ,num_conv_layers=len(lowercase__ ) ,conv_channels=args.conv_channels ,conv_kernel_sizes=lowercase__ ,input_feat_per_channel=args.input_feat_per_channel ,input_channels=args.input_channels ,tie_word_embeddings=lowercase__ ,num_beams=5 ,max_length=200 ,use_cache=lowercase__ ,decoder_start_token_id=2 ,early_stopping=lowercase__ ,) A__ = SpeechaTextForConditionalGeneration(lowercase__ ) A__ = model.model.load_state_dict(lowercase__ ,strict=lowercase__ ) if len(lowercase__ ) > 0 and not set(lowercase__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F""" but all the following weights are missing {missing}""" ) if tie_embeds: A__ = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A__ = lm_head_weights model.save_pretrained(lowercase__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--fairseq_path''', type=str, help='''Path to the fairseq model (.pt) file.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase_ = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
531
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCamelCase = False class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :List[Any] ): UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :Any = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :str = generator.manual_seed(0 ) UpperCamelCase__ :str = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __a ( self :Dict ): UpperCamelCase__ :List[Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = """cyberpunk 2077""" UpperCamelCase__ :str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :str = torch.manual_seed(0 ) UpperCamelCase__ :Dict = pipe.dual_guided( prompt=lowerCamelCase__ , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCamelCase__ :Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Any = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :List[Any] = """A painting of a squirrel eating a burger """ UpperCamelCase__ :List[str] = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.text_to_image( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images UpperCamelCase__ :str = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :Optional[int] = pipe.image_variation(lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""numpy""" ).images UpperCamelCase__ :int = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :List[Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
45
0
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase :Any = logging.get_logger(__name__) lowerCAmelCase :Tuple = { '''nielsr/canine-s''': 2_0_4_8, } # Unicode defines 1,114,112 total “codepoints” lowerCAmelCase :Any = 1_1_1_4_1_1_2 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py lowerCAmelCase :Dict = 0 lowerCAmelCase :str = 0XE_000 lowerCAmelCase :str = 0XE_001 lowerCAmelCase :Any = 0XE_002 lowerCAmelCase :str = 0XE_003 lowerCAmelCase :List[Any] = 0XE_004 # Maps special codepoints to human-readable names. lowerCAmelCase :int = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: '''[CLS]''', SEP: '''[SEP]''', BOS: '''[BOS]''', MASK: '''[MASK]''', PAD: '''[PAD]''', RESERVED: '''[RESERVED]''', } # Maps special codepoint human-readable names to their codepoint values. lowerCAmelCase :Optional[int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , _A : Optional[int]=chr(lowerCamelCase__ ) , _A : Optional[Any]=chr(lowerCamelCase__ ) , _A : Optional[Any]=chr(lowerCamelCase__ ) , _A : Dict=chr(lowerCamelCase__ ) , _A : List[Any]=chr(lowerCamelCase__ ) , _A : Dict=chr(lowerCamelCase__ ) , _A : Union[str, Any]=False , _A : int=2048 , **_A : List[str] , ) -> Any: __magic_name__ : int = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else bos_token __magic_name__ : List[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else eos_token __magic_name__ : Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else sep_token __magic_name__ : Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cls_token __magic_name__ : Optional[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : str = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , model_max_length=lowerCamelCase__ , **lowerCamelCase__ , ) # Creates a mapping for looking up the IDs of special symbols. __magic_name__ : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): __magic_name__ : str = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. __magic_name__ : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } __magic_name__ : Any = UNICODE_VOCAB_SIZE __magic_name__ : List[str] = len(self._special_codepoints ) @property def __lowerCAmelCase ( self : Any ) -> Tuple: return self._unicode_vocab_size def __lowerCAmelCase ( self : Optional[int] , _A : str ) -> Dict: return list(lowerCamelCase__ ) def __lowerCAmelCase ( self : List[str] , _A : str ) -> Optional[Any]: try: return ord(lowerCamelCase__ ) except TypeError: raise ValueError(F'invalid token: \'{token}\'' ) def __lowerCAmelCase ( self : Any , _A : int ) -> Union[str, Any]: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(lowerCamelCase__ ) except TypeError: raise ValueError(F'invalid id: {index}' ) def __lowerCAmelCase ( self : Tuple , _A : Optional[int] ) -> Optional[Any]: return "".join(lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ) -> Optional[Any]: __magic_name__ : Union[str, Any] = [self.sep_token_id] __magic_name__ : Any = [self.cls_token_id] __magic_name__ : Dict = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def __lowerCAmelCase ( self : Tuple , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) __magic_name__ : Tuple = [1] + ([0] * len(lowerCamelCase__ )) + [1] if token_ids_a is not None: result += ([0] * len(lowerCamelCase__ )) + [1] return result def __lowerCAmelCase ( self : int , _A : List[int] , _A : Optional[List[int]] = None ) -> Any: __magic_name__ : List[Any] = [self.sep_token_id] __magic_name__ : Optional[Any] = [self.cls_token_id] __magic_name__ : Tuple = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def __lowerCAmelCase ( self : Tuple , _A : str , _A : Optional[str] = None ) -> str: return ()
561
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self :Union[str, Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str]=2 , lowerCamelCase__ :List[str]=3 , lowerCamelCase__ :List[str]=4 , lowerCamelCase__ :str=2 , lowerCamelCase__ :Optional[int]=7 , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Any=True , lowerCamelCase__ :Dict=99 , lowerCamelCase__ :Optional[Any]=36 , lowerCamelCase__ :str=2 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :Optional[Any]=37 , lowerCamelCase__ :Optional[int]="gelu" , lowerCamelCase__ :Any=0.1 , lowerCamelCase__ :List[Any]=0.1 , lowerCamelCase__ :List[Any]=5_12 , lowerCamelCase__ :str=16 , lowerCamelCase__ :Tuple=2 , lowerCamelCase__ :int=0.02 , lowerCamelCase__ :List[Any]=6 , lowerCamelCase__ :List[str]=6 , lowerCamelCase__ :Optional[int]=3 , lowerCamelCase__ :Optional[int]=4 , lowerCamelCase__ :int=None , lowerCamelCase__ :Optional[Any]=10_00 , ): UpperCamelCase__ :Any = parent UpperCamelCase__ :Union[str, Any] = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :Optional[Any] = image_size UpperCamelCase__ :Union[str, Any] = patch_size UpperCamelCase__ :Union[str, Any] = is_training UpperCamelCase__ :str = use_input_mask UpperCamelCase__ :int = use_token_type_ids UpperCamelCase__ :int = use_labels UpperCamelCase__ :List[Any] = vocab_size UpperCamelCase__ :List[str] = hidden_size UpperCamelCase__ :List[Any] = num_hidden_layers UpperCamelCase__ :List[str] = num_attention_heads UpperCamelCase__ :Tuple = intermediate_size UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout_prob UpperCamelCase__ :Tuple = attention_probs_dropout_prob UpperCamelCase__ :Dict = max_position_embeddings UpperCamelCase__ :Tuple = type_vocab_size UpperCamelCase__ :Union[str, Any] = type_sequence_label_size UpperCamelCase__ :int = initializer_range UpperCamelCase__ :List[Any] = coordinate_size UpperCamelCase__ :Tuple = shape_size UpperCamelCase__ :Dict = num_labels UpperCamelCase__ :str = num_choices UpperCamelCase__ :Tuple = scope UpperCamelCase__ :str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase__ :List[str] = text_seq_length UpperCamelCase__ :List[str] = (image_size // patch_size) ** 2 + 1 UpperCamelCase__ :Dict = self.text_seq_length + self.image_seq_length def __a ( self :Tuple ): UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase__ :int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCamelCase__ :str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase__ :List[str] = bbox[i, j, 3] UpperCamelCase__ :Optional[int] = bbox[i, j, 1] UpperCamelCase__ :Optional[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase__ :Tuple = bbox[i, j, 2] UpperCamelCase__ :Optional[Any] = bbox[i, j, 0] UpperCamelCase__ :List[str] = tmp_coordinate UpperCamelCase__ :Dict = tf.constant(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Any = None if self.use_input_mask: UpperCamelCase__ :int = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase__ :Optional[Any] = None if self.use_token_type_ids: UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase__ :List[str] = None UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase__ :Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self :List[Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Dict , lowerCamelCase__ :str , lowerCamelCase__ :int , lowerCamelCase__ :Any ): UpperCamelCase__ :Dict = TFLayoutLMvaModel(config=lowerCamelCase__ ) # text + image UpperCamelCase__ :Tuple = model(lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) UpperCamelCase__ :Tuple = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , training=lowerCamelCase__ , ) UpperCamelCase__ :str = model(lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase__ :Tuple = model({"""pixel_values""": pixel_values} , training=lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Optional[Any] = self.num_labels UpperCamelCase__ :List[Any] = TFLayoutLMvaForSequenceClassification(config=lowerCamelCase__ ) UpperCamelCase__ :List[str] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = self.num_labels UpperCamelCase__ :Dict = TFLayoutLMvaForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self :int , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple ): UpperCamelCase__ :Dict = 2 UpperCamelCase__ :Tuple = TFLayoutLMvaForQuestionAnswering(config=lowerCamelCase__ ) UpperCamelCase__ :int = model( lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , training=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.prepare_config_and_inputs() ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) :Any = config_and_inputs UpperCamelCase__ :List[str] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _snake_case : Dict = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) _snake_case : Optional[int] = False _snake_case : List[str] = False _snake_case : Tuple = False def __a ( self :str , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :int ): return True def __a ( self :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int]=False ): UpperCamelCase__ :List[str] = copy.deepcopy(lowerCamelCase__ ) if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = { k: tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCamelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCamelCase__ :Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase__ ): UpperCamelCase__ :Tuple = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __a ( self :Dict ): UpperCamelCase__ :List[Any] = TFLayoutLMvaModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Any ): self.config_tester.run_common_tests() def __a ( self :Optional[int] ): UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Optional[int] = model_class(lowerCamelCase__ ) if getattr(lowerCamelCase__ , """hf_compute_loss""" , lowerCamelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCamelCase__ )[0] ] UpperCamelCase__ :Union[str, Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCamelCase__ :List[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) UpperCamelCase__ :List[str] = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: UpperCamelCase__ :List[str] = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCamelCase__ :Optional[Any] = -1_00 UpperCamelCase__ :Union[str, Any] = tf.convert_to_tensor(lowerCamelCase__ ) UpperCamelCase__ :Tuple = model(lowerCamelCase__ , **lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCamelCase__ :Optional[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCamelCase__ :Dict = self._prepare_for_class(inputs_dict.copy() , lowerCamelCase__ , return_labels=lowerCamelCase__ ) # Get keys that were added with the _prepare_for_class function UpperCamelCase__ :str = prepared_for_class.keys() - inputs_dict.keys() UpperCamelCase__ :Tuple = inspect.signature(model.call ).parameters UpperCamelCase__ :str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCamelCase__ :Any = {0: """input_ids"""} for label_key in label_keys: UpperCamelCase__ :Dict = signature_names.index(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = label_key UpperCamelCase__ :Optional[Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCamelCase__ :Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCamelCase__ :List[str] = prepared_for_class[value] UpperCamelCase__ :Union[str, Any] = tuple(lowerCamelCase__ ) # Send to model UpperCamelCase__ :str = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ :Dict = type self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Tuple ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @slow def __a ( self :Optional[int] ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFLayoutLMvaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( ) -> List[str]: UpperCamelCase__ :List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :Optional[Any] ): return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase__ ) if is_vision_available() else None @slow def __a ( self :Dict ): UpperCamelCase__ :List[str] = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) UpperCamelCase__ :List[Any] = self.default_image_processor UpperCamelCase__ :str = prepare_img() UpperCamelCase__ :Any = image_processor(images=lowerCamelCase__ , return_tensors="""tf""" ).pixel_values UpperCamelCase__ :str = tf.constant([[1, 2]] ) UpperCamelCase__ :Any = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCamelCase__ :Dict = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , pixel_values=lowerCamelCase__ , training=lowerCamelCase__ ) # verify the logits UpperCamelCase__ :int = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase__ ) UpperCamelCase__ :List[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
45
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def a__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list ) -> float: """simple docstring""" UpperCAmelCase_ : int = np.array([[1, item, train_mtch[i]] for i, item in enumerate(lowercase__ )] ) UpperCAmelCase_ : List[Any] = np.array(lowercase__ ) UpperCAmelCase_ : Dict = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , lowercase__ ) ) , x.transpose() ) , lowercase__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def a__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list ) -> float: """simple docstring""" UpperCAmelCase_ : Optional[int] = (1, 2, 1) UpperCAmelCase_ : Optional[int] = (1, 1, 0, 7) UpperCAmelCase_ : Optional[int] = SARIMAX( lowercase__ , exog=lowercase__ , order=lowercase__ , seasonal_order=lowercase__ ) UpperCAmelCase_ : Tuple = model.fit(disp=lowercase__ , maxiter=6_00 , method="nm" ) UpperCAmelCase_ : int = model_fit.predict(1 , len(lowercase__ ) , exog=[test_match] ) return result[0] def a__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list ) -> float: """simple docstring""" UpperCAmelCase_ : Optional[Any] = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(lowercase__ , lowercase__ ) UpperCAmelCase_ : Optional[int] = regressor.predict(lowercase__ ) return y_pred[0] def a__ ( _SCREAMING_SNAKE_CASE : list ) -> float: """simple docstring""" train_user.sort() UpperCAmelCase_ : List[Any] = np.percentile(lowercase__ , 25 ) UpperCAmelCase_ : Optional[Any] = np.percentile(lowercase__ , 75 ) UpperCAmelCase_ : Optional[int] = qa - qa UpperCAmelCase_ : Tuple = qa - (iqr * 0.1) return low_lim def a__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : float ) -> bool: """simple docstring""" UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : str = 0 for i in list_vote: if i > actual_result: UpperCAmelCase_ : List[str] = not_safe + 1 else: if abs(abs(lowercase__ ) - abs(lowercase__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) _lowerCamelCase = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] _lowerCamelCase = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) _lowerCamelCase = Normalizer().fit_transform(data_input_df.values) # split data _lowerCamelCase = normalize_df[:, 2].tolist() _lowerCamelCase = normalize_df[:, 0].tolist() _lowerCamelCase = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) _lowerCamelCase = normalize_df[:, [1, 2]].tolist() _lowerCamelCase = x[: len(x) - 1] _lowerCamelCase = x[len(x) - 1 :] # for linear regression & sarimax _lowerCamelCase = total_date[: len(total_date) - 1] _lowerCamelCase = total_user[: len(total_user) - 1] _lowerCamelCase = total_match[: len(total_match) - 1] _lowerCamelCase = total_date[len(total_date) - 1 :] _lowerCamelCase = total_user[len(total_user) - 1 :] _lowerCamelCase = total_match[len(total_match) - 1 :] # voting system with forecasting _lowerCamelCase = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data _lowerCamelCase = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
71
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The column name of the images in the files."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the training data."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the validation data."""} ) _snake_case : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __a ( self :List[str] ): UpperCamelCase__ :Optional[Any] = {} if self.train_dir is not None: UpperCamelCase__ :int = self.train_dir if self.validation_dir is not None: UpperCamelCase__ :List[str] = self.validation_dir UpperCamelCase__ :Optional[int] = data_files if data_files else None @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = field( default=lowercase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _snake_case : str = field(default=lowercase , metadata={"""help""": """Name or path of preprocessor config."""} ) _snake_case : bool = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _snake_case : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) _snake_case : bool = field( default=lowercase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def A ( lowercase__ : Union[str, Any] ) -> Dict: UpperCamelCase__ :Union[str, Any] = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def A ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ :List[str] = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCamelCase__ :Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ :List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCamelCase__ :Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase__ :int = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: UpperCamelCase__ :Optional[Any] = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCamelCase__ :Union[str, Any] = split["""train"""] UpperCamelCase__ :Any = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ :Optional[int] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase__ :Any = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Optional[Any] = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCamelCase__ :str = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Tuple = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCamelCase__ :Any = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase__ :Optional[int] = ViTMAEForPreTraining(lowercase__ ) if training_args.do_train: UpperCamelCase__ :Optional[Any] = ds["""train"""].column_names else: UpperCamelCase__ :Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCamelCase__ :Union[str, Any] = data_args.image_column_name elif "image" in column_names: UpperCamelCase__ :Optional[Any] = """image""" elif "img" in column_names: UpperCamelCase__ :List[str] = """img""" else: UpperCamelCase__ :List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCamelCase__ :List[str] = image_processor.size["""shortest_edge"""] else: UpperCamelCase__ :int = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCamelCase__ :Any = Compose( [ Lambda(lambda lowercase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ : Tuple ): UpperCamelCase__ :List[Any] = [transforms(lowercase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCamelCase__ :Optional[int] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCamelCase__ :Optional[Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Compute absolute learning rate UpperCamelCase__ :Tuple = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCamelCase__ :Any = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCamelCase__ :Union[str, Any] = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: UpperCamelCase__ :Any = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ :int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ :Dict = last_checkpoint UpperCamelCase__ :Union[str, Any] = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ :int = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase__ ) trainer.save_metrics("""eval""" , lowercase__ ) # Write model card and (optionally) push to hub UpperCamelCase__ :Optional[int] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def A ( lowercase__ : Union[str, Any] ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
45
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] ): """simple docstring""" UpperCAmelCase_: List[Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def lowerCAmelCase_ (lowerCAmelCase__: List[Any] ): """simple docstring""" UpperCAmelCase_: List[str] = emb.weight.shape UpperCAmelCase_: Tuple = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ ) UpperCAmelCase_: Optional[Any] = emb.weight.data return lin_layer def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] , lowerCAmelCase__: List[str]=None ): """simple docstring""" UpperCAmelCase_: int = {} for old_key in state_dict.keys(): UpperCAmelCase_: Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: UpperCAmelCase_: Optional[int] = key.replace("""moe_layer.experts.0""" , F'ffn.experts.expert_{expert_idx}' ) else: UpperCAmelCase_: Tuple = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: UpperCAmelCase_: Optional[Any] = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: UpperCAmelCase_: List[Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: UpperCAmelCase_: List[str] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: UpperCAmelCase_: Union[str, Any] = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: UpperCAmelCase_: Optional[int] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: UpperCAmelCase_: Dict = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) UpperCAmelCase_: Tuple = state_dict[old_key] return new_dict def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: int , lowerCAmelCase__: List[Any] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: str = WEIGHTS_NAME ): """simple docstring""" UpperCAmelCase_: Dict = [] UpperCAmelCase_: Optional[Any] = 0 os.makedirs(lowercase__ , exist_ok=lowercase__ ) for expert in range(lowercase__ ): UpperCAmelCase_: Optional[int] = switch_checkpoint_path + F'-rank-{expert}.pt' if os.path.isfile(lowercase__ ): UpperCAmelCase_: Union[str, Any] = torch.load(lowercase__ )["""model"""] remove_ignore_keys_(lowercase__ ) UpperCAmelCase_: Union[str, Any] = rename_fairseq_keys(lowercase__ , lowercase__ ) UpperCAmelCase_: Optional[Any] = os.path.join( lowercase__ , weights_name.replace(""".bin""" , F'-{len(lowercase__ )+1:05d}-of-???.bin' ) ) torch.save(lowercase__ , lowercase__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(lowercase__ )[0]].dtype ) # Add the last block UpperCAmelCase_: Optional[int] = os.path.join(lowercase__ , weights_name.replace(""".bin""" , F'-{len(lowercase__ )+1:05d}-of-???.bin' ) ) UpperCAmelCase_: Union[str, Any] = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(lowercase__ ) UpperCAmelCase_: int = rename_fairseq_keys(lowercase__ , lowercase__ ) UpperCAmelCase_: List[Any] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(lowercase__ ) == 1: UpperCAmelCase_: Dict = os.path.join(lowercase__ , lowercase__ ) torch.save(lowercase__ , lowercase__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(lowercase__ , lowercase__ ) # Otherwise, let's build the index UpperCAmelCase_: Union[str, Any] = {} for idx, shard in enumerate(lowercase__ ): UpperCAmelCase_: Union[str, Any] = weights_name.replace(""".bin""" , F'-{idx+1:05d}-of-{len(lowercase__ ):05d}.bin' ) UpperCAmelCase_: str = os.path.join(lowercase__ , weights_name.replace(""".bin""" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(lowercase__ , os.path.join(lowercase__ , lowercase__ ) ) for key in shard: UpperCAmelCase_: Any = shard_file # Add the metadata UpperCAmelCase_: List[Any] = {"""total_size""": total_size} UpperCAmelCase_: str = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(lowercase__ , lowercase__ ) , """w""" , encoding="""utf-8""" ) as f: UpperCAmelCase_: List[Any] = json.dumps(lowercase__ , indent=2 , sort_keys=lowercase__ ) + """\n""" f.write(lowercase__ ) return metadata, index if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) a : str = parser.parse_args() a ,a : Any = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) a : int = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) a : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
556
from __future__ import annotations def A ( lowercase__ : int ) -> list[int]: UpperCamelCase__ :Union[str, Any] = [True] * limit UpperCamelCase__ :int = False UpperCamelCase__ :Optional[Any] = False UpperCamelCase__ :str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCamelCase__ :List[Any] = i * 2 while index < limit: UpperCamelCase__ :Tuple = False UpperCamelCase__ :Tuple = index + i UpperCamelCase__ :str = [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def A ( lowercase__ : int = 100_0000 ) -> int: UpperCamelCase__ :Any = prime_sieve(lowercase__ ) UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :Optional[Any] = 0 for i in range(len(lowercase__ ) ): for j in range(i + length , len(lowercase__ ) ): UpperCamelCase__ :Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCamelCase__ :Union[str, Any] = j - i UpperCamelCase__ :Any = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
45
0
from timeit import timeit def __a ( A__ : int ): if number < 0: raise ValueError("the value of input must not be negative" ) SCREAMING_SNAKE_CASE = 0 while number: number &= number - 1 result += 1 return result def __a ( A__ : int ): if number < 0: raise ValueError("the value of input must not be negative" ) SCREAMING_SNAKE_CASE = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __a ( ): def do_benchmark(A__ : int ) -> None: SCREAMING_SNAKE_CASE = """import __main__ as z""" print(F"Benchmark when {number = }:" ) print(F"{get_set_bits_count_using_modulo_operator(lowercase__ ) = }" ) SCREAMING_SNAKE_CASE = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=lowercase__ ) print(F"timeit() runs in {timing} seconds" ) print(F"{get_set_bits_count_using_brian_kernighans_algorithm(lowercase__ ) = }" ) SCREAMING_SNAKE_CASE = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=lowercase__ , ) print(F"timeit() runs in {timing} seconds" ) for number in (25, 37, 58, 0): do_benchmark(lowercase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
16
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple=13 , lowerCamelCase__ :Tuple=7 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Union[str, Any]=True , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :List[Any]=True , lowerCamelCase__ :List[str]=99 , lowerCamelCase__ :int=32 , lowerCamelCase__ :List[Any]=5 , lowerCamelCase__ :Tuple=4 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :str="gelu" , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :str=True , lowerCamelCase__ :Dict=5_12 , lowerCamelCase__ :Optional[Any]=16 , lowerCamelCase__ :Optional[Any]=2 , lowerCamelCase__ :Union[str, Any]=0.02 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :int=4 , lowerCamelCase__ :str=None , ): UpperCamelCase__ :Optional[Any] = parent UpperCamelCase__ :Dict = batch_size UpperCamelCase__ :Tuple = seq_length UpperCamelCase__ :Dict = is_training UpperCamelCase__ :List[str] = use_input_mask UpperCamelCase__ :Optional[Any] = use_token_type_ids UpperCamelCase__ :Tuple = use_labels UpperCamelCase__ :int = vocab_size UpperCamelCase__ :Tuple = hidden_size UpperCamelCase__ :Optional[Any] = num_hidden_layers UpperCamelCase__ :int = num_attention_heads UpperCamelCase__ :Optional[int] = intermediate_multiple_size UpperCamelCase__ :Optional[Any] = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout UpperCamelCase__ :List[Any] = attention_dropout UpperCamelCase__ :List[str] = weight_tying UpperCamelCase__ :List[str] = max_position_embeddings UpperCamelCase__ :Dict = type_vocab_size UpperCamelCase__ :List[Any] = type_sequence_label_size UpperCamelCase__ :List[str] = initializer_range UpperCamelCase__ :int = num_labels UpperCamelCase__ :Dict = num_choices UpperCamelCase__ :Any = scope def __a ( self :Any ): UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :str = None if self.use_input_mask: UpperCamelCase__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ :Union[str, Any] = None if self.use_labels: UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self :Union[str, Any] ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def __a ( self :Union[str, Any] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase__ :Optional[int] = True return config, input_ids, input_mask, token_labels def __a ( self :List[str] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Any ): UpperCamelCase__ :Union[str, Any] = GPTNeoXJapaneseModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Dict , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[Any] ): UpperCamelCase__ :List[str] = True UpperCamelCase__ :int = GPTNeoXJapaneseModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :List[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Any = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Any , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :List[str] = GPTNeoXJapaneseForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # first forward pass UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ :List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ :Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ :Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ :Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ :Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = output_from_no_past["""hidden_states"""][0] UpperCamelCase__ :Union[str, Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] # select random slice UpperCamelCase__ :int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ :str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ :Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def __a ( self :Tuple ): UpperCamelCase__ :int = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[Any] = config_and_inputs UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _snake_case : int = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _snake_case : str = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _snake_case : Union[str, Any] = False _snake_case : Dict = False _snake_case : List[str] = False _snake_case : Optional[int] = False def __a ( self :List[Any] ): UpperCamelCase__ :Tuple = GPTNeoXJapaneseModelTester(self ) UpperCamelCase__ :Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Dict ): self.config_tester.run_common_tests() def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): # This regression test was failing with PyTorch < 1.3 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase__ :Dict = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) @slow def __a ( self :int ): UpperCamelCase__ :int = """abeja/gpt-neox-japanese-2.7b""" UpperCamelCase__ :List[Any] = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] UpperCamelCase__ :Union[str, Any] = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] UpperCamelCase__ :Any = GPTNeoXJapaneseTokenizer.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = [] for prompt in prompts: UpperCamelCase__ :str = tokenizer(lowerCamelCase__ , return_tensors="""pt""" ).input_ids UpperCamelCase__ :Union[str, Any] = model.generate(lowerCamelCase__ , max_length=50 ) UpperCamelCase__ :Dict = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
45
0
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def A__ ( self ) -> Optional[Any]: '''simple docstring''' _lowercase =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase__ , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(lowerCamelCase__ , 'num_attention_heads' ) ) class __lowerCAmelCase : def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=64 , lowerCAmelCase=3 , lowerCAmelCase=3 , lowerCAmelCase=2 , lowerCAmelCase=1 , lowerCAmelCase=16 , lowerCAmelCase=[128, 256, 384] , lowerCAmelCase=[4, 6, 8] , lowerCAmelCase=[2, 3, 4] , lowerCAmelCase=[16, 16, 16] , lowerCAmelCase=0 , lowerCAmelCase=[2, 2, 2] , lowerCAmelCase=[2, 2, 2] , lowerCAmelCase=0.02 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=2 , ) -> Tuple: '''simple docstring''' _lowercase =parent _lowercase =batch_size _lowercase =image_size _lowercase =num_channels _lowercase =kernel_size _lowercase =stride _lowercase =padding _lowercase =hidden_sizes _lowercase =num_attention_heads _lowercase =depths _lowercase =key_dim _lowercase =drop_path_rate _lowercase =patch_size _lowercase =attention_ratio _lowercase =mlp_ratio _lowercase =initializer_range _lowercase =[ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] _lowercase =is_training _lowercase =use_labels _lowercase =num_labels _lowercase =initializer_range def A__ ( self ) -> Dict: '''simple docstring''' _lowercase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.num_labels ) _lowercase =self.get_config() return config, pixel_values, labels def A__ ( self ) -> int: '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Tuple: '''simple docstring''' _lowercase =LevitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowercase =model(lowerCamelCase__ ) _lowercase =(self.image_size, self.image_size) _lowercase =image_size[0], image_size[1] for _ in range(4 ): _lowercase =floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) _lowercase =floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Tuple: '''simple docstring''' _lowercase =self.num_labels _lowercase =LevitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowercase =model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =self.prepare_config_and_inputs() _lowercase =config_and_inputs _lowercase ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): _a = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) _a = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) _a = False _a = False _a = False _a = False _a = False def A__ ( self ) -> Tuple: '''simple docstring''' _lowercase =LevitModelTester(self ) _lowercase =ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def A__ ( self ) -> int: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Union[str, Any]: '''simple docstring''' return @unittest.skip(reason='Levit does not use inputs_embeds' ) def A__ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def A__ ( self ) -> int: '''simple docstring''' pass @unittest.skip(reason='Levit does not output attentions' ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' pass def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(lowerCamelCase__ ) _lowercase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase =[*signature.parameters.keys()] _lowercase =["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def A__ ( self ) -> Any: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): _lowercase =model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _lowercase =model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _lowercase =outputs.hidden_states _lowercase =len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) _lowercase =(self.model_tester.image_size, self.model_tester.image_size) _lowercase =image_size[0], image_size[1] for _ in range(4 ): _lowercase =floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) _lowercase =floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase =True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def A__ ( self ) -> str: '''simple docstring''' pass def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ) -> List[str]: '''simple docstring''' _lowercase =super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A__ ( self ) -> List[Any]: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def A__ ( self ) -> str: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' if not self.model_tester.is_training: return _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase__ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue _lowercase =model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() _lowercase =self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) _lowercase =model(**lowerCamelCase__ ).loss loss.backward() def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _lowercase =False _lowercase =True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue _lowercase =model_class(lowerCamelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCamelCase__ ) model.train() _lowercase =self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) _lowercase =model(**lowerCamelCase__ ).loss loss.backward() def A__ ( self ) -> Any: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =[ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase__ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): _lowercase =problem_type["""title"""] _lowercase =problem_type["""num_labels"""] _lowercase =model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() _lowercase =self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if problem_type["num_labels"] > 1: _lowercase =inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) _lowercase =inputs["""labels"""].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase__ ) as warning_list: _lowercase =model(**lowerCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase =LevitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def a ( ) -> str: """simple docstring""" _lowercase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def A__ ( self ) -> int: '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A__ ( self ) -> int: '''simple docstring''' _lowercase =LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCamelCase__ ) _lowercase =self.default_image_processor _lowercase =prepare_img() _lowercase =image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _lowercase =model(**lowerCamelCase__ ) # verify the logits _lowercase =torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) _lowercase =torch.tensor([1.0448, -0.3745, -1.8317] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
