code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor A__ : str = logging.get_logger(__name__) class __magic_name__ ( lowercase_ ): def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
353
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =(PNDMScheduler,) _UpperCAmelCase =(('''num_inference_steps''', 50),) def _lowerCAmelCase ( self: int , **a: Optional[int]) ->Any: '''simple docstring''' a_ = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**a) return config def _lowerCAmelCase ( self: Any , a: Tuple=0 , **a: Any) ->Any: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config(**a) a_ = scheduler_class(**a) scheduler.set_timesteps(a) # copy over dummy past residuals a_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a) a_ = scheduler_class.from_pretrained(a) new_scheduler.set_timesteps(a) # copy over dummy past residuals a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , a , a , **a).prev_sample a_ = new_scheduler.step_prk(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a_ = scheduler.step_plms(a , a , a , **a).prev_sample a_ = new_scheduler.step_plms(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self: str) ->Any: '''simple docstring''' pass def _lowerCAmelCase ( self: Union[str, Any] , a: str=0 , **a: Union[str, Any]) ->Tuple: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.set_timesteps(a) # copy over dummy past residuals (must be after setting timesteps) a_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a) a_ = scheduler_class.from_pretrained(a) # copy over dummy past residuals new_scheduler.set_timesteps(a) # copy over dummy past residual (must be after setting timesteps) a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , a , a , **a).prev_sample a_ = new_scheduler.step_prk(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a_ = scheduler.step_plms(a , a , a , **a).prev_sample a_ = new_scheduler.step_plms(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self: Dict , **a: int) ->Any: '''simple docstring''' a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(**a) a_ = scheduler_class(**a) a_ = 10 a_ = self.dummy_model() a_ = self.dummy_sample_deter scheduler.set_timesteps(a) for i, t in enumerate(scheduler.prk_timesteps): a_ = model(a , a) a_ = scheduler.step_prk(a , a , a).prev_sample for i, t in enumerate(scheduler.plms_timesteps): a_ = model(a , a) a_ = scheduler.step_plms(a , a , a).prev_sample return sample def _lowerCAmelCase ( self: int) ->int: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**a) a_ = self.dummy_sample a_ = 0.1 * sample if num_inference_steps is not None and hasattr(a , "set_timesteps"): scheduler.set_timesteps(a) elif num_inference_steps is not None and not hasattr(a , "set_timesteps"): a_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , 0 , a , **a).prev_sample a_ = scheduler.step_prk(a , 1 , a , **a).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) a_ = scheduler.step_plms(a , 0 , a , **a).prev_sample a_ = scheduler.step_plms(a , 1 , a , **a).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def _lowerCAmelCase ( self: Dict) ->List[Any]: '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=a) def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=a) a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(steps_offset=1) a_ = scheduler_class(**a) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1]) , ) def _lowerCAmelCase ( self: Tuple) ->Optional[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=a , beta_end=a) def _lowerCAmelCase ( self: int) ->Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a) def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a) def _lowerCAmelCase ( self: Tuple) ->Optional[Any]: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=a) def _lowerCAmelCase ( self: str) ->List[str]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00]): self.check_over_forward(num_inference_steps=a) def _lowerCAmelCase ( self: Dict) ->Union[str, Any]: '''simple docstring''' a_ = 27 for scheduler_class in self.scheduler_classes: a_ = self.dummy_sample a_ = 0.1 * sample a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.set_timesteps(a) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): a_ = scheduler.step_prk(a , a , a).prev_sample def _lowerCAmelCase ( self: Optional[Any]) ->Dict: '''simple docstring''' with self.assertRaises(a): a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def _lowerCAmelCase ( self: Optional[int]) ->Union[str, Any]: '''simple docstring''' a_ = self.full_loop() a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 198.1318) < 1e-2 assert abs(result_mean.item() - 0.2580) < 1e-3 def _lowerCAmelCase ( self: Optional[int]) ->int: '''simple docstring''' a_ = self.full_loop(prediction_type="v_prediction") a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 67.3986) < 1e-2 assert abs(result_mean.item() - 0.0878) < 1e-3 def _lowerCAmelCase ( self: int) ->Optional[Any]: '''simple docstring''' a_ = self.full_loop(set_alpha_to_one=a , beta_start=0.01) a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 230.0399) < 1e-2 assert abs(result_mean.item() - 0.2995) < 1e-3 def _lowerCAmelCase ( self: List[str]) ->Any: '''simple docstring''' a_ = self.full_loop(set_alpha_to_one=a , beta_start=0.01) a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 186.9482) < 1e-2 assert abs(result_mean.item() - 0.2434) < 1e-3
685
0
"""simple docstring""" def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->Any: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(lowercase__, int(b / 2 ) ) * actual_power(lowercase__, int(b / 2 ) ) else: return a * actual_power(lowercase__, int(b / 2 ) ) * actual_power(lowercase__, int(b / 2 ) ) def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->float: """simple docstring""" if b < 0: return 1 / actual_power(lowercase__, lowercase__ ) return actual_power(lowercase__, lowercase__ ) if __name__ == "__main__": print(power(-2, -3))
575
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _lowerCAmelCase ( self: Optional[int]) ->Dict: '''simple docstring''' super().tearDown() gc.collect() def _lowerCAmelCase ( self: str) ->Optional[int]: '''simple docstring''' a_ , a_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=a , dtype=jnp.bfloataa) a_ , a_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa) a_ = controlnet_params a_ = "bird" a_ = jax.device_count() a_ = pipe.prepare_text_inputs([prompts] * num_samples) a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png") a_ = pipe.prepare_image_inputs([canny_image] * num_samples) a_ = jax.random.PRNGKey(0) a_ = jax.random.split(a , jax.device_count()) a_ = replicate(a) a_ = shard(a) a_ = shard(a) a_ = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) a_ = images[0, 2_53:2_56, 2_53:2_56, -1] a_ = jnp.asarray(jax.device_get(image_slice.flatten())) a_ = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2 def _lowerCAmelCase ( self: Union[str, Any]) ->str: '''simple docstring''' a_ , a_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=a , dtype=jnp.bfloataa) a_ , a_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa) a_ = controlnet_params a_ = "Chef in the kitchen" a_ = jax.device_count() a_ = pipe.prepare_text_inputs([prompts] * num_samples) a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png") a_ = pipe.prepare_image_inputs([pose_image] * num_samples) a_ = jax.random.PRNGKey(0) a_ = jax.random.split(a , jax.device_count()) a_ = replicate(a) a_ = shard(a) a_ = shard(a) a_ = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) a_ = images[0, 2_53:2_56, 2_53:2_56, -1] a_ = jnp.asarray(jax.device_get(image_slice.flatten())) a_ = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
685
0
"""simple docstring""" import qiskit def _lowerCamelCase ( lowerCamelCase__ : str = 2 ): lowercase__ : Any = qubits # Using Aer's simulator lowercase__ : List[Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register lowercase__ : Dict = qiskit.QuantumCircuit(lowercase__ , lowercase__ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowercase__ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowercase__ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowercase__ ) ) , list(range(lowercase__ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator lowercase__ : Optional[int] = qiskit.execute(lowercase__ , lowercase__ , shots=10_00 ) return job.result().get_counts(lowercase__ ) if __name__ == "__main__": print(F"Total count for various states are: {quantum_entanglement(3)}")
200
'''simple docstring''' def __UpperCAmelCase (lowercase__ = 1000 ) -> int: '''simple docstring''' return sum(e for e in range(3 ,lowercase__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'{solution() = }')
685
0
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = TypeVar("""DatasetType""", Dataset, IterableDataset) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = "first_exhausted" , ) -> DatasetType: from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(lowercase__ ): if not isinstance(lowercase__ , (Dataset, IterableDataset) ): if isinstance(lowercase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ '''is an empty dataset dictionary.''' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(lowercase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowercase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase__ ).__name__}.""" ) if i == 0: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = ( (Dataset, IterableDataset) if isinstance(lowercase__ , lowercase__ ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase__ , lowercase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowercase__ , lowercase__ , lowercase__ , info=lowercase__ , split=lowercase__ , stopping_strategy=lowercase__ ) else: return _interleave_iterable_datasets( lowercase__ , lowercase__ , lowercase__ , info=lowercase__ , split=lowercase__ , stopping_strategy=lowercase__ ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = 0 , ) -> DatasetType: if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(lowercase__ ): if not isinstance(lowercase__ , (Dataset, IterableDataset) ): if isinstance(lowercase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ '''is an empty dataset dictionary.''' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(lowercase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowercase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase__ ).__name__}.""" ) if i == 0: lowerCAmelCase__ , lowerCAmelCase__ : Dict = ( (Dataset, IterableDataset) if isinstance(lowercase__ , lowercase__ ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase__ , lowercase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowercase__ , info=lowercase__ , split=lowercase__ , axis=lowercase__ ) else: return _concatenate_iterable_datasets(lowercase__ , info=lowercase__ , split=lowercase__ , axis=lowercase__ )
678
'''simple docstring''' import math def __UpperCAmelCase (lowercase__ ) -> list: '''simple docstring''' a_ = [True] * n a_ = False a_ = False a_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): a_ = i * 2 while index < n: a_ = False a_ = index + i a_ = [2] for i in range(3 ,lowercase__ ,2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def __UpperCAmelCase (lowercase__ = 999966663333 ) -> int: '''simple docstring''' a_ = math.floor(math.sqrt(lowercase__ ) ) + 100 a_ = prime_sieve(lowercase__ ) a_ = 0 a_ = 0 a_ = primes[prime_index] while (last_prime**2) <= limit: a_ = primes[prime_index + 1] a_ = last_prime**2 a_ = next_prime**2 # Get numbers divisible by lps(current) a_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) a_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps a_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair a_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
685
0
from typing import TYPE_CHECKING from ....utils import _LazyModule __lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
147
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' a_ = UniSpeechSatForSequenceClassification.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["projector.weight"] a_ = downstream_dict["projector.bias"] a_ = downstream_dict["model.post_net.linear.weight"] a_ = downstream_dict["model.post_net.linear.bias"] return model def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Dict: '''simple docstring''' a_ = UniSpeechSatForAudioFrameClassification.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["model.linear.weight"] a_ = downstream_dict["model.linear.bias"] return model def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Optional[Any]: '''simple docstring''' a_ = UniSpeechSatForXVector.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["connector.weight"] a_ = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a_ = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] a_ = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] a_ = downstream_dict["objective.W"] return model @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> List[str]: '''simple docstring''' a_ = torch.load(lowercase__ ,map_location="cpu" ) a_ = checkpoint["Downstream"] a_ = UniSpeechSatConfig.from_pretrained(lowercase__ ) a_ = WavaVecaFeatureExtractor.from_pretrained( lowercase__ ,return_attention_mask=lowercase__ ,do_normalize=lowercase__ ) a_ = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): a_ = convert_classification(lowercase__ ,lowercase__ ,lowercase__ ) elif arch.endswith("ForAudioFrameClassification" ): a_ = convert_diarization(lowercase__ ,lowercase__ ,lowercase__ ) elif arch.endswith("ForXVector" ): a_ = convert_xvector(lowercase__ ,lowercase__ ,lowercase__ ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: a_ = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') a_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
685
0
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets _SCREAMING_SNAKE_CASE = """\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n""" _SCREAMING_SNAKE_CASE = """\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n""" _SCREAMING_SNAKE_CASE = """\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def lowerCAmelCase ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def lowerCAmelCase ( self : Optional[Any] ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def lowerCAmelCase ( self : Optional[Any] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : Union[str, Any]=None , snake_case_ : Tuple="uniform_average" , snake_case_ : int=True ): __snake_case = mean_squared_error( snake_case_ , snake_case_ , sample_weight=snake_case_ , multioutput=snake_case_ , squared=snake_case_ ) return {"mse": mse}
163
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
685
0
'''simple docstring''' __snake_case =range(2, 20 + 1) __snake_case =[10**k for k in range(ks[-1] + 1)] __snake_case ={} def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[Any] ): lowerCAmelCase = sum(a_i[j] for j in range(lowercase__ , len(lowercase__ ) ) ) lowerCAmelCase = sum(a_i[j] * base[j] for j in range(min(len(lowercase__ ) , lowercase__ ) ) ) lowerCAmelCase , lowerCAmelCase = 0, 0 lowerCAmelCase = n - i lowerCAmelCase = memo.get(lowercase__ ) if sub_memo is not None: lowerCAmelCase = sub_memo.get(lowercase__ ) if jumps is not None and len(lowercase__ ) > 0: # find and make the largest jump without going over lowerCAmelCase = -1 for _k in range(len(lowercase__ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowerCAmelCase = _k break if max_jump >= 0: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = jumps[max_jump] # since the difference between jumps is cached, add c lowerCAmelCase = diff + c for j in range(min(lowercase__ , len(lowercase__ ) ) ): lowerCAmelCase , lowerCAmelCase = divmod(lowercase__ , 10 ) if new_c > 0: add(lowercase__ , lowercase__ , lowercase__ ) else: lowerCAmelCase = [] else: lowerCAmelCase = {c: []} lowerCAmelCase = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowerCAmelCase , lowerCAmelCase = next_term(lowercase__ , k - 1 , i + dn , lowercase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowerCAmelCase , lowerCAmelCase = compute(lowercase__ , lowercase__ , i + dn , lowercase__ ) diff += _diff dn += terms_jumped lowerCAmelCase = sub_memo[c] # keep jumps sorted by # of terms skipped lowerCAmelCase = 0 while j < len(lowercase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowercase__ , (diff, dn, k) ) return (diff, dn) def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : Any ): if i >= n: return 0, i if k > len(lowercase__ ): a_i.extend([0 for _ in range(k - len(lowercase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowerCAmelCase = i lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 0, 0, 0 for j in range(len(lowercase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowerCAmelCase = ds_c + ds_b diff += addend lowerCAmelCase = 0 for j in range(lowercase__ ): lowerCAmelCase = a_i[j] + addend lowerCAmelCase , lowerCAmelCase = divmod(lowercase__ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowercase__ , lowercase__ , lowercase__ ) return diff, i - start_i def a_ ( lowerCamelCase : str , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] ): for j in range(lowercase__ , len(lowercase__ ) ): lowerCAmelCase = digits[j] + addend if s >= 10: lowerCAmelCase , lowerCAmelCase = divmod(lowercase__ , 10 ) lowerCAmelCase = addend // 10 + quotient else: lowerCAmelCase = s lowerCAmelCase = addend // 10 if addend == 0: break while addend > 0: lowerCAmelCase , lowerCAmelCase = divmod(lowercase__ , 10 ) digits.append(lowercase__ ) def a_ ( lowerCamelCase : List[str] = 10**15 ): lowerCAmelCase = [1] lowerCAmelCase = 1 lowerCAmelCase = 0 while True: lowerCAmelCase , lowerCAmelCase = next_term(lowercase__ , 20 , i + dn , lowercase__ ) dn += terms_jumped if dn == n - i: break lowerCAmelCase = 0 for j in range(len(lowercase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
133
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} a_ = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } a_ = { 'abeja/gpt-neox-japanese-2.7b': 2_048, } def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Tuple: '''simple docstring''' with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = json.loads(f.read() ) a_ = collections.OrderedDict() a_ = collections.OrderedDict() a_ = collections.OrderedDict() with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = f.readlines() a_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(lowercase__ ): a_ = b a_ = idx for wd in b: a_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =VOCAB_FILES_NAMES _UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase =['''input_ids''', '''attention_mask'''] def __init__( self: List[str] , a: Union[str, Any] , a: Optional[int] , a: List[str]="<|endoftext|>" , a: Union[str, Any]="<|endoftext|>" , a: Dict="<|startoftext|>" , a: Dict="<|endoftext|>" , a: Union[str, Any]=False , **a: Optional[int] , ) ->str: '''simple docstring''' super().__init__( unk_token=a , pad_token=a , bos_token=a , eos_token=a , do_clean_text=a , **a , ) if not os.path.isfile(a): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") if not os.path.isfile(a): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") a_ = do_clean_text a_ , a_ , a_ , a_ = load_vocab_and_emoji(a , a) a_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji) @property def _lowerCAmelCase ( self: Optional[Any]) ->Optional[Any]: '''simple docstring''' return len(self.raw_vocab) def _lowerCAmelCase ( self: Dict) ->Any: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder) def _lowerCAmelCase ( self: Union[str, Any] , a: Any) ->Dict: '''simple docstring''' return self.subword_tokenizer.tokenize(a , clean=self.do_clean_text) def _lowerCAmelCase ( self: int , a: List[Any]) ->Union[str, Any]: '''simple docstring''' return self.vocab.get(a , self.vocab.get(self.unk_token)) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->str: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(a) def _lowerCAmelCase ( self: Optional[int] , a: Any) ->str: '''simple docstring''' a_ = "".join(a).strip() return out_string def _lowerCAmelCase ( self: Any , a: "Conversation") ->List[int]: '''simple docstring''' a_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a , add_special_tokens=a) + [self.eos_token_id]) if len(a) > self.model_max_length: a_ = input_ids[-self.model_max_length :] return input_ids def _lowerCAmelCase ( self: int , a: str , a: Optional[str] = None) ->Tuple[str]: '''simple docstring''' a_ = 0 if os.path.isdir(a): a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"]) else: a_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) a_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(a , "w" , encoding="utf-8") as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!") a_ = token_index writer.write(",".join(a) + "\n") index += 1 with open(a , "w" , encoding="utf-8") as writer: json.dump(self.emoji , a) return vocab_file, emoji_file class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[str] , a: Any , a: Union[str, Any] , a: Any) ->List[Any]: '''simple docstring''' a_ = vocab # same as swe a_ = ids_to_tokens # same as bpe a_ = emoji a_ = np.max([len(a) for w in self.vocab.keys()]) a_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)") a_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*") a_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}") a_ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") a_ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") a_ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*") a_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" a_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" a_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks}) def __len__( self: Dict) ->Any: '''simple docstring''' return len(self.ids_to_tokens) def _lowerCAmelCase ( self: Union[str, Any] , a: Tuple) ->Any: '''simple docstring''' a_ = self.content_repattera.sub("<URL>" , a) a_ = self.content_repattera.sub("<EMAIL>" , a) a_ = self.content_repattera.sub("<TEL>" , a) a_ = self.content_repattera.sub("<DATE>" , a) a_ = self.content_repattera.sub("<DATE>" , a) a_ = self.content_repattera.sub("<PRICE>" , a) a_ = content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: a_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>") return content def _lowerCAmelCase ( self: Any , a: int , a: Optional[int]=False) ->List[str]: '''simple docstring''' a_ = text.replace(" " , "<SP>") a_ = text.replace(" " , "<SP>") a_ = text.replace("\r\n" , "<BR>") a_ = text.replace("\n" , "<BR>") a_ = text.replace("\r" , "<BR>") a_ = text.replace("\t" , "<TAB>") a_ = text.replace("—" , "ー") a_ = text.replace("−" , "ー") for k, v in self.emoji["emoji"].items(): if k in text: a_ = text.replace(a , a) if clean: a_ = self.clean_text(a) def check_simbol(a: Dict): a_ = x.encode() if len(a) == 1 and len(a) == 2: a_ = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0XC_2_A_1 and c <= 0XC_2_B_F) or (c >= 0XC_7_8_0 and c <= 0XC_7_8_3) or (c >= 0XC_A_B_9 and c <= 0XC_B_B_F) or (c >= 0XC_C_8_0 and c <= 0XC_D_A_2) ): return True return False def checkuae(a: str): a_ = x.encode() if len(a) == 1 and len(a) == 3: a_ = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0XE_2_8_0_8_0 and c <= 0XE_2_B_0_7_F: return True return False a_ = 0 a_ = [] while pos < len(a): a_ = min(len(a) , pos + self.maxlen + 1) if text[pos] == "<" else pos + 3 a_ = [] # (token_id, token, pos) for e in range(a , a , -1): a_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(a) > 2: a_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(a) > 0: # the smallest token_id is adopted a_ , a_ , a_ = sorted(a , key=lambda a: x[0])[0] result.append(a) a_ = e else: a_ = pos + 1 a_ = text[pos:end] if check_simbol(a): result.append("<KIGOU>") elif checkuae(a): result.append("<U2000U2BFF>") else: for i in wd.encode("utf-8"): result.append("<|byte%d|>" % i) a_ = end return result def _lowerCAmelCase ( self: int , a: List[Any] , a: Any="\n") ->str: '''simple docstring''' a_ = [] a_ = [] a_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(a) > 0: words.append(bytearray(a).decode("utf-8" , errors="replace")) a_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word]) elif word == "<SP>": words.append(" ") elif word == "<BR>": words.append(a) elif word == "<TAB>": words.append("\t") elif word == "<BLOCK>": words.append("▀") elif word == "<KIGOU>": words.append("ǀ") elif word == "<U2000U2BFF>": words.append("‖") else: words.append(a) if len(a) > 0: words.append(bytearray(a).decode("utf-8" , errors="replace")) a_ = "".join(a) return text