291
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def A ( lowercase__ : dict ) -> tuple: return (data["data"], data["target"]) def A ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ) -> XGBClassifier: UpperCamelCase__ :Tuple = XGBClassifier() classifier.fit(lowercase__ , lowercase__ ) return classifier def A ( ) -> None: UpperCamelCase__ :str = load_iris() UpperCamelCase__ , UpperCamelCase__ :int = data_handling(lowercase__ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = train_test_split( lowercase__ , lowercase__ , test_size=0.25 ) UpperCamelCase__ :Optional[int] = iris["""target_names"""] # Create an XGBoost Classifier from the training data UpperCamelCase__ :Optional[Any] = xgboost(lowercase__ , lowercase__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase__ , lowercase__ , lowercase__ , display_labels=lowercase__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
45
0
"""simple docstring""" import requests def a ( __snake_case : str, __snake_case : str ): '''simple docstring''' UpperCAmelCase_ :Dict = {"""Content-Type""": """application/json"""} UpperCAmelCase_ :Optional[Any] = requests.post(lowercase__, json={'''text''': message_body}, headers=lowercase__ ) if response.status_code != 200: UpperCAmelCase_ :Union[str, Any] = ( """Request to slack returned an error """ f'{response.status_code}, the response is:\n{response.text}' ) raise ValueError(lowercase__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
608
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A ( lowercase__ : Optional[int] ) -> Optional[Any]: UpperCamelCase__ :Union[str, Any] = {} UpperCamelCase__ :Optional[int] = tokenizer(example["""content"""] , truncation=lowercase__ )["""input_ids"""] UpperCamelCase__ :int = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
45
0
import os from distutils.util import strtobool def A__ ( _a : List[str] , _a : Union[str, Any] ): '''simple docstring''' for e in env_keys: snake_case__ : Optional[Any] =int(os.environ.get(lowercase__ , -1 ) ) if val >= 0: return val return default def A__ ( _a : Optional[int] , _a : int=False ): '''simple docstring''' snake_case__ : Optional[Any] =os.environ.get(lowercase__ , str(lowercase__ ) ) return strtobool(lowercase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def A__ ( _a : Tuple , _a : Dict="no" ): '''simple docstring''' snake_case__ : Optional[int] =os.environ.get(lowercase__ , str(lowercase__ ) ) return value
385
def A ( lowercase__ : int ) -> Optional[Any]: stooge(lowercase__ , 0 , len(lowercase__ ) - 1 ) return arr def A ( lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : str ) -> List[str]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCamelCase__ , UpperCamelCase__ :List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCamelCase__ :Optional[int] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowercase__ , i + t , (lowercase__) ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
45
0
from __future__ import annotations import time import numpy as np _lowerCamelCase : Optional[int] = [8, 5, 9, 7] _lowerCamelCase : str = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCamelCase : Dict = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowerCamelCase : """simple docstring""" def __init__( self : Any, _UpperCAmelCase : list[int], _UpperCAmelCase : list[list[int]], _UpperCAmelCase : list[list[int]], ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = claim_vector SCREAMING_SNAKE_CASE__ : str = allocated_resources_table SCREAMING_SNAKE_CASE__ : Optional[Any] = maximum_claim_table def A_ ( self : str ) -> List[Any]: """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def A_ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def A_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(lowerCamelCase__ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def A_ ( self : int ) -> List[str]: """simple docstring""" return {self.__need().index(lowerCamelCase__ ): i for i in self.__need()} def A_ ( self : Any, **_UpperCAmelCase : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.__need() SCREAMING_SNAKE_CASE__ : Any = self.__allocated_resources_table SCREAMING_SNAKE_CASE__ : Tuple = self.__available_resources() SCREAMING_SNAKE_CASE__ : List[str] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 5_0 + "\n" ) while need_list: SCREAMING_SNAKE_CASE__ : List[str] = False for each_need in need_list: SCREAMING_SNAKE_CASE__ : List[Any] = True for index, need in enumerate(lowerCamelCase__ ): if need > available_resources[index]: SCREAMING_SNAKE_CASE__ : int = False break if execution: SCREAMING_SNAKE_CASE__ : Union[str, Any] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: SCREAMING_SNAKE_CASE__ : Optional[Any] = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(lowerCamelCase__ ) # update available/freed resources stack SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array(lowerCamelCase__ ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(lowerCamelCase__ ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def A_ ( self : Dict ) -> int: """simple docstring""" print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(lowerCamelCase__ ) + 1}''' + " ".join(F'''{it:>8}''' for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(lowerCamelCase__ ) + 1}''' + " ".join(F'''{it:>8}''' for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(lowerCamelCase__ ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(lowerCamelCase__ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
663
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCamelCase = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def A ( lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Dict ) -> List[Any]: UpperCamelCase__ :str = SavedModel() UpperCamelCase__ :List[str] = [] with open(os.path.join(lowercase__ , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f: UpperCamelCase__ :str = json.load(lowercase__ )["""opsets"""] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowercase__ )] ) with open(lowercase__ , """rb""" ) as f: saved_model.ParseFromString(f.read() ) UpperCamelCase__ :Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCamelCase__ :Union[str, Any] = sorted(lowercase__ ) UpperCamelCase__ :List[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowercase__ ) if strict and len(lowercase__ ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(lowercase__ ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*lowercase__ , sep="""\n""" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) UpperCamelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
45
0
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def _A (__a , __a ) -> str | Literal[False]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = list(lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = list(lowercase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 for i in range(len(lowercase__ ) ): if lista[i] != lista[i]: count += 1 SCREAMING_SNAKE_CASE_ : str = """_""" if count > 1: return False else: return "".join(lowercase__ ) def _A (__a ) -> list[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = [] while True: SCREAMING_SNAKE_CASE_ : Tuple = ["""$"""] * len(lowercase__ ) SCREAMING_SNAKE_CASE_ : Tuple = [] for i in range(len(lowercase__ ) ): for j in range(i + 1 , len(lowercase__ ) ): SCREAMING_SNAKE_CASE_ : str = compare_string(binary[i] , binary[j] ) if k is False: SCREAMING_SNAKE_CASE_ : str = """*""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = """*""" temp.append('''X''' ) for i in range(len(lowercase__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowercase__ ) == 0: return pi SCREAMING_SNAKE_CASE_ : Tuple = list(set(lowercase__ ) ) def _A (__a , __a ) -> list[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = [] for minterm in minterms: SCREAMING_SNAKE_CASE_ : Any = """""" for _ in range(lowercase__ ): SCREAMING_SNAKE_CASE_ : Any = str(minterm % 2 ) + string minterm //= 2 temp.append(lowercase__ ) return temp def _A (__a , __a , __a ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = list(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[str] = list(lowercase__ ) SCREAMING_SNAKE_CASE_ : Any = 0 for i in range(len(lowercase__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _A (__a , __a ) -> list[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [0] * len(lowercase__ ) for i in range(len(chart[0] ) ): SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Dict = -1 for j in range(len(lowercase__ ) ): if chart[j][i] == 1: count += 1 SCREAMING_SNAKE_CASE_ : int = j if count == 1: SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 for i in range(len(lowercase__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowercase__ ) ): SCREAMING_SNAKE_CASE_ : Tuple = 0 temp.append(prime_implicants[i] ) while True: SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List[Any] = -1 SCREAMING_SNAKE_CASE_ : Any = 0 for i in range(len(lowercase__ ) ): SCREAMING_SNAKE_CASE_ : Dict = chart[i].count(1 ) if count_n > max_n: SCREAMING_SNAKE_CASE_ : List[Any] = count_n SCREAMING_SNAKE_CASE_ : Optional[int] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowercase__ ) ): SCREAMING_SNAKE_CASE_ : Optional[int] = 0 def _A (__a , __a ) -> list[list[int]]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[0 for x in range(len(lowercase__ ) )] for x in range(len(lowercase__ ) )] for i in range(len(lowercase__ ) ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = prime_implicants[i].count('''_''' ) for j in range(len(lowercase__ ) ): if is_for_table(prime_implicants[i] , binary[j] , lowercase__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 return chart def _A () -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = int(input('''Enter the no. of variables\n''' ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ float(lowercase__ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] SCREAMING_SNAKE_CASE_ : List[Any] = decimal_to_binary(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE_ : int = check(lowercase__ ) print('''Prime Implicants are:''' ) print(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[str] = prime_implicant_chart(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE_ : Tuple = selection(lowercase__ , lowercase__ ) print('''Essential Prime Implicants are:''' ) print(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
512
from __future__ import annotations def A ( lowercase__ : str , lowercase__ : list[str] | None = None , lowercase__ : dict[str, float] | None = None , lowercase__ : bool = False , ) -> tuple[int, float, str]: UpperCamelCase__ :Dict = cipher_alphabet or [chr(lowercase__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCamelCase__ :Optional[Any] = { """a""": 0.08497, """b""": 0.01492, """c""": 0.02202, """d""": 0.04253, """e""": 0.11162, """f""": 0.02228, """g""": 0.02015, """h""": 0.06094, """i""": 0.07546, """j""": 0.00153, """k""": 0.01292, """l""": 0.04025, """m""": 0.02406, """n""": 0.06749, """o""": 0.07507, """p""": 0.01929, """q""": 0.00095, """r""": 0.07587, """s""": 0.06327, """t""": 0.09356, """u""": 0.02758, """v""": 0.00978, """w""": 0.02560, """x""": 0.00150, """y""": 0.01994, """z""": 0.00077, } else: # Custom frequencies dictionary UpperCamelCase__ :Optional[int] = frequencies_dict if not case_sensitive: UpperCamelCase__ :int = ciphertext.lower() # Chi squared statistic values UpperCamelCase__ :dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowercase__ ) ): UpperCamelCase__ :int = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCamelCase__ :int = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCamelCase__ :Optional[int] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCamelCase__ :Optional[int] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :Optional[int] = decrypted_with_shift.lower().count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :Dict = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :List[str] = decrypted_with_shift.count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Union[str, Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :List[str] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCamelCase__ :Union[str, Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowercase__ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCamelCase__ :int = min( lowercase__ , key=lowercase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Tuple = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
45
0
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _a : Dict = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : """simple docstring""" A = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) A = field( default=__UpperCamelCase ,metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) A = field( default='''NER''' ,metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) A = field( default=__UpperCamelCase ,metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) A = field(default=__UpperCamelCase ,metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. A = field( default=__UpperCamelCase ,metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} ,) @dataclass class UpperCamelCase_ : """simple docstring""" A = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) A = field( default=__UpperCamelCase ,metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} ,) A = field( default=128 ,metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } ,) A = field( default=__UpperCamelCase ,metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) __lowerCamelCase = import_module("""tasks""" ) try: __lowerCamelCase = getattr(lowercase__ , model_args.task_type ) __lowerCamelCase = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowercase__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __lowerCamelCase = token_classification_task.get_labels(data_args.labels ) __lowerCamelCase = dict(enumerate(lowercase__ ) ) __lowerCamelCase = len(lowercase__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase__ , idalabel=lowercase__ , labelaid={label: i for i, label in enumerate(lowercase__ )} , cache_dir=model_args.cache_dir , ) __lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __lowerCamelCase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , ) # Get datasets __lowerCamelCase = ( TokenClassificationDataset( token_classification_task=lowercase__ , data_dir=data_args.data_dir , tokenizer=lowercase__ , labels=lowercase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __lowerCamelCase = ( TokenClassificationDataset( token_classification_task=lowercase__ , data_dir=data_args.data_dir , tokenizer=lowercase__ , labels=lowercase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_A: np.ndarray , _A: np.ndarray ) -> Tuple[List[int], List[int]]: __lowerCamelCase = np.argmax(lowercase__ , axis=2 ) __lowerCamelCase = preds.shape __lowerCamelCase = [[] for _ in range(lowercase__ )] __lowerCamelCase = [[] for _ in range(lowercase__ )] for i in range(lowercase__ ): for j in range(lowercase__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_A: EvalPrediction ) -> Dict: __lowerCamelCase = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(lowercase__ , lowercase__ ), "precision": precision_score(lowercase__ , lowercase__ ), "recall": recall_score(lowercase__ , lowercase__ ), "f1": fa_score(lowercase__ , lowercase__ ), } # Data collator __lowerCamelCase = DataCollatorWithPadding(lowercase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __lowerCamelCase = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=lowercase__ , eval_dataset=lowercase__ , compute_metrics=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowerCamelCase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCamelCase = trainer.evaluate() __lowerCamelCase = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_process_zero(): with open(lowercase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , lowercase__ , lowercase__ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(lowercase__ ) # Predict if training_args.do_predict: __lowerCamelCase = TokenClassificationDataset( token_classification_task=lowercase__ , data_dir=data_args.data_dir , tokenizer=lowercase__ , labels=lowercase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __lowerCamelCase = trainer.predict(lowercase__ ) __lowerCamelCase = align_predictions(lowercase__ , lowercase__ ) __lowerCamelCase = os.path.join(training_args.output_dir , """test_results.txt""" ) if trainer.is_world_process_zero(): with open(lowercase__ , """w""" ) as writer: for key, value in metrics.items(): logger.info(""" %s = %s""" , lowercase__ , lowercase__ ) writer.write("""%s = %s\n""" % (key, value) ) # Save predictions __lowerCamelCase = os.path.join(training_args.output_dir , """test_predictions.txt""" ) if trainer.is_world_process_zero(): with open(lowercase__ , """w""" ) as writer: with open(os.path.join(data_args.data_dir , """test.txt""" ) , """r""" ) as f: token_classification_task.write_predictions_to_file(lowercase__ , lowercase__ , lowercase__ ) return results def UpperCamelCase__ ( _A: int ): '''simple docstring''' main() if __name__ == "__main__": main()
479
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Union[str, Any] , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :Dict ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
45
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : int = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[Any] = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 100 ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = set() _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Optional[int] = n + 1 # maximum limit for a in range(2 , _lowerCamelCase ): for b in range(2 , _lowerCamelCase ): _lowerCamelCase : List[str] = a**b # calculates the current power collect_powers.add(_lowerCamelCase ) # adds the result to the set return len(_lowerCamelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
46
1
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class A_ : def __init__( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: Any=30 ,__lowerCAmelCase: Tuple=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Optional[int]=True ,__lowerCAmelCase: str=True ,__lowerCAmelCase: List[str]=32 ,__lowerCAmelCase: Any=2 ,__lowerCAmelCase: Optional[int]=4 ,__lowerCAmelCase: List[str]=37 ,__lowerCAmelCase: int="gelu" ,__lowerCAmelCase: Optional[int]=0.1 ,__lowerCAmelCase: Tuple=0.1 ,__lowerCAmelCase: int=10 ,__lowerCAmelCase: Dict=0.02 ,__lowerCAmelCase: Optional[int]=3 ,__lowerCAmelCase: Optional[int]=None ,__lowerCAmelCase: List[str]=2 ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : List[Any] = batch_size _lowerCamelCase : Optional[Any] = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : List[str] = num_channels _lowerCamelCase : List[Any] = is_training _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : Optional[Any] = num_attention_heads _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : Any = scope _lowerCamelCase : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _lowerCamelCase : Any = (image_size // patch_size) ** 2 _lowerCamelCase : Optional[Any] = num_patches + 2 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : Any = None if self.use_labels: _lowerCamelCase : int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : int = self.get_config() return config, pixel_values, labels def _lowercase ( self: Any ): '''simple docstring''' return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def _lowercase ( self: str ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = TFDeiTModel(config=__lowerCAmelCase ) _lowerCamelCase : Any = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : Dict = TFDeiTForMaskedImageModeling(config=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Any = 1 _lowerCamelCase : Union[str, Any] = TFDeiTForMaskedImageModeling(__lowerCAmelCase ) _lowerCamelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Any = model(__lowerCAmelCase ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : List[Any] = self.type_sequence_label_size _lowerCamelCase : List[Any] = TFDeiTForImageClassification(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model(__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : int = 1 _lowerCamelCase : Dict = TFDeiTForImageClassification(__lowerCAmelCase ) _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Dict = model(__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = config_and_inputs _lowerCamelCase : int = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = TFDeiTModelTester(self ) _lowerCamelCase : str = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def _lowercase ( self: Optional[int] ): '''simple docstring''' pass def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) _lowerCamelCase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,tf.keras.layers.Dense ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : List[Any] = [*signature.parameters.keys()] _lowerCamelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Union[str, Any]=False ): '''simple docstring''' _lowerCamelCase : List[Any] = super()._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ,return_labels=__lowerCAmelCase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _lowercase ( self: int ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[int] = TFDeiTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: Any ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) _lowerCamelCase : List[Any] = self.default_image_processor _lowerCamelCase : Optional[Any] = prepare_img() _lowerCamelCase : List[Any] = image_processor(images=__lowerCAmelCase ,return_tensors="tf" ) # forward pass _lowerCamelCase : List[str] = model(**__lowerCAmelCase ) # verify the logits _lowerCamelCase : List[Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Dict = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,__lowerCAmelCase ,atol=1e-4 ) )
46
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # TODO Update this _lowerCAmelCase : Optional[Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class A_ ( _a ): lowerCAmelCase__ = 'esm' def __init__( self: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: List[Any]=1_026 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Dict="absolute" ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,mask_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : int = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : str = use_cache _lowerCamelCase : Union[str, Any] = emb_layer_norm_before _lowerCamelCase : Tuple = token_dropout _lowerCamelCase : Dict = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) _lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = EsmFoldConfig(**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) _lowerCamelCase : List[str] = get_default_vocab_list() else: _lowerCamelCase : Optional[Any] = vocab_list else: _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,__lowerCAmelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = super().to_dict() if isinstance(self.esmfold_config ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = 0 lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Dict ): '''simple docstring''' if self.trunk is None: _lowerCamelCase : Optional[int] = TrunkConfig() elif isinstance(self.trunk ,__lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = TrunkConfig(**self.trunk ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 4_8 lowerCAmelCase__ = 1_0_2_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = False lowerCAmelCase__ = 4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Any ): '''simple docstring''' if self.structure_module is None: _lowerCamelCase : Tuple = StructureModuleConfig() elif isinstance(self.structure_module ,__lowerCAmelCase ): _lowerCamelCase : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _lowerCamelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width _lowerCamelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : Optional[int] = self.structure_module.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 3_8_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_2 lowerCAmelCase__ = 4 lowerCAmelCase__ = 8 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 8 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_0 lowerCAmelCase__ = 1E-8 lowerCAmelCase__ = 1E5 def _lowercase ( self: Any ): '''simple docstring''' return asdict(self ) def lowerCamelCase_( ) -> int: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
46
1
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _lowerCAmelCase : Optional[Any] = get_tests_dir('''fixtures''') class A_ ( unittest.TestCase ): def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[str] = mock.Mock() _lowerCamelCase : Union[str, Any] = 500 _lowerCamelCase : Optional[int] = {} _lowerCamelCase : str = HTTPError _lowerCamelCase : Dict = {} # Download this model to make sure it's in the cache. _lowerCamelCase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" ,return_value=__lowerCAmelCase ) as mock_head: _lowerCamelCase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : int = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class A_ ( unittest.TestCase ): @classmethod def _lowercase ( cls: int ): '''simple docstring''' _lowerCamelCase : Optional[Any] = TOKEN HfFolder.save_token(__lowerCAmelCase ) @classmethod def _lowercase ( cls: Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained(__lowerCAmelCase ) feature_extractor.push_to_hub("test-feature-extractor" ,use_auth_token=self._token ) _lowerCamelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase ,getattr(__lowerCAmelCase ,__lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token ,repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowerCAmelCase ,repo_id="test-feature-extractor" ,push_to_hub=__lowerCAmelCase ,use_auth_token=self._token ) _lowerCamelCase : Tuple = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase ,getattr(__lowerCAmelCase ,__lowerCAmelCase ) ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(__lowerCAmelCase ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" ,use_auth_token=self._token ) _lowerCamelCase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase ,getattr(__lowerCAmelCase ,__lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowerCAmelCase ,repo_id="valid_org/test-feature-extractor-org" ,push_to_hub=__lowerCAmelCase ,use_auth_token=self._token ) _lowerCamelCase : str = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase ,getattr(__lowerCAmelCase ,__lowerCAmelCase ) ) def _lowercase ( self: List[str] ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() _lowerCamelCase : Optional[Any] = CustomFeatureExtractor.from_pretrained(__lowerCAmelCase ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map ,{"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} ,) _lowerCamelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( F"""{USER}/test-dynamic-feature-extractor""" ,trust_remote_code=__lowerCAmelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ ,"CustomFeatureExtractor" )
46
"""simple docstring""" import re def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
46
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if len(_lowerCamelCase ) < k or k < 0: raise ValueError("Invalid Input" ) _lowerCamelCase : Optional[Any] = sum(array[:k] ) for i in range(len(_lowerCamelCase ) - k ): _lowerCamelCase : Optional[int] = current_sum - array[i] + array[i + k] _lowerCamelCase : Union[str, Any] = max(_lowerCamelCase , _lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() _lowerCAmelCase : List[Any] = [randint(-1000, 1000) for i in range(100)] _lowerCAmelCase : Union[str, Any] = randint(0, 110) print(f'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
46
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : Tuple = "" else: _lowerCamelCase : str = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Tuple = in_proj_bias[: config.hidden_size] _lowerCamelCase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Any = dct.pop(_lowerCamelCase ) _lowerCamelCase : Dict = val def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase : str = 8 # set labels if required if not base_model: _lowerCamelCase : str = 1000 _lowerCamelCase : Any = "huggingface/label-files" _lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase : int = 384 _lowerCamelCase : str = 1536 _lowerCamelCase : List[str] = 12 _lowerCamelCase : Optional[int] = 6 # load original model from torch hub _lowerCamelCase : Union[str, Any] = torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[str] = original_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if base_model: _lowerCamelCase : Optional[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval() else: _lowerCamelCase : Union[str, Any] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase : Tuple = ViTImageProcessor() _lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Dict = encoding["pixel_values"] _lowerCamelCase : int = model(_lowerCamelCase ) if base_model: _lowerCamelCase : List[str] = original_model(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: _lowerCamelCase : Tuple = original_model(_lowerCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) _lowerCAmelCase : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
46
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Dict = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCAmelCase : str = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : int = state_dict.pop(_lowerCamelCase ) _lowerCamelCase : str = val def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Dict = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _lowerCamelCase : Dict = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) _lowerCamelCase : str = value else: _lowerCamelCase : Any = value return new_state_dict def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase : str = "" if is_panoptic: _lowerCamelCase : Any = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _lowerCamelCase : Union[str, Any] = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : int = in_proj_weight[:256, :] _lowerCamelCase : Dict = in_proj_bias[:256] _lowerCamelCase : int = in_proj_weight[256:512, :] _lowerCamelCase : Tuple = in_proj_bias[256:512] _lowerCamelCase : Tuple = in_proj_weight[-256:, :] _lowerCamelCase : Optional[int] = in_proj_bias[-256:] def lowerCamelCase_( ) -> int: '''simple docstring''' _lowerCamelCase : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: _lowerCamelCase : Optional[int] = "resnet101" if "dc5" in model_name: _lowerCamelCase : List[Any] = True _lowerCamelCase : Optional[int] = "panoptic" in model_name if is_panoptic: _lowerCamelCase : Optional[int] = 250 else: _lowerCamelCase : Optional[Any] = 91 _lowerCamelCase : List[Any] = "huggingface/label-files" _lowerCamelCase : List[Any] = "coco-detection-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Any = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} # load image processor _lowerCamelCase : Any = "coco_panoptic" if is_panoptic else "coco_detection" _lowerCamelCase : Tuple = ConditionalDetrImageProcessor(format=_lowerCamelCase ) # prepare image _lowerCamelCase : List[Any] = prepare_img() _lowerCamelCase : str = image_processor(images=_lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = encoding["pixel_values"] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub _lowerCamelCase : int = torch.hub.load("DeppMeng/ConditionalDETR" , _lowerCamelCase , pretrained=_lowerCamelCase ).eval() _lowerCamelCase : Optional[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: _lowerCamelCase : Tuple = "conditional_detr." + src rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : int = rename_backbone_keys(_lowerCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowerCamelCase , is_panoptic=_lowerCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _lowerCamelCase : Tuple = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): _lowerCamelCase : List[Any] = state_dict.pop(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _lowerCamelCase : List[str] = state_dict.pop(_lowerCamelCase ) _lowerCamelCase : Tuple = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: _lowerCamelCase : int = state_dict.pop(_lowerCamelCase ) _lowerCamelCase : Optional[int] = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): _lowerCamelCase : int = state_dict.pop(_lowerCamelCase ) _lowerCamelCase : Dict = val # finally, create HuggingFace model and load state dict _lowerCamelCase : Any = ConditionalDetrForSegmentation(_lowerCamelCase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() model.push_to_hub(repo_id=_lowerCamelCase , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion _lowerCamelCase : List[Any] = conditional_detr(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = model(_lowerCamelCase ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1e-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : Tuple = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
46
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) _lowerCamelCase : Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class A_ ( _a ): lowerCAmelCase__ = 'sigmoid' lowerCAmelCase__ = 'softmax' lowerCAmelCase__ = 'none' @add_end_docstrings( _a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class A_ ( _a ): lowerCAmelCase__ = False lowerCAmelCase__ = ClassificationFunction.NONE def __init__( self: str ,**__lowerCAmelCase: str ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = tokenizer_kwargs _lowerCamelCase : Optional[int] = {} if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None: _lowerCamelCase : Tuple = self.model.config.return_all_scores if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None: _lowerCamelCase : List[str] = top_k _lowerCamelCase : Union[str, Any] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,) if return_all_scores: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : Union[str, Any] = 1 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCamelCase : Dict = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCamelCase : Optional[Any] = "top_k" not in kwargs if isinstance(args[0] ,__lowerCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = self.framework if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return self.model(**__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCamelCase : Dict = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None: _lowerCamelCase : Optional[int] = self.model.config.function_to_apply else: _lowerCamelCase : str = ClassificationFunction.NONE _lowerCamelCase : List[Any] = model_outputs["logits"][0] _lowerCamelCase : Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCamelCase : str = sigmoid(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: _lowerCamelCase : str = outputs else: raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCamelCase : Optional[int] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase ) if top_k is not None: _lowerCamelCase : Any = dict_scores[:top_k] return dict_scores
46
1
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : int = TapasConfig.from_json_file(_lowerCamelCase ) # set absolute/relative position embeddings parameter _lowerCamelCase : int = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _lowerCamelCase : Tuple = TapasForQuestionAnswering(config=_lowerCamelCase ) elif task == "WTQ": # run_task_main.py hparams _lowerCamelCase : List[Any] = 4 _lowerCamelCase : List[str] = True # hparam_utils.py hparams _lowerCamelCase : Tuple = 0.6_6_4_6_9_4 _lowerCamelCase : List[str] = 0.2_0_7_9_5_1 _lowerCamelCase : Optional[int] = 0.1_2_1_1_9_4 _lowerCamelCase : int = True _lowerCamelCase : Optional[int] = True _lowerCamelCase : List[str] = False _lowerCamelCase : int = 0.0_3_5_2_5_1_3 _lowerCamelCase : List[str] = TapasForQuestionAnswering(config=_lowerCamelCase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _lowerCamelCase : Tuple = 4 _lowerCamelCase : Union[str, Any] = False # hparam_utils.py hparams _lowerCamelCase : Dict = 3_6.4_5_1_9 _lowerCamelCase : Dict = 0.9_0_3_4_2_1 _lowerCamelCase : Any = 2_2_2.0_8_8 _lowerCamelCase : int = True _lowerCamelCase : Optional[int] = True _lowerCamelCase : str = True _lowerCamelCase : Optional[int] = 0.7_6_3_1_4_1 _lowerCamelCase : Optional[Any] = TapasForQuestionAnswering(config=_lowerCamelCase ) elif task == "TABFACT": _lowerCamelCase : Optional[int] = TapasForSequenceClassification(config=_lowerCamelCase ) elif task == "MLM": _lowerCamelCase : Optional[int] = TapasForMaskedLM(config=_lowerCamelCase ) elif task == "INTERMEDIATE_PRETRAINING": _lowerCamelCase : List[str] = TapasModel(config=_lowerCamelCase ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_lowerCamelCase ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) _lowerCamelCase : Union[str, Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 ) tokenizer.save_pretrained(_lowerCamelCase ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCAmelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
46
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase : Tuple = '''\ Text data. Second line of data.''' _lowerCAmelCase : str = '''file''' @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : str = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _lowerCamelCase : List[str] = bytes(_lowerCamelCase , "utf-8" ) with zstd.open(_lowerCamelCase , "wb" ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , "w" ) as f: f.write(_lowerCamelCase ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _lowerCamelCase : Tuple = input_paths[compression_format] _lowerCamelCase : int = tmp_path / "cache" _lowerCamelCase : Any = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) with open(_lowerCamelCase ) as f: _lowerCamelCase : List[Any] = f.read() with open(_lowerCamelCase ) as f: _lowerCamelCase : int = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = "custom_cache" _lowerCamelCase : List[str] = "custom_extracted_dir" _lowerCamelCase : str = tmp_path / "custom_extracted_path" if default_extracted: _lowerCamelCase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) ) _lowerCamelCase : int = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCamelCase : int = xz_file _lowerCamelCase : List[Any] = ( DownloadConfig(extract_compressed_file=_lowerCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase ) ) _lowerCamelCase : Dict = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) assert Path(_lowerCamelCase ).parent.parts[-2:] == expected def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Tuple = str(Path(_lowerCamelCase ).resolve() ) assert cached_path(_lowerCamelCase ) == text_file # relative path _lowerCamelCase : Optional[int] = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_lowerCamelCase ) == text_file def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) # relative path _lowerCamelCase : List[Any] = "./__missing_file__.txt" with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_lowerCamelCase ) as f: _lowerCamelCase : Tuple = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( ) -> int: '''simple docstring''' with pytest.raises(_lowerCamelCase ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): http_get("https://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Any = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): ftp_get("ftp://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): fsspec_get("s3://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): fsspec_head("s3://huggingface.co" )
46
1
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class A_ : def __init__( self: List[str] ,__lowerCAmelCase: str = "cpu" ,__lowerCAmelCase: str = "openai/clip-vit-large-patch14" ): '''simple docstring''' _lowerCamelCase : List[str] = device _lowerCamelCase : Dict = CLIPTokenizerFast.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] _lowerCamelCase : List[Any] = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] _lowerCamelCase : Tuple = torchvision.transforms.Normalize(self.image_mean ,self.image_std ) _lowerCamelCase : Optional[Any] = torchvision.transforms.Resize(224 ) _lowerCamelCase : List[Any] = torchvision.transforms.CenterCrop(224 ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : str = self.resize(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = self.center_crop(__lowerCAmelCase ) _lowerCamelCase : List[str] = self.normalize(__lowerCAmelCase ) return images def __call__( self: Optional[int] ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: List[Any]=None ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.tokenizer(text=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : Any = self.preprocess_img(__lowerCAmelCase ) _lowerCamelCase : List[Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class A_ ( nn.Module ): def __init__( self: Tuple ,__lowerCAmelCase: Any=10 ,__lowerCAmelCase: List[Any]=0.01 ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[int]=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: int=False ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: Union[str, Any]="image" ,__lowerCAmelCase: int=True ,__lowerCAmelCase: int=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: Any=False ,): '''simple docstring''' super().__init__() _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Any = device if device else get_device() if vqgan: _lowerCamelCase : Any = vqgan else: _lowerCamelCase : List[str] = load_vqgan(self.device ,conf_path=__lowerCAmelCase ,ckpt_path=__lowerCAmelCase ) self.vqgan.eval() if clip: _lowerCamelCase : Any = clip else: _lowerCamelCase : List[Any] = CLIPModel.from_pretrained("openai/clip-vit-base-patch32" ) self.clip.to(self.device ) _lowerCamelCase : Optional[int] = ProcessorGradientFlow(device=self.device ) _lowerCamelCase : int = iterations _lowerCamelCase : Tuple = lr _lowerCamelCase : Any = log _lowerCamelCase : Dict = make_grid _lowerCamelCase : Optional[int] = return_val _lowerCamelCase : Union[str, Any] = quantize _lowerCamelCase : List[str] = self.vqgan.decoder.z_shape def _lowercase ( self: Optional[int] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,__lowerCAmelCase: Dict=5 ,__lowerCAmelCase: List[Any]=True ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [] if output_path is None: _lowerCamelCase : Optional[Any] = "./animation.gif" if input_path is None: _lowerCamelCase : Optional[Any] = self.save_path _lowerCamelCase : Dict = sorted(glob(input_path + "/*" ) ) if not len(__lowerCAmelCase ): raise ValueError( "No images found in save path, aborting (did you pass save_intermediate=True to the generate" " function?)" ) if len(__lowerCAmelCase ) == 1: print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)" ) _lowerCamelCase : Any = total_duration / len(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [frame_duration] * len(__lowerCAmelCase ) if extend_frames: _lowerCamelCase : Dict = 1.5 _lowerCamelCase : List[Any] = 3 for file_name in paths: if file_name.endswith(".png" ): images.append(imageio.imread(__lowerCAmelCase ) ) imageio.mimsave(__lowerCAmelCase ,__lowerCAmelCase ,duration=__lowerCAmelCase ) print(F"""gif saved to {output_path}""" ) def _lowercase ( self: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Optional[Any]=None ): '''simple docstring''' if not (path or img): raise ValueError("Input either path or tensor" ) if img is not None: raise NotImplementedError _lowerCamelCase : Tuple = preprocess(Image.open(__lowerCAmelCase ) ,target_image_size=256 ).to(self.device ) _lowerCamelCase : str = preprocess_vqgan(__lowerCAmelCase ) _lowerCamelCase, *_lowerCamelCase : List[str] = self.vqgan.encode(__lowerCAmelCase ) return z def _lowercase ( self: Tuple ,__lowerCAmelCase: Any ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.latent.detach().requires_grad_() _lowerCamelCase : str = base_latent + transform_vector if self.quantize: _lowerCamelCase, *_lowerCamelCase : List[Any] = self.vqgan.quantize(__lowerCAmelCase ) else: _lowerCamelCase : str = trans_latent return self.vqgan.decode(__lowerCAmelCase ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Dict=None ): '''simple docstring''' _lowerCamelCase : List[str] = self.clip_preprocessor(text=__lowerCAmelCase ,images=__lowerCAmelCase ,return_tensors="pt" ,padding=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = self.clip(**__lowerCAmelCase ) _lowerCamelCase : Dict = clip_outputs.logits_per_image if weights is not None: _lowerCamelCase : Union[str, Any] = similarity_logits * weights return similarity_logits.sum() def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self._get_clip_similarity(pos_prompts["prompts"] ,__lowerCAmelCase ,weights=(1 / pos_prompts["weights"]) ) if neg_prompts: _lowerCamelCase : List[Any] = self._get_clip_similarity(neg_prompts["prompts"] ,__lowerCAmelCase ,weights=neg_prompts["weights"] ) else: _lowerCamelCase : Union[str, Any] = torch.tensor([1] ,device=self.device ) _lowerCamelCase : List[str] = -torch.log(__lowerCAmelCase ) + torch.log(__lowerCAmelCase ) return loss def _lowercase ( self: List[Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = torch.randn_like(self.latent ,requires_grad=__lowerCAmelCase ,device=self.device ) _lowerCamelCase : Union[str, Any] = torch.optim.Adam([vector] ,lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCamelCase : List[str] = self._add_vector(__lowerCAmelCase ) _lowerCamelCase : Dict = loop_post_process(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self._get_CLIP_loss(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) print("CLIP loss" ,__lowerCAmelCase ) if self.log: wandb.log({"CLIP Loss": clip_loss} ) clip_loss.backward(retain_graph=__lowerCAmelCase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def _lowercase ( self: List[str] ,__lowerCAmelCase: int ,__lowerCAmelCase: int ,__lowerCAmelCase: List[str] ): '''simple docstring''' wandb.init(reinit=__lowerCAmelCase ,project="face-editor" ) wandb.config.update({"Positive Prompts": positive_prompts} ) wandb.config.update({"Negative Prompts": negative_prompts} ) wandb.config.update({"lr": self.lr, "iterations": self.iterations} ) if image_path: _lowerCamelCase : Dict = Image.open(__lowerCAmelCase ) _lowerCamelCase : int = image.resize((256, 256) ) wandb.log("Original Image" ,wandb.Image(__lowerCAmelCase ) ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ): '''simple docstring''' if not prompts: return [] _lowerCamelCase : List[Any] = [] _lowerCamelCase : Any = [] if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Optional[Any] = [prompt.strip() for prompt in prompts.split("|" )] for prompt in prompts: if isinstance(__lowerCAmelCase ,(tuple, list) ): _lowerCamelCase : Optional[int] = prompt[0] _lowerCamelCase : Optional[int] = float(prompt[1] ) elif ":" in prompt: _lowerCamelCase, _lowerCamelCase : Union[str, Any] = prompt.split(":" ) _lowerCamelCase : Dict = float(__lowerCAmelCase ) else: _lowerCamelCase : Any = prompt _lowerCamelCase : int = 1.0 processed_prompts.append(__lowerCAmelCase ) weights.append(__lowerCAmelCase ) return { "prompts": processed_prompts, "weights": torch.tensor(__lowerCAmelCase ,device=self.device ), } def _lowercase ( self: str ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: Tuple=False ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: str=None ,): '''simple docstring''' if image_path: _lowerCamelCase : Optional[Any] = self._get_latent(__lowerCAmelCase ) else: _lowerCamelCase : Union[str, Any] = torch.randn(self.latent_dim ,device=self.device ) if self.log: self._init_logging(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCamelCase : Union[str, Any] = self.process_prompts(__lowerCAmelCase ) _lowerCamelCase : List[Any] = self.process_prompts(__lowerCAmelCase ) if save_final and save_path is None: _lowerCamelCase : Union[str, Any] = os.path.join("./outputs/" ,"_".join(pos_prompts["prompts"] ) ) if not os.path.exists(__lowerCAmelCase ): os.makedirs(__lowerCAmelCase ) else: _lowerCamelCase : List[Any] = save_path + "_" + get_timestamp() os.makedirs(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = save_path _lowerCamelCase : Optional[int] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("Original Image" ) show_pil(custom_to_pil(__lowerCAmelCase ) ) _lowerCamelCase : int = loop_post_process(__lowerCAmelCase ) for iter, transformed_img in enumerate(self._optimize_CLIP(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) ): if show_intermediate: show_pil(__lowerCAmelCase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path ,F"""iter_{iter:03d}.png""" ) ) if self.log: wandb.log({"Image": wandb.Image(__lowerCAmelCase )} ) if show_final: show_pil(__lowerCAmelCase ) if save_final: transformed_img.save(os.path.join(self.save_path ,F"""iter_{iter:03d}_final.png""" ) )
46
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None: '''simple docstring''' _lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowerCamelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _lowerCamelCase : List[str] = v.half() if save_path is None: # overwrite src_path _lowerCamelCase : Union[str, Any] = src_path torch.save(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
46
1
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): lowerCAmelCase__ = (DDIMParallelScheduler,) lowerCAmelCase__ = (('eta', 0.0), ('num_inference_steps', 5_0)) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = { "num_train_timesteps": 1_000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCAmelCase ) return config def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : Any = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = 10, 0.0 _lowerCamelCase : List[Any] = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for t in scheduler.timesteps: _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample return sample def _lowercase ( self: List[str] ): '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Dict = self.get_scheduler_config(steps_offset=1 ) _lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) ) def _lowercase ( self: Any ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCAmelCase ,beta_end=__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ): self.check_over_forward(time_step=__lowerCAmelCase ,num_inference_steps=__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCAmelCase ,eta=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : List[str] = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5 def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Union[str, Any] = self.get_scheduler_config() _lowerCamelCase : str = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[int] = 10, 0.0 scheduler.set_timesteps(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.dummy_model() _lowerCamelCase : Optional[int] = self.dummy_sample_deter _lowerCamelCase : List[str] = self.dummy_sample_deter + 0.1 _lowerCamelCase : Dict = self.dummy_sample_deter - 0.1 _lowerCamelCase : Union[str, Any] = samplea.shape[0] _lowerCamelCase : List[Any] = torch.stack([samplea, samplea, samplea] ,dim=0 ) _lowerCamelCase : Dict = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 ,__lowerCAmelCase ) _lowerCamelCase : str = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) _lowerCamelCase : List[str] = scheduler.batch_step_no_noise(__lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,__lowerCAmelCase ) _lowerCamelCase : str = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = self.full_loop() _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : int = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(prediction_type="v_prediction" ) _lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[str] = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : int = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
46
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCAmelCase : List[str] = get_tests_dir('''fixtures/dummy-config.json''') class A_ ( unittest.TestCase ): def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[Any] = 0 def _lowercase ( self: Dict ): '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoConfig.for_model("roberta" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"fake-roberta" ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase ,"config.json" ) ,"w" ) as f: f.write(json.dumps({} ) ) _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertEqual(type(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' try: AutoConfig.register("custom" ,__lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("model" ,__lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("bert" ,__lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ): _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" ) def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" ) def _lowercase ( self: Tuple ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." ,): _lowerCamelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowercase ( self: List[Any] ): '''simple docstring''' with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ ,"NewModelConfig" ) def _lowercase ( self: Dict ): '''simple docstring''' class A_ ( _a ): lowerCAmelCase__ = 'new-model' try: AutoConfig.register("new-model" ,__lowerCAmelCase ) # If remote code is not set, the default is to use local _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote code is disabled, we load the local one. _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote is enabled, we load from the Hub _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
46
1
"""simple docstring""" import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = OpenAIGPTTokenizer lowerCAmelCase__ = OpenAIGPTTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = False def _lowercase ( self: Optional[Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Any = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] _lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : Optional[Any] = ["#version: 0.2", "l o", "lo w", "e r</w>", ""] _lowerCamelCase : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) ) with open(self.merges_file ,"w" ) as fp: fp.write("\n".join(__lowerCAmelCase ) ) def _lowercase ( self: Any ,__lowerCAmelCase: List[str] ): '''simple docstring''' return "lower newer", "lower newer" def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : int = OpenAIGPTTokenizer(self.vocab_file ,self.merges_file ) _lowerCamelCase : int = "lower" _lowerCamelCase : Optional[int] = ["low", "er</w>"] _lowerCamelCase : int = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = tokens + ["<unk>"] _lowerCamelCase : int = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: Any=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowerCamelCase : str = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) # Simple input _lowerCamelCase : Any = "This is a simple input" _lowerCamelCase : Tuple = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : int = ("This is a simple input", "This is a pair") _lowerCamelCase : List[Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__lowerCAmelCase ,tokenizer_r.encode ,__lowerCAmelCase ,max_length=__lowerCAmelCase ,padding="max_length" ) # Simple input self.assertRaises(__lowerCAmelCase ,tokenizer_r.encode_plus ,__lowerCAmelCase ,max_length=__lowerCAmelCase ,padding="max_length" ) # Simple input self.assertRaises( __lowerCAmelCase ,tokenizer_r.batch_encode_plus ,__lowerCAmelCase ,max_length=__lowerCAmelCase ,padding="max_length" ,) # Pair input self.assertRaises(__lowerCAmelCase ,tokenizer_r.encode ,__lowerCAmelCase ,max_length=__lowerCAmelCase ,padding="max_length" ) # Pair input self.assertRaises(__lowerCAmelCase ,tokenizer_r.encode_plus ,__lowerCAmelCase ,max_length=__lowerCAmelCase ,padding="max_length" ) # Pair input self.assertRaises( __lowerCAmelCase ,tokenizer_r.batch_encode_plus ,__lowerCAmelCase ,max_length=__lowerCAmelCase ,padding="max_length" ,) def _lowercase ( self: Optional[int] ): '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class A_ ( _a ): pass
46
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCAmelCase : Optional[int] = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int: '''simple docstring''' _lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCamelCase : Tuple = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Any = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Optional[int] = val @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = False if "vqa" in checkpoint_url: _lowerCamelCase : str = True _lowerCamelCase : Union[str, Any] = 3129 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Optional[Any] = "vqa2-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = {0: "False", 1: "True"} _lowerCamelCase : int = {v: k for k, v in config.idalabel.items()} _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase : Dict = True _lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"] _lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) if mlm_model or irtr_model: _lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor _lowerCamelCase : int = ViltImageProcessor(size=384 ) _lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) _lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : str = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) _lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : int = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw ) if mlm_model: _lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]." else: _lowerCamelCase : List[str] = "How many cats are there?" _lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: _lowerCamelCase : List[str] = torch.Size([1, 11, 30522] ) _lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase : List[str] = torch.Size([1, 3129] ) _lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase : List[str] = torch.Size([1, 2] ) _lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
46
1
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class A_ ( unittest.TestCase ): @slow def _lowercase ( self: List[str] ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__lowerCAmelCase ): _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Optional[int] = FlaxAutoModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) @slow def _lowercase ( self: int ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__lowerCAmelCase ): _lowerCamelCase : int = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = FlaxAutoModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) @slow def _lowercase ( self: int ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = FlaxBertModel.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = tokenizer("Do you support jax jitted function?" ,return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowerCAmelCase: Union[str, Any] ): return model(**__lowerCAmelCase ) eval(**__lowerCAmelCase ).block_until_ready() @slow def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[Any] = FlaxRobertaModel.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : Any = tokenizer("Do you support jax jitted function?" ,return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowerCAmelCase: int ): return model(**__lowerCAmelCase ) eval(**__lowerCAmelCase ).block_until_ready() def _lowercase ( self: Any ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ): _lowerCamelCase : Union[str, Any] = FlaxAutoModel.from_pretrained("bert-base" ) def _lowercase ( self: int ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _lowerCamelCase : Union[str, Any] = FlaxAutoModel.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" ) def _lowercase ( self: int ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" ,): _lowerCamelCase : Union[str, Any] = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def _lowercase ( self: Optional[int] ): '''simple docstring''' with self.assertRaisesRegex(__lowerCAmelCase ,"Use `from_pt=True` to load this model" ): _lowerCamelCase : Any = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
46
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str | Literal[False]: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Any = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 _lowerCamelCase : List[str] = "_" if count > 1: return False else: return "".join(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : List[str] = [] while True: _lowerCamelCase : Tuple = ["$"] * len(_lowerCamelCase ) _lowerCamelCase : str = [] for i in range(len(_lowerCamelCase ) ): for j in range(i + 1 , len(_lowerCamelCase ) ): _lowerCamelCase : Dict = compare_string(binary[i] , binary[j] ) if k is False: _lowerCamelCase : Any = "*" _lowerCamelCase : Optional[int] = "*" temp.append("X" ) for i in range(len(_lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowerCamelCase ) == 0: return pi _lowerCamelCase : List[Any] = list(set(_lowerCamelCase ) ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Optional[int] = [] for minterm in minterms: _lowerCamelCase : List[Any] = "" for _ in range(_lowerCamelCase ): _lowerCamelCase : List[str] = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowerCamelCase ) return temp def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Optional[int] = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Dict = [0] * len(_lowerCamelCase ) for i in range(len(chart[0] ) ): _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = -1 for j in range(len(_lowerCamelCase ) ): if chart[j][i] == 1: count += 1 _lowerCamelCase : Any = j if count == 1: _lowerCamelCase : Union[str, Any] = 1 for i in range(len(_lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = 0 temp.append(prime_implicants[i] ) while True: _lowerCamelCase : str = 0 _lowerCamelCase : int = -1 _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = chart[i].count(1 ) if count_n > max_n: _lowerCamelCase : Any = count_n _lowerCamelCase : Union[str, Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowerCamelCase ) ): _lowerCamelCase : Any = 0 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[list[int]]: '''simple docstring''' _lowerCamelCase : str = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )] for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : List[Any] = prime_implicants[i].count("_" ) for j in range(len(_lowerCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ): _lowerCamelCase : Optional[Any] = 1 return chart def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : Optional[int] = int(input("Enter the no. of variables\n" ) ) _lowerCamelCase : str = [ float(_lowerCamelCase ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] _lowerCamelCase : Tuple = decimal_to_binary(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = check(_lowerCamelCase ) print("Prime Implicants are:" ) print(_lowerCamelCase ) _lowerCamelCase : Any = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : List[Any] = selection(_lowerCamelCase , _lowerCamelCase ) print("Essential Prime Implicants are:" ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
1
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def lowerCamelCase_( ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=_lowerCamelCase , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=_lowerCamelCase , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=_lowerCamelCase , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=_lowerCamelCase , default=0 , help="cuda_id." , ) _lowerCamelCase : Optional[int] = parser.parse_args() return args def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' if not len(_lowerCamelCase ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) _lowerCamelCase, _lowerCamelCase : str = imgs[0].size _lowerCamelCase : List[Any] = Image.new("RGB" , size=(cols * w, rows * h) ) _lowerCamelCase, _lowerCamelCase : List[Any] = grid.size for i, img in enumerate(_lowerCamelCase ): grid.paste(_lowerCamelCase , box=(i % cols * w, i // cols * h) ) return grid def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase="robotic cat with wings" , _lowerCamelCase=7.5 , _lowerCamelCase=50 , _lowerCamelCase=1 , _lowerCamelCase=42 , ) -> Dict: '''simple docstring''' _lowerCamelCase : Any = torch.Generator(pipeline.device ).manual_seed(_lowerCamelCase ) _lowerCamelCase : str = pipeline( _lowerCamelCase , guidance_scale=_lowerCamelCase , num_inference_steps=_lowerCamelCase , generator=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , ).images _lowerCamelCase : int = int(math.sqrt(_lowerCamelCase ) ) _lowerCamelCase : str = image_grid(_lowerCamelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images _lowerCAmelCase : Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion _lowerCAmelCase : List[str] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') _lowerCAmelCase : List[str] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') _lowerCAmelCase : Dict = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') _lowerCAmelCase : Any = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') _lowerCAmelCase : int = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) _lowerCAmelCase : int = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): _lowerCAmelCase : Union[str, Any] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: _lowerCAmelCase : int = unet.to(torch.device('''cuda''', args.cuda_id)) _lowerCAmelCase : List[Any] = pipeline.to(unet.device) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) _lowerCAmelCase : Dict = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
46
"""simple docstring""" from __future__ import annotations from random import random class A_ : def __init__( self: List[str] ,__lowerCAmelCase: int | None = None ): '''simple docstring''' _lowerCamelCase : Any = value _lowerCamelCase : Optional[int] = random() _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None def __repr__( self: Tuple ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return F"""'{self.value}: {self.prior:.5}'""" else: return pformat( {F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} ,indent=1 ) def __str__( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = str(self.value ) + " " _lowerCamelCase : Optional[Any] = str(self.left or "" ) _lowerCamelCase : int = str(self.right or "" ) return value + left + right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _lowerCamelCase, _lowerCamelCase : int = split(root.left , _lowerCamelCase ) return left, root else: _lowerCamelCase, _lowerCamelCase : Optional[int] = split(root.right , _lowerCamelCase ) return root, right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _lowerCamelCase : Any = merge(left.right , _lowerCamelCase ) return left else: _lowerCamelCase : Optional[Any] = merge(_lowerCamelCase , right.left ) return right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase : int = Node(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase : Tuple = split(_lowerCamelCase , _lowerCamelCase ) return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , value - 1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , _lowerCamelCase ) return merge(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": _lowerCamelCase : Optional[Any] = insert(_lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": _lowerCamelCase : Optional[Any] = erase(_lowerCamelCase , int(arg[1:] ) ) else: print("Unknown command" ) return root def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : List[Any] = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) _lowerCamelCase : int = input() while args != "q": _lowerCamelCase : List[str] = interact_treap(_lowerCamelCase , _lowerCamelCase ) print(_lowerCamelCase ) _lowerCamelCase : Tuple = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
1
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' return abs(_lowerCamelCase ) if a == 0 else greatest_common_divisor(b % a , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' while y: # --> when y=0 then loop will terminate and return x as final GCD. _lowerCamelCase, _lowerCamelCase : Union[str, Any] = y, x % y return abs(_lowerCamelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' try: _lowerCamelCase : Any = input("Enter two integers separated by comma (,): " ).split("," ) _lowerCamelCase : Dict = int(nums[0] ) _lowerCamelCase : Tuple = int(nums[1] ) print( F"""greatest_common_divisor({num_a}, {num_a}) = """ F"""{greatest_common_divisor(_lowerCamelCase , _lowerCamelCase )}""" ) print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(_lowerCamelCase , _lowerCamelCase )}""" ) except (IndexError, UnboundLocalError, ValueError): print("Wrong input" ) if __name__ == "__main__": main()
46
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = SpeechTaTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def _lowercase ( self: List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase ) _lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self: List[str] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = "this is a test" _lowerCamelCase : Optional[Any] = "this is a test" return input_text, output_text def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = "<pad>" _lowerCamelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<s>" ) self.assertEqual(vocab_keys[1] ,"<pad>" ) self.assertEqual(vocab_keys[-4] ,"œ" ) self.assertEqual(vocab_keys[-2] ,"<mask>" ) self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" ) self.assertEqual(len(__lowerCAmelCase ) ,81 ) def _lowercase ( self: Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Optional[Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] _lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) ) _lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) _lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} _lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.vocab_size _lowerCamelCase : str = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' pass def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) _lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) _lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off _lowerCamelCase : Tuple = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,)
46
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class A_ : lowerCAmelCase__ = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCAmelCase__ = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCAmelCase__ = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCAmelCase__ = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCAmelCase__ = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCAmelCase__ = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCAmelCase__ = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCAmelCase__ = field( default=1_0_0_0_0 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCAmelCase__ = field(default=2E-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCAmelCase__ = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCAmelCase__ = field( default=7_5_0 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCAmelCase__ = field( default=1_6 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCAmelCase__ = field(default=5_0_0_0_0 , metadata={'help': 'Maximum number of training steps.'} ) lowerCAmelCase__ = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCAmelCase__ = field(default=1_0_2_4 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCAmelCase__ = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCAmelCase__ = field( default=1_0_2_4 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class A_ : lowerCAmelCase__ = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCAmelCase__ = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCAmelCase__ = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCAmelCase__ = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCAmelCase__ = field(default=1_0_2_4 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCAmelCase__ = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class A_ : lowerCAmelCase__ = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCAmelCase__ = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCAmelCase__ = field(default=2_5_6 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCAmelCase__ = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCAmelCase__ = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCAmelCase__ = field(default=1_0 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCAmelCase__ = field( default=2_0_0 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCAmelCase__ = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCAmelCase__ = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCAmelCase__ = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCAmelCase__ = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class A_ : lowerCAmelCase__ = field( default=_a , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCAmelCase__ = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCAmelCase__ = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCAmelCase__ = field( default=1_0_0_0_0_0 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCAmelCase__ = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCAmelCase__ = field( default=1_0_0_0 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCAmelCase__ = field( default=1_0_0 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCAmelCase__ = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCAmelCase__ = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCAmelCase__ = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCAmelCase__ = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCAmelCase__ = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class A_ : lowerCAmelCase__ = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCAmelCase__ = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCAmelCase__ = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCAmelCase__ = field(default=2_0_0_0_0_0 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCAmelCase__ = field( default=3_2_7_6_8 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCAmelCase__ = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class A_ : lowerCAmelCase__ = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCAmelCase__ = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCAmelCase__ = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class A_ : lowerCAmelCase__ = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCAmelCase__ = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCAmelCase__ = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'Push saved tokenizer to the hub.'} )