685
0
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase_( lowercase_ : Union[str, Any] , lowercase_ : int=0.9_9_9 , lowercase_ : List[str]="cosine" , ) -> Tuple: if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase_ : Optional[Any] ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase_ : Union[str, Any] ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowerCamelCase = [] for i in range(lowercase__ ): _lowerCamelCase = i / num_diffusion_timesteps _lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class lowerCamelCase_( lowercase_, lowercase_ ): '''simple docstring''' lowercase__ : Union[str, Any] = [e.name for e in KarrasDiffusionSchedulers] lowercase__ : Any = 2 @register_to_config def __init__( self , lowerCamelCase__ = 1_0_0_0 , lowerCamelCase__ = 0.0_0_0_8_5 , lowerCamelCase__ = 0.0_1_2 , lowerCamelCase__ = "linear" , lowerCamelCase__ = None , lowerCamelCase__ = "epsilon" , lowerCamelCase__ = "linspace" , lowerCamelCase__ = 0 , ): if trained_betas is not None: _lowerCamelCase = torch.tensor(lowerCamelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCamelCase = torch.linspace(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCamelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCamelCase = betas_for_alpha_bar(lowerCamelCase__ ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowerCamelCase = 1.0 - self.betas _lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__=None ): if schedule_timesteps is None: _lowerCamelCase = self.timesteps _lowerCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowerCamelCase = 1 if len(lowerCamelCase__ ) > 1 else 0 else: _lowerCamelCase = timestep.cpu().item() if torch.is_tensor(lowerCamelCase__ ) else timestep _lowerCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def snake_case__ ( self ): if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , ): _lowerCamelCase = self.index_for_timestep(lowerCamelCase__ ) if self.state_in_first_order: _lowerCamelCase = self.sigmas[step_index] else: _lowerCamelCase = self.sigmas_interpol[step_index] _lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , ): _lowerCamelCase = num_inference_steps _lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , lowerCamelCase__ , dtype=lowerCamelCase__ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowerCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCamelCase = (np.arange(0 , lowerCamelCase__ ) * step_ratio).round()[::-1].copy().astype(lowerCamelCase__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowerCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCamelCase = (np.arange(lowerCamelCase__ , 0 , -step_ratio )).round().copy().astype(lowerCamelCase__ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowerCamelCase = torch.from_numpy(np.log(lowerCamelCase__ ) ).to(lowerCamelCase__ ) _lowerCamelCase = np.interp(lowerCamelCase__ , np.arange(0 , len(lowerCamelCase__ ) ) , lowerCamelCase__ ) _lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowerCamelCase = torch.from_numpy(lowerCamelCase__ ).to(device=lowerCamelCase__ ) # interpolate sigmas _lowerCamelCase = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowerCamelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(lowerCamelCase__ ).startswith('''mps''' ): # mps does not support float64 _lowerCamelCase = torch.from_numpy(lowerCamelCase__ ).to(lowerCamelCase__ , dtype=torch.floataa ) else: _lowerCamelCase = torch.from_numpy(lowerCamelCase__ ).to(lowerCamelCase__ ) # interpolate timesteps _lowerCamelCase = self.sigma_to_t(lowerCamelCase__ ).to(lowerCamelCase__ , dtype=timesteps.dtype ) _lowerCamelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _lowerCamelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowerCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowerCamelCase = defaultdict(lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = sigma.log() # get distribution _lowerCamelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowerCamelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowerCamelCase = low_idx + 1 _lowerCamelCase = self.log_sigmas[low_idx] _lowerCamelCase = self.log_sigmas[high_idx] # interpolate sigmas _lowerCamelCase = (low - log_sigma) / (low - high) _lowerCamelCase = w.clamp(0 , 1 ) # transform interpolation to time range _lowerCamelCase = (1 - w) * low_idx + w * high_idx _lowerCamelCase = t.view(sigma.shape ) return t @property def snake_case__ ( self ): return self.sample is None def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , ): _lowerCamelCase = self.index_for_timestep(lowerCamelCase__ ) # advance index counter by 1 _lowerCamelCase = timestep.cpu().item() if torch.is_tensor(lowerCamelCase__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowerCamelCase = self.sigmas[step_index] _lowerCamelCase = self.sigmas_interpol[step_index + 1] _lowerCamelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowerCamelCase = self.sigmas[step_index - 1] _lowerCamelCase = self.sigmas_interpol[step_index] _lowerCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowerCamelCase = 0 _lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol _lowerCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol _lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowerCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowerCamelCase = sigma_interpol - sigma_hat # store for 2nd order step _lowerCamelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowerCamelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowerCamelCase = sigma_next - sigma_hat _lowerCamelCase = self.sample _lowerCamelCase = None _lowerCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): _lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCamelCase__ ): # mps does not support float64 _lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _lowerCamelCase = self.timesteps.to(original_samples.device ) _lowerCamelCase = timesteps.to(original_samples.device ) _lowerCamelCase = [self.index_for_timestep(lowerCamelCase__ , lowerCamelCase__ ) for t in timesteps] _lowerCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowerCamelCase = sigma.unsqueeze(-1 ) _lowerCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
661
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[Any] , a: Optional[Any] , a: Dict=13 , a: List[str]=7 , a: Optional[Any]=True , a: int=True , a: Any=True , a: Optional[int]=True , a: int=True , a: Dict=False , a: Union[str, Any]=False , a: Dict=False , a: List[str]=2 , a: Union[str, Any]=99 , a: List[Any]=0 , a: Optional[int]=32 , a: List[str]=5 , a: int=4 , a: List[Any]=0.1 , a: Optional[int]=0.1 , a: Optional[int]=5_12 , a: str=12 , a: Dict=2 , a: Any=0.02 , a: Optional[int]=3 , a: str=4 , a: Optional[int]="last" , a: Tuple=None , a: Any=None , ) ->int: '''simple docstring''' a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_lengths a_ = use_token_type_ids a_ = use_labels a_ = gelu_activation a_ = sinusoidal_embeddings a_ = causal a_ = asm a_ = n_langs a_ = vocab_size a_ = n_special a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = summary_type a_ = use_proj a_ = scope def _lowerCAmelCase ( self: Tuple) ->Dict: '''simple docstring''' a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = random_attention_mask([self.batch_size, self.seq_length]) a_ = None if self.use_input_lengths: a_ = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = ids_tensor([self.batch_size] , 2).float() a_ = ids_tensor([self.batch_size] , self.num_choices) a_ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCAmelCase ( self: List[Any]) ->Any: '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _lowerCAmelCase ( self: Optional[int] , a: Tuple , a: List[Any] , a: List[Any] , a: Optional[int] , a: int , a: str , a: Any , a: str , a: List[Any] , ) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertModel(config=a) model.to(a) model.eval() a_ = model(a , lengths=a , langs=a) a_ = model(a , langs=a) a_ = model(a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCAmelCase ( self: Optional[int] , a: Optional[Any] , a: Dict , a: Union[str, Any] , a: Dict , a: Optional[Any] , a: Any , a: Tuple , a: str , a: List[str] , ) ->Dict: '''simple docstring''' a_ = FlaubertWithLMHeadModel(a) model.to(a) model.eval() a_ = model(a , token_type_ids=a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCAmelCase ( self: Optional[int] , a: Tuple , a: Optional[Any] , a: List[Any] , a: List[str] , a: List[str] , a: List[str] , a: Optional[Any] , a: str , a: Union[str, Any] , ) ->str: '''simple docstring''' a_ = FlaubertForQuestionAnsweringSimple(a) model.to(a) model.eval() a_ = model(a) a_ = model(a , start_positions=a , end_positions=a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCAmelCase ( self: Union[str, Any] , a: List[str] , a: Tuple , a: Optional[Any] , a: Any , a: Dict , a: Any , a: Optional[int] , a: Optional[Any] , a: Union[str, Any] , ) ->int: '''simple docstring''' a_ = FlaubertForQuestionAnswering(a) model.to(a) model.eval() a_ = model(a) a_ = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , p_mask=a , ) a_ = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , ) ((a_) , ) = result_with_labels.to_tuple() a_ = model(a , start_positions=a , end_positions=a) ((a_) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def _lowerCAmelCase ( self: Union[str, Any] , a: List[str] , a: Tuple , a: Union[str, Any] , a: Any , a: Tuple , a: Union[str, Any] , a: int , a: int , a: Dict , ) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertForSequenceClassification(a) model.to(a) model.eval() a_ = model(a) a_ = model(a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _lowerCAmelCase ( self: str , a: List[str] , a: Dict , a: Tuple , a: Optional[Any] , a: Any , a: Any , a: str , a: str , a: Optional[Any] , ) ->List[Any]: '''simple docstring''' a_ = self.num_labels a_ = FlaubertForTokenClassification(a) model.to(a) model.eval() a_ = model(a , attention_mask=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCAmelCase ( self: Dict , a: Tuple , a: List[Any] , a: Dict , a: Optional[Any] , a: Optional[Any] , a: Optional[Any] , a: Union[str, Any] , a: List[str] , a: Tuple , ) ->Dict: '''simple docstring''' a_ = self.num_choices a_ = FlaubertForMultipleChoice(config=a) model.to(a) model.eval() a_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCAmelCase ( self: Any) ->List[Any]: '''simple docstring''' a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ , unittest.TestCase ): _UpperCAmelCase =( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _UpperCAmelCase =( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _lowerCAmelCase ( self: Optional[Any] , a: List[Any] , a: Any , a: List[str] , a: Union[str, Any] , a: int) ->int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCAmelCase ( self: str , a: Optional[Any] , a: List[Any] , a: Tuple=False) ->List[Any]: '''simple docstring''' a_ = super()._prepare_for_class(a , a , return_labels=a) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) return inputs_dict def _lowerCAmelCase ( self: Dict) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertModelTester(self) a_ = ConfigTester(self , config_class=a , emb_dim=37) def _lowerCAmelCase ( self: List[str]) ->Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowerCAmelCase ( self: List[str]) ->Optional[Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a) def _lowerCAmelCase ( self: int) ->Optional[int]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a) def _lowerCAmelCase ( self: Optional[int]) ->Optional[Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*a) def _lowerCAmelCase ( self: Any) ->Optional[int]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a) def _lowerCAmelCase ( self: Optional[Any]) ->Tuple: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a) def _lowerCAmelCase ( self: Optional[Any]) ->Union[str, Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*a) def _lowerCAmelCase ( self: List[Any]) ->Dict: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*a) @slow def _lowerCAmelCase ( self: Any) ->Any: '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = FlaubertModel.from_pretrained(a) self.assertIsNotNone(a) @slow @require_torch_gpu def _lowerCAmelCase ( self: int) ->Optional[int]: '''simple docstring''' a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return a_ = True a_ = model_class(config=a) a_ = self._prepare_for_class(a , a) a_ = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt")) a_ = torch.jit.load(os.path.join(a , "traced_model.pt") , map_location=a) loaded(inputs_dict["input_ids"].to(a) , inputs_dict["attention_mask"].to(a)) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased") a_ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]]) with torch.no_grad(): a_ = model(a)[0] a_ = torch.Size((1, 11, 7_68)) self.assertEqual(output.shape , a) a_ = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1e-4))
685
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__=False ) -> Any: a_ : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a_ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__=False ) -> int: for i in range(config.num_hidden_layers ): if base_model: a_ : Tuple = "" else: a_ : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a_ : Any = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) a_ : Optional[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a_ : List[Any] = in_proj_weight[ : config.hidden_size, : ] a_ : List[str] = in_proj_bias[: config.hidden_size] a_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a_ : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a_ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] a_ : str = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: a_ : Dict = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(lowercase__, lowercase__ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: a_ : List[str] = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(lowercase__, lowercase__ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Dict: a_ : Optional[Any] = dct.pop(lowercase__ ) a_ : Union[str, Any] = val def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Dict: a_ : int = ViTMSNConfig() a_ : Union[str, Any] = 1_000 a_ : str = "datasets/huggingface/label-files" a_ : int = "imagenet-1k-id2label.json" a_ : Any = json.load(open(hf_hub_download(lowercase__, lowercase__ ), "r" ) ) a_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} a_ : int = idalabel a_ : Tuple = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: a_ : List[str] = 384 a_ : str = 1_536 a_ : Union[str, Any] = 6 elif "l16" in checkpoint_url: a_ : List[str] = 1_024 a_ : List[Any] = 4_096 a_ : int = 24 a_ : Dict = 16 a_ : List[Any] = 0.1 elif "b4" in checkpoint_url: a_ : str = 4 elif "l7" in checkpoint_url: a_ : str = 7 a_ : Union[str, Any] = 1_024 a_ : Optional[int] = 4_096 a_ : List[Any] = 24 a_ : Any = 16 a_ : Dict = 0.1 a_ : Dict = ViTMSNModel(lowercase__ ) a_ : List[Any] = torch.hub.load_state_dict_from_url(lowercase__, map_location="cpu" )["target_encoder"] a_ : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(lowercase__ ) a_ : str = create_rename_keys(lowercase__, base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__, lowercase__, lowercase__ ) read_in_q_k_v(lowercase__, lowercase__, base_model=lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() a_ : str = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ : int = Image.open(requests.get(lowercase__, stream=lowercase__ ).raw ) a_ : Dict = ViTImageProcessor( size=config.image_size, image_mean=lowercase__, image_std=lowercase__ ) a_ : Tuple = image_processor(images=lowercase__, return_tensors="pt" ) # forward pass torch.manual_seed(2 ) a_ : Optional[Any] = model(**lowercase__ ) a_ : Any = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: a_ : Union[str, Any] = torch.tensor([[-1.09_15, -1.48_76, -1.18_09]] ) elif "b16" in checkpoint_url: a_ : Dict = torch.tensor([[14.28_89, -18.90_45, 11.72_81]] ) elif "l16" in checkpoint_url: a_ : List[str] = torch.tensor([[41.50_28, -22.86_81, 45.64_75]] ) elif "b4" in checkpoint_url: a_ : Tuple = torch.tensor([[-4.38_68, 5.29_32, -0.41_37]] ) else: a_ : List[Any] = torch.tensor([[-0.17_92, -0.64_65, 2.42_63]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], lowercase__, atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar""", type=str, help="""URL of the checkpoint you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
237
'''simple docstring''' import math def __UpperCAmelCase (lowercase__ ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(lowercase__ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase (lowercase__ = 10001 ) -> int: '''simple docstring''' try: a_ = int(lowercase__ ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) a_ = [] a_ = 2 while len(lowercase__ ) < nth: if is_prime(lowercase__ ): primes.append(lowercase__ ) num += 1 else: num += 1 return primes[len(lowercase__ ) - 1] if __name__ == "__main__": print(F'{solution() = }')
685
0
def _SCREAMING_SNAKE_CASE ( __lowercase : str ) -> list: """simple docstring""" __A = len(lowercase__ ) for _ in range(lowercase__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __A , __A = arr[i + 1], arr[i] return arr if __name__ == "__main__": __a : int = list(range(10, 0, -1)) print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
637
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''visual_bert''' def __init__( self: Union[str, Any] , a: List[Any]=3_05_22 , a: List[Any]=7_68 , a: Union[str, Any]=5_12 , a: List[str]=12 , a: Tuple=12 , a: Optional[Any]=30_72 , a: int="gelu" , a: Union[str, Any]=0.1 , a: int=0.1 , a: str=5_12 , a: Optional[int]=2 , a: List[str]=0.02 , a: Optional[int]=1e-12 , a: str=False , a: Any=True , a: Tuple=1 , a: Dict=0 , a: Any=2 , **a: Optional[Any] , ) ->str: '''simple docstring''' super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) a_ = vocab_size a_ = max_position_embeddings a_ = hidden_size a_ = visual_embedding_dim a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = type_vocab_size a_ = layer_norm_eps a_ = bypass_transformer a_ = special_visual_initialize
685
0
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __magic_name__ : Tuple = """http://www.mocksite.com/file1.txt""" __magic_name__ : List[Any] = """\"text\": [\"foo\", \"foo\"]""" __magic_name__ : Any = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class __SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCAmelCase__ : int = 200 UpperCAmelCase__ : Optional[Any] = {'''Content-Length''': '''100'''} UpperCAmelCase__ : List[Any] = {} def UpperCamelCase( self , **lowerCamelCase ): return [bytes(lowerCamelCase , "utf-8" )] def snake_case_ ( *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return MockResponse() @pytest.mark.parametrize("urls_type" , [str, list, dict] ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' import requests monkeypatch.setattr(lowercase__ , "request" , lowercase__ ) _snake_case = URL if issubclass(lowercase__ , lowercase__ ): _snake_case = url elif issubclass(lowercase__ , lowercase__ ): _snake_case = [url] elif issubclass(lowercase__ , lowercase__ ): _snake_case = {"train": url} _snake_case = "dummy" _snake_case = "downloads" _snake_case = tmp_path _snake_case = DownloadConfig( cache_dir=os.path.join(lowercase__ , lowercase__ ) , use_etag=lowercase__ , ) _snake_case = DownloadManager(dataset_name=lowercase__ , download_config=lowercase__ ) _snake_case = dl_manager.download(lowercase__ ) _snake_case = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowercase__ , lowercase__ ): _snake_case = [downloaded_paths] _snake_case = [urls] elif isinstance(lowercase__ , lowercase__ ): assert "train" in downloaded_paths.keys() _snake_case = downloaded_paths.values() _snake_case = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowercase__ , lowercase__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case = Path(lowercase__ ) _snake_case = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case = downloaded_path.read_text() assert content == CONTENT _snake_case = downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() _snake_case = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type" , [str, list, dict] ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = str(lowercase__ ) if issubclass(lowercase__ , lowercase__ ): _snake_case = filename elif issubclass(lowercase__ , lowercase__ ): _snake_case = [filename] elif issubclass(lowercase__ , lowercase__ ): _snake_case = {"train": filename} _snake_case = "dummy" _snake_case = xz_file.parent _snake_case = "extracted" _snake_case = DownloadConfig( cache_dir=lowercase__ , use_etag=lowercase__ , ) _snake_case = DownloadManager(dataset_name=lowercase__ , download_config=lowercase__ ) _snake_case = dl_manager.extract(lowercase__ ) _snake_case = paths for extracted_paths in [extracted_paths]: if isinstance(lowercase__ , lowercase__ ): _snake_case = [extracted_paths] _snake_case = [paths] elif isinstance(lowercase__ , lowercase__ ): assert "train" in extracted_paths.keys() _snake_case = extracted_paths.values() _snake_case = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowercase__ , lowercase__ ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case = Path(lowercase__ ) _snake_case = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowercase__ , etag=lowercase__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case = extracted_path.read_text() _snake_case = text_file.read_text() assert extracted_file_content == expected_file_content def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' assert path.endswith(".jsonl" ) for num_items, line in enumerate(lowercase__ , start=1 ): _snake_case = json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl" , ["tar_jsonl_path", "zip_jsonl_path"] ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = request.getfixturevalue(lowercase__ ) _snake_case = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowercase__ ) , start=1 ): _test_jsonl(lowercase__ , lowercase__ ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl" , ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = request.getfixturevalue(lowercase__ ) _snake_case = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowercase__ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowercase__ ) , start=1 ): _test_jsonl(lowercase__ , lowercase__ ) assert num_tar == 1 assert num_jsonl == 2 def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowercase__ ) , start=1 ): assert os.path.basename(lowercase__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