46
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
46
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( _a ): lowerCAmelCase__ = ['image_processor', 'tokenizer'] lowerCAmelCase__ = 'ViltImageProcessor' lowerCAmelCase__ = ('BertTokenizer', 'BertTokenizerFast') def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : str = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : Optional[Any] = kwargs.pop("feature_extractor" ) _lowerCamelCase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.image_processor def __call__( self: str ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Union[bool, str, PaddingStrategy] = False ,__lowerCAmelCase: Union[bool, str, TruncationStrategy] = None ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: int = 0 ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Optional[bool] = None ,__lowerCAmelCase: Optional[bool] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[Union[str, TensorType]] = None ,**__lowerCAmelCase: int ,): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.tokenizer( text=__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ,padding=__lowerCAmelCase ,truncation=__lowerCAmelCase ,max_length=__lowerCAmelCase ,stride=__lowerCAmelCase ,pad_to_multiple_of=__lowerCAmelCase ,return_token_type_ids=__lowerCAmelCase ,return_attention_mask=__lowerCAmelCase ,return_overflowing_tokens=__lowerCAmelCase ,return_special_tokens_mask=__lowerCAmelCase ,return_offsets_mapping=__lowerCAmelCase ,return_length=__lowerCAmelCase ,verbose=__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ,) # add pixel_values + pixel_mask _lowerCamelCase : int = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ) encoding.update(__lowerCAmelCase ) return encoding def _lowercase ( self: Any ,*__lowerCAmelCase: str ,**__lowerCAmelCase: int ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: Dict ,*__lowerCAmelCase: int ,**__lowerCAmelCase: List[str] ): '''simple docstring''' return self.tokenizer.decode(*__lowerCAmelCase ,**__lowerCAmelCase ) @property def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.tokenizer.model_input_names _lowerCamelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." ,__lowerCAmelCase ,) return self.image_processor_class @property def _lowercase ( self: str ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." ,__lowerCAmelCase ,) return self.image_processor
46
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): lowerCAmelCase__ = (DDIMParallelScheduler,) lowerCAmelCase__ = (('eta', 0.0), ('num_inference_steps', 5_0)) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = { "num_train_timesteps": 1_000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCAmelCase ) return config def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : Any = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = 10, 0.0 _lowerCamelCase : List[Any] = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for t in scheduler.timesteps: _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample return sample def _lowercase ( self: List[str] ): '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Dict = self.get_scheduler_config(steps_offset=1 ) _lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) ) def _lowercase ( self: Any ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCAmelCase ,beta_end=__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ): self.check_over_forward(time_step=__lowerCAmelCase ,num_inference_steps=__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCAmelCase ,eta=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : List[str] = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5 def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Union[str, Any] = self.get_scheduler_config() _lowerCamelCase : str = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[int] = 10, 0.0 scheduler.set_timesteps(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.dummy_model() _lowerCamelCase : Optional[int] = self.dummy_sample_deter _lowerCamelCase : List[str] = self.dummy_sample_deter + 0.1 _lowerCamelCase : Dict = self.dummy_sample_deter - 0.1 _lowerCamelCase : Union[str, Any] = samplea.shape[0] _lowerCamelCase : List[Any] = torch.stack([samplea, samplea, samplea] ,dim=0 ) _lowerCamelCase : Dict = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 ,__lowerCAmelCase ) _lowerCamelCase : str = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) _lowerCamelCase : List[str] = scheduler.batch_step_no_noise(__lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,__lowerCAmelCase ) _lowerCamelCase : str = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = self.full_loop() _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : int = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(prediction_type="v_prediction" ) _lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[str] = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : int = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
46
1
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _lowerCAmelCase : Dict = TypeVar('''T''') class A_ ( Generic[T] ): lowerCAmelCase__ = 42 # Cache store of keys lowerCAmelCase__ = 42 # References of the keys in cache lowerCAmelCase__ = 1_0 # Maximum capacity of cache def __init__( self: int ,__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : List[Any] = deque() _lowerCamelCase : Union[str, Any] = set() if not n: _lowerCamelCase : Optional[Any] = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: _lowerCamelCase : Tuple = n def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _lowerCamelCase : int = self.dq_store.pop() self.key_reference.remove(__lowerCAmelCase ) else: self.dq_store.remove(__lowerCAmelCase ) self.dq_store.appendleft(__lowerCAmelCase ) self.key_reference.add(__lowerCAmelCase ) def _lowercase ( self: Tuple ): '''simple docstring''' for k in self.dq_store: print(__lowerCAmelCase ) def __repr__( self: Tuple ): '''simple docstring''' return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
46
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class A_ ( _a , _a ): lowerCAmelCase__ = 'bit' lowerCAmelCase__ = ['preactivation', 'bottleneck'] lowerCAmelCase__ = ['SAME', 'VALID'] def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=3 ,__lowerCAmelCase: List[str]=64 ,__lowerCAmelCase: Union[str, Any]=[256, 512, 1_024, 2_048] ,__lowerCAmelCase: Optional[int]=[3, 4, 6, 3] ,__lowerCAmelCase: str="preactivation" ,__lowerCAmelCase: Tuple="relu" ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Dict=1 ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Any ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCamelCase : List[Any] = global_padding.upper() else: raise ValueError(F"""Padding strategy {global_padding} not supported""" ) _lowerCamelCase : str = num_channels _lowerCamelCase : str = embedding_size _lowerCamelCase : Dict = hidden_sizes _lowerCamelCase : str = depths _lowerCamelCase : Any = layer_type _lowerCamelCase : Any = hidden_act _lowerCamelCase : List[str] = global_padding _lowerCamelCase : Tuple = num_groups _lowerCamelCase : Optional[int] = drop_path_rate _lowerCamelCase : List[Any] = embedding_dynamic_padding _lowerCamelCase : Any = output_stride _lowerCamelCase : List[str] = width_factor _lowerCamelCase : List[Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 ,len(__lowerCAmelCase ) + 1 )] _lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase ,out_indices=__lowerCAmelCase ,stage_names=self.stage_names )
46
1
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class A_ ( unittest.TestCase , _a ): def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[str] = load_tool("text-to-speech" ) self.tool.setup() def _lowercase ( self: Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : Tuple = self.tool("hey" ) _lowerCamelCase : Union[str, Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] ,torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) ,) ) def _lowercase ( self: List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : str = self.tool("hey" ) _lowerCamelCase : List[Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] ,torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) ,) )
46
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class A_ ( _a ): lowerCAmelCase__ = 'vivit' def __init__( self: List[Any] ,__lowerCAmelCase: int=224 ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: str=[2, 16, 16] ,__lowerCAmelCase: Optional[Any]=3 ,__lowerCAmelCase: List[str]=768 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: Optional[int]=12 ,__lowerCAmelCase: Optional[Any]=3_072 ,__lowerCAmelCase: Any="gelu_fast" ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: Union[str, Any]=0.02 ,__lowerCAmelCase: List[str]=1e-06 ,__lowerCAmelCase: Optional[Any]=True ,**__lowerCAmelCase: Optional[int] ,): '''simple docstring''' _lowerCamelCase : Any = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Tuple = image_size _lowerCamelCase : Dict = num_frames _lowerCamelCase : Optional[int] = tubelet_size _lowerCamelCase : int = num_channels _lowerCamelCase : List[str] = qkv_bias super().__init__(**__lowerCAmelCase )
46
1
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = { "attention_cell": "multi_head", "num_layers": 4, "units": 1024, "hidden_size": 768, "max_length": 512, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 1024, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1e-5, "token_type_vocab_size": 2, } _lowerCamelCase : Optional[int] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py _lowerCamelCase : int = BERTEncoder( attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=_lowerCamelCase , output_all_encodings=_lowerCamelCase , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , _lowerCamelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later _lowerCamelCase : Dict = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab _lowerCamelCase : Union[str, Any] = os.path.join(get_home_dir() , "models" ) _lowerCamelCase : List[str] = _load_vocab(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , cls=_lowerCamelCase ) _lowerCamelCase : int = nlp.model.BERTModel( _lowerCamelCase , len(_lowerCamelCase ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=_lowerCamelCase , use_token_type_embed=_lowerCamelCase , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=_lowerCamelCase , use_decoder=_lowerCamelCase , ) original_bort.load_parameters(_lowerCamelCase , cast_dtype=_lowerCamelCase , ignore_extra=_lowerCamelCase ) _lowerCamelCase : int = original_bort._collect_params_with_prefix() # Build our config 🤗 _lowerCamelCase : Optional[Any] = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.0_2, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(_lowerCamelCase ), } _lowerCamelCase : int = BertConfig.from_dict(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = BertForMaskedLM(_lowerCamelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(_lowerCamelCase ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : List[str] = hf_param.shape _lowerCamelCase : Tuple = to_torch(params[gluon_param] ) _lowerCamelCase : str = gluon_param.shape assert ( shape_hf == shape_gluon ), F"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param _lowerCamelCase : List[Any] = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" ) _lowerCamelCase : Any = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" ) _lowerCamelCase : int = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" ) _lowerCamelCase : int = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) _lowerCamelCase : Union[str, Any] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): _lowerCamelCase : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention _lowerCamelCase : BertSelfAttention = layer.attention.self _lowerCamelCase : Optional[Any] = check_and_map_params( self_attn.key.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) _lowerCamelCase : Any = check_and_map_params( self_attn.key.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) _lowerCamelCase : Union[str, Any] = check_and_map_params( self_attn.query.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) _lowerCamelCase : List[str] = check_and_map_params( self_attn.query.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) _lowerCamelCase : str = check_and_map_params( self_attn.value.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) _lowerCamelCase : int = check_and_map_params( self_attn.value.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output _lowerCamelCase : BertSelfOutput = layer.attention.output _lowerCamelCase : str = check_and_map_params( self_output.dense.bias , F"""encoder.transformer_cells.{i}.proj.bias""" ) _lowerCamelCase : Any = check_and_map_params( self_output.dense.weight , F"""encoder.transformer_cells.{i}.proj.weight""" ) _lowerCamelCase : Optional[Any] = check_and_map_params( self_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.layer_norm.beta""" ) _lowerCamelCase : Optional[Any] = check_and_map_params( self_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate _lowerCamelCase : BertIntermediate = layer.intermediate _lowerCamelCase : Optional[int] = check_and_map_params( intermediate.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) _lowerCamelCase : List[str] = check_and_map_params( intermediate.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output _lowerCamelCase : BertOutput = layer.output _lowerCamelCase : List[Any] = check_and_map_params( bert_output.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) _lowerCamelCase : int = check_and_map_params( bert_output.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) _lowerCamelCase : Optional[Any] = check_and_map_params( bert_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) _lowerCamelCase : Optional[Any] = check_and_map_params( bert_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models _lowerCamelCase : List[str] = RobertaTokenizer.from_pretrained("roberta-base" ) _lowerCamelCase : Union[str, Any] = tokenizer.encode_plus(_lowerCamelCase )["input_ids"] # Get gluon output _lowerCamelCase : Optional[Any] = mx.nd.array([input_ids] ) _lowerCamelCase : Any = original_bort(inputs=_lowerCamelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(_lowerCamelCase ) _lowerCamelCase : Any = BertModel.from_pretrained(_lowerCamelCase ) hf_bort_model.eval() _lowerCamelCase : Any = tokenizer.encode_plus(_lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = hf_bort_model(**_lowerCamelCase )[0] _lowerCamelCase : Union[str, Any] = output_gluon[0].asnumpy() _lowerCamelCase : Optional[Any] = output_hf[0].detach().numpy() _lowerCamelCase : Optional[int] = np.max(np.abs(hf_layer - gluon_layer ) ).item() _lowerCamelCase : Union[str, Any] = np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:" , _lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCAmelCase : List[str] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
46
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = MgpstrTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {} lowerCAmelCase__ = False def _lowercase ( self: int ): '''simple docstring''' super().setUp() # fmt: off _lowerCamelCase : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = "tester" _lowerCamelCase : Optional[Any] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) _lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) ,1 ) _lowerCamelCase : int = tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase, _lowerCamelCase : List[Any] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) _lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertNotEqual(len(__lowerCAmelCase ) ,0 ) _lowerCamelCase : Optional[int] = tokenizer.decode(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(text_a.replace(" " ,"" ) ,__lowerCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _lowercase ( self: str ): '''simple docstring''' pass
46
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A_ ( unittest.TestCase ): def _lowercase ( self: List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = 1 _lowerCamelCase : int = 3 _lowerCamelCase : Tuple = (32, 32) _lowerCamelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(__lowerCAmelCase ) return image @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,) return model @property def _lowercase ( self: List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : Dict = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,) return model @property def _lowercase ( self: Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : Any = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=5_006 ,) return RobertaSeriesModelWithTransformation(__lowerCAmelCase ) @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' def extract(*__lowerCAmelCase: Tuple ,**__lowerCAmelCase: Tuple ): class A_ : def __init__( self: List[str] ): '''simple docstring''' _lowerCamelCase : Any = torch.ones([0] ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' self.pixel_values.to(__lowerCAmelCase ) return self return Out() return extract def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : str = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : Any = self.dummy_cond_unet _lowerCamelCase : int = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.dummy_vae _lowerCamelCase : List[str] = self.dummy_text_encoder _lowerCamelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _lowerCamelCase : Union[str, Any] = 77 _lowerCamelCase : List[Any] = self.dummy_image.to(__lowerCAmelCase ) _lowerCamelCase : List[str] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _lowerCamelCase : int = AltDiffusionImgaImgPipeline( unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,vae=__lowerCAmelCase ,text_encoder=__lowerCAmelCase ,tokenizer=__lowerCAmelCase ,safety_checker=__lowerCAmelCase ,feature_extractor=self.dummy_extractor ,) _lowerCamelCase : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = alt_pipe.to(__lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Dict = "A painting of a squirrel eating a burger" _lowerCamelCase : List[str] = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) _lowerCamelCase : int = alt_pipe( [prompt] ,generator=__lowerCAmelCase ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="np" ,image=__lowerCAmelCase ,) _lowerCamelCase : Dict = output.images _lowerCamelCase : Any = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) _lowerCamelCase : Union[str, Any] = alt_pipe( [prompt] ,generator=__lowerCAmelCase ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="np" ,image=__lowerCAmelCase ,return_dict=__lowerCAmelCase ,)[0] _lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] _lowerCamelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCamelCase : List[str] = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" ,"This test requires a GPU" ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.dummy_cond_unet _lowerCamelCase : str = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) _lowerCamelCase : int = self.dummy_vae _lowerCamelCase : int = self.dummy_text_encoder _lowerCamelCase : List[Any] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _lowerCamelCase : Tuple = 77 _lowerCamelCase : Any = self.dummy_image.to(__lowerCAmelCase ) # put models in fp16 _lowerCamelCase : List[str] = unet.half() _lowerCamelCase : Union[str, Any] = vae.half() _lowerCamelCase : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk _lowerCamelCase : Optional[Any] = AltDiffusionImgaImgPipeline( unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,vae=__lowerCAmelCase ,text_encoder=__lowerCAmelCase ,tokenizer=__lowerCAmelCase ,safety_checker=__lowerCAmelCase ,feature_extractor=self.dummy_extractor ,) _lowerCamelCase : int = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = alt_pipe.to(__lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : int = "A painting of a squirrel eating a burger" _lowerCamelCase : List[Any] = torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = alt_pipe( [prompt] ,generator=__lowerCAmelCase ,num_inference_steps=2 ,output_type="np" ,image=__lowerCAmelCase ,).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" ,"This test requires a GPU" ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _lowerCamelCase : List[str] = init_image.resize((760, 504) ) _lowerCamelCase : Any = "BAAI/AltDiffusion" _lowerCamelCase : Optional[int] = AltDiffusionImgaImgPipeline.from_pretrained( __lowerCAmelCase ,safety_checker=__lowerCAmelCase ,) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _lowerCamelCase : Optional[Any] = "A fantasy landscape, trending on artstation" _lowerCamelCase : List[Any] = torch.manual_seed(0 ) _lowerCamelCase : Union[str, Any] = pipe( prompt=__lowerCAmelCase ,image=__lowerCAmelCase ,strength=0.75 ,guidance_scale=7.5 ,generator=__lowerCAmelCase ,output_type="np" ,) _lowerCamelCase : Any = output.images[0] _lowerCamelCase : Optional[int] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) _lowerCamelCase : List[Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class A_ ( unittest.TestCase ): def _lowercase ( self: str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _lowerCamelCase : Union[str, Any] = init_image.resize((768, 512) ) _lowerCamelCase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _lowerCamelCase : Dict = "BAAI/AltDiffusion" _lowerCamelCase : str = AltDiffusionImgaImgPipeline.from_pretrained( __lowerCAmelCase ,safety_checker=__lowerCAmelCase ,) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _lowerCamelCase : Optional[int] = "A fantasy landscape, trending on artstation" _lowerCamelCase : Optional[Any] = torch.manual_seed(0 ) _lowerCamelCase : List[str] = pipe( prompt=__lowerCAmelCase ,image=__lowerCAmelCase ,strength=0.75 ,guidance_scale=7.5 ,generator=__lowerCAmelCase ,output_type="np" ,) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
46
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : str = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ) -> Tuple: '''simple docstring''' _lowerCamelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCamelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=512 , _lowerCamelCase=512 ) -> int: '''simple docstring''' _lowerCamelCase : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _lowerCamelCase : Union[str, Any] = np.array(pil_image.convert("RGB" ) ) _lowerCamelCase : Any = arr.astype(np.floataa ) / 1_2_7.5 - 1 _lowerCamelCase : Optional[Any] = np.transpose(_lowerCamelCase , [2, 0, 1] ) _lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class A_ ( _a ): def __init__( self: Any ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: DDPMScheduler ,__lowerCAmelCase: VQModel ,): '''simple docstring''' super().__init__() self.register_modules( unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,movq=__lowerCAmelCase ,) _lowerCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowercase ( self: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : int = min(int(num_inference_steps * strength ) ,__lowerCAmelCase ) _lowerCamelCase : Tuple = max(num_inference_steps - init_timestep ,0 ) _lowerCamelCase : Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}""" ) _lowerCamelCase : Any = image.to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCamelCase : List[Any] = image else: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase ) ] _lowerCamelCase : Tuple = torch.cat(__lowerCAmelCase ,dim=0 ) else: _lowerCamelCase : int = self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase ) _lowerCamelCase : int = self.movq.config.scaling_factor * init_latents _lowerCamelCase : Tuple = torch.cat([init_latents] ,dim=0 ) _lowerCamelCase : Optional[int] = init_latents.shape _lowerCamelCase : int = randn_tensor(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) # get latents _lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : str = init_latents return latents def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : str = torch.device(F"""cuda:{gpu_id}""" ) _lowerCamelCase : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _lowerCamelCase : List[str] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" ,silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCamelCase, _lowerCamelCase : str = cpu_offload_with_hook(__lowerCAmelCase ,__lowerCAmelCase ,prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. _lowerCamelCase : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if not hasattr(self.unet ,"_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase ,"_hf_hook" ) and hasattr(module._hf_hook ,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self: Dict ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: float = 4.0 ,__lowerCAmelCase: float = 0.3 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : Dict = guidance_scale > 1.0 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : int = torch.cat(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Any = image_embeds.shape[0] if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : str = torch.cat(__lowerCAmelCase ,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[int] = negative_image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCAmelCase ) if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Tuple = [image] if not all(isinstance(__lowerCAmelCase ,(PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _lowerCamelCase : Union[str, Any] = torch.cat([prepare_image(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for i in image] ,dim=0 ) _lowerCamelCase : str = image.to(dtype=image_embeds.dtype ,device=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.movq.encode(__lowerCAmelCase )["latents"] _lowerCamelCase : List[str] = latents.repeat_interleave(__lowerCAmelCase ,dim=0 ) self.scheduler.set_timesteps(__lowerCAmelCase ,device=__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.get_timesteps(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCamelCase, _lowerCamelCase : Tuple = downscale_height_and_width(__lowerCAmelCase ,__lowerCAmelCase ,self.movq_scale_factor ) _lowerCamelCase : List[Any] = self.prepare_latents( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,image_embeds.dtype ,__lowerCAmelCase ,__lowerCAmelCase ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : List[str] = {"image_embeds": image_embeds} _lowerCamelCase : Tuple = self.unet( sample=__lowerCAmelCase ,timestep=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,added_cond_kwargs=__lowerCAmelCase ,return_dict=__lowerCAmelCase ,)[0] if do_classifier_free_guidance: _lowerCamelCase, _lowerCamelCase : Tuple = noise_pred.split(latents.shape[1] ,dim=1 ) _lowerCamelCase, _lowerCamelCase : Dict = noise_pred.chunk(2 ) _lowerCamelCase, _lowerCamelCase : str = variance_pred.chunk(2 ) _lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Optional[int] = self.scheduler.step( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,generator=__lowerCAmelCase ,)[0] # post-processing _lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase ,force_not_quantize=__lowerCAmelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _lowerCamelCase : Optional[int] = image * 0.5 + 0.5 _lowerCamelCase : str = image.clamp(0 ,1 ) _lowerCamelCase : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _lowerCamelCase : str = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
46
1
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Union[str, Any] = 1.5 _lowerCamelCase : Tuple = int(factor * num_class_images ) _lowerCamelCase : Union[str, Any] = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=_lowerCamelCase , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=_lowerCamelCase ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: _lowerCamelCase : int = client.query(text=_lowerCamelCase ) if len(_lowerCamelCase ) >= factor * num_class_images or num_images > 1e4: break else: _lowerCamelCase : str = int(factor * num_images ) _lowerCamelCase : str = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=_lowerCamelCase , aesthetic_weight=0.1 , ) _lowerCamelCase : List[Any] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : Any = tqdm(desc="downloading real regularization images" , total=_lowerCamelCase ) with open(F"""{class_data_dir}/caption.txt""" , "w" ) as fa, open(F"""{class_data_dir}/urls.txt""" , "w" ) as fa, open( F"""{class_data_dir}/images.txt""" , "w" ) as fa: while total < num_class_images: _lowerCamelCase : List[Any] = class_images[count] count += 1 try: _lowerCamelCase : int = requests.get(images["url"] ) if img.status_code == 200: _lowerCamelCase : Any = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowerCamelCase_( ) -> Tuple: '''simple docstring''' _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser("" , add_help=_lowerCamelCase ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=_lowerCamelCase , type=_lowerCamelCase ) parser.add_argument("--class_data_dir" , help="path to save images" , required=_lowerCamelCase , type=_lowerCamelCase ) parser.add_argument("--num_class_images" , help="number of images to download" , default=200 , type=_lowerCamelCase ) return parser.parse_args() if __name__ == "__main__": _lowerCAmelCase : Tuple = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
46
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowerCamelCase_( ) -> None: '''simple docstring''' print("Making key files..." ) make_key_files("rsa" , 1024 ) print("Key files generation successful." ) def lowerCamelCase_( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]: '''simple docstring''' print("Generating prime p..." ) _lowerCamelCase : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase ) print("Generating prime q..." ) _lowerCamelCase : Tuple = rabinMiller.generate_large_prime(_lowerCamelCase ) _lowerCamelCase : Dict = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: _lowerCamelCase : Tuple = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) _lowerCamelCase : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) ) _lowerCamelCase : Dict = (n, e) _lowerCamelCase : Dict = (n, d) return (public_key, private_key) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> None: '''simple docstring''' if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() _lowerCamelCase, _lowerCamelCase : Dict = generate_key(_lowerCamelCase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
46
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : Tuple = "" else: _lowerCamelCase : str = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Tuple = in_proj_bias[: config.hidden_size] _lowerCamelCase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Any = dct.pop(_lowerCamelCase ) _lowerCamelCase : Dict = val def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase : str = 8 # set labels if required if not base_model: _lowerCamelCase : str = 1000 _lowerCamelCase : Any = "huggingface/label-files" _lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase : int = 384 _lowerCamelCase : str = 1536 _lowerCamelCase : List[str] = 12 _lowerCamelCase : Optional[int] = 6 # load original model from torch hub _lowerCamelCase : Union[str, Any] = torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[str] = original_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if base_model: _lowerCamelCase : Optional[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval() else: _lowerCamelCase : Union[str, Any] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase : Tuple = ViTImageProcessor() _lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Dict = encoding["pixel_values"] _lowerCamelCase : int = model(_lowerCamelCase ) if base_model: _lowerCamelCase : List[str] = original_model(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: _lowerCamelCase : Tuple = original_model(_lowerCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) _lowerCAmelCase : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
46
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Any = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[str] = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Dict = mask_ratio _lowerCamelCase : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase : str = (image_size // patch_size) ** 2 _lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2 _lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) _lowerCamelCase : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = ViTMAEModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase : Dict = pt_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Any = outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) # Make sure we don't have nans _lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: str ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase ( self: int ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: Dict ): '''simple docstring''' pass @slow def _lowercase ( self: Dict ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase ( self: int ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase : Tuple = ViTMAEConfig() _lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Tuple = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
46
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase : Optional[int] = 16 _lowerCAmelCase : List[Any] = 32 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = 16 ) -> List[str]: '''simple docstring''' _lowerCamelCase : int = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCamelCase : Optional[Any] = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCamelCase : Optional[int] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCamelCase : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCamelCase : Any = 16 elif accelerator.mixed_precision != "no": _lowerCamelCase : Dict = 8 else: _lowerCamelCase : Optional[int] = None return tokenizer.pad( _lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. _lowerCamelCase : Union[str, Any] = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) _lowerCamelCase : int = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCAmelCase : Dict = mocked_dataloaders # noqa: F811 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCamelCase ) == "1": _lowerCamelCase : Optional[Any] = 2 # Initialize accelerator _lowerCamelCase : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCamelCase : Any = config["lr"] _lowerCamelCase : Tuple = int(config["num_epochs"] ) _lowerCamelCase : Union[str, Any] = int(config["seed"] ) _lowerCamelCase : Optional[Any] = int(config["batch_size"] ) _lowerCamelCase : Tuple = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation _lowerCamelCase : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowerCamelCase : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE _lowerCamelCase : Dict = MAX_GPU_BATCH_SIZE set_seed(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase : Any = get_dataloaders(_lowerCamelCase , _lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCamelCase : str = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCamelCase : Tuple = model.to(accelerator.device ) # Instantiate optimizer _lowerCamelCase : Any = AdamW(params=model.parameters() , lr=_lowerCamelCase ) # Instantiate scheduler _lowerCamelCase : Any = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowerCamelCase : Dict = model(**_lowerCamelCase ) _lowerCamelCase : List[str] = outputs.loss _lowerCamelCase : List[Any] = loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _lowerCamelCase : Any = 0 for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCamelCase : str = model(**_lowerCamelCase ) _lowerCamelCase : Tuple = outputs.logits.argmax(dim=-1 ) _lowerCamelCase, _lowerCamelCase : int = accelerator.gather((predictions, batch["labels"]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(_lowerCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _lowerCamelCase : Dict = predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowerCamelCase : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) _lowerCamelCase : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , _lowerCamelCase ) def lowerCamelCase_( ) -> Any: '''simple docstring''' _lowerCamelCase : int = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase : List[Any] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
46
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCAmelCase : List[str] = 10 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' for i in range(_lowerCamelCase , _lowerCamelCase ): if array[i] == target: return i return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Any = len(_lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = (left + right) // 3 + 1 _lowerCamelCase : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _lowerCamelCase : Union[str, Any] = one_third - 1 elif array[two_third] < target: _lowerCamelCase : Any = two_third + 1 else: _lowerCamelCase : List[str] = one_third + 1 _lowerCamelCase : int = two_third - 1 else: return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Tuple = (left + right) // 3 + 1 _lowerCamelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip() _lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowerCAmelCase : Any = int(input('''Enter the number to be found in the list:\n''').strip()) _lowerCAmelCase : Union[str, Any] = ite_ternary_search(collection, target) _lowerCAmelCase : str = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
46
1
"""simple docstring""" from collections import defaultdict def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : str = first_str.lower().strip() _lowerCamelCase : Any = second_str.lower().strip() # Remove whitespace _lowerCamelCase : int = first_str.replace(" " , "" ) _lowerCamelCase : List[Any] = second_str.replace(" " , "" ) # Strings of different lengths are not anagrams if len(_lowerCamelCase ) != len(_lowerCamelCase ): return False # Default values for count should be 0 _lowerCamelCase : defaultdict[str, int] = defaultdict(_lowerCamelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_lowerCamelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _lowerCAmelCase : Union[str, Any] = input('''Enter the first string ''').strip() _lowerCAmelCase : Optional[Any] = input('''Enter the second string ''').strip() _lowerCAmelCase : Optional[Any] = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
46
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 100 ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = set() _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Optional[int] = n + 1 # maximum limit for a in range(2 , _lowerCamelCase ): for b in range(2 , _lowerCamelCase ): _lowerCamelCase : List[str] = a**b # calculates the current power collect_powers.add(_lowerCamelCase ) # adds the result to the set return len(_lowerCamelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
46
1
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> list[list[float]]: '''simple docstring''' _lowerCamelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(_lowerCamelCase ): if len(_lowerCamelCase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_lowerCamelCase ) ) return data_lists def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[list[float]]: '''simple docstring''' _lowerCamelCase : list[list[float]] = [] for dlist, weight in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Optional[int] = min(_lowerCamelCase ) _lowerCamelCase : str = max(_lowerCamelCase ) _lowerCamelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: _lowerCamelCase : Optional[Any] = F"""Invalid weight of {weight:f} provided""" raise ValueError(_lowerCamelCase ) score_lists.append(_lowerCamelCase ) return score_lists def lowerCamelCase_( _lowerCamelCase ) -> list[float]: '''simple docstring''' _lowerCamelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_lowerCamelCase ): _lowerCamelCase : Optional[Any] = final_scores[j] + ele return final_scores def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[list[float]]: '''simple docstring''' _lowerCamelCase : Any = get_data(_lowerCamelCase ) _lowerCamelCase : List[str] = calculate_each_score(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Tuple = generate_final_scores(_lowerCamelCase ) # append scores to source data for i, ele in enumerate(_lowerCamelCase ): source_data[i].append(_lowerCamelCase ) return source_data
46
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # TODO Update this _lowerCAmelCase : Optional[Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class A_ ( _a ): lowerCAmelCase__ = 'esm' def __init__( self: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: List[Any]=1_026 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Dict="absolute" ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,mask_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : int = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : str = use_cache _lowerCamelCase : Union[str, Any] = emb_layer_norm_before _lowerCamelCase : Tuple = token_dropout _lowerCamelCase : Dict = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) _lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = EsmFoldConfig(**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) _lowerCamelCase : List[str] = get_default_vocab_list() else: _lowerCamelCase : Optional[Any] = vocab_list else: _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,__lowerCAmelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = super().to_dict() if isinstance(self.esmfold_config ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = 0 lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Dict ): '''simple docstring''' if self.trunk is None: _lowerCamelCase : Optional[int] = TrunkConfig() elif isinstance(self.trunk ,__lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = TrunkConfig(**self.trunk ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 4_8 lowerCAmelCase__ = 1_0_2_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = False lowerCAmelCase__ = 4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Any ): '''simple docstring''' if self.structure_module is None: _lowerCamelCase : Tuple = StructureModuleConfig() elif isinstance(self.structure_module ,__lowerCAmelCase ): _lowerCamelCase : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _lowerCamelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width _lowerCamelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : Optional[int] = self.structure_module.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 3_8_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_2 lowerCAmelCase__ = 4 lowerCAmelCase__ = 8 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 8 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_0 lowerCAmelCase__ = 1E-8 lowerCAmelCase__ = 1E5 def _lowercase ( self: Any ): '''simple docstring''' return asdict(self ) def lowerCamelCase_( ) -> int: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
46
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A_ : lowerCAmelCase__ = 42 lowerCAmelCase__ = None lowerCAmelCase__ = None _lowerCAmelCase : List[str] = namedtuple('''CoinsDistribResult''', '''moves excess''') def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_lowerCamelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_lowerCamelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_lowerCamelCase ) != count_coins(_lowerCamelCase ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_lowerCamelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _lowerCamelCase, _lowerCamelCase : Dict = get_distrib(node.left ) _lowerCamelCase, _lowerCamelCase : str = get_distrib(node.right ) _lowerCamelCase : Any = 1 - left_distrib_excess _lowerCamelCase : Dict = 1 - right_distrib_excess _lowerCamelCase : Union[str, Any] = ( left_distrib_moves + right_distrib_moves + abs(_lowerCamelCase ) + abs(_lowerCamelCase ) ) _lowerCamelCase : str = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_lowerCamelCase , _lowerCamelCase ) return get_distrib(_lowerCamelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
46
"""simple docstring""" import re def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
46
1
"""simple docstring""" import math def lowerCamelCase_( _lowerCamelCase ) -> list[int]: '''simple docstring''' _lowerCamelCase : Any = [] _lowerCamelCase : Optional[int] = 2 _lowerCamelCase : Tuple = int(math.sqrt(_lowerCamelCase ) ) # Size of every segment _lowerCamelCase : Tuple = [True] * (end + 1) _lowerCamelCase : Union[str, Any] = [] while start <= end: if temp[start] is True: in_prime.append(_lowerCamelCase ) for i in range(start * start , end + 1 , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = False start += 1 prime += in_prime _lowerCamelCase : Optional[int] = end + 1 _lowerCamelCase : Tuple = min(2 * end , _lowerCamelCase ) while low <= n: _lowerCamelCase : List[Any] = [True] * (high - low + 1) for each in in_prime: _lowerCamelCase : List[Any] = math.floor(low / each ) * each if t < low: t += each for j in range(_lowerCamelCase , high + 1 , _lowerCamelCase ): _lowerCamelCase : Optional[Any] = False for j in range(len(_lowerCamelCase ) ): if temp[j] is True: prime.append(j + low ) _lowerCamelCase : Optional[int] = high + 1 _lowerCamelCase : Union[str, Any] = min(high + end , _lowerCamelCase ) return prime print(sieve(10**6))
46
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : Tuple = "" else: _lowerCamelCase : str = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Tuple = in_proj_bias[: config.hidden_size] _lowerCamelCase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Any = dct.pop(_lowerCamelCase ) _lowerCamelCase : Dict = val def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase : str = 8 # set labels if required if not base_model: _lowerCamelCase : str = 1000 _lowerCamelCase : Any = "huggingface/label-files" _lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase : int = 384 _lowerCamelCase : str = 1536 _lowerCamelCase : List[str] = 12 _lowerCamelCase : Optional[int] = 6 # load original model from torch hub _lowerCamelCase : Union[str, Any] = torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[str] = original_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if base_model: _lowerCamelCase : Optional[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval() else: _lowerCamelCase : Union[str, Any] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase : Tuple = ViTImageProcessor() _lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Dict = encoding["pixel_values"] _lowerCamelCase : int = model(_lowerCamelCase ) if base_model: _lowerCamelCase : List[str] = original_model(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: _lowerCamelCase : Tuple = original_model(_lowerCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) _lowerCAmelCase : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
46
1
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCAmelCase : str = re.compile(R'''\s+''') def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_lowerCamelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Any = [len(_lowerCamelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCamelCase ), "line_max": max(_lowerCamelCase )} def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Optional[Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=5 ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : str = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : str = example["content"].splitlines() for _, line in zip(range(_lowerCamelCase ) , _lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=5 , _lowerCamelCase=0.0_5 ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Tuple = ["unit tests", "test file", "configuration file"] _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCamelCase ) , _lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Dict = example["content"].count("\n" ) _lowerCamelCase : Optional[Any] = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Dict = ["def ", "class ", "for ", "while "] _lowerCamelCase : Union[str, Any] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=4 ) -> int: '''simple docstring''' _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : List[Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : List[str] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"] _lowerCamelCase : Tuple = len(example["content"] ) / len(_lowerCamelCase ) return {"ratio": ratio} def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : str = {} results.update(get_hash(_lowerCamelCase ) ) results.update(line_stats(_lowerCamelCase ) ) results.update(alpha_stats(_lowerCamelCase ) ) results.update(char_token_ratio(_lowerCamelCase ) ) results.update(is_autogenerated(_lowerCamelCase ) ) results.update(is_config_or_test(_lowerCamelCase ) ) results.update(has_no_keywords(_lowerCamelCase ) ) results.update(has_few_assignments(_lowerCamelCase ) ) return results def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' if not check_uniques(_lowerCamelCase , _lowerCamelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' with open(_lowerCamelCase , "rb" ) as f_in: with gzip.open(str(_lowerCamelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCamelCase , _lowerCamelCase ) os.unlink(_lowerCamelCase ) # Settings _lowerCAmelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCAmelCase : List[str] = parser.parse_args() if args.num_workers is None: _lowerCAmelCase : Optional[Any] = multiprocessing.cpu_count() _lowerCAmelCase : Any = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase : str = load_dataset(args.dataset_name, split='''train''') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing _lowerCAmelCase : List[Any] = time.time() _lowerCAmelCase : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes _lowerCAmelCase : Dict = set(ds.unique('''hash''')) _lowerCAmelCase : Union[str, Any] = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics _lowerCAmelCase : Tuple = time.time() _lowerCAmelCase : List[Any] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase , _lowerCAmelCase : Optional[int] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file _lowerCAmelCase : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCAmelCase : Optional[int] = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCAmelCase : Optional[int] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCAmelCase : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') _lowerCAmelCase : Optional[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
46
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) _lowerCamelCase : Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class A_ ( _a ): lowerCAmelCase__ = 'sigmoid' lowerCAmelCase__ = 'softmax' lowerCAmelCase__ = 'none' @add_end_docstrings( _a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class A_ ( _a ): lowerCAmelCase__ = False lowerCAmelCase__ = ClassificationFunction.NONE def __init__( self: str ,**__lowerCAmelCase: str ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = tokenizer_kwargs _lowerCamelCase : Optional[int] = {} if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None: _lowerCamelCase : Tuple = self.model.config.return_all_scores if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None: _lowerCamelCase : List[str] = top_k _lowerCamelCase : Union[str, Any] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,) if return_all_scores: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : Union[str, Any] = 1 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCamelCase : Dict = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCamelCase : Optional[Any] = "top_k" not in kwargs if isinstance(args[0] ,__lowerCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = self.framework if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return self.model(**__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCamelCase : Dict = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None: _lowerCamelCase : Optional[int] = self.model.config.function_to_apply else: _lowerCamelCase : str = ClassificationFunction.NONE _lowerCamelCase : List[Any] = model_outputs["logits"][0] _lowerCamelCase : Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCamelCase : str = sigmoid(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: _lowerCamelCase : str = outputs else: raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCamelCase : Optional[int] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase ) if top_k is not None: _lowerCamelCase : Any = dict_scores[:top_k] return dict_scores
46
1
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) _lowerCamelCase : Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class A_ ( _a ): lowerCAmelCase__ = 'sigmoid' lowerCAmelCase__ = 'softmax' lowerCAmelCase__ = 'none' @add_end_docstrings( _a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class A_ ( _a ): lowerCAmelCase__ = False lowerCAmelCase__ = ClassificationFunction.NONE def __init__( self: str ,**__lowerCAmelCase: str ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = tokenizer_kwargs _lowerCamelCase : Optional[int] = {} if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None: _lowerCamelCase : Tuple = self.model.config.return_all_scores if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None: _lowerCamelCase : List[str] = top_k _lowerCamelCase : Union[str, Any] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,) if return_all_scores: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : Union[str, Any] = 1 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCamelCase : Dict = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCamelCase : Optional[Any] = "top_k" not in kwargs if isinstance(args[0] ,__lowerCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = self.framework if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return self.model(**__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCamelCase : Dict = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None: _lowerCamelCase : Optional[int] = self.model.config.function_to_apply else: _lowerCamelCase : str = ClassificationFunction.NONE _lowerCamelCase : List[Any] = model_outputs["logits"][0] _lowerCamelCase : Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCamelCase : str = sigmoid(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: _lowerCamelCase : str = outputs else: raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCamelCase : Optional[int] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase ) if top_k is not None: _lowerCamelCase : Any = dict_scores[:top_k] return dict_scores
46
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase : Tuple = '''\ Text data. Second line of data.''' _lowerCAmelCase : str = '''file''' @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : str = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _lowerCamelCase : List[str] = bytes(_lowerCamelCase , "utf-8" ) with zstd.open(_lowerCamelCase , "wb" ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , "w" ) as f: f.write(_lowerCamelCase ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _lowerCamelCase : Tuple = input_paths[compression_format] _lowerCamelCase : int = tmp_path / "cache" _lowerCamelCase : Any = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) with open(_lowerCamelCase ) as f: _lowerCamelCase : List[Any] = f.read() with open(_lowerCamelCase ) as f: _lowerCamelCase : int = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = "custom_cache" _lowerCamelCase : List[str] = "custom_extracted_dir" _lowerCamelCase : str = tmp_path / "custom_extracted_path" if default_extracted: _lowerCamelCase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) ) _lowerCamelCase : int = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCamelCase : int = xz_file _lowerCamelCase : List[Any] = ( DownloadConfig(extract_compressed_file=_lowerCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase ) ) _lowerCamelCase : Dict = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) assert Path(_lowerCamelCase ).parent.parts[-2:] == expected def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Tuple = str(Path(_lowerCamelCase ).resolve() ) assert cached_path(_lowerCamelCase ) == text_file # relative path _lowerCamelCase : Optional[int] = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_lowerCamelCase ) == text_file def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) # relative path _lowerCamelCase : List[Any] = "./__missing_file__.txt" with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_lowerCamelCase ) as f: _lowerCamelCase : Tuple = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( ) -> int: '''simple docstring''' with pytest.raises(_lowerCamelCase ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): http_get("https://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Any = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): ftp_get("ftp://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): fsspec_get("s3://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): fsspec_head("s3://huggingface.co" )
46
1
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
46
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None: '''simple docstring''' _lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowerCamelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _lowerCamelCase : List[str] = v.half() if save_path is None: # overwrite src_path _lowerCamelCase : Union[str, Any] = src_path torch.save(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
46
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class A_ ( unittest.TestCase ): def __init__( self: int ,__lowerCAmelCase: str ,__lowerCAmelCase: Dict=7 ,__lowerCAmelCase: List[str]=3 ,__lowerCAmelCase: Any=18 ,__lowerCAmelCase: Any=30 ,__lowerCAmelCase: Tuple=400 ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: Any=None ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: Optional[int]=None ,__lowerCAmelCase: Union[str, Any]=True ,__lowerCAmelCase: List[Any]=[0.5, 0.5, 0.5] ,__lowerCAmelCase: Tuple=[0.5, 0.5, 0.5] ,): '''simple docstring''' _lowerCamelCase : Optional[int] = size if size is not None else {"shortest_edge": 18} _lowerCamelCase : List[Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} _lowerCamelCase : Optional[Any] = parent _lowerCamelCase : int = batch_size _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : List[Any] = min_resolution _lowerCamelCase : Tuple = max_resolution _lowerCamelCase : Optional[Any] = do_resize _lowerCamelCase : Optional[Any] = size _lowerCamelCase : int = do_center_crop _lowerCamelCase : Union[str, Any] = crop_size _lowerCamelCase : List[Any] = do_normalize _lowerCamelCase : Any = image_mean _lowerCamelCase : Union[str, Any] = image_std def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = LevitImageProcessor if is_vision_available() else None def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = LevitImageProcessingTester(self ) @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase ,"image_mean" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"image_std" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"do_normalize" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"do_resize" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"do_center_crop" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"size" ) ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) _lowerCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase ,Image.Image ) # Test not batched input _lowerCamelCase : List[str] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched _lowerCamelCase : List[Any] = image_processing(__lowerCAmelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCAmelCase ,numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase ,np.ndarray ) # Test not batched input _lowerCamelCase : str = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched _lowerCamelCase : Union[str, Any] = image_processing(__lowerCAmelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCAmelCase ,torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase ,torch.Tensor ) # Test not batched input _lowerCamelCase : str = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched _lowerCamelCase : List[str] = image_processing(__lowerCAmelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,)
46
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCAmelCase : List[str] = get_tests_dir('''fixtures/dummy-config.json''') class A_ ( unittest.TestCase ): def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[Any] = 0 def _lowercase ( self: Dict ): '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoConfig.for_model("roberta" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"fake-roberta" ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase ,"config.json" ) ,"w" ) as f: f.write(json.dumps({} ) ) _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertEqual(type(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' try: AutoConfig.register("custom" ,__lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("model" ,__lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("bert" ,__lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ): _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" ) def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" ) def _lowercase ( self: Tuple ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." ,): _lowerCamelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowercase ( self: List[Any] ): '''simple docstring''' with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ ,"NewModelConfig" ) def _lowercase ( self: Dict ): '''simple docstring''' class A_ ( _a ): lowerCAmelCase__ = 'new-model' try: AutoConfig.register("new-model" ,__lowerCAmelCase ) # If remote code is not set, the default is to use local _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote code is disabled, we load the local one. _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote is enabled, we load from the Hub _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
46
1
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _lowerCAmelCase : int = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Tuple = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : int = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Union[str, Any] = list(s_dict.keys() ) for key in keys: _lowerCamelCase : int = key for k, v in WHISPER_MAPPING.items(): if k in key: _lowerCamelCase : List[Any] = new_key.replace(_lowerCamelCase , _lowerCamelCase ) print(F"""{key} -> {new_key}""" ) _lowerCamelCase : Union[str, Any] = s_dict.pop(_lowerCamelCase ) return s_dict def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Any = emb.weight.shape _lowerCamelCase : Union[str, Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) _lowerCamelCase : List[Any] = emb.weight.data return lin_layer def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> bytes: '''simple docstring''' os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = os.path.basename(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = url.split("/" )[-2] _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ) and not os.path.isfile(_lowerCamelCase ): raise RuntimeError(F"""{download_target} exists and is not a regular file""" ) if os.path.isfile(_lowerCamelCase ): _lowerCamelCase : List[Any] = open(_lowerCamelCase , "rb" ).read() if hashlib.shaaaa(_lowerCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(_lowerCamelCase ) as source, open(_lowerCamelCase , "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ) , ncols=80 , unit="iB" , unit_scale=_lowerCamelCase , unit_divisor=1024 ) as loop: while True: _lowerCamelCase : str = source.read(8192 ) if not buffer: break output.write(_lowerCamelCase ) loop.update(len(_lowerCamelCase ) ) _lowerCamelCase : Dict = open(_lowerCamelCase , "rb" ).read() if hashlib.shaaaa(_lowerCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' if ".pt" not in checkpoint_path: _lowerCamelCase : Tuple = _download(_MODELS[checkpoint_path] ) else: _lowerCamelCase : List[Any] = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCamelCase : Dict = original_checkpoint["dims"] _lowerCamelCase : Union[str, Any] = original_checkpoint["model_state_dict"] _lowerCamelCase : int = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(_lowerCamelCase ) rename_keys(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : List[str] = state_dict["decoder.layers.0.fc1.weight"].shape[0] _lowerCamelCase : Dict = WhisperConfig( vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=_lowerCamelCase , decoder_ffn_dim=_lowerCamelCase , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , ) _lowerCamelCase : List[str] = WhisperForConditionalGeneration(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase : int = model.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) if len(_lowerCamelCase ) > 0 and not set(_lowerCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F""" but all the following weights are missing {missing}""" ) if tie_embeds: _lowerCamelCase : Optional[int] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _lowerCamelCase : Tuple = proj_out_weights model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _lowerCAmelCase : int = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
46
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
1
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase=28123 ) -> Tuple: '''simple docstring''' _lowerCamelCase : List[Any] = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i _lowerCamelCase : Optional[int] = set() _lowerCamelCase : List[str] = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(_lowerCamelCase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
46
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int: '''simple docstring''' _lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCamelCase : Tuple = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Any = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Optional[int] = val @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = False if "vqa" in checkpoint_url: _lowerCamelCase : str = True _lowerCamelCase : Union[str, Any] = 3129 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Optional[Any] = "vqa2-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = {0: "False", 1: "True"} _lowerCamelCase : int = {v: k for k, v in config.idalabel.items()} _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase : Dict = True _lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"] _lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) if mlm_model or irtr_model: _lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor _lowerCamelCase : int = ViltImageProcessor(size=384 ) _lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) _lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : str = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) _lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : int = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw ) if mlm_model: _lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]." else: _lowerCamelCase : List[str] = "How many cats are there?" _lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: _lowerCamelCase : List[str] = torch.Size([1, 11, 30522] ) _lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase : List[str] = torch.Size([1, 3129] ) _lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase : List[str] = torch.Size([1, 2] ) _lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
46
1
"""simple docstring""" from __future__ import annotations from typing import TypedDict class A_ ( _a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def lowerCamelCase_( _lowerCamelCase ) -> list[str]: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(_lowerCamelCase ) )] def lowerCamelCase_( _lowerCamelCase ) -> BWTTransformDict: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) _lowerCamelCase : List[str] = all_rotations(_lowerCamelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _lowerCamelCase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(_lowerCamelCase ), } return response def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: _lowerCamelCase : Tuple = int(_lowerCamelCase ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(_lowerCamelCase ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) _lowerCamelCase : Dict = [""] * len(_lowerCamelCase ) for _ in range(len(_lowerCamelCase ) ): for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : Tuple = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": _lowerCAmelCase : Any = '''Provide a string that I will generate its BWT transform: ''' _lowerCAmelCase : Optional[Any] = input(entry_msg).strip() _lowerCAmelCase : List[str] = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) _lowerCAmelCase : str = reverse_bwt(result['''bwt_string'''], result['''idx_original_string''']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
46
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str | Literal[False]: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Any = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 _lowerCamelCase : List[str] = "_" if count > 1: return False else: return "".join(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : List[str] = [] while True: _lowerCamelCase : Tuple = ["$"] * len(_lowerCamelCase ) _lowerCamelCase : str = [] for i in range(len(_lowerCamelCase ) ): for j in range(i + 1 , len(_lowerCamelCase ) ): _lowerCamelCase : Dict = compare_string(binary[i] , binary[j] ) if k is False: _lowerCamelCase : Any = "*" _lowerCamelCase : Optional[int] = "*" temp.append("X" ) for i in range(len(_lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowerCamelCase ) == 0: return pi _lowerCamelCase : List[Any] = list(set(_lowerCamelCase ) ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Optional[int] = [] for minterm in minterms: _lowerCamelCase : List[Any] = "" for _ in range(_lowerCamelCase ): _lowerCamelCase : List[str] = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowerCamelCase ) return temp def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Optional[int] = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Dict = [0] * len(_lowerCamelCase ) for i in range(len(chart[0] ) ): _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = -1 for j in range(len(_lowerCamelCase ) ): if chart[j][i] == 1: count += 1 _lowerCamelCase : Any = j if count == 1: _lowerCamelCase : Union[str, Any] = 1 for i in range(len(_lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = 0 temp.append(prime_implicants[i] ) while True: _lowerCamelCase : str = 0 _lowerCamelCase : int = -1 _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = chart[i].count(1 ) if count_n > max_n: _lowerCamelCase : Any = count_n _lowerCamelCase : Union[str, Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowerCamelCase ) ): _lowerCamelCase : Any = 0 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[list[int]]: '''simple docstring''' _lowerCamelCase : str = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )] for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : List[Any] = prime_implicants[i].count("_" ) for j in range(len(_lowerCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ): _lowerCamelCase : Optional[Any] = 1 return chart def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : Optional[int] = int(input("Enter the no. of variables\n" ) ) _lowerCamelCase : str = [ float(_lowerCamelCase ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] _lowerCamelCase : Tuple = decimal_to_binary(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = check(_lowerCamelCase ) print("Prime Implicants are:" ) print(_lowerCamelCase ) _lowerCamelCase : Any = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : List[Any] = selection(_lowerCamelCase , _lowerCamelCase ) print("Essential Prime Implicants are:" ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
1