672
'''simple docstring''' from heapq import heappop, heappush import numpy as np def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' a_ , a_ = grid.shape a_ = [-1, 1, 0, 0] a_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] a_ , a_ = [(0, source)], set() a_ = np.full((rows, cols) ,np.inf ) a_ = 0 a_ = np.empty((rows, cols) ,dtype=lowercase__ ) a_ = None while queue: ((a_) , (a_)) = heappop(lowercase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: a_ = [] while (x, y) != source: path.append((x, y) ) a_ , a_ = predecessors[x, y] path.append(lowercase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowercase__ ) ): a_ , a_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: a_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowercase__ ,(dist + 1, (nx, ny)) ) a_ = dist + 1 a_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
685
0
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( lowercase_ , unittest.TestCase ): UpperCamelCase_ = FunnelTokenizer UpperCamelCase_ = FunnelTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = True def lowercase_ ( self ) -> Tuple: """simple docstring""" super().setUp() _lowercase: Tuple = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _lowercase: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase_ ( self , **A_ ) -> Tuple: """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **A_ ) def lowercase_ ( self , **A_ ) -> str: """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def lowercase_ ( self , A_ ) -> int: """simple docstring""" _lowercase: str = '''UNwant\u00E9d,running''' _lowercase: Tuple = '''unwanted, running''' return input_text, output_text def lowercase_ ( self ) -> Any: """simple docstring""" _lowercase: Union[str, Any] = self.tokenizer_class(self.vocab_file ) _lowercase: Union[str, Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [7, 4, 5, 10, 8, 9] ) def lowercase_ ( self ) -> List[Any]: """simple docstring""" _lowercase: Optional[int] = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: _lowercase: List[Any] = tokenizer('''UNwant\u00E9d,running''' ) _lowercase: List[Any] = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) _lowercase: Optional[Any] = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
353
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' with open(lowercase__ ) as metadata_file: a_ = json.load(lowercase__ ) a_ = LukeConfig(use_entity_aware_attention=lowercase__ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path a_ = torch.load(lowercase__ ,map_location="cpu" )["module"] # Load the entity vocab file a_ = load_original_entity_vocab(lowercase__ ) # add an entry for [MASK2] a_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 a_ = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks a_ = AddedToken("<ent>" ,lstrip=lowercase__ ,rstrip=lowercase__ ) a_ = AddedToken("<ent2>" ,lstrip=lowercase__ ,rstrip=lowercase__ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase__ ) with open(os.path.join(lowercase__ ,"tokenizer_config.json" ) ,"r" ) as f: a_ = json.load(lowercase__ ) a_ = "MLukeTokenizer" with open(os.path.join(lowercase__ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ) with open(os.path.join(lowercase__ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ) a_ = MLukeTokenizer.from_pretrained(lowercase__ ) # Initialize the embeddings of the special tokens a_ = tokenizer.convert_tokens_to_ids(["@"] )[0] a_ = tokenizer.convert_tokens_to_ids(["#"] )[0] a_ = state_dict["embeddings.word_embeddings.weight"] a_ = word_emb[ent_init_index].unsqueeze(0 ) a_ = word_emb[enta_init_index].unsqueeze(0 ) a_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: a_ = state_dict[bias_name] a_ = decoder_bias[ent_init_index].unsqueeze(0 ) a_ = decoder_bias[enta_init_index].unsqueeze(0 ) a_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: a_ = F"""encoder.layer.{layer_index}.attention.self.""" a_ = state_dict[prefix + matrix_name] a_ = state_dict[prefix + matrix_name] a_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks a_ = state_dict["entity_embeddings.entity_embeddings.weight"] a_ = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) a_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' a_ = state_dict["entity_predictions.bias"] a_ = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) a_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) a_ = LukeForMaskedLM(config=lowercase__ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) a_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): a_ = state_dict[key] else: a_ = state_dict[key] a_ , a_ = model.load_state_dict(lowercase__ ,strict=lowercase__ ) if set(lowercase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs a_ = MLukeTokenizer.from_pretrained(lowercase__ ,task="entity_classification" ) a_ = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." a_ = (0, 9) a_ = tokenizer(lowercase__ ,entity_spans=[span] ,return_tensors="pt" ) a_ = model(**lowercase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base a_ = torch.Size((1, 33, 768) ) a_ = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase__ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base a_ = torch.Size((1, 1, 768) ) a_ = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase__ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction a_ = MLukeTokenizer.from_pretrained(lowercase__ ) a_ = "Tokyo is the capital of <mask>." a_ = (24, 30) a_ = tokenizer(lowercase__ ,entity_spans=[span] ,return_tensors="pt" ) a_ = model(**lowercase__ ) a_ = encoding["input_ids"][0].tolist() a_ = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) a_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase__ ) a_ = outputs.entity_logits[0][0].argmax().item() a_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase__ ) ) model.save_pretrained(lowercase__ ) def __UpperCAmelCase (lowercase__ ) -> Any: '''simple docstring''' a_ = ["[MASK]", "[PAD]", "[UNK]"] a_ = [json.loads(lowercase__ ) for line in open(lowercase__ )] a_ = {} for entry in data: a_ = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: a_ = entity_id break a_ = F"""{language}:{entity_name}""" a_ = entity_id return new_mapping if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) a_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
685
0
"""simple docstring""" __A : Tuple = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ->Optional[int]: """simple docstring""" __lowercase : Dict = [False] * len(lowercase__ ) __lowercase : Any = [s] __lowercase : Dict = True while queue: __lowercase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase__ ) __lowercase : Union[str, Any] = True __lowercase : List[str] = u return visited[t] def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ->int: """simple docstring""" __lowercase : int = [-1] * (len(lowercase__ )) __lowercase : List[Any] = 0 __lowercase : str = [] __lowercase : Union[str, Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase__, lowercase__, lowercase__, lowercase__ ): __lowercase : Dict = float("Inf" ) __lowercase : Optional[int] = sink while s != source: # Find the minimum value in select path __lowercase : Union[str, Any] = min(lowercase__, graph[parent[s]][s] ) __lowercase : Dict = parent[s] max_flow += path_flow __lowercase : List[str] = sink while v != source: __lowercase : Tuple = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __lowercase : Union[str, Any] = parent[v] for i in range(len(lowercase__ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
575
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase_ , unittest.TestCase ): _UpperCAmelCase =LxmertTokenizer _UpperCAmelCase =LxmertTokenizerFast _UpperCAmelCase =True _UpperCAmelCase =True def _lowerCAmelCase ( self: Dict) ->int: '''simple docstring''' super().setUp() a_ = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def _lowerCAmelCase ( self: Optional[Any] , a: Dict) ->Optional[Any]: '''simple docstring''' a_ = "UNwant\u00E9d,running" a_ = "unwanted, running" return input_text, output_text def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = self.tokenizer_class(self.vocab_file) a_ = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(a , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(a) , [7, 4, 5, 10, 8, 9]) def _lowerCAmelCase ( self: List[Any]) ->Any: '''simple docstring''' if not self.test_rust_tokenizer: return a_ = self.get_tokenizer() a_ = self.get_rust_tokenizer() a_ = "I was born in 92000, and this is falsé." a_ = tokenizer.tokenize(a) a_ = rust_tokenizer.tokenize(a) self.assertListEqual(a , a) a_ = tokenizer.encode(a , add_special_tokens=a) a_ = rust_tokenizer.encode(a , add_special_tokens=a) self.assertListEqual(a , a) a_ = self.get_rust_tokenizer() a_ = tokenizer.encode(a) a_ = rust_tokenizer.encode(a) self.assertListEqual(a , a)
685
0
"""simple docstring""" import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class _SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , lowerCamelCase__ = False ) -> Any: lowercase__ : List[Any] = scheduler lowercase__ : Optional[int] = optimizers if isinstance(lowerCamelCase__ , (list, tuple) ) else [optimizers] lowercase__ : Dict = split_batches lowercase__ : Tuple = step_with_optimizer lowercase__ : int = GradientState() def UpperCAmelCase__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowerCamelCase__ , **lowerCamelCase__ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowerCamelCase__ , **lowerCamelCase__ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step lowercase__ : Union[str, Any] = AcceleratorState().num_processes for _ in range(lowerCamelCase__ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , """total_steps""" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowerCamelCase__ , **lowerCamelCase__ ) else: self.scheduler.step(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Union[str, Any]: return self.scheduler.get_last_lr() def UpperCAmelCase__( self ) -> List[Any]: return self.scheduler.state_dict() def UpperCAmelCase__( self , lowerCamelCase__ ) -> Optional[int]: self.scheduler.load_state_dict(lowerCamelCase__ ) def UpperCAmelCase__( self ) -> int: return self.scheduler.get_lr() def UpperCAmelCase__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: return self.scheduler.print_lr(*lowerCamelCase__ , **lowerCamelCase__ )
200
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
685
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/resolve/main/config.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/config.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/config.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json""", } class _lowerCAmelCase ( lowercase_ ): A__ = 'bloom' A__ = ['past_key_values'] A__ = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self , __UpperCAmelCase=25_0880 , __UpperCAmelCase=64 , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1 , __UpperCAmelCase=False , **__UpperCAmelCase , ): lowerCAmelCase__ : List[Any] = vocab_size # Backward compatibility with n_embed kwarg lowerCAmelCase__ : List[Any] = kwargs.pop('''n_embed''' , __UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = hidden_size if n_embed is None else n_embed lowerCAmelCase__ : Dict = n_layer lowerCAmelCase__ : Optional[Any] = n_head lowerCAmelCase__ : Dict = layer_norm_epsilon lowerCAmelCase__ : str = initializer_range lowerCAmelCase__ : List[str] = use_cache lowerCAmelCase__ : Optional[Any] = pretraining_tp lowerCAmelCase__ : Optional[int] = apply_residual_connection_post_layernorm lowerCAmelCase__ : Any = hidden_dropout lowerCAmelCase__ : Dict = attention_dropout lowerCAmelCase__ : str = bos_token_id lowerCAmelCase__ : Dict = eos_token_id lowerCAmelCase__ : Any = slow_but_exact super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) class _lowerCAmelCase ( lowercase_ ): A__ = version.parse('1.12' ) def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ): super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ): # TODO: how to do that better? lowerCAmelCase__ : List[Any] = 0 @property def __magic_name__( self ): lowerCAmelCase__ : str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' , inverted_values_shape=__UpperCAmelCase ) lowerCAmelCase__ : int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowerCAmelCase__ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __magic_name__( self ): return self._config.n_layer @property def __magic_name__( self ): return self._config.n_head @property def __magic_name__( self ): return 1e-3 def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ): lowerCAmelCase__ : Tuple = super(__UpperCAmelCase , self ).generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase__ : Any = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCAmelCase__ : str = seqlen + 2 lowerCAmelCase__ : str = self._config.hidden_size // self.num_attention_heads lowerCAmelCase__ : str = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowerCAmelCase__ : Optional[Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowerCAmelCase__ : str = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase__ : List[Any] = common_inputs['''attention_mask'''] if self.use_past: lowerCAmelCase__ : Optional[Any] = ordered_inputs['''attention_mask'''].dtype lowerCAmelCase__ : List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def __magic_name__( self ): return 13
678
'''simple docstring''' import re def __UpperCAmelCase (lowercase__ ) -> bool: '''simple docstring''' a_ = re.compile( r"^(?:0|94|\+94|0{2}94)" r"7(0|1|2|4|5|6|7|8)" r"(-| |)" r"\d{7}$" ) return bool(re.search(lowercase__ ,lowercase__ ) ) if __name__ == "__main__": a_ = '0094702343221' print(is_sri_lankan_phone_number(phone))
685
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase_ ( lowercase_ , lowercase_ ): __lowercase : int = "maskformer-swin" __lowercase : Any = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowerCamelCase_=2_24 , lowerCamelCase_=4 , lowerCamelCase_=3 , lowerCamelCase_=96 , lowerCamelCase_=[2, 2, 6, 2] , lowerCamelCase_=[3, 6, 12, 24] , lowerCamelCase_=7 , lowerCamelCase_=4.0 , lowerCamelCase_=True , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.1 , lowerCamelCase_="gelu" , lowerCamelCase_=False , lowerCamelCase_=0.02 , lowerCamelCase_=1E-5 , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ , ) -> List[str]: """simple docstring""" super().__init__(**lowerCamelCase_ ) _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = embed_dim _UpperCamelCase = depths _UpperCamelCase = len(lowerCamelCase_ ) _UpperCamelCase = num_heads _UpperCamelCase = window_size _UpperCamelCase = mlp_ratio _UpperCamelCase = qkv_bias _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = drop_path_rate _UpperCamelCase = hidden_act _UpperCamelCase = use_absolute_embeddings _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) _UpperCamelCase = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(lowerCamelCase_ ) + 1 )] _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names )
147
'''simple docstring''' import argparse import os import re a_ = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict a_ = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings a_ = re.compile(r'\s*\(\s*"(\S[^"]+)"') def __UpperCAmelCase (lowercase__ ,lowercase__ = False ) -> List[Any]: '''simple docstring''' with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = f.read() a_ = content.split("\n" ) a_ = [] a_ = 0 while line_idx < len(lowercase__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: a_ = len(re.search(r"^(\s*)\S" ,lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 a_ = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": a_ = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers a_ = sorted(lowercase__ ,key=lambda lowercase__ : _re_identifier.search(lowercase__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase__ ,"w" ,encoding="utf-8" ) as f: f.write("\n".join(lowercase__ ) ) elif "\n".join(lowercase__ ) != content: return True def __UpperCAmelCase (lowercase__ = False ) -> Optional[int]: '''simple docstring''' a_ = [os.path.join(lowercase__ ,lowercase__ ) for f in os.listdir(lowercase__ ) if f.endswith(".py" )] a_ = [sort_auto_mapping(lowercase__ ,overwrite=lowercase__ ) for fname in fnames] if not overwrite and any(lowercase__ ): a_ = [f for f, d in zip(lowercase__ ,lowercase__ ) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {', '.join(lowercase__ )}. Run `make style` to fix""" " this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') a_ = parser.parse_args() sort_all_auto_mappings(not args.check_only)
685
0
"""simple docstring""" import math def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCamelCase ( SCREAMING_SNAKE_CASE = 1_00_01 ) -> int: """simple docstring""" try: __snake_case = int(lowercase__ ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) __snake_case = [] __snake_case = 2 while len(lowercase__ ) < nth: if is_prime(lowercase__ ): primes.append(lowercase__ ) num += 1 else: num += 1 return primes[len(lowercase__ ) - 1] if __name__ == "__main__": print(F"""{solution() = }""")
163
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ ): _UpperCAmelCase ='''pixel_values''' _UpperCAmelCase =False _UpperCAmelCase =TimmBackboneConfig def __init__( self: Union[str, Any] , a: Union[str, Any] , **a: Tuple) ->Optional[Any]: '''simple docstring''' requires_backends(self , "timm") super().__init__(a) a_ = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name.") if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""") if hasattr(a , "out_features") and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.") a_ = getattr(a , "use_pretrained_backbone" , a) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.") # We just take the final layer by default. This matches the default for the transformers models. a_ = config.out_indices if getattr(a , "out_indices" , a) is not None else (-1,) a_ = timm.create_model( config.backbone , pretrained=a , features_only=config.features_only , in_chans=config.num_channels , out_indices=a , **a , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. a_ = self._backbone.return_layers a_ = {layer["module"]: str(a) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(a) @classmethod def _lowerCAmelCase ( cls: Tuple , a: Optional[Any] , *a: Optional[Any] , **a: str) ->List[Any]: '''simple docstring''' requires_backends(cls , ["vision", "timm"]) from ...models.timm_backbone import TimmBackboneConfig a_ = kwargs.pop("config" , TimmBackboneConfig()) a_ = kwargs.pop("use_timm_backbone" , a) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones") a_ = kwargs.pop("num_channels" , config.num_channels) a_ = kwargs.pop("features_only" , config.features_only) a_ = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone) a_ = kwargs.pop("out_indices" , config.out_indices) a_ = TimmBackboneConfig( backbone=a , num_channels=a , features_only=a , use_pretrained_backbone=a , out_indices=a , ) return super()._from_config(a , **a) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->str: '''simple docstring''' pass def _lowerCAmelCase ( self: Tuple , a: List[Any] , a: Any=None , a: Dict=None , a: Optional[int]=None , **a: int) ->Union[BackboneOutput, Tuple[Tensor, ...]]: '''simple docstring''' a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment") if output_hidden_states: # We modify the return layers to include all the stages of the backbone a_ = self._all_layers a_ = self._backbone(a , **a) a_ = self._return_layers a_ = tuple(hidden_states[i] for i in self.out_indices) else: a_ = self._backbone(a , **a) a_ = None a_ = tuple(a) a_ = tuple(a) if hidden_states is not None else None if not return_dict: a_ = (feature_maps,) if output_hidden_states: a_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=a , hidden_states=a , attentions=a)
685
0
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __snake_case =re.compile(R"""\s+""") def a_ ( lowerCamelCase : Union[str, Any] ): return {"hash": hashlib.mda(re.sub(lowercase__ , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( lowerCamelCase : Tuple ): lowerCAmelCase = [len(lowercase__ ) for line in example['content'].splitlines()] return {"line_mean": np.mean(lowercase__ ), "line_max": max(lowercase__ )} def a_ ( lowerCamelCase : Optional[int] ): lowerCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Any=5 ): lowerCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] lowerCAmelCase = example['content'].splitlines() for _, line in zip(range(lowercase__ ) , lowercase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any]=5 , lowerCamelCase : List[Any]=0.05 ): lowerCAmelCase = ['unit tests', 'test file', 'configuration file'] lowerCAmelCase = example['content'].splitlines() lowerCAmelCase = 0 lowerCAmelCase = 0 # first test for _, line in zip(range(lowercase__ ) , lowercase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test lowerCAmelCase = example['content'].count('\n' ) lowerCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( lowerCamelCase : int ): lowerCAmelCase = ['def ', 'class ', 'for ', 'while '] lowerCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( lowerCamelCase : Any , lowerCamelCase : Tuple=4 ): lowerCAmelCase = example['content'].splitlines() lowerCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( lowerCamelCase : Any ): lowerCAmelCase = tokenizer(example['content'] , truncation=lowercase__ )['input_ids'] lowerCAmelCase = len(example['content'] ) / len(lowercase__ ) return {"ratio": ratio} def a_ ( lowerCamelCase : List[Any] ): lowerCAmelCase = {} results.update(get_hash(lowercase__ ) ) results.update(line_stats(lowercase__ ) ) results.update(alpha_stats(lowercase__ ) ) results.update(char_token_ratio(lowercase__ ) ) results.update(is_autogenerated(lowercase__ ) ) results.update(is_config_or_test(lowercase__ ) ) results.update(has_no_keywords(lowercase__ ) ) results.update(has_few_assignments(lowercase__ ) ) return results def a_ ( lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : str ): if not check_uniques(lowercase__ , lowercase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( lowerCamelCase : Optional[int] ): with open(lowercase__ , 'rb' ) as f_in: with gzip.open(str(lowercase__ ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(lowercase__ , lowercase__ ) os.unlink(lowercase__ ) # Settings __snake_case =HfArgumentParser(PreprocessingArguments) __snake_case =parser.parse_args() if args.num_workers is None: __snake_case =multiprocessing.cpu_count() __snake_case =AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __snake_case =time.time() __snake_case =load_dataset(args.dataset_name, split="""train""") print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __snake_case =time.time() __snake_case =ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __snake_case =set(ds.unique("""hash""")) __snake_case =len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __snake_case =time.time() __snake_case =ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __snake_case =time.time() __snake_case , __snake_case =deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __snake_case =Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) __snake_case =output_dir / """data""" data_dir.mkdir(exist_ok=True) __snake_case =time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __snake_case =str(data_dir / F'''file-{file_number+1:012}.json''') __snake_case =min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
133
'''simple docstring''' class SCREAMING_SNAKE_CASE__ ( lowercase_ ): pass class SCREAMING_SNAKE_CASE__ ( lowercase_ ): pass class SCREAMING_SNAKE_CASE__ : def __init__( self: Optional[Any]) ->List[str]: '''simple docstring''' a_ = [ [], [], [], ] def _lowerCAmelCase ( self: Dict , a: int , a: int) ->None: '''simple docstring''' try: if len(self.queues[priority]) >= 1_00: raise OverflowError("Maximum queue size is 100") self.queues[priority].append(a) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2") def _lowerCAmelCase ( self: Union[str, Any]) ->int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0) raise UnderFlowError("All queues are empty") def __str__( self: Dict) ->str: '''simple docstring''' return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues)) class SCREAMING_SNAKE_CASE__ : def __init__( self: Any) ->List[str]: '''simple docstring''' a_ = [] def _lowerCAmelCase ( self: int , a: int) ->None: '''simple docstring''' if len(self.queue) == 1_00: raise OverFlowError("Maximum queue size is 100") self.queue.append(a) def _lowerCAmelCase ( self: List[str]) ->int: '''simple docstring''' if not self.queue: raise UnderFlowError("The queue is empty") else: a_ = min(self.queue) self.queue.remove(a) return data def __str__( self: Optional[int]) ->str: '''simple docstring''' return str(self.queue) def __UpperCAmelCase () -> Union[str, Any]: '''simple docstring''' a_ = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase () -> List[Any]: '''simple docstring''' a_ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[str] = {'''vocab_file''': '''vocab.txt'''} __SCREAMING_SNAKE_CASE : int = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } __SCREAMING_SNAKE_CASE : Dict = { '''YituTech/conv-bert-base''': 5_1_2, '''YituTech/conv-bert-medium-small''': 5_1_2, '''YituTech/conv-bert-small''': 5_1_2, } __SCREAMING_SNAKE_CASE : int = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class lowerCamelCase_( lowercase_ ): '''simple docstring''' lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : Any = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Dict = PRETRAINED_INIT_CONFIGURATION lowercase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Tuple = ConvBertTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__="[UNK]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="[PAD]" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ): super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) _lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase__ ) != tokenize_chinese_chars ): _lowerCamelCase = getattr(lowerCamelCase__ , normalizer_state.pop('''type''' ) ) _lowerCamelCase = do_lower_case _lowerCamelCase = strip_accents _lowerCamelCase = tokenize_chinese_chars _lowerCamelCase = normalizer_class(**lowerCamelCase__ ) _lowerCamelCase = do_lower_case def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__=None ): _lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
661
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase () -> Optional[Any]: '''simple docstring''' a_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } a_ = Dataset.from_dict(lowercase__ ) return dataset class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def _lowerCAmelCase ( self: Union[str, Any]) ->Optional[int]: '''simple docstring''' a_ = get_dataset() a_ = make_duplicate_clusters(a , 0.85) self.assertEqual(len(duplicate_clusters[0]) , 2) def _lowerCAmelCase ( self: Any) ->Dict: '''simple docstring''' a_ = get_dataset() a_ , a_ = deduplicate_dataset(a) self.assertEqual(len(a) , 2) print(a) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , a)
685
0
"""simple docstring""" import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase__ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: from transformers.testing_utils import pytest_terminal_summary_main a_ : Any = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(lowercase__, id=lowercase__ )
237
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor a_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[Any] , *a: str , **a: Tuple) ->None: '''simple docstring''' warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , a , ) super().__init__(*a , **a)
685
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( __lowercase : int , __lowercase : Optional[Any] ) -> Tuple: """simple docstring""" __A = torch.load(lowercase__ , map_location="""cpu""" ) __A = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository __A = {} for k, v in state_dict.items(): if "pred_layer" in k: __A = v else: __A = v __A = chkpt["""params"""] __A = {n: v for n, v in config.items() if not isinstance(lowercase__ , (torch.FloatTensor, numpy.ndarray) )} __A = chkpt["""dico_word2id"""] __A = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 1_3 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()} # Save pytorch-model __A = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __A = pytorch_dump_folder_path + """/""" + CONFIG_NAME __A = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(lowercase__ , lowercase__ ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase__ , indent=2 ) + """\n""" ) print(f"Save vocab file to {pytorch_config_dump_path}" ) with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase__ , indent=2 ) + """\n""" ) if __name__ == "__main__": __a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __a : List[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
637
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow a_ = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _lowerCAmelCase ( self: Any , a: Path , a: Union[str, None] = None , a: Union[List[str], None] = None , a: Union[str, List[str], None] = None , a: bool = True , ) ->Optional[Any]: '''simple docstring''' a_ = [file for file in os.listdir(a) if os.path.isfile(os.path.join(a , a))] if identifier is not None: a_ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(a , a): for n_ in n_identifier: a_ = [file for file in files if n_ not in file] else: a_ = [file for file in files if n_identifier not in file] a_ = ignore_files or [] ignore_files.append("__init__.py") a_ = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , a) if only_modules: a_ = file.split(".")[0] try: a_ = getattr(a , a) a_ = doctest.DocTestSuite(a) a_ = unittest.TextTestRunner().run(a) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(f"""{module_identifier} is not a module.""") else: a_ = doctest.testfile(str(".." / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _lowerCAmelCase ( self: Dict) ->Tuple: '''simple docstring''' a_ = Path("src/transformers") a_ = "modeling" a_ = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(a , identifier=a , ignore_files=a) def _lowerCAmelCase ( self: int) ->Dict: '''simple docstring''' a_ = Path("src/transformers") a_ = "tokenization" self.analyze_directory(a , identifier=a) def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = Path("src/transformers") a_ = "configuration" self.analyze_directory(a , identifier=a) def _lowerCAmelCase ( self: Union[str, Any]) ->Any: '''simple docstring''' a_ = Path("src/transformers") a_ = ["configuration", "modeling", "tokenization"] self.analyze_directory(a , n_identifier=a) def _lowerCAmelCase ( self: Optional[int]) ->Tuple: '''simple docstring''' a_ = Path("docs/source") a_ = ["favicon.ico"] self.analyze_directory(a , ignore_files=a , only_modules=a)
685
0
'''simple docstring''' import cmath import math def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = math.radians(lowercase__ ) _snake_case = math.radians(lowercase__ ) # Convert voltage and current to rectangular form _snake_case = cmath.rect(lowercase__ , lowercase__ ) _snake_case = cmath.rect(lowercase__ , lowercase__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' def __UpperCAmelCase (lowercase__ = 100 ) -> int: '''simple docstring''' a_ = n * (n + 1) * (2 * n + 1) / 6 a_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
685
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __magic_name__ : @staticmethod def lowercase_ ( *A_ , **A_ ) -> str: """simple docstring""" pass def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. A__ : Union[str, Any] = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def lowercase_ ( self , A_ , A_ , A_ ) -> Union[str, Any]: """simple docstring""" _lowercase: List[str] = pipeline( '''document-question-answering''' , model=A_ , tokenizer=A_ , image_processor=A_ ) _lowercase: Optional[Any] = INVOICE_URL _lowercase: Tuple = list(zip(*apply_tesseract(load_image(A_ ) , A_ , '''''' ) ) ) _lowercase: List[Any] = '''What is the placebo?''' _lowercase: Optional[Any] = [ { '''image''': load_image(A_ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def lowercase_ ( self , A_ , A_ ) -> int: """simple docstring""" _lowercase: Optional[Any] = dqa_pipeline(A_ , top_k=2 ) self.assertEqual( A_ , [ [ {'''score''': ANY(A_ ), '''answer''': ANY(A_ ), '''start''': ANY(A_ ), '''end''': ANY(A_ )}, {'''score''': ANY(A_ ), '''answer''': ANY(A_ ), '''start''': ANY(A_ ), '''end''': ANY(A_ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def lowercase_ ( self ) -> str: """simple docstring""" _lowercase: Optional[Any] = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) _lowercase: str = INVOICE_URL _lowercase: Optional[int] = '''How many cats are there?''' _lowercase: List[Any] = [ {'''score''': 0.00_01, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.00_01, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] _lowercase: int = dqa_pipeline(image=A_ , question=A_ , top_k=2 ) self.assertEqual(nested_simplify(A_ , decimals=4 ) , A_ ) _lowercase: Dict = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(A_ , decimals=4 ) , A_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably _lowercase: Tuple = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' _lowercase: str = dqa_pipeline(image=A_ , question=A_ , top_k=2 ) self.assertEqual(A_ , [] ) # We can optionnally pass directly the words and bounding boxes _lowercase: Any = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' _lowercase: Optional[Any] = [] _lowercase: List[str] = [] _lowercase: List[Any] = dqa_pipeline(image=A_ , question=A_ , words=A_ , boxes=A_ , top_k=2 ) self.assertEqual(A_ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def lowercase_ ( self ) -> List[Any]: """simple docstring""" _lowercase: List[Any] = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) _lowercase: Optional[Any] = INVOICE_URL _lowercase: Union[str, Any] = '''What is the invoice number?''' _lowercase: Any = dqa_pipeline(image=A_ , question=A_ , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'''score''': 0.99_44, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.00_09, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _lowercase: List[Any] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'''score''': 0.99_44, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.00_09, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _lowercase: Tuple = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ [ {'''score''': 0.99_44, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.00_09, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" _lowercase: Optional[Any] = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) _lowercase: int = INVOICE_URL _lowercase: Optional[int] = '''What is the invoice number?''' _lowercase: Optional[Any] = dqa_pipeline(image=A_ , question=A_ , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'''score''': 0.99_74, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.99_48, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _lowercase: Optional[Any] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'''score''': 0.99_74, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.99_48, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _lowercase: Union[str, Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ [ {'''score''': 0.99_74, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.99_48, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" _lowercase: Optional[int] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=A_ ) _lowercase: str = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=A_ , revision='''3dc6de3''' , ) _lowercase: Dict = INVOICE_URL _lowercase: Any = '''What is the invoice number?''' _lowercase: int = dqa_pipeline(image=A_ , question=A_ , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'''score''': 0.42_51, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.08_19, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) _lowercase: Tuple = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'''score''': 0.42_51, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.08_19, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) _lowercase: Union[str, Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ [ {'''score''': 0.42_51, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.08_19, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) _lowercase: List[Any] = list(zip(*apply_tesseract(load_image(A_ ) , A_ , '''''' ) ) ) # This model should also work if `image` is set to None _lowercase: Any = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'''score''': 0.42_51, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.08_19, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def lowercase_ ( self ) -> Dict: """simple docstring""" _lowercase: Optional[Any] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=A_ ) _lowercase: int = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=A_ , revision='''3dc6de3''' , max_seq_len=50 , ) _lowercase: List[Any] = INVOICE_URL _lowercase: List[Any] = '''What is the invoice number?''' _lowercase: List[str] = dqa_pipeline(image=A_ , question=A_ , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'''score''': 0.99_99, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.99_98, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _lowercase: str = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ [ {'''score''': 0.99_99, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.99_98, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) _lowercase: Tuple = list(zip(*apply_tesseract(load_image(A_ ) , A_ , '''''' ) ) ) # This model should also work if `image` is set to None _lowercase: Any = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'''score''': 0.99_99, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.99_98, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def lowercase_ ( self ) -> List[str]: """simple docstring""" _lowercase: int = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) _lowercase: Tuple = INVOICE_URL _lowercase: List[Any] = '''What is the invoice number?''' _lowercase: Tuple = dqa_pipeline(image=A_ , question=A_ , top_k=2 ) self.assertEqual(nested_simplify(A_ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def lowercase_ ( self ) -> List[str]: """simple docstring""" pass
353
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =(PNDMScheduler,) _UpperCAmelCase =(('''num_inference_steps''', 50),) def _lowerCAmelCase ( self: int , **a: Optional[int]) ->Any: '''simple docstring''' a_ = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**a) return config def _lowerCAmelCase ( self: Any , a: Tuple=0 , **a: Any) ->Any: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config(**a) a_ = scheduler_class(**a) scheduler.set_timesteps(a) # copy over dummy past residuals a_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a) a_ = scheduler_class.from_pretrained(a) new_scheduler.set_timesteps(a) # copy over dummy past residuals a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , a , a , **a).prev_sample a_ = new_scheduler.step_prk(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a_ = scheduler.step_plms(a , a , a , **a).prev_sample a_ = new_scheduler.step_plms(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self: str) ->Any: '''simple docstring''' pass def _lowerCAmelCase ( self: Union[str, Any] , a: str=0 , **a: Union[str, Any]) ->Tuple: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.set_timesteps(a) # copy over dummy past residuals (must be after setting timesteps) a_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a) a_ = scheduler_class.from_pretrained(a) # copy over dummy past residuals new_scheduler.set_timesteps(a) # copy over dummy past residual (must be after setting timesteps) a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , a , a , **a).prev_sample a_ = new_scheduler.step_prk(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a_ = scheduler.step_plms(a , a , a , **a).prev_sample a_ = new_scheduler.step_plms(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self: Dict , **a: int) ->Any: '''simple docstring''' a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(**a) a_ = scheduler_class(**a) a_ = 10 a_ = self.dummy_model() a_ = self.dummy_sample_deter scheduler.set_timesteps(a) for i, t in enumerate(scheduler.prk_timesteps): a_ = model(a , a) a_ = scheduler.step_prk(a , a , a).prev_sample for i, t in enumerate(scheduler.plms_timesteps): a_ = model(a , a) a_ = scheduler.step_plms(a , a , a).prev_sample return sample def _lowerCAmelCase ( self: int) ->int: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**a) a_ = self.dummy_sample a_ = 0.1 * sample if num_inference_steps is not None and hasattr(a , "set_timesteps"): scheduler.set_timesteps(a) elif num_inference_steps is not None and not hasattr(a , "set_timesteps"): a_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , 0 , a , **a).prev_sample a_ = scheduler.step_prk(a , 1 , a , **a).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) a_ = scheduler.step_plms(a , 0 , a , **a).prev_sample a_ = scheduler.step_plms(a , 1 , a , **a).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def _lowerCAmelCase ( self: Dict) ->List[Any]: '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=a) def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=a) a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(steps_offset=1) a_ = scheduler_class(**a) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1]) , ) def _lowerCAmelCase ( self: Tuple) ->Optional[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=a , beta_end=a) def _lowerCAmelCase ( self: int) ->Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a) def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a) def _lowerCAmelCase ( self: Tuple) ->Optional[Any]: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=a) def _lowerCAmelCase ( self: str) ->List[str]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00]): self.check_over_forward(num_inference_steps=a) def _lowerCAmelCase ( self: Dict) ->Union[str, Any]: '''simple docstring''' a_ = 27 for scheduler_class in self.scheduler_classes: a_ = self.dummy_sample a_ = 0.1 * sample a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.set_timesteps(a) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): a_ = scheduler.step_prk(a , a , a).prev_sample def _lowerCAmelCase ( self: Optional[Any]) ->Dict: '''simple docstring''' with self.assertRaises(a): a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def _lowerCAmelCase ( self: Optional[int]) ->Union[str, Any]: '''simple docstring''' a_ = self.full_loop() a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 198.1318) < 1e-2 assert abs(result_mean.item() - 0.2580) < 1e-3 def _lowerCAmelCase ( self: Optional[int]) ->int: '''simple docstring''' a_ = self.full_loop(prediction_type="v_prediction") a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 67.3986) < 1e-2 assert abs(result_mean.item() - 0.0878) < 1e-3 def _lowerCAmelCase ( self: int) ->Optional[Any]: '''simple docstring''' a_ = self.full_loop(set_alpha_to_one=a , beta_start=0.01) a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 230.0399) < 1e-2 assert abs(result_mean.item() - 0.2995) < 1e-3 def _lowerCAmelCase ( self: List[str]) ->Any: '''simple docstring''' a_ = self.full_loop(set_alpha_to_one=a , beta_start=0.01) a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 186.9482) < 1e-2 assert abs(result_mean.item() - 0.2434) < 1e-3
685
0
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( lowercase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = CTRLTokenizer __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : List[str] = False def snake_case ( self : Dict ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : List[Any] = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] __lowercase : int = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __lowercase : str = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] __lowercase : str = {"unk_token": "<unk>"} __lowercase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase__ ) ) def snake_case ( self : Any , **lowercase__ : List[Any] ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def snake_case ( self : List[str] , lowercase__ : str ): __lowercase : List[Any] = "adapt react readapt apt" __lowercase : Tuple = "adapt react readapt apt" return input_text, output_text def snake_case ( self : List[Any] ): __lowercase : List[Any] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Union[str, Any] = "adapt react readapt apt" __lowercase : Optional[Any] = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() __lowercase : Union[str, Any] = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) __lowercase : Optional[int] = tokens + [tokenizer.unk_token] __lowercase : Optional[Any] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ )
575
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _lowerCAmelCase ( self: Optional[int]) ->Dict: '''simple docstring''' super().tearDown() gc.collect() def _lowerCAmelCase ( self: str) ->Optional[int]: '''simple docstring''' a_ , a_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=a , dtype=jnp.bfloataa) a_ , a_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa) a_ = controlnet_params a_ = "bird" a_ = jax.device_count() a_ = pipe.prepare_text_inputs([prompts] * num_samples) a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png") a_ = pipe.prepare_image_inputs([canny_image] * num_samples) a_ = jax.random.PRNGKey(0) a_ = jax.random.split(a , jax.device_count()) a_ = replicate(a) a_ = shard(a) a_ = shard(a) a_ = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) a_ = images[0, 2_53:2_56, 2_53:2_56, -1] a_ = jnp.asarray(jax.device_get(image_slice.flatten())) a_ = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2 def _lowerCAmelCase ( self: Union[str, Any]) ->str: '''simple docstring''' a_ , a_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=a , dtype=jnp.bfloataa) a_ , a_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa) a_ = controlnet_params a_ = "Chef in the kitchen" a_ = jax.device_count() a_ = pipe.prepare_text_inputs([prompts] * num_samples) a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png") a_ = pipe.prepare_image_inputs([pose_image] * num_samples) a_ = jax.random.PRNGKey(0) a_ = jax.random.split(a , jax.device_count()) a_ = replicate(a) a_ = shard(a) a_ = shard(a) a_ = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) a_ = images[0, 2_53:2_56, 2_53:2_56, -1] a_ = jnp.asarray(jax.device_get(image_slice.flatten())) a_ = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
685
0
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class _SCREAMING_SNAKE_CASE ( tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1.0 , lowerCamelCase__ = None , ) -> Tuple: super().__init__() lowercase__ : int = initial_learning_rate lowercase__ : Any = warmup_steps lowercase__ : Tuple = power lowercase__ : str = decay_schedule_fn lowercase__ : str = name def __call__( self , lowerCamelCase__ ) -> Any: with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowercase__ : Optional[Any] = tf.cast(lowerCamelCase__ , tf.floataa ) lowercase__ : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowercase__ : Optional[int] = global_step_float / warmup_steps_float lowercase__ : str = self.initial_learning_rate * tf.math.pow(lowerCamelCase__ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=lowerCamelCase__ , ) def UpperCAmelCase__( self ) -> List[str]: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _lowerCamelCase ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : int = 0.0 , lowerCamelCase__ : Any = 0.9 , lowerCamelCase__ : Optional[int] = 0.999 , lowerCamelCase__ : Tuple = 1E-8 , lowerCamelCase__ : Tuple = None , lowerCamelCase__ : Optional[Any] = None , lowerCamelCase__ : List[str] = 0.0 , lowerCamelCase__ : List[str] = 1.0 , lowerCamelCase__ : Dict = None , ): lowercase__ : List[Any] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=lowercase__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=lowercase__ , ) if num_warmup_steps: lowercase__ : Tuple = WarmUp( initial_learning_rate=lowercase__ , decay_schedule_fn=lowercase__ , warmup_steps=lowercase__ , ) if weight_decay_rate > 0.0: lowercase__ : Any = AdamWeightDecay( learning_rate=lowercase__ , weight_decay_rate=lowercase__ , beta_a=lowercase__ , beta_a=lowercase__ , epsilon=lowercase__ , clipnorm=lowercase__ , global_clipnorm=lowercase__ , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=lowercase__ , ) else: lowercase__ : int = tf.keras.optimizers.Adam( learning_rate=lowercase__ , beta_a=lowercase__ , beta_a=lowercase__ , epsilon=lowercase__ , clipnorm=lowercase__ , global_clipnorm=lowercase__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class _SCREAMING_SNAKE_CASE ( lowercase_ ): """simple docstring""" def __init__( self , lowerCamelCase__ = 0.001 , lowerCamelCase__ = 0.9 , lowerCamelCase__ = 0.999 , lowerCamelCase__ = 1E-7 , lowerCamelCase__ = False , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "AdamWeightDecay" , **lowerCamelCase__ , ) -> int: super().__init__(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) lowercase__ : Optional[int] = weight_decay_rate lowercase__ : Any = include_in_weight_decay lowercase__ : List[Any] = exclude_from_weight_decay @classmethod def UpperCAmelCase__( cls , lowerCamelCase__ ) -> Optional[Any]: lowercase__ : Optional[int] = {"""WarmUp""": WarmUp} return super(lowerCamelCase__ , cls ).from_config(lowerCamelCase__ , custom_objects=lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: super(lowerCamelCase__ , self )._prepare_local(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : str = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: lowercase__ : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ) -> Optional[int]: lowercase__ , lowercase__ : List[str] = list(zip(*lowerCamelCase__ ) ) return super(lowerCamelCase__ , self ).apply_gradients(zip(lowerCamelCase__ , lowerCamelCase__ ) , name=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowercase__ : int = apply_state or {} lowercase__ : Optional[int] = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowercase__ : Dict = self._fallback_apply_state(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Optional[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> Optional[Any]: lowercase__ , lowercase__ : int = self._get_lr(var.device , var.dtype.base_dtype , lowerCamelCase__ ) lowercase__ : Tuple = self._decay_weights_op(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCamelCase__ , self )._resource_apply_dense(lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> List[Any]: lowercase__ , lowercase__ : Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , lowerCamelCase__ ) lowercase__ : Dict = self._decay_weights_op(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCamelCase__ , self )._resource_apply_sparse(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__( self ) -> List[Any]: lowercase__ : int = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def UpperCAmelCase__( self , lowerCamelCase__ ) -> Optional[Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCamelCase__ , lowerCamelCase__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCamelCase__ , lowerCamelCase__ ) is not None: return False return True class _SCREAMING_SNAKE_CASE ( lowercase_ ): """simple docstring""" def __init__( self ) -> Union[str, Any]: lowercase__ : Optional[Any] = [] lowercase__ : int = None @property def UpperCAmelCase__( self ) -> Dict: if self._accum_steps is None: lowercase__ : Optional[int] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=lowerCamelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase__( self ) -> List[Any]: if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , lowerCamelCase__ ) -> str: if not self._gradients: lowercase__ : Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCamelCase__ ) , trainable=lowerCamelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowerCamelCase__ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(lowerCamelCase__ )}''' ) for accum_gradient, gradient in zip(self._gradients , lowerCamelCase__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCamelCase__ ) self._accum_steps.assign_add(1 ) def UpperCAmelCase__( self ) -> Optional[Any]: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCamelCase__ ) )
200
'''simple docstring''' def __UpperCAmelCase (lowercase__ = 1000 ) -> int: '''simple docstring''' return sum(e for e in range(3 ,lowercase__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'{solution() = }')
685
0
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput lowerCAmelCase_ = """scheduler_config.json""" class _lowerCAmelCase ( lowercase_ ): A__ = 1 A__ = 2 A__ = 3 A__ = 4 A__ = 5 @dataclass class _lowerCAmelCase ( lowercase_ ): A__ = 42 class _lowerCAmelCase : A__ = SCHEDULER_CONFIG_NAME A__ = ['dtype'] A__ = [] A__ = True @classmethod def __magic_name__( cls , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=False , **__UpperCAmelCase , ): lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = cls.load_config( pretrained_model_name_or_path=__UpperCAmelCase , subfolder=__UpperCAmelCase , return_unused_kwargs=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ , lowerCAmelCase__ : Any = cls.from_config(__UpperCAmelCase , return_unused_kwargs=__UpperCAmelCase , **__UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''create_state''' ) and getattr(__UpperCAmelCase , '''has_state''' , __UpperCAmelCase ): lowerCAmelCase__ : str = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase = False , **__UpperCAmelCase ): self.save_config(save_directory=__UpperCAmelCase , push_to_hub=__UpperCAmelCase , **__UpperCAmelCase ) @property def __magic_name__( self ): return self._get_compatibles() @classmethod def __magic_name__( cls ): lowerCAmelCase__ : Union[str, Any] = list(set([cls.__name__] + cls._compatibles ) ) lowerCAmelCase__ : Optional[Any] = importlib.import_module(__name__.split('''.''' )[0] ) lowerCAmelCase__ : Any = [ getattr(__UpperCAmelCase , __UpperCAmelCase ) for c in compatible_classes_str if hasattr(__UpperCAmelCase , __UpperCAmelCase ) ] return compatible_classes def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> jnp.ndarray: assert len(lowercase__ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowercase__ ) - x.ndim) ) , lowercase__ ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase=0.999 , UpperCamelCase=jnp.floataa ) -> jnp.ndarray: def alpha_bar(UpperCamelCase ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 lowerCAmelCase__ : List[Any] = [] for i in range(lowercase__ ): lowerCAmelCase__ : Dict = i / num_diffusion_timesteps lowerCAmelCase__ : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(lowercase__ ) / alpha_bar(lowercase__ ) , lowercase__ ) ) return jnp.array(lowercase__ , dtype=lowercase__ ) @flax.struct.dataclass class _lowerCAmelCase : A__ = 42 A__ = 42 A__ = 42 @classmethod def __magic_name__( cls , __UpperCAmelCase ): lowerCAmelCase__ : Any = scheduler.config if config.trained_betas is not None: lowerCAmelCase__ : int = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": lowerCAmelCase__ : Optional[int] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : Optional[int] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : Optional[int] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) lowerCAmelCase__ : Tuple = 1.0 - betas lowerCAmelCase__ : Optional[Any] = jnp.cumprod(__UpperCAmelCase , axis=0 ) return cls( alphas=__UpperCAmelCase , betas=__UpperCAmelCase , alphas_cumprod=__UpperCAmelCase , ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: lowerCAmelCase__ : List[str] = state.alphas_cumprod lowerCAmelCase__ : Any = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase__ : Dict = sqrt_alpha_prod.flatten() lowerCAmelCase__ : Tuple = broadcast_to_shape_from_left(lowercase__ , original_samples.shape ) lowerCAmelCase__ : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase__ : List[str] = sqrt_one_minus_alpha_prod.flatten() lowerCAmelCase__ : Optional[Any] = broadcast_to_shape_from_left(lowercase__ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = get_sqrt_alpha_prod(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) lowerCAmelCase__ : int = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = get_sqrt_alpha_prod(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) lowerCAmelCase__ : Dict = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
678
'''simple docstring''' import math def __UpperCAmelCase (lowercase__ ) -> list: '''simple docstring''' a_ = [True] * n a_ = False a_ = False a_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): a_ = i * 2 while index < n: a_ = False a_ = index + i a_ = [2] for i in range(3 ,lowercase__ ,2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def __UpperCAmelCase (lowercase__ = 999966663333 ) -> int: '''simple docstring''' a_ = math.floor(math.sqrt(lowercase__ ) ) + 100 a_ = prime_sieve(lowercase__ ) a_ = 0 a_ = 0 a_ = primes[prime_index] while (last_prime**2) <= limit: a_ = primes[prime_index + 1] a_ = last_prime**2 a_ = next_prime**2 # Get numbers divisible by lps(current) a_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) a_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps a_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair a_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
685
0
import numpy as np from transformers import Pipeline def _lowercase ( a__ : Dict ) -> Tuple: """simple docstring""" _UpperCamelCase = np.max(lowercase__ , axis=-1 , keepdims=lowercase__ ) _UpperCamelCase = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowercase__ ) class lowerCamelCase_ ( lowercase_ ): def lowercase ( self , **lowerCamelCase_ ) -> Dict: """simple docstring""" _UpperCamelCase = {} if "second_text" in kwargs: _UpperCamelCase = kwargs["second_text"] return preprocess_kwargs, {}, {} def lowercase ( self , lowerCamelCase_ , lowerCamelCase_=None ) -> Dict: """simple docstring""" return self.tokenizer(lowerCamelCase_ , text_pair=lowerCamelCase_ , return_tensors=self.framework ) def lowercase ( self , lowerCamelCase_ ) -> str: """simple docstring""" return self.model(**lowerCamelCase_ ) def lowercase ( self , lowerCamelCase_ ) -> str: """simple docstring""" _UpperCamelCase = model_outputs.logits[0].numpy() _UpperCamelCase = softmax(lowerCamelCase_ ) _UpperCamelCase = np.argmax(lowerCamelCase_ ) _UpperCamelCase = self.model.config.idalabel[best_class] _UpperCamelCase = probabilities[best_class].item() _UpperCamelCase = logits.tolist() return {"label": label, "score": score, "logits": logits}
147
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' a_ = UniSpeechSatForSequenceClassification.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["projector.weight"] a_ = downstream_dict["projector.bias"] a_ = downstream_dict["model.post_net.linear.weight"] a_ = downstream_dict["model.post_net.linear.bias"] return model def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Dict: '''simple docstring''' a_ = UniSpeechSatForAudioFrameClassification.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["model.linear.weight"] a_ = downstream_dict["model.linear.bias"] return model def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Optional[Any]: '''simple docstring''' a_ = UniSpeechSatForXVector.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["connector.weight"] a_ = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a_ = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] a_ = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] a_ = downstream_dict["objective.W"] return model @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> List[str]: '''simple docstring''' a_ = torch.load(lowercase__ ,map_location="cpu" ) a_ = checkpoint["Downstream"] a_ = UniSpeechSatConfig.from_pretrained(lowercase__ ) a_ = WavaVecaFeatureExtractor.from_pretrained( lowercase__ ,return_attention_mask=lowercase__ ,do_normalize=lowercase__ ) a_ = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): a_ = convert_classification(lowercase__ ,lowercase__ ,lowercase__ ) elif arch.endswith("ForAudioFrameClassification" ): a_ = convert_diarization(lowercase__ ,lowercase__ ,lowercase__ ) elif arch.endswith("ForXVector" ): a_ = convert_xvector(lowercase__ ,lowercase__ ,lowercase__ ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: a_ = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') a_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
685
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __magic_name__ ( lowercase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = DiTPipeline _SCREAMING_SNAKE_CASE : str = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _SCREAMING_SNAKE_CASE : Any = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } _SCREAMING_SNAKE_CASE : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _SCREAMING_SNAKE_CASE : List[str] = False def lowerCAmelCase ( self : Any ): torch.manual_seed(0 ) __snake_case = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=snake_case_ , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=snake_case_ , ) __snake_case = AutoencoderKL() __snake_case = DDIMScheduler() __snake_case = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowerCAmelCase ( self : Any , snake_case_ : Any , snake_case_ : str=0 ): if str(snake_case_ ).startswith("mps" ): __snake_case = torch.manual_seed(snake_case_ ) else: __snake_case = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) __snake_case = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowerCAmelCase ( self : Dict ): __snake_case = "cpu" __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __snake_case = self.get_dummy_inputs(snake_case_ ) __snake_case = pipe(**snake_case_ ).images __snake_case = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __snake_case = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) __snake_case = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case_ , 1e-3 ) def lowerCAmelCase ( self : Optional[Any] ): self._test_inference_batch_single_identical(relax_max_difference=snake_case_ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCAmelCase ( self : Optional[Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __magic_name__ ( unittest.TestCase ): def lowerCAmelCase ( self : List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : str ): __snake_case = torch.manual_seed(0 ) __snake_case = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) __snake_case = ["vase", "umbrella", "white shark", "white wolf"] __snake_case = pipe.get_label_ids(snake_case_ ) __snake_case = pipe(snake_case_ , generator=snake_case_ , num_inference_steps=40 , output_type="np" ).images for word, image in zip(snake_case_ , snake_case_ ): __snake_case = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowerCAmelCase ( self : Union[str, Any] ): __snake_case = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) __snake_case = ["vase", "umbrella"] __snake_case = pipe.get_label_ids(snake_case_ ) __snake_case = torch.manual_seed(0 ) __snake_case = pipe(snake_case_ , generator=snake_case_ , num_inference_steps=25 , output_type="np" ).images for word, image in zip(snake_case_ , snake_case_ ): __snake_case = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
163
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
685
0
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __snake_case =logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Path , UpperCAmelCase__ : Union[str, None] = None , UpperCAmelCase__ : Union[List[str], None] = None , UpperCAmelCase__ : Union[str, List[str], None] = None , UpperCAmelCase__ : bool = True , ) -> Optional[Any]: lowerCAmelCase = [file for file in os.listdir(UpperCAmelCase__ ) if os.path.isfile(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) )] if identifier is not None: lowerCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): for n_ in n_identifier: lowerCAmelCase = [file for file in files if n_ not in file] else: lowerCAmelCase = [file for file in files if n_identifier not in file] lowerCAmelCase = ignore_files or [] ignore_files.append('__init__.py' ) lowerCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , UpperCAmelCase__ ) if only_modules: lowerCAmelCase = file.split('.' )[0] try: lowerCAmelCase = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = doctest.DocTestSuite(UpperCAmelCase__ ) lowerCAmelCase = unittest.TextTestRunner().run(UpperCAmelCase__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: lowerCAmelCase = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __UpperCAmelCase ( self : Dict ) -> Tuple: lowerCAmelCase = Path('src/transformers' ) lowerCAmelCase = 'modeling' lowerCAmelCase = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(UpperCAmelCase__ , identifier=UpperCAmelCase__ , ignore_files=UpperCAmelCase__ ) def __UpperCAmelCase ( self : int ) -> Dict: lowerCAmelCase = Path('src/transformers' ) lowerCAmelCase = 'tokenization' self.analyze_directory(UpperCAmelCase__ , identifier=UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]: lowerCAmelCase = Path('src/transformers' ) lowerCAmelCase = 'configuration' self.analyze_directory(UpperCAmelCase__ , identifier=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: lowerCAmelCase = Path('src/transformers' ) lowerCAmelCase = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(UpperCAmelCase__ , n_identifier=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: lowerCAmelCase = Path('docs/source' ) lowerCAmelCase = ['favicon.ico'] self.analyze_directory(UpperCAmelCase__ , ignore_files=UpperCAmelCase__ , only_modules=UpperCAmelCase__ )
133