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class A_ ( _a ): lowerCAmelCase__ = 'Wav2Vec2FeatureExtractor' lowerCAmelCase__ = 'AutoTokenizer' def __init__( self: Dict ,__lowerCAmelCase: str ,__lowerCAmelCase: Tuple ): '''simple docstring''' super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = self.feature_extractor _lowerCamelCase : int = False @classmethod def _lowercase ( cls: Dict ,__lowerCAmelCase: Optional[Any] ,**__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' try: return super().from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) except OSError: warnings.warn( F"""Loading a tokenizer inside {cls.__name__} from a config that does not""" " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " ,__lowerCAmelCase ,) _lowerCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : Dict = WavaVecaCTCTokenizer.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) return cls(feature_extractor=__lowerCAmelCase ,tokenizer=__lowerCAmelCase ) def __call__( self: str ,*__lowerCAmelCase: Tuple ,**__lowerCAmelCase: str ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__lowerCAmelCase ,**__lowerCAmelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) _lowerCamelCase : Tuple = kwargs.pop("raw_speech" ) else: _lowerCamelCase : Any = kwargs.pop("audio" ,__lowerCAmelCase ) _lowerCamelCase : Dict = kwargs.pop("sampling_rate" ,__lowerCAmelCase ) _lowerCamelCase : Optional[int] = kwargs.pop("text" ,__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: _lowerCamelCase : List[Any] = args[0] _lowerCamelCase : Optional[int] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: _lowerCamelCase : List[str] = self.feature_extractor(__lowerCAmelCase ,*__lowerCAmelCase ,sampling_rate=__lowerCAmelCase ,**__lowerCAmelCase ) if text is not None: _lowerCamelCase : Tuple = self.tokenizer(__lowerCAmelCase ,**__lowerCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: _lowerCamelCase : Optional[Any] = encodings["input_ids"] return inputs def _lowercase ( self: List[Any] ,*__lowerCAmelCase: Union[str, Any] ,**__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[str] = kwargs.pop("input_features" ,__lowerCAmelCase ) _lowerCamelCase : List[Any] = kwargs.pop("labels" ,__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: _lowerCamelCase : List[str] = args[0] _lowerCamelCase : Optional[int] = args[1:] if input_features is not None: _lowerCamelCase : Union[str, Any] = self.feature_extractor.pad(__lowerCAmelCase ,*__lowerCAmelCase ,**__lowerCAmelCase ) if labels is not None: _lowerCamelCase : int = self.tokenizer.pad(__lowerCAmelCase ,**__lowerCAmelCase ) if labels is None: return input_features elif input_features is None: return labels else: _lowerCamelCase : str = labels["input_ids"] return input_features def _lowercase ( self: List[Any] ,*__lowerCAmelCase: Tuple ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: Dict ,*__lowerCAmelCase: str ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*__lowerCAmelCase ,**__lowerCAmelCase ) @contextmanager def _lowercase ( self: Optional[Any] ): '''simple docstring''' warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) _lowerCamelCase : List[Any] = True _lowerCamelCase : str = self.tokenizer yield _lowerCamelCase : Any = self.feature_extractor _lowerCamelCase : List[Any] = False
46
"""simple docstring""" from __future__ import annotations from random import random class A_ : def __init__( self: List[str] ,__lowerCAmelCase: int | None = None ): '''simple docstring''' _lowerCamelCase : Any = value _lowerCamelCase : Optional[int] = random() _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None def __repr__( self: Tuple ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return F"""'{self.value}: {self.prior:.5}'""" else: return pformat( {F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} ,indent=1 ) def __str__( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = str(self.value ) + " " _lowerCamelCase : Optional[Any] = str(self.left or "" ) _lowerCamelCase : int = str(self.right or "" ) return value + left + right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _lowerCamelCase, _lowerCamelCase : int = split(root.left , _lowerCamelCase ) return left, root else: _lowerCamelCase, _lowerCamelCase : Optional[int] = split(root.right , _lowerCamelCase ) return root, right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _lowerCamelCase : Any = merge(left.right , _lowerCamelCase ) return left else: _lowerCamelCase : Optional[Any] = merge(_lowerCamelCase , right.left ) return right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase : int = Node(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase : Tuple = split(_lowerCamelCase , _lowerCamelCase ) return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , value - 1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , _lowerCamelCase ) return merge(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": _lowerCamelCase : Optional[Any] = insert(_lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": _lowerCamelCase : Optional[Any] = erase(_lowerCamelCase , int(arg[1:] ) ) else: print("Unknown command" ) return root def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : List[Any] = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) _lowerCamelCase : int = input() while args != "q": _lowerCamelCase : List[str] = interact_treap(_lowerCamelCase , _lowerCamelCase ) print(_lowerCamelCase ) _lowerCamelCase : Tuple = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = SpeechTaTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def _lowercase ( self: List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase ) _lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self: List[str] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = "this is a test" _lowerCamelCase : Optional[Any] = "this is a test" return input_text, output_text def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = "<pad>" _lowerCamelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<s>" ) self.assertEqual(vocab_keys[1] ,"<pad>" ) self.assertEqual(vocab_keys[-4] ,"œ" ) self.assertEqual(vocab_keys[-2] ,"<mask>" ) self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" ) self.assertEqual(len(__lowerCAmelCase ) ,81 ) def _lowercase ( self: Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Optional[Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] _lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) ) _lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) _lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} _lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.vocab_size _lowerCamelCase : str = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' pass def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) _lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) _lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off _lowerCamelCase : Tuple = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,)
46
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCAmelCase : Optional[int] = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = ['''PerceiverFeatureExtractor'''] _lowerCAmelCase : Optional[Any] = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
46
1
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : Tuple = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' for attribute in key.split("." ): _lowerCamelCase : int = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: _lowerCamelCase : str = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: _lowerCamelCase : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase : int = value elif weight_type == "weight_g": _lowerCamelCase : Optional[Any] = value elif weight_type == "weight_v": _lowerCamelCase : Union[str, Any] = value elif weight_type == "bias": _lowerCamelCase : Tuple = value else: _lowerCamelCase : Union[str, Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : Optional[int] = fairseq_model.state_dict() _lowerCamelCase : List[Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : int = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCamelCase : Any = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCamelCase : Tuple = True if "*" in mapped_key: _lowerCamelCase : Any = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCamelCase : List[str] = mapped_key.replace("*" , _lowerCamelCase ) if "weight_g" in name: _lowerCamelCase : Optional[int] = "weight_g" elif "weight_v" in name: _lowerCamelCase : str = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: _lowerCamelCase : Tuple = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase : Tuple = "weight" else: _lowerCamelCase : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Any = full_name.split("conv_layers." )[-1] _lowerCamelCase : int = name.split("." ) _lowerCamelCase : Dict = int(items[0] ) _lowerCamelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase : Dict = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowerCamelCase : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase : Optional[int] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Any = torch.load(_lowerCamelCase ) _lowerCamelCase : Any = WavLMConfigOrig(checkpoint["cfg"] ) _lowerCamelCase : Dict = WavLMOrig(_lowerCamelCase ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: _lowerCamelCase : Optional[int] = WavLMConfig.from_pretrained(_lowerCamelCase ) else: _lowerCamelCase : int = WavLMConfig() _lowerCamelCase : int = WavLMModel(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase ) hf_wavlm.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') _lowerCAmelCase : Optional[int] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
46
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): lowerCAmelCase__ = (DDIMParallelScheduler,) lowerCAmelCase__ = (('eta', 0.0), ('num_inference_steps', 5_0)) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = { "num_train_timesteps": 1_000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCAmelCase ) return config def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : Any = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = 10, 0.0 _lowerCamelCase : List[Any] = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for t in scheduler.timesteps: _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample return sample def _lowercase ( self: List[str] ): '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Dict = self.get_scheduler_config(steps_offset=1 ) _lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) ) def _lowercase ( self: Any ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCAmelCase ,beta_end=__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ): self.check_over_forward(time_step=__lowerCAmelCase ,num_inference_steps=__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCAmelCase ,eta=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : List[str] = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5 def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Union[str, Any] = self.get_scheduler_config() _lowerCamelCase : str = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[int] = 10, 0.0 scheduler.set_timesteps(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.dummy_model() _lowerCamelCase : Optional[int] = self.dummy_sample_deter _lowerCamelCase : List[str] = self.dummy_sample_deter + 0.1 _lowerCamelCase : Dict = self.dummy_sample_deter - 0.1 _lowerCamelCase : Union[str, Any] = samplea.shape[0] _lowerCamelCase : List[Any] = torch.stack([samplea, samplea, samplea] ,dim=0 ) _lowerCamelCase : Dict = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 ,__lowerCAmelCase ) _lowerCamelCase : str = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) _lowerCamelCase : List[str] = scheduler.batch_step_no_noise(__lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,__lowerCAmelCase ) _lowerCamelCase : str = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = self.full_loop() _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : int = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(prediction_type="v_prediction" ) _lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[str] = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : int = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
46
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowerCAmelCase : Dict = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class A_ : lowerCAmelCase__ = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'The column name of the images in the files.'} ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'A folder containing the training data.'} ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'A folder containing the validation data.'} ) lowerCAmelCase__ = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) lowerCAmelCase__ = field( default=_a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=_a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = {} if self.train_dir is not None: _lowerCamelCase : Optional[Any] = self.train_dir if self.validation_dir is not None: _lowerCamelCase : str = self.validation_dir _lowerCamelCase : Any = data_files if data_files else None @dataclass class A_ : lowerCAmelCase__ = field( default=_a , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) lowerCAmelCase__ = field( default=_a , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) lowerCAmelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'Name or path of preprocessor config.'} ) lowerCAmelCase__ = field( default=_a , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCAmelCase__ = field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class A_ ( _a ): lowerCAmelCase__ = field( default=1E-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : int = torch.stack([example["pixel_values"] for example in examples] ) return {"pixel_values": pixel_values} def lowerCamelCase_( ) -> Any: '''simple docstring''' _lowerCamelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae" , _lowerCamelCase , _lowerCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCamelCase : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _lowerCamelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase : Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. _lowerCamelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _lowerCamelCase : int = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _lowerCamelCase ) and data_args.train_val_split > 0.0: _lowerCamelCase : Dict = ds["train"].train_test_split(data_args.train_val_split ) _lowerCamelCase : List[Any] = split["train"] _lowerCamelCase : List[str] = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Tuple = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: _lowerCamelCase : Dict = ViTMAEConfig.from_pretrained(model_args.config_name , **_lowerCamelCase ) elif model_args.model_name_or_path: _lowerCamelCase : Optional[Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_lowerCamelCase ) else: _lowerCamelCase : str = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _lowerCamelCase : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_lowerCamelCase ) elif model_args.model_name_or_path: _lowerCamelCase : Tuple = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_lowerCamelCase ) else: _lowerCamelCase : Optional[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: _lowerCamelCase : Dict = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) _lowerCamelCase : Optional[Any] = ViTMAEForPreTraining(_lowerCamelCase ) if training_args.do_train: _lowerCamelCase : int = ds["train"].column_names else: _lowerCamelCase : List[Any] = ds["validation"].column_names if data_args.image_column_name is not None: _lowerCamelCase : List[Any] = data_args.image_column_name elif "image" in column_names: _lowerCamelCase : int = "image" elif "img" in column_names: _lowerCamelCase : Tuple = "img" else: _lowerCamelCase : Tuple = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _lowerCamelCase : Dict = image_processor.size["shortest_edge"] else: _lowerCamelCase : Optional[int] = (image_processor.size["height"], image_processor.size["width"]) _lowerCamelCase : Optional[Any] = Compose( [ Lambda(lambda _lowerCamelCase : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(_lowerCamelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_lowerCamelCase ): _lowerCamelCase : Optional[Any] = [transforms(_lowerCamelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _lowerCamelCase : int = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_lowerCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _lowerCamelCase : Optional[int] = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_lowerCamelCase ) # Compute absolute learning rate _lowerCamelCase : List[str] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _lowerCamelCase : int = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer _lowerCamelCase : Any = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=_lowerCamelCase , data_collator=_lowerCamelCase , ) # Training if training_args.do_train: _lowerCamelCase : str = None if training_args.resume_from_checkpoint is not None: _lowerCamelCase : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCamelCase : Union[str, Any] = last_checkpoint _lowerCamelCase : List[Any] = trainer.train(resume_from_checkpoint=_lowerCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCamelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , _lowerCamelCase ) trainer.save_metrics("eval" , _lowerCamelCase ) # Write model card and (optionally) push to hub _lowerCamelCase : int = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCamelCase ) else: trainer.create_model_card(**_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' main() if __name__ == "__main__": main()
46
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class A_ ( _a , _a ): lowerCAmelCase__ = 'bit' lowerCAmelCase__ = ['preactivation', 'bottleneck'] lowerCAmelCase__ = ['SAME', 'VALID'] def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=3 ,__lowerCAmelCase: List[str]=64 ,__lowerCAmelCase: Union[str, Any]=[256, 512, 1_024, 2_048] ,__lowerCAmelCase: Optional[int]=[3, 4, 6, 3] ,__lowerCAmelCase: str="preactivation" ,__lowerCAmelCase: Tuple="relu" ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Dict=1 ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Any ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCamelCase : List[Any] = global_padding.upper() else: raise ValueError(F"""Padding strategy {global_padding} not supported""" ) _lowerCamelCase : str = num_channels _lowerCamelCase : str = embedding_size _lowerCamelCase : Dict = hidden_sizes _lowerCamelCase : str = depths _lowerCamelCase : Any = layer_type _lowerCamelCase : Any = hidden_act _lowerCamelCase : List[str] = global_padding _lowerCamelCase : Tuple = num_groups _lowerCamelCase : Optional[int] = drop_path_rate _lowerCamelCase : List[Any] = embedding_dynamic_padding _lowerCamelCase : Any = output_stride _lowerCamelCase : List[str] = width_factor _lowerCamelCase : List[Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 ,len(__lowerCAmelCase ) + 1 )] _lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase ,out_indices=__lowerCAmelCase ,stage_names=self.stage_names )
46
1
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self: Optional[int] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: int=2 ,__lowerCAmelCase: Dict=8 ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Any=99 ,__lowerCAmelCase: int=16 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: str=36 ,__lowerCAmelCase: List[str]="gelu" ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Any=512 ,__lowerCAmelCase: Union[str, Any]=16 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: str=0.02 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: List[str]=4 ,__lowerCAmelCase: Tuple=None ,): '''simple docstring''' _lowerCamelCase : Tuple = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : Optional[Any] = seq_length _lowerCamelCase : int = is_training _lowerCamelCase : List[Any] = use_input_mask _lowerCamelCase : Dict = use_token_type_ids _lowerCamelCase : Tuple = use_labels _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : List[Any] = hidden_dropout_prob _lowerCamelCase : Optional[int] = attention_probs_dropout_prob _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : Optional[Any] = type_vocab_size _lowerCamelCase : Dict = type_sequence_label_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : List[Any] = num_labels _lowerCamelCase : Any = num_choices _lowerCamelCase : List[Any] = scope def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCamelCase : str = None if self.use_input_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[int] = None if self.use_token_type_ids: _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowerCamelCase : Dict = None _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowerCamelCase : Dict = ids_tensor([self.batch_size] ,self.num_choices ) _lowerCamelCase : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : str = self.get_config() _lowerCamelCase : Dict = 300 return config def _lowercase ( self: Union[str, Any] ): '''simple docstring''' ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : int = self.prepare_config_and_inputs() _lowerCamelCase : Tuple = True _lowerCamelCase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: str ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[Any] = MraModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[int] = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ) _lowerCamelCase : List[Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: int ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[str] ,): '''simple docstring''' _lowerCamelCase : List[Any] = True _lowerCamelCase : int = MraModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : int = model( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,encoder_attention_mask=__lowerCAmelCase ,) _lowerCamelCase : str = model( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,) _lowerCamelCase : Optional[int] = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: int ,__lowerCAmelCase: Any ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: int ,__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Tuple = MraForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Any = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Dict = MraForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : int = model( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,start_positions=__lowerCAmelCase ,end_positions=__lowerCAmelCase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.num_labels _lowerCamelCase : Any = MraForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : str = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowercase ( self: str ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.num_labels _lowerCamelCase : int = MraForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : str = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.num_choices _lowerCamelCase : Optional[Any] = MraForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCamelCase : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCamelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCamelCase : List[Any] = model( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : Any = config_and_inputs _lowerCamelCase : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = () def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : str = MraModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : Dict = type self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCAmelCase ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def _lowercase ( self: Tuple ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = MraModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @unittest.skip(reason="MRA does not output attentions" ) def _lowercase ( self: str ): '''simple docstring''' return @require_torch class A_ ( unittest.TestCase ): @slow def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Dict = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) _lowerCamelCase : List[Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCamelCase : List[str] = model(__lowerCAmelCase )[0] _lowerCamelCase : str = torch.Size((1, 256, 768) ) self.assertEqual(output.shape ,__lowerCAmelCase ) _lowerCamelCase : List[Any] = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__lowerCAmelCase ,atol=1e-4 ) ) @slow def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[Any] = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) _lowerCamelCase : List[str] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCamelCase : Dict = model(__lowerCAmelCase )[0] _lowerCamelCase : Optional[Any] = 50_265 _lowerCamelCase : Dict = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape ,__lowerCAmelCase ) _lowerCamelCase : Optional[int] = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__lowerCAmelCase ,atol=1e-4 ) ) @slow def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) _lowerCamelCase : str = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): _lowerCamelCase : Any = model(__lowerCAmelCase )[0] _lowerCamelCase : Any = 50_265 _lowerCamelCase : Dict = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape ,__lowerCAmelCase ) _lowerCamelCase : int = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__lowerCAmelCase ,atol=1e-4 ) )
46
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class A_ ( _a ): lowerCAmelCase__ = 'vivit' def __init__( self: List[Any] ,__lowerCAmelCase: int=224 ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: str=[2, 16, 16] ,__lowerCAmelCase: Optional[Any]=3 ,__lowerCAmelCase: List[str]=768 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: Optional[int]=12 ,__lowerCAmelCase: Optional[Any]=3_072 ,__lowerCAmelCase: Any="gelu_fast" ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: Union[str, Any]=0.02 ,__lowerCAmelCase: List[str]=1e-06 ,__lowerCAmelCase: Optional[Any]=True ,**__lowerCAmelCase: Optional[int] ,): '''simple docstring''' _lowerCamelCase : Any = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Tuple = image_size _lowerCamelCase : Dict = num_frames _lowerCamelCase : Optional[int] = tubelet_size _lowerCamelCase : int = num_channels _lowerCamelCase : List[str] = qkv_bias super().__init__(**__lowerCAmelCase )
46
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json''', } class A_ ( _a ): lowerCAmelCase__ = 'gpt_neox_japanese' def __init__( self: str ,__lowerCAmelCase: List[str]=32_000 ,__lowerCAmelCase: Tuple=2_560 ,__lowerCAmelCase: Tuple=32 ,__lowerCAmelCase: Tuple=32 ,__lowerCAmelCase: Optional[int]=4 ,__lowerCAmelCase: int="gelu" ,__lowerCAmelCase: Optional[Any]=1.00 ,__lowerCAmelCase: int=10_000 ,__lowerCAmelCase: List[str]=2_048 ,__lowerCAmelCase: Union[str, Any]=0.02 ,__lowerCAmelCase: Tuple=1e-5 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=31_996 ,__lowerCAmelCase: Union[str, Any]=31_999 ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: int=0.0 ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__(bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = vocab_size _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : Tuple = intermediate_multiple_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : str = rotary_pct _lowerCamelCase : Any = rotary_emb_base _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = layer_norm_eps _lowerCamelCase : Optional[Any] = use_cache _lowerCamelCase : List[str] = attention_dropout _lowerCamelCase : int = hidden_dropout
46
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = MgpstrTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {} lowerCAmelCase__ = False def _lowercase ( self: int ): '''simple docstring''' super().setUp() # fmt: off _lowerCamelCase : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = "tester" _lowerCamelCase : Optional[Any] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) _lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) ,1 ) _lowerCamelCase : int = tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase, _lowerCamelCase : List[Any] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) _lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertNotEqual(len(__lowerCAmelCase ) ,0 ) _lowerCamelCase : Optional[int] = tokenizer.decode(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(text_a.replace(" " ,"" ) ,__lowerCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _lowercase ( self: str ): '''simple docstring''' pass
46
1
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowerCAmelCase : str = '''src/diffusers''' _lowerCAmelCase : List[Any] = '''.''' # This is to make sure the diffusers module imported is the one in the repo. _lowerCAmelCase : Union[str, Any] = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) _lowerCAmelCase : Union[str, Any] = spec.loader.load_module() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' return line.startswith(_lowerCamelCase ) or len(_lowerCamelCase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$" , _lowerCamelCase ) is not None def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Any = object_name.split("." ) _lowerCamelCase : Tuple = 0 # First let's find the module where our object lives. _lowerCamelCase : Dict = parts[i] while i < len(_lowerCamelCase ) and not os.path.isfile(os.path.join(_lowerCamelCase , F"""{module}.py""" ) ): i += 1 if i < len(_lowerCamelCase ): _lowerCamelCase : Dict = os.path.join(_lowerCamelCase , parts[i] ) if i >= len(_lowerCamelCase ): raise ValueError(F"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(_lowerCamelCase , F"""{module}.py""" ) , "r" , encoding="utf-8" , newline="\n" ) as f: _lowerCamelCase : Any = f.readlines() # Now let's find the class / func in the code! _lowerCamelCase : Tuple = "" _lowerCamelCase : List[str] = 0 for name in parts[i + 1 :]: while ( line_index < len(_lowerCamelCase ) and re.search(RF"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_lowerCamelCase ): raise ValueError(F""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _lowerCamelCase : Optional[Any] = line_index while line_index < len(_lowerCamelCase ) and _should_continue(lines[line_index] , _lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCamelCase : int = lines[start_index:line_index] return "".join(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') _lowerCAmelCase : str = re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') _lowerCAmelCase : List[Any] = re.compile(R'''<FILL\s+[^>]*>''') def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Tuple = code.split("\n" ) _lowerCamelCase : Optional[Any] = 0 while idx < len(_lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_lowerCamelCase ): return re.search(R"^(\s*)\S" , lines[idx] ).groups()[0] return "" def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[Any] = len(get_indent(_lowerCamelCase ) ) > 0 if has_indent: _lowerCamelCase : Any = F"""class Bla:\n{code}""" _lowerCamelCase : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=_lowerCamelCase ) _lowerCamelCase : List[str] = black.format_str(_lowerCamelCase , mode=_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = style_docstrings_in_code(_lowerCamelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]: '''simple docstring''' with open(_lowerCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: _lowerCamelCase : Union[str, Any] = f.readlines() _lowerCamelCase : Tuple = [] _lowerCamelCase : List[str] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_lowerCamelCase ): _lowerCamelCase : Tuple = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = search.groups() _lowerCamelCase : Dict = find_code_in_diffusers(_lowerCamelCase ) _lowerCamelCase : Optional[int] = get_indent(_lowerCamelCase ) _lowerCamelCase : List[Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 _lowerCamelCase : Any = theoretical_indent _lowerCamelCase : Optional[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _lowerCamelCase : Any = True while line_index < len(_lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(_lowerCamelCase ): break _lowerCamelCase : int = lines[line_index] _lowerCamelCase : Optional[int] = _should_continue(_lowerCamelCase , _lowerCamelCase ) and re.search(F"""^{indent}# End copy""" , _lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCamelCase : Optional[int] = lines[start_index:line_index] _lowerCamelCase : List[Any] = "".join(_lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies _lowerCamelCase : Union[str, Any] = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(_lowerCamelCase ) is None] _lowerCamelCase : Optional[Any] = "\n".join(_lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(_lowerCamelCase ) > 0: _lowerCamelCase : int = replace_pattern.replace("with" , "" ).split("," ) _lowerCamelCase : Dict = [_re_replace_pattern.search(_lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = pattern.groups() _lowerCamelCase : Optional[Any] = re.sub(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if option.strip() == "all-casing": _lowerCamelCase : Dict = re.sub(obja.lower() , obja.lower() , _lowerCamelCase ) _lowerCamelCase : List[Any] = re.sub(obja.upper() , obja.upper() , _lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _lowerCamelCase : Dict = blackify(lines[start_index - 1] + theoretical_code ) _lowerCamelCase : Any = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _lowerCamelCase : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:] _lowerCamelCase : List[str] = start_index + 1 if overwrite and len(_lowerCamelCase ) > 0: # Warn the user a file has been modified. print(F"""Detected changes, rewriting {filename}.""" ) with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_lowerCamelCase ) return diffs def lowerCamelCase_( _lowerCamelCase = False ) -> Dict: '''simple docstring''' _lowerCamelCase : List[Any] = glob.glob(os.path.join(_lowerCamelCase , "**/*.py" ) , recursive=_lowerCamelCase ) _lowerCamelCase : Dict = [] for filename in all_files: _lowerCamelCase : int = is_copy_consistent(_lowerCamelCase , _lowerCamelCase ) diffs += [F"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(_lowerCamelCase ) > 0: _lowerCamelCase : Optional[int] = "\n".join(_lowerCamelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _lowerCAmelCase : Union[str, Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
46
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : str = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ) -> Tuple: '''simple docstring''' _lowerCamelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCamelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=512 , _lowerCamelCase=512 ) -> int: '''simple docstring''' _lowerCamelCase : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _lowerCamelCase : Union[str, Any] = np.array(pil_image.convert("RGB" ) ) _lowerCamelCase : Any = arr.astype(np.floataa ) / 1_2_7.5 - 1 _lowerCamelCase : Optional[Any] = np.transpose(_lowerCamelCase , [2, 0, 1] ) _lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class A_ ( _a ): def __init__( self: Any ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: DDPMScheduler ,__lowerCAmelCase: VQModel ,): '''simple docstring''' super().__init__() self.register_modules( unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,movq=__lowerCAmelCase ,) _lowerCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowercase ( self: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : int = min(int(num_inference_steps * strength ) ,__lowerCAmelCase ) _lowerCamelCase : Tuple = max(num_inference_steps - init_timestep ,0 ) _lowerCamelCase : Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}""" ) _lowerCamelCase : Any = image.to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCamelCase : List[Any] = image else: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase ) ] _lowerCamelCase : Tuple = torch.cat(__lowerCAmelCase ,dim=0 ) else: _lowerCamelCase : int = self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase ) _lowerCamelCase : int = self.movq.config.scaling_factor * init_latents _lowerCamelCase : Tuple = torch.cat([init_latents] ,dim=0 ) _lowerCamelCase : Optional[int] = init_latents.shape _lowerCamelCase : int = randn_tensor(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) # get latents _lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : str = init_latents return latents def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : str = torch.device(F"""cuda:{gpu_id}""" ) _lowerCamelCase : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _lowerCamelCase : List[str] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" ,silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCamelCase, _lowerCamelCase : str = cpu_offload_with_hook(__lowerCAmelCase ,__lowerCAmelCase ,prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. _lowerCamelCase : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if not hasattr(self.unet ,"_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase ,"_hf_hook" ) and hasattr(module._hf_hook ,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self: Dict ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: float = 4.0 ,__lowerCAmelCase: float = 0.3 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : Dict = guidance_scale > 1.0 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : int = torch.cat(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Any = image_embeds.shape[0] if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : str = torch.cat(__lowerCAmelCase ,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[int] = negative_image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCAmelCase ) if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Tuple = [image] if not all(isinstance(__lowerCAmelCase ,(PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _lowerCamelCase : Union[str, Any] = torch.cat([prepare_image(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for i in image] ,dim=0 ) _lowerCamelCase : str = image.to(dtype=image_embeds.dtype ,device=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.movq.encode(__lowerCAmelCase )["latents"] _lowerCamelCase : List[str] = latents.repeat_interleave(__lowerCAmelCase ,dim=0 ) self.scheduler.set_timesteps(__lowerCAmelCase ,device=__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.get_timesteps(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCamelCase, _lowerCamelCase : Tuple = downscale_height_and_width(__lowerCAmelCase ,__lowerCAmelCase ,self.movq_scale_factor ) _lowerCamelCase : List[Any] = self.prepare_latents( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,image_embeds.dtype ,__lowerCAmelCase ,__lowerCAmelCase ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : List[str] = {"image_embeds": image_embeds} _lowerCamelCase : Tuple = self.unet( sample=__lowerCAmelCase ,timestep=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,added_cond_kwargs=__lowerCAmelCase ,return_dict=__lowerCAmelCase ,)[0] if do_classifier_free_guidance: _lowerCamelCase, _lowerCamelCase : Tuple = noise_pred.split(latents.shape[1] ,dim=1 ) _lowerCamelCase, _lowerCamelCase : Dict = noise_pred.chunk(2 ) _lowerCamelCase, _lowerCamelCase : str = variance_pred.chunk(2 ) _lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Optional[int] = self.scheduler.step( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,generator=__lowerCAmelCase ,)[0] # post-processing _lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase ,force_not_quantize=__lowerCAmelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _lowerCamelCase : Optional[int] = image * 0.5 + 0.5 _lowerCamelCase : str = image.clamp(0 ,1 ) _lowerCamelCase : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _lowerCamelCase : str = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