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} a_ = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } a_ = { 'abeja/gpt-neox-japanese-2.7b': 2_048, } def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Tuple: '''simple docstring''' with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = json.loads(f.read() ) a_ = collections.OrderedDict() a_ = collections.OrderedDict() a_ = collections.OrderedDict() with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = f.readlines() a_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(lowercase__ ): a_ = b a_ = idx for wd in b: a_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =VOCAB_FILES_NAMES _UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase =['''input_ids''', '''attention_mask'''] def __init__( self: List[str] , a: Union[str, Any] , a: Optional[int] , a: List[str]="<|endoftext|>" , a: Union[str, Any]="<|endoftext|>" , a: Dict="<|startoftext|>" , a: Dict="<|endoftext|>" , a: Union[str, Any]=False , **a: Optional[int] , ) ->str: '''simple docstring''' super().__init__( unk_token=a , pad_token=a , bos_token=a , eos_token=a , do_clean_text=a , **a , ) if not os.path.isfile(a): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") if not os.path.isfile(a): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") a_ = do_clean_text a_ , a_ , a_ , a_ = load_vocab_and_emoji(a , a) a_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji) @property def _lowerCAmelCase ( self: Optional[Any]) ->Optional[Any]: '''simple docstring''' return len(self.raw_vocab) def _lowerCAmelCase ( self: Dict) ->Any: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder) def _lowerCAmelCase ( self: Union[str, Any] , a: Any) ->Dict: '''simple docstring''' return self.subword_tokenizer.tokenize(a , clean=self.do_clean_text) def _lowerCAmelCase ( self: int , a: List[Any]) ->Union[str, Any]: '''simple docstring''' return self.vocab.get(a , self.vocab.get(self.unk_token)) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->str: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(a) def _lowerCAmelCase ( self: Optional[int] , a: Any) ->str: '''simple docstring''' a_ = "".join(a).strip() return out_string def _lowerCAmelCase ( self: Any , a: "Conversation") ->List[int]: '''simple docstring''' a_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a , add_special_tokens=a) + [self.eos_token_id]) if len(a) > self.model_max_length: a_ = input_ids[-self.model_max_length :] return input_ids def _lowerCAmelCase ( self: int , a: str , a: Optional[str] = None) ->Tuple[str]: '''simple docstring''' a_ = 0 if os.path.isdir(a): a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"]) else: a_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) a_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(a , "w" , encoding="utf-8") as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!") a_ = token_index writer.write(",".join(a) + "\n") index += 1 with open(a , "w" , encoding="utf-8") as writer: json.dump(self.emoji , a) return vocab_file, emoji_file class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[str] , a: Any , a: Union[str, Any] , a: Any) ->List[Any]: '''simple docstring''' a_ = vocab # same as swe a_ = ids_to_tokens # same as bpe a_ = emoji a_ = np.max([len(a) for w in self.vocab.keys()]) a_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)") a_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*") a_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}") a_ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") a_ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") a_ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*") a_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" a_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" a_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks}) def __len__( self: Dict) ->Any: '''simple docstring''' return len(self.ids_to_tokens) def _lowerCAmelCase ( self: Union[str, Any] , a: Tuple) ->Any: '''simple docstring''' a_ = self.content_repattera.sub("<URL>" , a) a_ = self.content_repattera.sub("<EMAIL>" , a) a_ = self.content_repattera.sub("<TEL>" , a) a_ = self.content_repattera.sub("<DATE>" , a) a_ = self.content_repattera.sub("<DATE>" , a) a_ = self.content_repattera.sub("<PRICE>" , a) a_ = content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: a_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>") return content def _lowerCAmelCase ( self: Any , a: int , a: Optional[int]=False) ->List[str]: '''simple docstring''' a_ = text.replace(" " , "<SP>") a_ = text.replace(" " , "<SP>") a_ = text.replace("\r\n" , "<BR>") a_ = text.replace("\n" , "<BR>") a_ = text.replace("\r" , "<BR>") a_ = text.replace("\t" , "<TAB>") a_ = text.replace("—" , "ー") a_ = text.replace("−" , "ー") for k, v in self.emoji["emoji"].items(): if k in text: a_ = text.replace(a , a) if clean: a_ = self.clean_text(a) def check_simbol(a: Dict): a_ = x.encode() if len(a) == 1 and len(a) == 2: a_ = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0XC_2_A_1 and c <= 0XC_2_B_F) or (c >= 0XC_7_8_0 and c <= 0XC_7_8_3) or (c >= 0XC_A_B_9 and c <= 0XC_B_B_F) or (c >= 0XC_C_8_0 and c <= 0XC_D_A_2) ): return True return False def checkuae(a: str): a_ = x.encode() if len(a) == 1 and len(a) == 3: a_ = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0XE_2_8_0_8_0 and c <= 0XE_2_B_0_7_F: return True return False a_ = 0 a_ = [] while pos < len(a): a_ = min(len(a) , pos + self.maxlen + 1) if text[pos] == "<" else pos + 3 a_ = [] # (token_id, token, pos) for e in range(a , a , -1): a_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(a) > 2: a_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(a) > 0: # the smallest token_id is adopted a_ , a_ , a_ = sorted(a , key=lambda a: x[0])[0] result.append(a) a_ = e else: a_ = pos + 1 a_ = text[pos:end] if check_simbol(a): result.append("<KIGOU>") elif checkuae(a): result.append("<U2000U2BFF>") else: for i in wd.encode("utf-8"): result.append("<|byte%d|>" % i) a_ = end return result def _lowerCAmelCase ( self: int , a: List[Any] , a: Any="\n") ->str: '''simple docstring''' a_ = [] a_ = [] a_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(a) > 0: words.append(bytearray(a).decode("utf-8" , errors="replace")) a_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word]) elif word == "<SP>": words.append(" ") elif word == "<BR>": words.append(a) elif word == "<TAB>": words.append("\t") elif word == "<BLOCK>": words.append("▀") elif word == "<KIGOU>": words.append("ǀ") elif word == "<U2000U2BFF>": words.append("‖") else: words.append(a) if len(a) > 0: words.append(bytearray(a).decode("utf-8" , errors="replace")) a_ = "".join(a) return text
685
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) @dataclass class lowerCamelCase_: '''simple docstring''' lowercase__ : Dict = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase__ : Dict = field( default=lowercase_, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase__ : str = field( default=lowercase_, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowercase__ : Optional[Any] = field( default=lowercase_, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) lowercase__ : Union[str, Any] = field( default=lowercase_, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, ) lowercase__ : Dict = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) lowercase__ : List[str] = field( default=lowercase_, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) @dataclass class lowerCamelCase_: '''simple docstring''' lowercase__ : int = field(default=lowercase_, metadata={'help': 'The input training data file (a text file).'} ) lowercase__ : List[Any] = field( default=lowercase_, metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'}, ) lowercase__ : Any = field( default=lowercase_, metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase__ : Tuple = field( default=lowercase_, metadata={'help': 'The number of processes to use for the preprocessing.'}, ) lowercase__ : Optional[int] = field( default=lowercase_, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) lowercase__ : Optional[Any] = field( default=lowercase_, metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) }, ) lowercase__ : Union[str, Any] = field( default=lowercase_, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) lowercase__ : Optional[int] = field( default=lowercase_, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) }, ) def snake_case__ ( self ): if self.train_file is not None: _lowerCamelCase = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _lowerCamelCase = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowerCamelCase_: '''simple docstring''' lowercase__ : Union[str, Any] = 42 lowercase__ : Tuple = True lowercase__ : List[Any] = None lowercase__ : Optional[int] = None def __call__( self , lowerCamelCase__ ): _lowerCamelCase = '''label''' if '''label''' in features[0].keys() else '''labels''' _lowerCamelCase = [feature.pop(lowerCamelCase__ ) for feature in features] _lowerCamelCase = len(lowerCamelCase__ ) _lowerCamelCase = len(features[0]['''input_ids'''] ) _lowerCamelCase = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCamelCase__ )] for feature in features ] _lowerCamelCase = list(chain(*lowerCamelCase__ ) ) _lowerCamelCase = self.tokenizer.pad( lowerCamelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten _lowerCamelCase = {k: v.view(lowerCamelCase__ , lowerCamelCase__ , -1 ) for k, v in batch.items()} # Add back labels _lowerCamelCase = torch.tensor(lowerCamelCase__ , dtype=torch.intaa ) return batch def lowerCAmelCase_( ) -> Tuple: _lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCamelCase = training_args.get_process_log_level() logger.setLevel(lowercase__ ) datasets.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _lowerCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _lowerCamelCase = {} if data_args.train_file is not None: _lowerCamelCase = data_args.train_file if data_args.validation_file is not None: _lowerCamelCase = data_args.validation_file _lowerCamelCase = data_args.train_file.split('''.''' )[-1] _lowerCamelCase = load_dataset( lowercase__ , data_files=lowercase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _lowerCamelCase = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _lowerCamelCase = [F"""ending{i}""" for i in range(4 )] _lowerCamelCase = '''sent1''' _lowerCamelCase = '''sent2''' if data_args.max_seq_length is None: _lowerCamelCase = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) _lowerCamelCase = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _lowerCamelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowercase_ : str ): _lowerCamelCase = [[context] * 4 for context in examples[context_name]] _lowerCamelCase = examples[question_header_name] _lowerCamelCase = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(lowercase__ ) ] # Flatten out _lowerCamelCase = list(chain(*lowercase__ ) ) _lowerCamelCase = list(chain(*lowercase__ ) ) # Tokenize _lowerCamelCase = tokenizer( lowercase__ , lowercase__ , truncation=lowercase__ , max_length=lowercase__ , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowercase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) _lowerCamelCase = raw_datasets['''train'''] if data_args.max_train_samples is not None: _lowerCamelCase = min(len(lowercase__ ) , data_args.max_train_samples ) _lowerCamelCase = train_dataset.select(range(lowercase__ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): _lowerCamelCase = train_dataset.map( lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) _lowerCamelCase = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: _lowerCamelCase = min(len(lowercase__ ) , data_args.max_eval_samples ) _lowerCamelCase = eval_dataset.select(range(lowercase__ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): _lowerCamelCase = eval_dataset.map( lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _lowerCamelCase = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowercase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowercase_ : List[str] ): _lowerCamelCase , _lowerCamelCase = eval_predictions _lowerCamelCase = np.argmax(lowercase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _lowerCamelCase = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , compute_metrics=lowercase__ , ) # Training if training_args.do_train: _lowerCamelCase = None if training_args.resume_from_checkpoint is not None: _lowerCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCamelCase = last_checkpoint _lowerCamelCase = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() # Saves the tokenizer too for easy upload _lowerCamelCase = train_result.metrics _lowerCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase__ ) ) _lowerCamelCase = min(lowercase__ , len(lowercase__ ) ) trainer.log_metrics('''train''' , lowercase__ ) trainer.save_metrics('''train''' , lowercase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _lowerCamelCase = trainer.evaluate() _lowerCamelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase__ ) _lowerCamelCase = min(lowercase__ , len(lowercase__ ) ) trainer.log_metrics('''eval''' , lowercase__ ) trainer.save_metrics('''eval''' , lowercase__ ) _lowerCamelCase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def lowerCAmelCase_( lowercase_ : Union[str, Any] ) -> List[Any]: main() if __name__ == "__main__": main()
661
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[Any] , a: Optional[Any] , a: Dict=13 , a: List[str]=7 , a: Optional[Any]=True , a: int=True , a: Any=True , a: Optional[int]=True , a: int=True , a: Dict=False , a: Union[str, Any]=False , a: Dict=False , a: List[str]=2 , a: Union[str, Any]=99 , a: List[Any]=0 , a: Optional[int]=32 , a: List[str]=5 , a: int=4 , a: List[Any]=0.1 , a: Optional[int]=0.1 , a: Optional[int]=5_12 , a: str=12 , a: Dict=2 , a: Any=0.02 , a: Optional[int]=3 , a: str=4 , a: Optional[int]="last" , a: Tuple=None , a: Any=None , ) ->int: '''simple docstring''' a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_lengths a_ = use_token_type_ids a_ = use_labels a_ = gelu_activation a_ = sinusoidal_embeddings a_ = causal a_ = asm a_ = n_langs a_ = vocab_size a_ = n_special a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = summary_type a_ = use_proj a_ = scope def _lowerCAmelCase ( self: Tuple) ->Dict: '''simple docstring''' a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = random_attention_mask([self.batch_size, self.seq_length]) a_ = None if self.use_input_lengths: a_ = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = ids_tensor([self.batch_size] , 2).float() a_ = ids_tensor([self.batch_size] , self.num_choices) a_ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCAmelCase ( self: List[Any]) ->Any: '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _lowerCAmelCase ( self: Optional[int] , a: Tuple , a: List[Any] , a: List[Any] , a: Optional[int] , a: int , a: str , a: Any , a: str , a: List[Any] , ) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertModel(config=a) model.to(a) model.eval() a_ = model(a , lengths=a , langs=a) a_ = model(a , langs=a) a_ = model(a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCAmelCase ( self: Optional[int] , a: Optional[Any] , a: Dict , a: Union[str, Any] , a: Dict , a: Optional[Any] , a: Any , a: Tuple , a: str , a: List[str] , ) ->Dict: '''simple docstring''' a_ = FlaubertWithLMHeadModel(a) model.to(a) model.eval() a_ = model(a , token_type_ids=a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCAmelCase ( self: Optional[int] , a: Tuple , a: Optional[Any] , a: List[Any] , a: List[str] , a: List[str] , a: List[str] , a: Optional[Any] , a: str , a: Union[str, Any] , ) ->str: '''simple docstring''' a_ = FlaubertForQuestionAnsweringSimple(a) model.to(a) model.eval() a_ = model(a) a_ = model(a , start_positions=a , end_positions=a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCAmelCase ( self: Union[str, Any] , a: List[str] , a: Tuple , a: Optional[Any] , a: Any , a: Dict , a: Any , a: Optional[int] , a: Optional[Any] , a: Union[str, Any] , ) ->int: '''simple docstring''' a_ = FlaubertForQuestionAnswering(a) model.to(a) model.eval() a_ = model(a) a_ = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , p_mask=a , ) a_ = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , ) ((a_) , ) = result_with_labels.to_tuple() a_ = model(a , start_positions=a , end_positions=a) ((a_) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def _lowerCAmelCase ( self: Union[str, Any] , a: List[str] , a: Tuple , a: Union[str, Any] , a: Any , a: Tuple , a: Union[str, Any] , a: int , a: int , a: Dict , ) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertForSequenceClassification(a) model.to(a) model.eval() a_ = model(a) a_ = model(a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _lowerCAmelCase ( self: str , a: List[str] , a: Dict , a: Tuple , a: Optional[Any] , a: Any , a: Any , a: str , a: str , a: Optional[Any] , ) ->List[Any]: '''simple docstring''' a_ = self.num_labels a_ = FlaubertForTokenClassification(a) model.to(a) model.eval() a_ = model(a , attention_mask=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCAmelCase ( self: Dict , a: Tuple , a: List[Any] , a: Dict , a: Optional[Any] , a: Optional[Any] , a: Optional[Any] , a: Union[str, Any] , a: List[str] , a: Tuple , ) ->Dict: '''simple docstring''' a_ = self.num_choices a_ = FlaubertForMultipleChoice(config=a) model.to(a) model.eval() a_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCAmelCase ( self: Any) ->List[Any]: '''simple docstring''' a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ , unittest.TestCase ): _UpperCAmelCase =( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _UpperCAmelCase =( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _lowerCAmelCase ( self: Optional[Any] , a: List[Any] , a: Any , a: List[str] , a: Union[str, Any] , a: int) ->int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCAmelCase ( self: str , a: Optional[Any] , a: List[Any] , a: Tuple=False) ->List[Any]: '''simple docstring''' a_ = super()._prepare_for_class(a , a , return_labels=a) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) return inputs_dict def _lowerCAmelCase ( self: Dict) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertModelTester(self) a_ = ConfigTester(self , config_class=a , emb_dim=37) def _lowerCAmelCase ( self: List[str]) ->Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowerCAmelCase ( self: List[str]) ->Optional[Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a) def _lowerCAmelCase ( self: int) ->Optional[int]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a) def _lowerCAmelCase ( self: Optional[int]) ->Optional[Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*a) def _lowerCAmelCase ( self: Any) ->Optional[int]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a) def _lowerCAmelCase ( self: Optional[Any]) ->Tuple: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a) def _lowerCAmelCase ( self: Optional[Any]) ->Union[str, Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*a) def _lowerCAmelCase ( self: List[Any]) ->Dict: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*a) @slow def _lowerCAmelCase ( self: Any) ->Any: '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = FlaubertModel.from_pretrained(a) self.assertIsNotNone(a) @slow @require_torch_gpu def _lowerCAmelCase ( self: int) ->Optional[int]: '''simple docstring''' a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return a_ = True a_ = model_class(config=a) a_ = self._prepare_for_class(a , a) a_ = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt")) a_ = torch.jit.load(os.path.join(a , "traced_model.pt") , map_location=a) loaded(inputs_dict["input_ids"].to(a) , inputs_dict["attention_mask"].to(a)) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased") a_ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]]) with torch.no_grad(): a_ = model(a)[0] a_ = torch.Size((1, 11, 7_68)) self.assertEqual(output.shape , a) a_ = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1e-4))
685
0
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger() @dataclass class snake_case_ : __lowerCAmelCase = 4_2 __lowerCAmelCase = field(default_factory=lowercase_ ) __lowerCAmelCase = field(default_factory=lowercase_ ) def snake_case_ ( self , a_ , a_ , a_ ): a_ : Dict = len(list(m.modules() ) ) == 1 or isinstance(a_ , nn.Convad ) or isinstance(a_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(a_ ) def __call__( self , a_ ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a_ ) [x.remove() for x in self.handles] return self @property def snake_case_ ( self ): return list(filter(lambda a_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class snake_case_ : __lowerCAmelCase = 4_2 __lowerCAmelCase = 4_2 __lowerCAmelCase = 0 __lowerCAmelCase = field(default_factory=lowercase_ ) __lowerCAmelCase = field(default_factory=lowercase_ ) def __call__( self , a_ ): a_ : str = Tracker(self.dest )(a_ ).parametrized a_ : Any = Tracker(self.src )(a_ ).parametrized a_ : List[str] = list(filter(lambda a_ : type(a_ ) not in self.src_skip , a_ ) ) a_ : Optional[int] = list(filter(lambda a_ : type(a_ ) not in self.dest_skip , a_ ) ) if len(a_ ) != len(a_ ): raise Exception( F"""Numbers of operations are different. Source module has {len(a_ )} operations while""" F""" destination module has {len(a_ )}.""" ) for dest_m, src_m in zip(a_ , a_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = True ) -> Union[str, Any]: print(F"""Converting {name}...""" ) with torch.no_grad(): a_ : Any = timm.create_model(lowercase__, pretrained=lowercase__ ).eval() a_ : Optional[int] = ResNetForImageClassification(lowercase__ ).eval() a_ : Dict = ModuleTransfer(src=lowercase__, dest=lowercase__ ) a_ : Optional[Any] = torch.randn((1, 3, 224, 224) ) module_transfer(lowercase__ ) assert torch.allclose(from_model(lowercase__ ), our_model(lowercase__ ).logits ), "The model logits don't match the original one." a_ : Optional[int] = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(lowercase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message="Add model", use_temp_dir=lowercase__, ) # we can use the convnext one a_ : Optional[Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message="Add image processor", use_temp_dir=lowercase__, ) print(F"""Pushed {checkpoint_name}""" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = None, SCREAMING_SNAKE_CASE__ = True ) -> int: a_ : Any = "imagenet-1k-id2label.json" a_ : Optional[Any] = 1_000 a_ : Union[str, Any] = (1, num_labels) a_ : int = "huggingface/label-files" a_ : Union[str, Any] = num_labels a_ : str = json.load(open(hf_hub_download(lowercase__, lowercase__, repo_type="dataset" ), "r" ) ) a_ : int = {int(lowercase__ ): v for k, v in idalabel.items()} a_ : str = idalabel a_ : Optional[Any] = {v: k for k, v in idalabel.items()} a_ : Dict = partial(lowercase__, num_labels=lowercase__, idalabel=lowercase__, labelaid=lowercase__ ) a_ : str = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1_024, 2_048], layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1_024, 2_048], layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1_024, 2_048], layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1_024, 2_048], layer_type="bottleneck" ), } if model_name: convert_weight_and_push(lowercase__, names_to_config[model_name], lowercase__, lowercase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowercase__, lowercase__, lowercase__, lowercase__ ) return config, expected_shape if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
237
'''simple docstring''' import math def __UpperCAmelCase (lowercase__ ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(lowercase__ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase (lowercase__ = 10001 ) -> int: '''simple docstring''' try: a_ = int(lowercase__ ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) a_ = [] a_ = 2 while len(lowercase__ ) < nth: if is_prime(lowercase__ ): primes.append(lowercase__ ) num += 1 else: num += 1 return primes[len(lowercase__ ) - 1] if __name__ == "__main__": print(F'{solution() = }')
685
0
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __lowercase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" __A = """hf-internal-testing/tiny-random-t5""" __A = AutoTokenizer.from_pretrained(UpperCamelCase_ ) __A = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ ) __A = tokenizer("""This is me""" , return_tensors="""pt""" ) __A = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __A = model.generate(**UpperCamelCase_ ) __A = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ ) __A = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __A = model_reloaded.generate(**UpperCamelCase_ ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" __A = """hf-internal-testing/tiny-random-t5""" __A = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ ) __A = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(UpperCamelCase_ ): model.save_pretrained(UpperCamelCase_ ) __A = model.reverse_bettertransformer() model.save_pretrained(UpperCamelCase_ )
637
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''visual_bert''' def __init__( self: Union[str, Any] , a: List[Any]=3_05_22 , a: List[Any]=7_68 , a: Union[str, Any]=5_12 , a: List[str]=12 , a: Tuple=12 , a: Optional[Any]=30_72 , a: int="gelu" , a: Union[str, Any]=0.1 , a: int=0.1 , a: str=5_12 , a: Optional[int]=2 , a: List[str]=0.02 , a: Optional[int]=1e-12 , a: str=False , a: Any=True , a: Tuple=1 , a: Dict=0 , a: Any=2 , **a: Optional[Any] , ) ->str: '''simple docstring''' super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) a_ = vocab_size a_ = max_position_embeddings a_ = hidden_size a_ = visual_embedding_dim a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = type_vocab_size a_ = layer_norm_eps a_ = bypass_transformer a_ = special_visual_initialize
685
0
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __magic_name__ : Optional[int] = logging.get_logger(__name__) # General docstring __magic_name__ : List[str] = """RegNetConfig""" # Base docstring __magic_name__ : List[Any] = """facebook/regnet-y-040""" __magic_name__ : List[Any] = [1, 1_088, 7, 7] # Image classification docstring __magic_name__ : Tuple = """facebook/regnet-y-040""" __magic_name__ : int = """tabby, tabby cat""" __magic_name__ : Union[str, Any] = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase = 3 , lowerCamelCase = 1 , lowerCamelCase = 1 , lowerCamelCase = "relu" , **lowerCamelCase , ): super().__init__(**lowerCamelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _snake_case = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _snake_case = tf.keras.layers.ConvaD( filters=lowerCamelCase , kernel_size=lowerCamelCase , strides=lowerCamelCase , padding="VALID" , groups=lowerCamelCase , use_bias=lowerCamelCase , name="convolution" , ) _snake_case = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) _snake_case = ACTaFN[activation] if activation is not None else tf.identity def UpperCamelCase( self , lowerCamelCase ): _snake_case = self.convolution(self.padding(lowerCamelCase ) ) _snake_case = self.normalization(lowerCamelCase ) _snake_case = self.activation(lowerCamelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowerCamelCase , **lowerCamelCase ): super().__init__(**lowerCamelCase ) _snake_case = config.num_channels _snake_case = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def UpperCamelCase( self , lowerCamelCase ): _snake_case = shape_list(lowerCamelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _snake_case = tf.transpose(lowerCamelCase , perm=(0, 2, 3, 1) ) _snake_case = self.embedder(lowerCamelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase = 2 , **lowerCamelCase ): super().__init__(**lowerCamelCase ) _snake_case = tf.keras.layers.ConvaD( filters=lowerCamelCase , kernel_size=1 , strides=lowerCamelCase , use_bias=lowerCamelCase , name="convolution" ) _snake_case = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase = False ): return self.normalization(self.convolution(lowerCamelCase ) , training=lowerCamelCase ) class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase , **lowerCamelCase ): super().__init__(**lowerCamelCase ) _snake_case = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase , name="pooler" ) _snake_case = [ tf.keras.layers.ConvaD(filters=lowerCamelCase , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def UpperCamelCase( self , lowerCamelCase ): _snake_case = self.pooler(lowerCamelCase ) for layer_module in self.attention: _snake_case = layer_module(lowerCamelCase ) _snake_case = hidden_state * pooled return hidden_state class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 1 , **lowerCamelCase ): super().__init__(**lowerCamelCase ) _snake_case = in_channels != out_channels or stride != 1 _snake_case = max(1 , out_channels // config.groups_width ) _snake_case = ( TFRegNetShortCut(lowerCamelCase , stride=lowerCamelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _snake_case = [ TFRegNetConvLayer(lowerCamelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase , stride=lowerCamelCase , groups=lowerCamelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase , kernel_size=1 , activation=lowerCamelCase , name="layer.2" ), ] _snake_case = ACTaFN[config.hidden_act] def UpperCamelCase( self , lowerCamelCase ): _snake_case = hidden_state for layer_module in self.layers: _snake_case = layer_module(lowerCamelCase ) _snake_case = self.shortcut(lowerCamelCase ) hidden_state += residual _snake_case = self.activation(lowerCamelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 1 , **lowerCamelCase ): super().__init__(**lowerCamelCase ) _snake_case = in_channels != out_channels or stride != 1 _snake_case = max(1 , out_channels // config.groups_width ) _snake_case = ( TFRegNetShortCut(lowerCamelCase , stride=lowerCamelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _snake_case = [ TFRegNetConvLayer(lowerCamelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase , stride=lowerCamelCase , groups=lowerCamelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase , kernel_size=1 , activation=lowerCamelCase , name="layer.3" ), ] _snake_case = ACTaFN[config.hidden_act] def UpperCamelCase( self , lowerCamelCase ): _snake_case = hidden_state for layer_module in self.layers: _snake_case = layer_module(lowerCamelCase ) _snake_case = self.shortcut(lowerCamelCase ) hidden_state += residual _snake_case = self.activation(lowerCamelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 2 , lowerCamelCase = 2 , **lowerCamelCase ): super().__init__(**lowerCamelCase ) _snake_case = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _snake_case = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase , lowerCamelCase , lowerCamelCase , stride=lowerCamelCase , name="layers.0" ), *[layer(lowerCamelCase , lowerCamelCase , lowerCamelCase , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def UpperCamelCase( self , lowerCamelCase ): for layer_module in self.layers: _snake_case = layer_module(lowerCamelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowerCamelCase , **lowerCamelCase ): super().__init__(**lowerCamelCase ) _snake_case = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase , lowerCamelCase , lowerCamelCase , depth=lowerCamelCase , name=F'''stages.{i+1}''' ) ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = True ): _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowerCamelCase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase , hidden_states=lowerCamelCase ) @keras_serializable class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' UpperCAmelCase__ : int = RegNetConfig def __init__( self , lowerCamelCase , **lowerCamelCase ): super().__init__(**lowerCamelCase ) _snake_case = config _snake_case = TFRegNetEmbeddings(lowerCamelCase , name="embedder" ) _snake_case = TFRegNetEncoder(lowerCamelCase , name="encoder" ) _snake_case = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase , name="pooler" ) @unpack_inputs def UpperCamelCase( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , ): _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowerCamelCase , training=lowerCamelCase ) _snake_case = self.encoder( lowerCamelCase , output_hidden_states=lowerCamelCase , return_dict=lowerCamelCase , training=lowerCamelCase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowerCamelCase ) # Change to NCHW output format have uniformity in the modules _snake_case = tf.transpose(lowerCamelCase , perm=(0, 3, 1, 2) ) _snake_case = tf.transpose(lowerCamelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _snake_case = tuple([tf.transpose(lowerCamelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase , pooler_output=lowerCamelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' UpperCAmelCase__ : List[str] = RegNetConfig UpperCAmelCase__ : str = '''regnet''' UpperCAmelCase__ : List[str] = '''pixel_values''' @property def UpperCamelCase( self ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} __magic_name__ : Optional[int] = r"""\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n""" __magic_name__ : Optional[int] = r"""\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n""" @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , lowercase_ , ) class __SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' def __init__( self , lowerCamelCase , *lowerCamelCase , **lowerCamelCase ): super().__init__(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) _snake_case = TFRegNetMainLayer(lowerCamelCase , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase=False , ): _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.regnet( pixel_values=lowerCamelCase , output_hidden_states=lowerCamelCase , return_dict=lowerCamelCase , training=lowerCamelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , lowercase_ , ) class __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ): '''simple docstring''' def __init__( self , lowerCamelCase , *lowerCamelCase , **lowerCamelCase ): super().__init__(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) _snake_case = config.num_labels _snake_case = TFRegNetMainLayer(lowerCamelCase , name="regnet" ) # classification head _snake_case = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase( self , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase=False , ): _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.regnet( lowerCamelCase , output_hidden_states=lowerCamelCase , return_dict=lowerCamelCase , training=lowerCamelCase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier[0](lowerCamelCase ) _snake_case = self.classifier[1](lowerCamelCase ) _snake_case = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase , logits=lowerCamelCase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase , logits=lowerCamelCase , hidden_states=outputs.hidden_states )
672
'''simple docstring''' from heapq import heappop, heappush import numpy as np def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' a_ , a_ = grid.shape a_ = [-1, 1, 0, 0] a_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] a_ , a_ = [(0, source)], set() a_ = np.full((rows, cols) ,np.inf ) a_ = 0 a_ = np.empty((rows, cols) ,dtype=lowercase__ ) a_ = None while queue: ((a_) , (a_)) = heappop(lowercase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: a_ = [] while (x, y) != source: path.append((x, y) ) a_ , a_ = predecessors[x, y] path.append(lowercase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowercase__ ) ): a_ , a_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: a_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowercase__ ,(dist + 1, (nx, ny)) ) a_ = dist + 1 a_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
685
0
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__ : int = logging.get_logger(__name__) A__ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart A__ : str = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } A__ : Optional[int] = { 'facebook/bart-base': 1_0_2_4, 'facebook/bart-large': 1_0_2_4, 'facebook/bart-large-mnli': 1_0_2_4, 'facebook/bart-large-cnn': 1_0_2_4, 'facebook/bart-large-xsum': 1_0_2_4, 'yjernite/bart_eli5': 1_0_2_4, } @lru_cache() def _lowerCAmelCase ( ): """simple docstring""" _lowercase: Any = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) _lowercase: Dict = bs[:] _lowercase: int = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase__ ) cs.append(2**8 + n ) n += 1 _lowercase: List[str] = [chr(lowercase__ ) for n in cs] return dict(zip(lowercase__ , lowercase__ ) ) def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" _lowercase: Union[str, Any] = set() _lowercase: List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowercase: Any = char return pairs class __magic_name__ ( lowercase_ ): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , A_ , A_ , A_="replace" , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=False , **A_ , ) -> Dict: """simple docstring""" _lowercase: int = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token _lowercase: Optional[int] = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token _lowercase: List[str] = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token _lowercase: Union[str, Any] = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token _lowercase: Optional[int] = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token _lowercase: Optional[int] = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowercase: List[str] = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='''utf-8''' ) as vocab_handle: _lowercase: Optional[int] = json.load(A_ ) _lowercase: Union[str, Any] = {v: k for k, v in self.encoder.items()} _lowercase: Tuple = errors # how to handle errors in decoding _lowercase: Optional[int] = bytes_to_unicode() _lowercase: List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='''utf-8''' ) as merges_handle: _lowercase: List[str] = merges_handle.read().split('''\n''' )[1:-1] _lowercase: List[str] = [tuple(merge.split() ) for merge in bpe_merges] _lowercase: Optional[int] = dict(zip(A_ , range(len(A_ ) ) ) ) _lowercase: List[Any] = {} _lowercase: Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowercase: Union[str, Any] = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" return len(self.encoder ) def lowercase_ ( self ) -> List[Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" if token in self.cache: return self.cache[token] _lowercase: Tuple = tuple(A_ ) _lowercase: List[Any] = get_pairs(A_ ) if not pairs: return token while True: _lowercase: str = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _lowercase , _lowercase: List[Any] = bigram _lowercase: Optional[int] = [] _lowercase: List[Any] = 0 while i < len(A_ ): try: _lowercase: Dict = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowercase: Dict = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowercase: Union[str, Any] = tuple(A_ ) _lowercase: List[str] = new_word if len(A_ ) == 1: break else: _lowercase: Optional[int] = get_pairs(A_ ) _lowercase: str = ''' '''.join(A_ ) _lowercase: Optional[int] = word return word def lowercase_ ( self , A_ ) -> Optional[Any]: """simple docstring""" _lowercase: Tuple = [] for token in re.findall(self.pat , A_ ): _lowercase: List[Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(''' ''' ) ) return bpe_tokens def lowercase_ ( self , A_ ) -> Optional[Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def lowercase_ ( self , A_ ) -> Any: """simple docstring""" return self.decoder.get(A_ ) def lowercase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" _lowercase: List[str] = ''''''.join(A_ ) _lowercase: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowercase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase: Optional[Any] = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _lowercase: Dict = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(A_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '''\n''' ) _lowercase: Any = 0 with open(A_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _lowercase: int = token_index writer.write(''' '''.join(A_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowercase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase: str = [self.cls_token_id] _lowercase: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self , A_ , A_ = None , A_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def lowercase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" _lowercase: str = [self.sep_token_id] _lowercase: str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , A_ , A_=False , **A_ ) -> Optional[Any]: """simple docstring""" _lowercase: Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): _lowercase: Union[str, Any] = ''' ''' + text return (text, kwargs)
353
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' with open(lowercase__ ) as metadata_file: a_ = json.load(lowercase__ ) a_ = LukeConfig(use_entity_aware_attention=lowercase__ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path a_ = torch.load(lowercase__ ,map_location="cpu" )["module"] # Load the entity vocab file a_ = load_original_entity_vocab(lowercase__ ) # add an entry for [MASK2] a_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 a_ = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks a_ = AddedToken("<ent>" ,lstrip=lowercase__ ,rstrip=lowercase__ ) a_ = AddedToken("<ent2>" ,lstrip=lowercase__ ,rstrip=lowercase__ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase__ ) with open(os.path.join(lowercase__ ,"tokenizer_config.json" ) ,"r" ) as f: a_ = json.load(lowercase__ ) a_ = "MLukeTokenizer" with open(os.path.join(lowercase__ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ) with open(os.path.join(lowercase__ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ) a_ = MLukeTokenizer.from_pretrained(lowercase__ ) # Initialize the embeddings of the special tokens a_ = tokenizer.convert_tokens_to_ids(["@"] )[0] a_ = tokenizer.convert_tokens_to_ids(["#"] )[0] a_ = state_dict["embeddings.word_embeddings.weight"] a_ = word_emb[ent_init_index].unsqueeze(0 ) a_ = word_emb[enta_init_index].unsqueeze(0 ) a_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: a_ = state_dict[bias_name] a_ = decoder_bias[ent_init_index].unsqueeze(0 ) a_ = decoder_bias[enta_init_index].unsqueeze(0 ) a_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: a_ = F"""encoder.layer.{layer_index}.attention.self.""" a_ = state_dict[prefix + matrix_name] a_ = state_dict[prefix + matrix_name] a_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks a_ = state_dict["entity_embeddings.entity_embeddings.weight"] a_ = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) a_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' a_ = state_dict["entity_predictions.bias"] a_ = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) a_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) a_ = LukeForMaskedLM(config=lowercase__ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) a_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): a_ = state_dict[key] else: a_ = state_dict[key] a_ , a_ = model.load_state_dict(lowercase__ ,strict=lowercase__ ) if set(lowercase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs a_ = MLukeTokenizer.from_pretrained(lowercase__ ,task="entity_classification" ) a_ = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." a_ = (0, 9) a_ = tokenizer(lowercase__ ,entity_spans=[span] ,return_tensors="pt" ) a_ = model(**lowercase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base a_ = torch.Size((1, 33, 768) ) a_ = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase__ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base a_ = torch.Size((1, 1, 768) ) a_ = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase__ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction a_ = MLukeTokenizer.from_pretrained(lowercase__ ) a_ = "Tokyo is the capital of <mask>." a_ = (24, 30) a_ = tokenizer(lowercase__ ,entity_spans=[span] ,return_tensors="pt" ) a_ = model(**lowercase__ ) a_ = encoding["input_ids"][0].tolist() a_ = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) a_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase__ ) a_ = outputs.entity_logits[0][0].argmax().item() a_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase__ ) ) model.save_pretrained(lowercase__ ) def __UpperCAmelCase (lowercase__ ) -> Any: '''simple docstring''' a_ = ["[MASK]", "[PAD]", "[UNK]"] a_ = [json.loads(lowercase__ ) for line in open(lowercase__ )] a_ = {} for entry in data: a_ = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: a_ = entity_id break a_ = F"""{language}:{entity_name}""" a_ = entity_id return new_mapping if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) a_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
685
0
"""simple docstring""" def snake_case__ ( _lowerCamelCase = 10_00 ) ->int: """simple docstring""" return sum(e for e in range(3, lowercase__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
575
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase_ , unittest.TestCase ): _UpperCAmelCase =LxmertTokenizer _UpperCAmelCase =LxmertTokenizerFast _UpperCAmelCase =True _UpperCAmelCase =True def _lowerCAmelCase ( self: Dict) ->int: '''simple docstring''' super().setUp() a_ = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def _lowerCAmelCase ( self: Optional[Any] , a: Dict) ->Optional[Any]: '''simple docstring''' a_ = "UNwant\u00E9d,running" a_ = "unwanted, running" return input_text, output_text def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = self.tokenizer_class(self.vocab_file) a_ = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(a , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(a) , [7, 4, 5, 10, 8, 9]) def _lowerCAmelCase ( self: List[Any]) ->Any: '''simple docstring''' if not self.test_rust_tokenizer: return a_ = self.get_tokenizer() a_ = self.get_rust_tokenizer() a_ = "I was born in 92000, and this is falsé." a_ = tokenizer.tokenize(a) a_ = rust_tokenizer.tokenize(a) self.assertListEqual(a , a) a_ = tokenizer.encode(a , add_special_tokens=a) a_ = rust_tokenizer.encode(a , add_special_tokens=a) self.assertListEqual(a , a) a_ = self.get_rust_tokenizer() a_ = tokenizer.encode(a) a_ = rust_tokenizer.encode(a) self.assertListEqual(a , a)
685
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
200
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
685
0
def __lowerCAmelCase ( UpperCamelCase ) -> int: if not isinstance(lowercase__ , lowercase__ ): raise TypeError('''Input value must be an \'int\' type''' ) lowerCAmelCase__ : Dict = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
678
'''simple docstring''' import re def __UpperCAmelCase (lowercase__ ) -> bool: '''simple docstring''' a_ = re.compile( r"^(?:0|94|\+94|0{2}94)" r"7(0|1|2|4|5|6|7|8)" r"(-| |)" r"\d{7}$" ) return bool(re.search(lowercase__ ,lowercase__ ) ) if __name__ == "__main__": a_ = '0094702343221' print(is_sri_lankan_phone_number(phone))
685
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
147