46
1
"""simple docstring""" from math import log from scipy.constants import Boltzmann, physical_constants _lowerCAmelCase : List[str] = 300 # TEMPERATURE (unit = K) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
46
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowerCamelCase_( ) -> None: '''simple docstring''' print("Making key files..." ) make_key_files("rsa" , 1024 ) print("Key files generation successful." ) def lowerCamelCase_( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]: '''simple docstring''' print("Generating prime p..." ) _lowerCamelCase : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase ) print("Generating prime q..." ) _lowerCamelCase : Tuple = rabinMiller.generate_large_prime(_lowerCamelCase ) _lowerCamelCase : Dict = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: _lowerCamelCase : Tuple = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) _lowerCamelCase : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) ) _lowerCamelCase : Dict = (n, e) _lowerCamelCase : Dict = (n, d) return (public_key, private_key) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> None: '''simple docstring''' if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() _lowerCamelCase, _lowerCamelCase : Dict = generate_key(_lowerCamelCase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
46
1
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class A_ ( _a ): def __init__( self: List[Any] ,__lowerCAmelCase: Dict=0.01 ,__lowerCAmelCase: Optional[Any]=1_000 ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = p_stop _lowerCamelCase : List[str] = max_length def __iter__( self: List[Any] ): '''simple docstring''' _lowerCamelCase : int = 0 _lowerCamelCase : str = False while not stop and count < self.max_length: yield count count += 1 _lowerCamelCase : Any = random.random() < self.p_stop class A_ ( unittest.TestCase ): def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Any ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: Union[str, Any]=True ): '''simple docstring''' _lowerCamelCase : str = [ BatchSamplerShard(__lowerCAmelCase ,2 ,__lowerCAmelCase ,split_batches=__lowerCAmelCase ,even_batches=__lowerCAmelCase ) for i in range(2 ) ] _lowerCamelCase : Optional[int] = [list(__lowerCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__lowerCAmelCase ) for shard in batch_sampler_shards] ,[len(__lowerCAmelCase ) for e in expected] ) self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : List[str] = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCamelCase : Tuple = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCamelCase : str = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : List[Any] = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCamelCase : Tuple = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ) # Check the shards when the dataset is very small. _lowerCamelCase : List[str] = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : int = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : List[Any] = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Any = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,split_batches=__lowerCAmelCase ) _lowerCamelCase : str = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. _lowerCamelCase : Optional[Any] = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,split_batches=__lowerCAmelCase ) _lowerCamelCase : int = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCamelCase : Tuple = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,split_batches=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,split_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _lowerCamelCase : str = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Tuple = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,split_batches=__lowerCAmelCase ) _lowerCamelCase : List[str] = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,split_batches=__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,even_batches=__lowerCAmelCase ) _lowerCamelCase : List[str] = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,even_batches=__lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCamelCase : Optional[int] = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,even_batches=__lowerCAmelCase ) _lowerCamelCase : Any = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCamelCase : Optional[Any] = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,even_batches=__lowerCAmelCase ) _lowerCamelCase : int = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCamelCase : List[str] = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,even_batches=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _lowerCamelCase : Union[str, Any] = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,even_batches=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,even_batches=__lowerCAmelCase ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,split_batches=__lowerCAmelCase ,even_batches=__lowerCAmelCase ) _lowerCamelCase : List[Any] = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,split_batches=__lowerCAmelCase ,even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. _lowerCamelCase : str = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,split_batches=__lowerCAmelCase ,even_batches=__lowerCAmelCase ) _lowerCamelCase : List[Any] = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,split_batches=__lowerCAmelCase ,even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCamelCase : str = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,split_batches=__lowerCAmelCase ,even_batches=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,split_batches=__lowerCAmelCase ,even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _lowerCamelCase : Tuple = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,split_batches=__lowerCAmelCase ,even_batches=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase ,__lowerCAmelCase ,split_batches=__lowerCAmelCase ,even_batches=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _lowerCamelCase : Any = [BatchSamplerShard(__lowerCAmelCase ,2 ,__lowerCAmelCase ,even_batches=__lowerCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) ,3 ) self.assertEqual(len(batch_sampler_shards[1] ) ,2 ) self.assertListEqual(list(batch_sampler_shards[0] ) ,[[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) ,[[3, 4], [9, 10, 11]] ) def _lowercase ( self: Any ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Dict=False ,__lowerCAmelCase: List[Any]=2 ,__lowerCAmelCase: int=False ): '''simple docstring''' random.seed(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = list(__lowerCAmelCase ) _lowerCamelCase : str = [ IterableDatasetShard( __lowerCAmelCase ,batch_size=__lowerCAmelCase ,drop_last=__lowerCAmelCase ,num_processes=__lowerCAmelCase ,process_index=__lowerCAmelCase ,split_batches=__lowerCAmelCase ,) for i in range(__lowerCAmelCase ) ] _lowerCamelCase : Any = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__lowerCAmelCase ) iterable_dataset_lists.append(list(__lowerCAmelCase ) ) _lowerCamelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _lowerCamelCase : Optional[int] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__lowerCAmelCase ) ,len(__lowerCAmelCase ) ) self.assertTrue(len(__lowerCAmelCase ) % shard_batch_size == 0 ) _lowerCamelCase : List[Any] = [] for idx in range(0 ,len(__lowerCAmelCase ) ,__lowerCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__lowerCAmelCase ) < len(__lowerCAmelCase ): reference += reference self.assertListEqual(__lowerCAmelCase ,reference[: len(__lowerCAmelCase )] ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Dict = 42 _lowerCamelCase : Union[str, Any] = RandomIterableDataset() self.check_iterable_dataset_shards(__lowerCAmelCase ,__lowerCAmelCase ,batch_size=4 ,drop_last=__lowerCAmelCase ,split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase ,__lowerCAmelCase ,batch_size=4 ,drop_last=__lowerCAmelCase ,split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase ,__lowerCAmelCase ,batch_size=4 ,drop_last=__lowerCAmelCase ,split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase ,__lowerCAmelCase ,batch_size=4 ,drop_last=__lowerCAmelCase ,split_batches=__lowerCAmelCase ) # Edge case with a very small dataset _lowerCamelCase : Any = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__lowerCAmelCase ,__lowerCAmelCase ,batch_size=4 ,drop_last=__lowerCAmelCase ,split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase ,__lowerCAmelCase ,batch_size=4 ,drop_last=__lowerCAmelCase ,split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase ,__lowerCAmelCase ,batch_size=4 ,drop_last=__lowerCAmelCase ,split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase ,__lowerCAmelCase ,batch_size=4 ,drop_last=__lowerCAmelCase ,split_batches=__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = BatchSampler(range(16 ) ,batch_size=4 ,drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = SkipBatchSampler(__lowerCAmelCase ,2 ) self.assertListEqual(list(__lowerCAmelCase ) ,[[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = SkipDataLoader(list(range(16 ) ) ,batch_size=4 ,skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] ,[[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = DataLoader(list(range(16 ) ) ,batch_size=4 ) _lowerCamelCase : Union[str, Any] = skip_first_batches(__lowerCAmelCase ,num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] ,[[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[Any] = DataLoaderShard(list(range(16 ) ) ,batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 ) def _lowercase ( self: Tuple ): '''simple docstring''' Accelerator() _lowerCamelCase : List[str] = DataLoaderDispatcher(range(16 ) ,batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 )
46
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Any = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[str] = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Dict = mask_ratio _lowerCamelCase : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase : str = (image_size // patch_size) ** 2 _lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2 _lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) _lowerCamelCase : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = ViTMAEModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase : Dict = pt_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Any = outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) # Make sure we don't have nans _lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: str ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase ( self: int ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: Dict ): '''simple docstring''' pass @slow def _lowercase ( self: Dict ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase ( self: int ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase : Tuple = ViTMAEConfig() _lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Tuple = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
46
1
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class A_ ( TensorFormatter[Mapping, 'torch.Tensor', Mapping] ): def __init__( self: Optional[Any] ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Any ): '''simple docstring''' super().__init__(features=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _lowercase ( self: Tuple ,__lowerCAmelCase: List[str] ): '''simple docstring''' import torch if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and column: if all( isinstance(__lowerCAmelCase ,torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(__lowerCAmelCase ) return column def _lowercase ( self: str ,__lowerCAmelCase: str ): '''simple docstring''' import torch if isinstance(__lowerCAmelCase ,(str, bytes, type(__lowerCAmelCase )) ): return value elif isinstance(__lowerCAmelCase ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCamelCase : Tuple = {} if isinstance(__lowerCAmelCase ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): _lowerCamelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(__lowerCAmelCase ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCamelCase : Optional[int] = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__lowerCAmelCase ,PIL.Image.Image ): _lowerCamelCase : Optional[int] = np.asarray(__lowerCAmelCase ) return torch.tensor(__lowerCAmelCase ,**{**default_dtype, **self.torch_tensor_kwargs} ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(__lowerCAmelCase ,"__array__" ) and not isinstance(__lowerCAmelCase ,torch.Tensor ): _lowerCamelCase : str = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__lowerCAmelCase ,np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__lowerCAmelCase ) for substruct in data_struct] ) elif isinstance(__lowerCAmelCase ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(__lowerCAmelCase ) for substruct in data_struct] ) return self._tensorize(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: dict ): '''simple docstring''' return map_nested(self._recursive_tensorize ,__lowerCAmelCase ,map_list=__lowerCAmelCase ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: pa.Table ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.numpy_arrow_extractor().extract_row(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.python_features_decoder.decode_row(__lowerCAmelCase ) return self.recursive_tensorize(__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: pa.Table ): '''simple docstring''' _lowerCamelCase : int = self.numpy_arrow_extractor().extract_column(__lowerCAmelCase ) _lowerCamelCase : List[Any] = self.python_features_decoder.decode_column(__lowerCAmelCase ,pa_table.column_names[0] ) _lowerCamelCase : List[Any] = self.recursive_tensorize(__lowerCAmelCase ) _lowerCamelCase : List[str] = self._consolidate(__lowerCAmelCase ) return column def _lowercase ( self: str ,__lowerCAmelCase: pa.Table ): '''simple docstring''' _lowerCamelCase : int = self.numpy_arrow_extractor().extract_batch(__lowerCAmelCase ) _lowerCamelCase : str = self.python_features_decoder.decode_batch(__lowerCAmelCase ) _lowerCamelCase : str = self.recursive_tensorize(__lowerCAmelCase ) for column_name in batch: _lowerCamelCase : int = self._consolidate(batch[column_name] ) return batch
46
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCAmelCase : List[str] = 10 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' for i in range(_lowerCamelCase , _lowerCamelCase ): if array[i] == target: return i return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Any = len(_lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = (left + right) // 3 + 1 _lowerCamelCase : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _lowerCamelCase : Union[str, Any] = one_third - 1 elif array[two_third] < target: _lowerCamelCase : Any = two_third + 1 else: _lowerCamelCase : List[str] = one_third + 1 _lowerCamelCase : int = two_third - 1 else: return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Tuple = (left + right) // 3 + 1 _lowerCamelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip() _lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowerCAmelCase : Any = int(input('''Enter the number to be found in the list:\n''').strip()) _lowerCAmelCase : Union[str, Any] = ite_ternary_search(collection, target) _lowerCAmelCase : str = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
46
1
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' if not head: return True # split the list to two parts _lowerCamelCase, _lowerCamelCase : List[str] = head.next, head while fast and fast.next: _lowerCamelCase : Union[str, Any] = fast.next.next _lowerCamelCase : str = slow.next _lowerCamelCase : Any = slow.next _lowerCamelCase : Tuple = None # Don't forget here! But forget still works! # reverse the second part _lowerCamelCase : int = None while second: _lowerCamelCase : Union[str, Any] = second.next _lowerCamelCase : Dict = node _lowerCamelCase : List[Any] = second _lowerCamelCase : Optional[Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False _lowerCamelCase : List[Any] = node.next _lowerCamelCase : Dict = head.next return True def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) _lowerCamelCase : Tuple = head while fast and fast.next: _lowerCamelCase, _lowerCamelCase : str = fast.next.next, slow.next # 2. Push the second half into the stack _lowerCamelCase : Dict = [slow.val] while slow.next: _lowerCamelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False _lowerCamelCase : Optional[int] = cur.next return True def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' if not head or not head.next: return True _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[Any] = 0 while head: if head.val in d: d[head.val].append(_lowerCamelCase ) else: _lowerCamelCase : Any = [pos] _lowerCamelCase : Any = head.next pos += 1 _lowerCamelCase : str = pos - 1 _lowerCamelCase : Optional[int] = 0 for v in d.values(): if len(_lowerCamelCase ) % 2 != 0: middle += 1 else: _lowerCamelCase : Optional[int] = 0 for i in range(0 , len(_lowerCamelCase ) ): if v[i] + v[len(_lowerCamelCase ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
46
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 100 ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = set() _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Optional[int] = n + 1 # maximum limit for a in range(2 , _lowerCamelCase ): for b in range(2 , _lowerCamelCase ): _lowerCamelCase : List[str] = a**b # calculates the current power collect_powers.add(_lowerCamelCase ) # adds the result to the set return len(_lowerCamelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
46
1
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 50 ) -> int: '''simple docstring''' _lowerCamelCase : Any = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
46
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # TODO Update this _lowerCAmelCase : Optional[Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class A_ ( _a ): lowerCAmelCase__ = 'esm' def __init__( self: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: List[Any]=1_026 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Dict="absolute" ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,mask_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : int = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : str = use_cache _lowerCamelCase : Union[str, Any] = emb_layer_norm_before _lowerCamelCase : Tuple = token_dropout _lowerCamelCase : Dict = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) _lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = EsmFoldConfig(**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) _lowerCamelCase : List[str] = get_default_vocab_list() else: _lowerCamelCase : Optional[Any] = vocab_list else: _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,__lowerCAmelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = super().to_dict() if isinstance(self.esmfold_config ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = 0 lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Dict ): '''simple docstring''' if self.trunk is None: _lowerCamelCase : Optional[int] = TrunkConfig() elif isinstance(self.trunk ,__lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = TrunkConfig(**self.trunk ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 4_8 lowerCAmelCase__ = 1_0_2_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = False lowerCAmelCase__ = 4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Any ): '''simple docstring''' if self.structure_module is None: _lowerCamelCase : Tuple = StructureModuleConfig() elif isinstance(self.structure_module ,__lowerCAmelCase ): _lowerCamelCase : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _lowerCamelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width _lowerCamelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : Optional[int] = self.structure_module.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 3_8_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_2 lowerCAmelCase__ = 4 lowerCAmelCase__ = 8 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 8 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_0 lowerCAmelCase__ = 1E-8 lowerCAmelCase__ = 1E5 def _lowercase ( self: Any ): '''simple docstring''' return asdict(self ) def lowerCamelCase_( ) -> int: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
46
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int: '''simple docstring''' _lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCamelCase : Tuple = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Any = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Optional[int] = val @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = False if "vqa" in checkpoint_url: _lowerCamelCase : str = True _lowerCamelCase : Union[str, Any] = 3129 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Optional[Any] = "vqa2-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = {0: "False", 1: "True"} _lowerCamelCase : int = {v: k for k, v in config.idalabel.items()} _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase : Dict = True _lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"] _lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) if mlm_model or irtr_model: _lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor _lowerCamelCase : int = ViltImageProcessor(size=384 ) _lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) _lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : str = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) _lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : int = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw ) if mlm_model: _lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]." else: _lowerCamelCase : List[str] = "How many cats are there?" _lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: _lowerCamelCase : List[str] = torch.Size([1, 11, 30522] ) _lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase : List[str] = torch.Size([1, 3129] ) _lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase : List[str] = torch.Size([1, 2] ) _lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
46
"""simple docstring""" import re def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
46
1
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME _lowerCAmelCase : int = ['''small''', '''medium''', '''large'''] _lowerCAmelCase : str = '''lm_head.decoder.weight''' _lowerCAmelCase : List[Any] = '''lm_head.weight''' def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : str = torch.load(_lowerCamelCase ) _lowerCamelCase : List[Any] = d.pop(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) _lowerCAmelCase : Union[str, Any] = parser.parse_args() for MODEL in DIALOGPT_MODELS: _lowerCAmelCase : Optional[int] = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') _lowerCAmelCase : List[str] = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
46
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : Tuple = "" else: _lowerCamelCase : str = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Tuple = in_proj_bias[: config.hidden_size] _lowerCamelCase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Any = dct.pop(_lowerCamelCase ) _lowerCamelCase : Dict = val def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase : str = 8 # set labels if required if not base_model: _lowerCamelCase : str = 1000 _lowerCamelCase : Any = "huggingface/label-files" _lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase : int = 384 _lowerCamelCase : str = 1536 _lowerCamelCase : List[str] = 12 _lowerCamelCase : Optional[int] = 6 # load original model from torch hub _lowerCamelCase : Union[str, Any] = torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[str] = original_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if base_model: _lowerCamelCase : Optional[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval() else: _lowerCamelCase : Union[str, Any] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase : Tuple = ViTImageProcessor() _lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Dict = encoding["pixel_values"] _lowerCamelCase : int = model(_lowerCamelCase ) if base_model: _lowerCamelCase : List[str] = original_model(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: _lowerCamelCase : Tuple = original_model(_lowerCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) _lowerCAmelCase : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
46
1
"""simple docstring""" from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self: Union[str, Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[str]=13 ,__lowerCAmelCase: List[Any]=30 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: List[Any]=3 ,__lowerCAmelCase: str=True ,__lowerCAmelCase: str=True ,__lowerCAmelCase: List[str]=32 ,__lowerCAmelCase: Dict=2 ,__lowerCAmelCase: Union[str, Any]=4 ,__lowerCAmelCase: List[Any]=37 ,__lowerCAmelCase: List[str]="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: Optional[int]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: Union[str, Any]=0.6 ,__lowerCAmelCase: Dict=None ,): '''simple docstring''' _lowerCamelCase : int = parent _lowerCamelCase : int = batch_size _lowerCamelCase : int = image_size _lowerCamelCase : Optional[Any] = patch_size _lowerCamelCase : List[Any] = num_channels _lowerCamelCase : Tuple = is_training _lowerCamelCase : Optional[Any] = use_labels _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : int = mask_ratio _lowerCamelCase : Optional[int] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase : Union[str, Any] = (image_size // patch_size) ** 2 _lowerCamelCase : Optional[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : Any = self.get_config() return config, pixel_values, labels def _lowercase ( self: Optional[int] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = TFViTMAEModel(config=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model(__lowerCAmelCase ,training=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: str ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = TFViTMAEForPreTraining(__lowerCAmelCase ) _lowerCamelCase : Any = model(__lowerCAmelCase ,training=__lowerCAmelCase ) # expected sequence length = num_patches _lowerCamelCase : Union[str, Any] = (self.image_size // self.patch_size) ** 2 _lowerCamelCase : Any = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Optional[Any] = TFViTMAEForPreTraining(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[str] = model(__lowerCAmelCase ,training=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = self.prepare_config_and_inputs() ((_lowerCamelCase), (_lowerCamelCase), (_lowerCamelCase)) : List[Any] = config_and_inputs _lowerCamelCase : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () lowerCAmelCase__ = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : int = TFViTMAEModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase ( self: int ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) _lowerCamelCase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,tf.keras.layers.Layer ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase, _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : List[Any] = int((config.image_size // config.patch_size) ** 2 ) _lowerCamelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : int = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Tuple = model(__lowerCAmelCase ,noise=__lowerCAmelCase ) _lowerCamelCase : str = copy.deepcopy(self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=__lowerCAmelCase ) _lowerCamelCase : List[str] = outputs_dict[0].numpy() _lowerCamelCase : int = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1e-6 ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase, _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) _lowerCamelCase : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__lowerCAmelCase: Any ): _lowerCamelCase : List[str] = {} for k, v in inputs_dict.items(): if tf.is_tensor(__lowerCAmelCase ): _lowerCamelCase : Optional[int] = v.numpy() else: _lowerCamelCase : Optional[int] = np.array(__lowerCAmelCase ) return inputs_np_dict for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = prepare_numpy_arrays(__lowerCAmelCase ) _lowerCamelCase : Any = model(__lowerCAmelCase ,noise=__lowerCAmelCase ) _lowerCamelCase : Tuple = model(**__lowerCAmelCase ,noise=__lowerCAmelCase ) self.assert_outputs_same(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) _lowerCamelCase : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Optional[int] = tf.constant(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase : Tuple = tf_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Union[str, Any] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__lowerCAmelCase ) if module_member_name.endswith("MainLayer" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )] for module_member in (getattr(__lowerCAmelCase ,__lowerCAmelCase ),) if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__lowerCAmelCase ,"_keras_serializable" ,__lowerCAmelCase ) } _lowerCamelCase : List[str] = int((config.image_size // config.patch_size) ** 2 ) _lowerCamelCase : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Optional[int] = tf.convert_to_tensor(__lowerCAmelCase ) inputs_dict.update({"noise": noise} ) for main_layer_class in tf_main_layer_classes: _lowerCamelCase : Optional[Any] = main_layer_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = { name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } _lowerCamelCase : Union[str, Any] = tf.keras.Model(__lowerCAmelCase ,outputs=main_layer(__lowerCAmelCase ) ) _lowerCamelCase : List[Any] = model(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Union[str, Any] = os.path.join(__lowerCAmelCase ,"keras_model.h5" ) model.save(__lowerCAmelCase ) _lowerCamelCase : str = tf.keras.models.load_model( __lowerCAmelCase ,custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__lowerCAmelCase ,tf.keras.Model ) _lowerCamelCase : int = model(__lowerCAmelCase ) self.assert_outputs_same(__lowerCAmelCase ,__lowerCAmelCase ) @slow def _lowercase ( self: str ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) _lowerCamelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _lowerCamelCase : Tuple = model_class(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : List[str] = model(__lowerCAmelCase ,noise=__lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": _lowerCamelCase : Optional[int] = outputs.last_hidden_state.numpy() _lowerCamelCase : List[str] = 0 else: _lowerCamelCase : str = outputs.logits.numpy() _lowerCamelCase : str = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ,saved_model=__lowerCAmelCase ) _lowerCamelCase : Dict = model_class.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[str] = model(__lowerCAmelCase ,noise=__lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": _lowerCamelCase : int = after_outputs["last_hidden_state"].numpy() _lowerCamelCase : Dict = 0 else: _lowerCamelCase : List[Any] = after_outputs["logits"].numpy() _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1e-5 ) def _lowercase ( self: int ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase, _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : List[Any] = int((config.image_size // config.patch_size) ** 2 ) _lowerCamelCase : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model(__lowerCAmelCase ,noise=__lowerCAmelCase ) _lowerCamelCase : List[Any] = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config _lowerCamelCase : Dict = model_class.from_config(model.config ) _lowerCamelCase : str = new_model(__lowerCAmelCase ) # Build model new_model.set_weights(model.get_weights() ) _lowerCamelCase : Union[str, Any] = new_model(__lowerCAmelCase ,noise=__lowerCAmelCase ) self.assert_outputs_same(__lowerCAmelCase ,__lowerCAmelCase ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: List[Any] ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase ( self: Dict ): '''simple docstring''' pass @slow def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[str] = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> int: '''simple docstring''' _lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: Any ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase ( self: Optional[int] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : List[str] = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ) _lowerCamelCase : List[str] = self.default_image_processor _lowerCamelCase : Optional[Any] = prepare_img() _lowerCamelCase : Any = image_processor(images=__lowerCAmelCase ,return_tensors="tf" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase : Dict = ViTMAEConfig() _lowerCamelCase : Optional[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase : Optional[int] = np.random.uniform(size=(1, num_patches) ) # forward pass _lowerCamelCase : str = model(**__lowerCAmelCase ,noise=__lowerCAmelCase ) # verify the logits _lowerCamelCase : Tuple = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Tuple = tf.convert_to_tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] ,__lowerCAmelCase ,atol=1e-4 )
46
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) _lowerCamelCase : Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class A_ ( _a ): lowerCAmelCase__ = 'sigmoid' lowerCAmelCase__ = 'softmax' lowerCAmelCase__ = 'none' @add_end_docstrings( _a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class A_ ( _a ): lowerCAmelCase__ = False lowerCAmelCase__ = ClassificationFunction.NONE def __init__( self: str ,**__lowerCAmelCase: str ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = tokenizer_kwargs _lowerCamelCase : Optional[int] = {} if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None: _lowerCamelCase : Tuple = self.model.config.return_all_scores if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None: _lowerCamelCase : List[str] = top_k _lowerCamelCase : Union[str, Any] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,) if return_all_scores: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : Union[str, Any] = 1 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCamelCase : Dict = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCamelCase : Optional[Any] = "top_k" not in kwargs if isinstance(args[0] ,__lowerCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = self.framework if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return self.model(**__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCamelCase : Dict = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None: _lowerCamelCase : Optional[int] = self.model.config.function_to_apply else: _lowerCamelCase : str = ClassificationFunction.NONE _lowerCamelCase : List[Any] = model_outputs["logits"][0] _lowerCamelCase : Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCamelCase : str = sigmoid(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: _lowerCamelCase : str = outputs else: raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCamelCase : Optional[int] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase ) if top_k is not None: _lowerCamelCase : Any = dict_scores[:top_k] return dict_scores
46
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class A_ ( _a , _a ): lowerCAmelCase__ = 'bit' lowerCAmelCase__ = ['preactivation', 'bottleneck'] lowerCAmelCase__ = ['SAME', 'VALID'] def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=3 ,__lowerCAmelCase: List[str]=64 ,__lowerCAmelCase: Union[str, Any]=[256, 512, 1_024, 2_048] ,__lowerCAmelCase: Optional[int]=[3, 4, 6, 3] ,__lowerCAmelCase: str="preactivation" ,__lowerCAmelCase: Tuple="relu" ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Dict=1 ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Any ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCamelCase : List[Any] = global_padding.upper() else: raise ValueError(F"""Padding strategy {global_padding} not supported""" ) _lowerCamelCase : str = num_channels _lowerCamelCase : str = embedding_size _lowerCamelCase : Dict = hidden_sizes _lowerCamelCase : str = depths _lowerCamelCase : Any = layer_type _lowerCamelCase : Any = hidden_act _lowerCamelCase : List[str] = global_padding _lowerCamelCase : Tuple = num_groups _lowerCamelCase : Optional[int] = drop_path_rate _lowerCamelCase : List[Any] = embedding_dynamic_padding _lowerCamelCase : Any = output_stride _lowerCamelCase : List[str] = width_factor _lowerCamelCase : List[Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 ,len(__lowerCAmelCase ) + 1 )] _lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase ,out_indices=__lowerCAmelCase ,stage_names=self.stage_names )
46
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase : Tuple = '''\ Text data. Second line of data.''' _lowerCAmelCase : str = '''file''' @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : str = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _lowerCamelCase : List[str] = bytes(_lowerCamelCase , "utf-8" ) with zstd.open(_lowerCamelCase , "wb" ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , "w" ) as f: f.write(_lowerCamelCase ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _lowerCamelCase : Tuple = input_paths[compression_format] _lowerCamelCase : int = tmp_path / "cache" _lowerCamelCase : Any = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) with open(_lowerCamelCase ) as f: _lowerCamelCase : List[Any] = f.read() with open(_lowerCamelCase ) as f: _lowerCamelCase : int = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = "custom_cache" _lowerCamelCase : List[str] = "custom_extracted_dir" _lowerCamelCase : str = tmp_path / "custom_extracted_path" if default_extracted: _lowerCamelCase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) ) _lowerCamelCase : int = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCamelCase : int = xz_file _lowerCamelCase : List[Any] = ( DownloadConfig(extract_compressed_file=_lowerCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase ) ) _lowerCamelCase : Dict = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) assert Path(_lowerCamelCase ).parent.parts[-2:] == expected def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Tuple = str(Path(_lowerCamelCase ).resolve() ) assert cached_path(_lowerCamelCase ) == text_file # relative path _lowerCamelCase : Optional[int] = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_lowerCamelCase ) == text_file def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) # relative path _lowerCamelCase : List[Any] = "./__missing_file__.txt" with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_lowerCamelCase ) as f: _lowerCamelCase : Tuple = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( ) -> int: '''simple docstring''' with pytest.raises(_lowerCamelCase ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): http_get("https://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Any = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): ftp_get("ftp://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): fsspec_get("s3://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): fsspec_head("s3://huggingface.co" )
46
1
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class A_ : def __init__( self: List[str] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: List[Any]=13 ,__lowerCAmelCase: Optional[int]=7 ,__lowerCAmelCase: str=True ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: Any=True ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Tuple=99 ,__lowerCAmelCase: Optional[Any]=64 ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: Dict=5 ,__lowerCAmelCase: Tuple=4 ,__lowerCAmelCase: Union[str, Any]=37 ,__lowerCAmelCase: Union[str, Any]="gelu" ,__lowerCAmelCase: Dict=0.1 ,__lowerCAmelCase: Optional[int]=0.1 ,__lowerCAmelCase: Optional[int]=512 ,__lowerCAmelCase: Tuple=16 ,__lowerCAmelCase: Tuple=2 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Optional[int]=3 ,__lowerCAmelCase: Tuple=4 ,__lowerCAmelCase: int=None ,): '''simple docstring''' _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : List[Any] = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : str = use_input_mask _lowerCamelCase : List[str] = use_token_type_ids _lowerCamelCase : Union[str, Any] = use_labels _lowerCamelCase : Any = vocab_size _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : Optional[Any] = embedding_size _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : List[str] = type_sequence_label_size _lowerCamelCase : Any = initializer_range _lowerCamelCase : Optional[int] = num_labels _lowerCamelCase : str = num_choices _lowerCamelCase : Optional[Any] = scope def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCamelCase : List[Any] = None if self.use_input_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowerCamelCase : List[Any] = None _lowerCamelCase : List[str] = None _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowerCamelCase : Dict = ids_tensor([self.batch_size] ,self.num_choices ) _lowerCamelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self: Optional[int] ): '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = MegatronBertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : str = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ) _lowerCamelCase : int = model(__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ) _lowerCamelCase : Dict = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[Any] = MegatronBertForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : List[str] = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Any ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : int = MegatronBertForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' _lowerCamelCase : Any = MegatronBertForNextSentencePrediction(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : List[Any] = model( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[Any] = MegatronBertForPreTraining(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : int = model( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ,next_sentence_label=__lowerCAmelCase ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def _lowercase ( self: int ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: int ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Optional[int] = MegatronBertForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[int] = model( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,start_positions=__lowerCAmelCase ,end_positions=__lowerCAmelCase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.num_labels _lowerCamelCase : List[str] = MegatronBertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = self.num_labels _lowerCamelCase : Dict = MegatronBertForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[int] = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self: str ,__lowerCAmelCase: Any ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.num_choices _lowerCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCamelCase : Any = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCamelCase : Dict = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCamelCase : Dict = model( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = self.prepare_config_and_inputs() ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : Any = config_and_inputs _lowerCamelCase : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = True # test_resize_embeddings = False lowerCAmelCase__ = False def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Optional[Any]=False ): '''simple docstring''' _lowerCamelCase : List[str] = super()._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ,return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): _lowerCamelCase : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=__lowerCAmelCase ) _lowerCamelCase : List[Any] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__lowerCAmelCase ) return inputs_dict def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : str = MegatronBertModelTester(self ) _lowerCamelCase : Dict = ConfigTester(self ,config_class=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__lowerCAmelCase ) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__lowerCAmelCase ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' return torch.tensor( _lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , ) _lowerCAmelCase : List[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): @slow @unittest.skip("Model is not available." ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Optional[int] = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: _lowerCamelCase : Optional[int] = os.path.join(os.environ["MYDIR"] ,__lowerCAmelCase ) _lowerCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.half() _lowerCamelCase : Optional[int] = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): _lowerCamelCase : Any = model(__lowerCAmelCase )[0] _lowerCamelCase : List[str] = torch.Size((1, 9, 1_024) ) self.assertEqual(output.shape ,__lowerCAmelCase ) _lowerCamelCase : Any = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3 ): for jj in range(3 ): _lowerCamelCase : str = output[0, ii, jj] _lowerCamelCase : Optional[int] = expected[3 * ii + jj] _lowerCamelCase : Union[str, Any] = "ii={} jj={} a={} b={}".format(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) self.assertTrue(math.isclose(__lowerCAmelCase ,__lowerCAmelCase ,rel_tol=__lowerCAmelCase ,abs_tol=__lowerCAmelCase ) ,msg=__lowerCAmelCase )
46
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None: '''simple docstring''' _lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowerCamelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _lowerCamelCase : List[str] = v.half() if save_path is None: # overwrite src_path _lowerCamelCase : Union[str, Any] = src_path torch.save(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
46
1
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = 0 ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = right or len(_lowerCamelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(_lowerCamelCase , _lowerCamelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
46
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCAmelCase : List[str] = get_tests_dir('''fixtures/dummy-config.json''') class A_ ( unittest.TestCase ): def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[Any] = 0 def _lowercase ( self: Dict ): '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoConfig.for_model("roberta" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"fake-roberta" ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase ,"config.json" ) ,"w" ) as f: f.write(json.dumps({} ) ) _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertEqual(type(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' try: AutoConfig.register("custom" ,__lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("model" ,__lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("bert" ,__lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ): _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" ) def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" ) def _lowercase ( self: Tuple ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." ,): _lowerCamelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowercase ( self: List[Any] ): '''simple docstring''' with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ ,"NewModelConfig" ) def _lowercase ( self: Dict ): '''simple docstring''' class A_ ( _a ): lowerCAmelCase__ = 'new-model' try: AutoConfig.register("new-model" ,__lowerCAmelCase ) # If remote code is not set, the default is to use local _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote code is disabled, we load the local one. _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote is enabled, we load from the Hub _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
46
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Union[str, Any] = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
1
"""simple docstring""" import os import sys import unittest _lowerCAmelCase : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCAmelCase : Tuple = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') _lowerCAmelCase : str = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class A_ ( unittest.TestCase ): def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : int = get_test_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = get_test_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Dict = {"BertModelTest": "BertModelTester"} _lowerCamelCase : Union[str, Any] = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = get_model_to_test_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = get_model_to_test_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } _lowerCamelCase : Optional[Any] = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = get_model_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Dict = get_model_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } _lowerCamelCase : List[str] = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase )
46
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int: '''simple docstring''' _lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCamelCase : Tuple = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Any = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Optional[int] = val @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = False if "vqa" in checkpoint_url: _lowerCamelCase : str = True _lowerCamelCase : Union[str, Any] = 3129 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Optional[Any] = "vqa2-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = {0: "False", 1: "True"} _lowerCamelCase : int = {v: k for k, v in config.idalabel.items()} _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase : Dict = True _lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"] _lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) if mlm_model or irtr_model: _lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor _lowerCamelCase : int = ViltImageProcessor(size=384 ) _lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) _lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : str = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) _lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : int = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw ) if mlm_model: _lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]." else: _lowerCamelCase : List[str] = "How many cats are there?" _lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: _lowerCamelCase : List[str] = torch.Size([1, 11, 30522] ) _lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase : List[str] = torch.Size([1, 3129] ) _lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase : List[str] = torch.Size([1, 2] ) _lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
46
1
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCAmelCase : List[str] = 10 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' for i in range(_lowerCamelCase , _lowerCamelCase ): if array[i] == target: return i return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Any = len(_lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = (left + right) // 3 + 1 _lowerCamelCase : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _lowerCamelCase : Union[str, Any] = one_third - 1 elif array[two_third] < target: _lowerCamelCase : Any = two_third + 1 else: _lowerCamelCase : List[str] = one_third + 1 _lowerCamelCase : int = two_third - 1 else: return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Tuple = (left + right) // 3 + 1 _lowerCamelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip() _lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowerCAmelCase : Any = int(input('''Enter the number to be found in the list:\n''').strip()) _lowerCAmelCase : Union[str, Any] = ite_ternary_search(collection, target) _lowerCAmelCase : str = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
46
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str | Literal[False]: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Any = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 _lowerCamelCase : List[str] = "_" if count > 1: return False else: return "".join(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : List[str] = [] while True: _lowerCamelCase : Tuple = ["$"] * len(_lowerCamelCase ) _lowerCamelCase : str = [] for i in range(len(_lowerCamelCase ) ): for j in range(i + 1 , len(_lowerCamelCase ) ): _lowerCamelCase : Dict = compare_string(binary[i] , binary[j] ) if k is False: _lowerCamelCase : Any = "*" _lowerCamelCase : Optional[int] = "*" temp.append("X" ) for i in range(len(_lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowerCamelCase ) == 0: return pi _lowerCamelCase : List[Any] = list(set(_lowerCamelCase ) ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Optional[int] = [] for minterm in minterms: _lowerCamelCase : List[Any] = "" for _ in range(_lowerCamelCase ): _lowerCamelCase : List[str] = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowerCamelCase ) return temp def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Optional[int] = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Dict = [0] * len(_lowerCamelCase ) for i in range(len(chart[0] ) ): _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = -1 for j in range(len(_lowerCamelCase ) ): if chart[j][i] == 1: count += 1 _lowerCamelCase : Any = j if count == 1: _lowerCamelCase : Union[str, Any] = 1 for i in range(len(_lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = 0 temp.append(prime_implicants[i] ) while True: _lowerCamelCase : str = 0 _lowerCamelCase : int = -1 _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = chart[i].count(1 ) if count_n > max_n: _lowerCamelCase : Any = count_n _lowerCamelCase : Union[str, Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowerCamelCase ) ): _lowerCamelCase : Any = 0 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[list[int]]: '''simple docstring''' _lowerCamelCase : str = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )] for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : List[Any] = prime_implicants[i].count("_" ) for j in range(len(_lowerCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ): _lowerCamelCase : Optional[Any] = 1 return chart def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : Optional[int] = int(input("Enter the no. of variables\n" ) ) _lowerCamelCase : str = [ float(_lowerCamelCase ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] _lowerCamelCase : Tuple = decimal_to_binary(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = check(_lowerCamelCase ) print("Prime Implicants are:" ) print(_lowerCamelCase ) _lowerCamelCase : Any = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : List[Any] = selection(_lowerCamelCase , _lowerCamelCase ) print("Essential Prime Implicants are:" ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
"""simple docstring""" from __future__ import annotations from random import random class A_ : def __init__( self: List[str] ,__lowerCAmelCase: int | None = None ): '''simple docstring''' _lowerCamelCase : Any = value _lowerCamelCase : Optional[int] = random() _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None def __repr__( self: Tuple ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return F"""'{self.value}: {self.prior:.5}'""" else: return pformat( {F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} ,indent=1 ) def __str__( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = str(self.value ) + " " _lowerCamelCase : Optional[Any] = str(self.left or "" ) _lowerCamelCase : int = str(self.right or "" ) return value + left + right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _lowerCamelCase, _lowerCamelCase : int = split(root.left , _lowerCamelCase ) return left, root else: _lowerCamelCase, _lowerCamelCase : Optional[int] = split(root.right , _lowerCamelCase ) return root, right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _lowerCamelCase : Any = merge(left.right , _lowerCamelCase ) return left else: _lowerCamelCase : Optional[Any] = merge(_lowerCamelCase , right.left ) return right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase : int = Node(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase : Tuple = split(_lowerCamelCase , _lowerCamelCase ) return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , value - 1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , _lowerCamelCase ) return merge(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": _lowerCamelCase : Optional[Any] = insert(_lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": _lowerCamelCase : Optional[Any] = erase(_lowerCamelCase , int(arg[1:] ) ) else: print("Unknown command" ) return root def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : List[Any] = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) _lowerCamelCase : int = input() while args != "q": _lowerCamelCase : List[str] = interact_treap(_lowerCamelCase , _lowerCamelCase ) print(_lowerCamelCase ) _lowerCamelCase : Tuple = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
1
"""simple docstring""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' if openai_config_file == "": _lowerCamelCase : Optional[Any] = OpenAIGPTConfig() else: _lowerCamelCase : Tuple = OpenAIGPTConfig.from_json_file(_lowerCamelCase ) _lowerCamelCase : List[Any] = OpenAIGPTModel(_lowerCamelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCamelCase : Optional[int] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _lowerCamelCase : List[str] = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--openai_checkpoint_folder_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--openai_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) _lowerCAmelCase : str = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
46
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = SpeechTaTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def _lowercase ( self: List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase ) _lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self: List[str] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = "this is a test" _lowerCamelCase : Optional[Any] = "this is a test" return input_text, output_text def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = "<pad>" _lowerCamelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<s>" ) self.assertEqual(vocab_keys[1] ,"<pad>" ) self.assertEqual(vocab_keys[-4] ,"œ" ) self.assertEqual(vocab_keys[-2] ,"<mask>" ) self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" ) self.assertEqual(len(__lowerCAmelCase ) ,81 ) def _lowercase ( self: Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Optional[Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] _lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) ) _lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) _lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} _lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.vocab_size _lowerCamelCase : str = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' pass def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) _lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) _lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off _lowerCamelCase : Tuple = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,)
46
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class A_ : lowerCAmelCase__ = LEDConfig lowerCAmelCase__ = {} lowerCAmelCase__ = 'gelu' def __init__( self: Dict ,__lowerCAmelCase: int ,__lowerCAmelCase: str=13 ,__lowerCAmelCase: str=7 ,__lowerCAmelCase: Any=True ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Tuple=99 ,__lowerCAmelCase: Tuple=32 ,__lowerCAmelCase: int=2 ,__lowerCAmelCase: Optional[Any]=4 ,__lowerCAmelCase: Tuple=37 ,__lowerCAmelCase: Tuple=0.1 ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: Optional[Any]=20 ,__lowerCAmelCase: Tuple=2 ,__lowerCAmelCase: int=1 ,__lowerCAmelCase: int=0 ,__lowerCAmelCase: Optional[Any]=4 ,): '''simple docstring''' _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : List[str] = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Any = is_training _lowerCamelCase : Tuple = use_labels _lowerCamelCase : Dict = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : List[Any] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : int = eos_token_id _lowerCamelCase : Dict = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : str = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _lowerCamelCase : str = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _lowerCamelCase : Any = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) _lowerCamelCase : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) _lowerCamelCase : Optional[int] = tf.concat([input_ids, eos_tensor] ,axis=1 ) _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCamelCase : List[str] = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,attention_window=self.attention_window ,**self.config_updates ,) _lowerCamelCase : int = prepare_led_inputs_dict(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tf.concat( [tf.zeros_like(__lowerCAmelCase )[:, :-1], tf.ones_like(__lowerCAmelCase )[:, -1:]] ,axis=-1 ,) _lowerCamelCase : Optional[int] = global_attention_mask return config, inputs_dict def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = TFLEDModel(config=__lowerCAmelCase ).get_decoder() _lowerCamelCase : str = inputs_dict["input_ids"] _lowerCamelCase : List[str] = input_ids[:1, :] _lowerCamelCase : Any = inputs_dict["attention_mask"][:1, :] _lowerCamelCase : Any = 1 # first forward pass _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,use_cache=__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Dict = ids_tensor((self.batch_size, 3) ,config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and _lowerCamelCase : Dict = tf.concat([input_ids, next_tokens] ,axis=-1 ) _lowerCamelCase : Tuple = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) _lowerCamelCase : List[Any] = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase )[0] _lowerCamelCase : List[Any] = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,past_key_values=__lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice _lowerCamelCase : List[Any] = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCAmelCase ,__lowerCAmelCase ,rtol=1e-3 ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ) -> Tuple: '''simple docstring''' if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(_lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCamelCase : Optional[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCamelCase : str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCamelCase : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowerCAmelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase__ = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = TFLEDModelTester(self ) _lowerCamelCase : str = ConfigTester(self ,config_class=__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Union[str, Any] = tf.zeros_like(inputs_dict["attention_mask"] ) _lowerCamelCase : Dict = 2 _lowerCamelCase : int = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices ,1 ,inputs_dict["global_attention_mask"] ,) _lowerCamelCase : List[Any] = True _lowerCamelCase : Optional[Any] = self.model_tester.seq_length _lowerCamelCase : Optional[Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__lowerCAmelCase: List[Any] ): _lowerCamelCase : Dict = outputs.decoder_attentions self.assertEqual(len(__lowerCAmelCase ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_length, seq_length] ,) def check_encoder_attentions_output(__lowerCAmelCase: Tuple ): _lowerCamelCase : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions] _lowerCamelCase : Optional[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__lowerCAmelCase ) ,self.model_tester.num_hidden_layers ) self.assertEqual(len(__lowerCAmelCase ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_length, seq_length] ,) self.assertListEqual( list(global_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] ,) for model_class in self.all_model_classes: _lowerCamelCase : str = True _lowerCamelCase : str = False _lowerCamelCase : Any = False _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Dict = model(self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : List[str] = len(__lowerCAmelCase ) self.assertEqual(config.output_hidden_states ,__lowerCAmelCase ) check_encoder_attentions_output(__lowerCAmelCase ) if self.is_encoder_decoder: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model(self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states ,__lowerCAmelCase ) check_decoder_attentions_output(__lowerCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : int = model_class(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = model(self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states ,__lowerCAmelCase ) check_encoder_attentions_output(__lowerCAmelCase ) # Check attention is always last and order is fine _lowerCamelCase : Any = True _lowerCamelCase : List[Any] = True _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : Any = model(self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) ,len(__lowerCAmelCase ) ) self.assertEqual(model.config.output_hidden_states ,__lowerCAmelCase ) check_encoder_attentions_output(__lowerCAmelCase ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def _lowercase ( self: int ): '''simple docstring''' pass def _lowercase ( self: List[str] ): '''simple docstring''' pass def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' return tf.constant(_lowerCamelCase , dtype=tf.intaa ) _lowerCAmelCase : List[str] = 1e-4 @slow @require_tf class A_ ( unittest.TestCase ): def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : int = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here _lowerCamelCase : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _lowerCamelCase : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _lowerCamelCase : List[Any] = prepare_led_inputs_dict(model.config ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : List[str] = model(**__lowerCAmelCase )[0] _lowerCamelCase : List[str] = (1, 1_024, 768) self.assertEqual(output.shape ,__lowerCAmelCase ) # change to expected output here _lowerCamelCase : List[str] = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] ,) tf.debugging.assert_near(output[:, :3, :3] ,__lowerCAmelCase ,atol=1e-3 ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[str] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here _lowerCamelCase : Tuple = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _lowerCamelCase : Any = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _lowerCamelCase : List[str] = prepare_led_inputs_dict(model.config ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Tuple = model(**__lowerCAmelCase )[0] _lowerCamelCase : List[Any] = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape ,__lowerCAmelCase ) # change to expected output here _lowerCamelCase : List[Any] = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] ,) tf.debugging.assert_near(output[:, :3, :3] ,__lowerCAmelCase ,atol=1e-3 ,rtol=1e-3 )
46
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
46
1
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _lowerCamelCase : Any = [p / w for p, w in zip(_lowerCamelCase , _lowerCamelCase )] # Creating a copy of the list and sorting profit/weight in ascending order _lowerCamelCase : Dict = sorted(_lowerCamelCase ) # declaring useful variables _lowerCamelCase : Optional[int] = len(_lowerCamelCase ) _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _lowerCamelCase : int = sorted_profit_by_weight[length - i - 1] _lowerCamelCase : Dict = profit_by_weight.index(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) _lowerCAmelCase : Optional[Any] = [int(x) for x in input('''Input profits separated by spaces: ''').split()] _lowerCAmelCase : Tuple = [int(x) for x in input('''Input weights separated by spaces: ''').split()] _lowerCAmelCase : Optional[Any] = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
46
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): lowerCAmelCase__ = (DDIMParallelScheduler,) lowerCAmelCase__ = (('eta', 0.0), ('num_inference_steps', 5_0)) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = { "num_train_timesteps": 1_000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCAmelCase ) return config def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : Any = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = 10, 0.0 _lowerCamelCase : List[Any] = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for t in scheduler.timesteps: _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample return sample def _lowercase ( self: List[str] ): '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Dict = self.get_scheduler_config(steps_offset=1 ) _lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) ) def _lowercase ( self: Any ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCAmelCase ,beta_end=__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ): self.check_over_forward(time_step=__lowerCAmelCase ,num_inference_steps=__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCAmelCase ,eta=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : List[str] = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5 def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Union[str, Any] = self.get_scheduler_config() _lowerCamelCase : str = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[int] = 10, 0.0 scheduler.set_timesteps(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.dummy_model() _lowerCamelCase : Optional[int] = self.dummy_sample_deter _lowerCamelCase : List[str] = self.dummy_sample_deter + 0.1 _lowerCamelCase : Dict = self.dummy_sample_deter - 0.1 _lowerCamelCase : Union[str, Any] = samplea.shape[0] _lowerCamelCase : List[Any] = torch.stack([samplea, samplea, samplea] ,dim=0 ) _lowerCamelCase : Dict = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 ,__lowerCAmelCase ) _lowerCamelCase : str = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) _lowerCamelCase : List[str] = scheduler.batch_step_no_noise(__lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,__lowerCAmelCase ) _lowerCamelCase : str = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = self.full_loop() _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : int = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(prediction_type="v_prediction" ) _lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[str] = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : int = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
46
1
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowerCamelCase_( *_lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase=True , _lowerCamelCase=2 ) -> Any: '''simple docstring''' from .. import __version__ _lowerCamelCase : List[Any] = take_from _lowerCamelCase : List[Any] = () if not isinstance(args[0] , _lowerCamelCase ): _lowerCamelCase : List[Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(_lowerCamelCase ).base_version ) >= version.parse(_lowerCamelCase ): raise ValueError( F"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" F""" version {__version__} is >= {version_name}""" ) _lowerCamelCase : int = None if isinstance(_lowerCamelCase , _lowerCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_lowerCamelCase ),) _lowerCamelCase : List[Any] = F"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(_lowerCamelCase , _lowerCamelCase ): values += (getattr(_lowerCamelCase , _lowerCamelCase ),) _lowerCamelCase : List[Any] = F"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _lowerCamelCase : List[str] = F"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _lowerCamelCase : Dict = warning + " " if standard_warn else "" warnings.warn(warning + message , _lowerCamelCase , stacklevel=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) > 0: _lowerCamelCase : List[str] = inspect.getouterframes(inspect.currentframe() )[1] _lowerCamelCase : Union[str, Any] = call_frame.filename _lowerCamelCase : str = call_frame.lineno _lowerCamelCase : Union[str, Any] = call_frame.function _lowerCamelCase, _lowerCamelCase : List[str] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(_lowerCamelCase ) == 0: return elif len(_lowerCamelCase ) == 1: return values[0] return values
46
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class A_ ( _a , _a ): lowerCAmelCase__ = 'bit' lowerCAmelCase__ = ['preactivation', 'bottleneck'] lowerCAmelCase__ = ['SAME', 'VALID'] def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=3 ,__lowerCAmelCase: List[str]=64 ,__lowerCAmelCase: Union[str, Any]=[256, 512, 1_024, 2_048] ,__lowerCAmelCase: Optional[int]=[3, 4, 6, 3] ,__lowerCAmelCase: str="preactivation" ,__lowerCAmelCase: Tuple="relu" ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Dict=1 ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Any ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCamelCase : List[Any] = global_padding.upper() else: raise ValueError(F"""Padding strategy {global_padding} not supported""" ) _lowerCamelCase : str = num_channels _lowerCamelCase : str = embedding_size _lowerCamelCase : Dict = hidden_sizes _lowerCamelCase : str = depths _lowerCamelCase : Any = layer_type _lowerCamelCase : Any = hidden_act _lowerCamelCase : List[str] = global_padding _lowerCamelCase : Tuple = num_groups _lowerCamelCase : Optional[int] = drop_path_rate _lowerCamelCase : List[Any] = embedding_dynamic_padding _lowerCamelCase : Any = output_stride _lowerCamelCase : List[str] = width_factor _lowerCamelCase : List[Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 ,len(__lowerCAmelCase ) + 1 )] _lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase ,out_indices=__lowerCAmelCase ,stage_names=self.stage_names )
46
1