'''simple docstring''' import argparse import os import re a_ = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict a_ = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings a_ = re.compile(r'\s*\(\s*"(\S[^"]+)"') def __UpperCAmelCase (lowercase__ ,lowercase__ = False ) -> List[Any]: '''simple docstring''' with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = f.read() a_ = content.split("\n" ) a_ = [] a_ = 0 while line_idx < len(lowercase__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: a_ = len(re.search(r"^(\s*)\S" ,lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 a_ = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": a_ = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers a_ = sorted(lowercase__ ,key=lambda lowercase__ : _re_identifier.search(lowercase__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase__ ,"w" ,encoding="utf-8" ) as f: f.write("\n".join(lowercase__ ) ) elif "\n".join(lowercase__ ) != content: return True def __UpperCAmelCase (lowercase__ = False ) -> Optional[int]: '''simple docstring''' a_ = [os.path.join(lowercase__ ,lowercase__ ) for f in os.listdir(lowercase__ ) if f.endswith(".py" )] a_ = [sort_auto_mapping(lowercase__ ,overwrite=lowercase__ ) for fname in fnames] if not overwrite and any(lowercase__ ): a_ = [f for f, d in zip(lowercase__ ,lowercase__ ) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {', '.join(lowercase__ )}. Run `make style` to fix""" " this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') a_ = parser.parse_args() sort_all_auto_mappings(not args.check_only)
685
0
"""simple docstring""" from heapq import heappop, heappush import numpy as np def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> tuple[float | int, list[tuple[int, int]]]: """simple docstring""" __snake_case , __snake_case = grid.shape __snake_case = [-1, 1, 0, 0] __snake_case = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __snake_case , __snake_case = [(0, source)], set() __snake_case = np.full((rows, cols) , np.inf ) __snake_case = 0 __snake_case = np.empty((rows, cols) , dtype=lowercase__ ) __snake_case = None while queue: ((__snake_case) , (__snake_case)) = heappop(lowercase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __snake_case = [] while (x, y) != source: path.append((x, y) ) __snake_case , __snake_case = predecessors[x, y] path.append(lowercase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowercase__ ) ): __snake_case , __snake_case = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __snake_case = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowercase__ , (dist + 1, (nx, ny)) ) __snake_case = dist + 1 __snake_case = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
163
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ ): _UpperCAmelCase ='''pixel_values''' _UpperCAmelCase =False _UpperCAmelCase =TimmBackboneConfig def __init__( self: Union[str, Any] , a: Union[str, Any] , **a: Tuple) ->Optional[Any]: '''simple docstring''' requires_backends(self , "timm") super().__init__(a) a_ = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name.") if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""") if hasattr(a , "out_features") and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.") a_ = getattr(a , "use_pretrained_backbone" , a) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.") # We just take the final layer by default. This matches the default for the transformers models. a_ = config.out_indices if getattr(a , "out_indices" , a) is not None else (-1,) a_ = timm.create_model( config.backbone , pretrained=a , features_only=config.features_only , in_chans=config.num_channels , out_indices=a , **a , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. a_ = self._backbone.return_layers a_ = {layer["module"]: str(a) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(a) @classmethod def _lowerCAmelCase ( cls: Tuple , a: Optional[Any] , *a: Optional[Any] , **a: str) ->List[Any]: '''simple docstring''' requires_backends(cls , ["vision", "timm"]) from ...models.timm_backbone import TimmBackboneConfig a_ = kwargs.pop("config" , TimmBackboneConfig()) a_ = kwargs.pop("use_timm_backbone" , a) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones") a_ = kwargs.pop("num_channels" , config.num_channels) a_ = kwargs.pop("features_only" , config.features_only) a_ = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone) a_ = kwargs.pop("out_indices" , config.out_indices) a_ = TimmBackboneConfig( backbone=a , num_channels=a , features_only=a , use_pretrained_backbone=a , out_indices=a , ) return super()._from_config(a , **a) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->str: '''simple docstring''' pass def _lowerCAmelCase ( self: Tuple , a: List[Any] , a: Any=None , a: Dict=None , a: Optional[int]=None , **a: int) ->Union[BackboneOutput, Tuple[Tensor, ...]]: '''simple docstring''' a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment") if output_hidden_states: # We modify the return layers to include all the stages of the backbone a_ = self._all_layers a_ = self._backbone(a , **a) a_ = self._return_layers a_ = tuple(hidden_states[i] for i in self.out_indices) else: a_ = self._backbone(a , **a) a_ = None a_ = tuple(a) a_ = tuple(a) if hidden_states is not None else None if not return_dict: a_ = (feature_maps,) if output_hidden_states: a_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=a , hidden_states=a , attentions=a)
685
0
'''simple docstring''' import os from pathlib import Path def a_ ( lowerCamelCase : List[str] , lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : List[Any] ): lowerCAmelCase = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase = { 'wmt16-en-de-dist-12-1': [28.3, 27.52], 'wmt16-en-de-dist-6-1': [27.4, 27.11], 'wmt16-en-de-12-1': [26.9, 25.75], } lowerCAmelCase = f'''{src_lang}-{tgt_lang}''' lowerCAmelCase = f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=lowercase__ , exist_ok=lowercase__ ) lowerCAmelCase = os.path.join(lowercase__ , 'README.md' ) print(f'''Generating {path}''' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(lowercase__ ) # make sure we are under the root of the project __snake_case =Path(__file__).resolve().parent.parent.parent __snake_case =repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __snake_case =model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
133
'''simple docstring''' class SCREAMING_SNAKE_CASE__ ( lowercase_ ): pass class SCREAMING_SNAKE_CASE__ ( lowercase_ ): pass class SCREAMING_SNAKE_CASE__ : def __init__( self: Optional[Any]) ->List[str]: '''simple docstring''' a_ = [ [], [], [], ] def _lowerCAmelCase ( self: Dict , a: int , a: int) ->None: '''simple docstring''' try: if len(self.queues[priority]) >= 1_00: raise OverflowError("Maximum queue size is 100") self.queues[priority].append(a) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2") def _lowerCAmelCase ( self: Union[str, Any]) ->int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0) raise UnderFlowError("All queues are empty") def __str__( self: Dict) ->str: '''simple docstring''' return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues)) class SCREAMING_SNAKE_CASE__ : def __init__( self: Any) ->List[str]: '''simple docstring''' a_ = [] def _lowerCAmelCase ( self: int , a: int) ->None: '''simple docstring''' if len(self.queue) == 1_00: raise OverFlowError("Maximum queue size is 100") self.queue.append(a) def _lowerCAmelCase ( self: List[str]) ->int: '''simple docstring''' if not self.queue: raise UnderFlowError("The queue is empty") else: a_ = min(self.queue) self.queue.remove(a) return data def __str__( self: Optional[int]) ->str: '''simple docstring''' return str(self.queue) def __UpperCAmelCase () -> Union[str, Any]: '''simple docstring''' a_ = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase () -> List[Any]: '''simple docstring''' a_ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : int = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys _lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCamelCase : int = re.compile(r'''\s+''') def a_ ( __lowercase : List[Any] ) -> int: return {"hash": hashlib.mda(re.sub(__lowercase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( __lowercase : List[Any] ) -> Dict: _snake_case = [len(__lowercase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__lowercase ), "line_max": max(__lowercase )} def a_ ( __lowercase : Optional[int] ) -> List[str]: _snake_case = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] ) -> Optional[int]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( __lowercase : Union[str, Any] , __lowercase : int=5 ) -> Optional[Any]: _snake_case = ['auto-generated', 'autogenerated', 'automatically generated'] _snake_case = example['content'].splitlines() for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( __lowercase : List[Any] , __lowercase : int=5 , __lowercase : Tuple=0.0_5 ) -> Union[str, Any]: _snake_case = ['unit tests', 'test file', 'configuration file'] _snake_case = example['content'].splitlines() _snake_case = 0 _snake_case = 0 # first test for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case = example['content'].count('\n' ) _snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( __lowercase : Union[str, Any] ) -> Any: _snake_case = ['def ', 'class ', 'for ', 'while '] _snake_case = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( __lowercase : Tuple , __lowercase : Any=4 ) -> List[str]: _snake_case = example['content'].splitlines() _snake_case = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( __lowercase : Dict ) -> Dict: _snake_case = tokenizer(example['content'] , truncation=__lowercase )['input_ids'] _snake_case = len(example['content'] ) / len(__lowercase ) return {"ratio": ratio} def a_ ( __lowercase : Optional[Any] ) -> Any: _snake_case = {} results.update(get_hash(__lowercase ) ) results.update(line_stats(__lowercase ) ) results.update(alpha_stats(__lowercase ) ) results.update(char_token_ratio(__lowercase ) ) results.update(is_autogenerated(__lowercase ) ) results.update(is_config_or_test(__lowercase ) ) results.update(has_no_keywords(__lowercase ) ) results.update(has_few_assignments(__lowercase ) ) return results def a_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : List[Any] ) -> int: if not check_uniques(__lowercase , __lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( __lowercase : Dict ) -> Dict: with open(__lowercase , 'rb' ) as f_in: with gzip.open(str(__lowercase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowercase , __lowercase ) os.unlink(__lowercase ) # Settings _lowerCamelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCamelCase : Dict = parser.parse_args() if args.num_workers is None: _lowerCamelCase : int = multiprocessing.cpu_count() _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCamelCase : Any = time.time() _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing _lowerCamelCase : Optional[int] = time.time() _lowerCamelCase : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes _lowerCamelCase : List[Any] = set(ds.unique('''hash''')) _lowerCamelCase : Dict = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics _lowerCamelCase : List[Any] = time.time() _lowerCamelCase : Optional[int] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCamelCase : Union[str, Any] = time.time() _lowerCamelCase , _lowerCamelCase : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file _lowerCamelCase : Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCamelCase : int = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCamelCase : Union[str, Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCamelCase : Dict = str(data_dir / F'file-{file_number+1:012}.json') _lowerCamelCase : str = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
686
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCamelCase : Any = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : int = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "yolos" def __init__( self : int , lowercase : List[str]=768 , lowercase : Tuple=12 , lowercase : int=12 , lowercase : int=3_072 , lowercase : Optional[int]="gelu" , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Optional[Any]=0.02 , lowercase : List[str]=1E-12 , lowercase : Dict=[512, 864] , lowercase : Union[str, Any]=16 , lowercase : List[Any]=3 , lowercase : List[str]=True , lowercase : Optional[int]=100 , lowercase : int=True , lowercase : Dict=False , lowercase : str=1 , lowercase : int=5 , lowercase : Tuple=2 , lowercase : List[str]=5 , lowercase : Any=2 , lowercase : List[str]=0.1 , **lowercase : int , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = num_detection_tokens _snake_case = use_mid_position_embeddings _snake_case = auxiliary_loss # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 @property def A ( self : List[Any] ): '''simple docstring''' return 12
686
1
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = GPTSwaTokenizer _UpperCAmelCase : Any = False _UpperCAmelCase : str = True _UpperCAmelCase : List[Any] = False def A ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _snake_case = GPTSwaTokenizer(lowercase , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : List[Any] , lowercase : Dict ): '''simple docstring''' _snake_case = 'This is a test' _snake_case = 'This is a test' return input_text, output_text def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = '<s>' _snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(lowercase ) , 2_000 ) def A ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 2_000 ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = GPTSwaTokenizer(lowercase ) _snake_case = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [465, 287, 265, 631, 842] ) _snake_case = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( lowercase , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on _snake_case = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual( lowercase , [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) _snake_case = tokenizer.convert_ids_to_tokens(lowercase ) # fmt: off self.assertListEqual( lowercase , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def A ( self : List[Any] ): '''simple docstring''' _snake_case = GPTSwaTokenizer(lowercase ) _snake_case = ['This is a test', 'I was born in 92000, and this is falsé.'] _snake_case = [ [465, 287, 265, 631, 842], [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(lowercase , lowercase ): self.assertListEqual(tokenizer.encode_fast(lowercase ) , lowercase ) # Test that decode_fast returns the input text for text, token_ids in zip(lowercase , lowercase ): self.assertEqual(tokenizer.decode_fast(lowercase ) , lowercase ) @slow def A ( self : str ): '''simple docstring''' _snake_case = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off _snake_case = {'input_ids': [[63_423, 5, 6_811, 14_954, 282, 816, 3_821, 63_466, 63_425, 63_462, 18, 63_978, 678, 301, 1_320, 63_423, 63_455, 63_458, 18, 63_982, 4_246, 3_940, 1_901, 47_789, 5_547, 18_994], [19_630, 1_100, 63_446, 1_342, 633, 544, 4_488, 593, 5_102, 2_416, 63_495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_652, 428, 268, 1_936, 515, 268, 58_593, 22_413, 9_106, 546, 268, 33_213, 63_979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55_130, 63_450, 924, 63_449, 2_249, 4_062, 1_558, 318, 63_504, 21_498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2_827, 2_559, 332, 6_575, 63_443, 26_801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name='AI-Sweden/gpt-sw3-126m' , sequences=lowercase , )
686
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring _lowerCamelCase : Union[str, Any] = '''ResNetConfig''' # Base docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[Any] = [1, 2_048, 7, 7] # Image classification docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[int] = '''tiger cat''' _lowerCamelCase : str = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Union[str, Any] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def A ( self : Tuple , lowercase : Tensor ): '''simple docstring''' _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowercase ) _snake_case = self.pooler(lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int = 2 ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" , lowercase : int = 4 ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : ResNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , ): '''simple docstring''' super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = input for layer in self.layers: _snake_case = layer(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def A ( self : str , lowercase : Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ResNetConfig _UpperCAmelCase : Tuple = "resnet" _UpperCAmelCase : Optional[Any] = "pixel_values" _UpperCAmelCase : Dict = True def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Union[str, Any] , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = ResNetModel(lowercase ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowercase ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase ) super()._init_backbone(lowercase ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def A ( self : Dict , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowercase ) _snake_case = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
686
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration _lowerCamelCase : str = '''facebook/wmt19-en-de''' _lowerCamelCase : str = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model _lowerCamelCase : Dict = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) _lowerCamelCase : int = FSMTForConditionalGeneration(config) print(F'num of params {tiny_model.num_parameters()}') # Test _lowerCamelCase : Dict = tokenizer(['''Making tiny model'''], return_tensors='''pt''') _lowerCamelCase : Optional[int] = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save _lowerCamelCase : Optional[Any] = '''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-de
686
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel _lowerCamelCase : Tuple = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 48_000, '''sample_size''': 65_536, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 48_000, '''sample_size''': 65_536, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 48_000, '''sample_size''': 131_072, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 16_000, '''sample_size''': 65_536, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 16_000, '''sample_size''': 65_536, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 16_000, '''sample_size''': 65_536, }, } def a_ ( __lowercase : str , __lowercase : str ) -> int: return torch.atana(__lowercase , __lowercase ) / math.pi * 2 def a_ ( __lowercase : Optional[Any] ) -> Dict: _snake_case = torch.sin(t * math.pi / 2 ) ** 2 _snake_case = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(__lowercase , __lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' pass class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , lowercase : int ): '''simple docstring''' super().__init__() _snake_case = DiffusionAttnUnetaD(lowercase , n_attn_layers=4 ) _snake_case = deepcopy(self.diffusion ) _snake_case = torch.quasirandom.SobolEngine(1 , scramble=lowercase ) def a_ ( __lowercase : Dict ) -> List[str]: _snake_case = MODELS_MAP[model_name]['url'] os.system(f'''wget {url} ./''' ) return f'''./{model_name}.ckpt''' _lowerCamelCase : Optional[int] = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } _lowerCamelCase : Optional[Any] = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } _lowerCamelCase : Tuple = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } _lowerCamelCase : Union[str, Any] = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } _lowerCamelCase : Union[str, Any] = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } _lowerCamelCase : str = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def a_ ( __lowercase : Tuple ) -> str: if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(f'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def a_ ( __lowercase : List[str] ) -> List[str]: for key, value in ATTN_MAP.items(): if name.startswith(__lowercase ) and not isinstance(__lowercase , __lowercase ): return name.replace(__lowercase , __lowercase ) elif name.startswith(__lowercase ): return [name.replace(__lowercase , __lowercase ) for v in value] raise ValueError(f'''Attn error with {name}''' ) def a_ ( __lowercase : Tuple , __lowercase : Optional[Any]=13 ) -> Optional[int]: _snake_case = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) _snake_case = 0 if string.startswith('net.3.' ): depth += 1 _snake_case = string[6:] elif string.startswith('net.' ): _snake_case = string[4:] while string.startswith('main.7.' ): depth += 1 _snake_case = string[7:] if string.startswith('main.' ): _snake_case = string[5:] # mid block if string[:2].isdigit(): _snake_case = string[:2] _snake_case = string[2:] else: _snake_case = string[0] _snake_case = string[1:] if depth == max_depth: _snake_case = MID_NUM_TO_LAYER[layer_num] _snake_case = 'mid_block' elif depth > 0 and int(__lowercase ) < 7: _snake_case = DOWN_NUM_TO_LAYER[layer_num] _snake_case = f'''down_blocks.{depth}''' elif depth > 0 and int(__lowercase ) > 7: _snake_case = UP_NUM_TO_LAYER[layer_num] _snake_case = f'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: _snake_case = DEPTH_0_TO_LAYER[layer_num] _snake_case = f'''up_blocks.{max_depth - 1}''' if int(__lowercase ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(f'''Naming error with {input_string} and string_left: {string_left}.''' ) _snake_case = string_left[1:] if "resnets" in new_layer: _snake_case = convert_resconv_naming(__lowercase ) elif "attentions" in new_layer: _snake_case = convert_attn_naming(__lowercase ) _snake_case = new_string_left if not isinstance(__lowercase , __lowercase ): _snake_case = prefix + '.' + new_layer + '.' + string_left else: _snake_case = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def a_ ( __lowercase : str ) -> List[Any]: _snake_case = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue _snake_case = rename(__lowercase ) # check if we need to transform from Conv => Linear for attention if isinstance(__lowercase , __lowercase ): _snake_case = transform_conv_attns(__lowercase , __lowercase , __lowercase ) else: _snake_case = v return new_state_dict def a_ ( __lowercase : Dict , __lowercase : Union[str, Any] , __lowercase : List[str] ) -> Dict: if len(__lowercase ) == 1: if len(v.shape ) == 3: # weight _snake_case = v[:, :, 0] else: # bias _snake_case = v else: # qkv matrices _snake_case = v.shape[0] _snake_case = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: _snake_case = v[i * single_shape : (i + 1) * single_shape, :, 0] else: _snake_case = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def a_ ( __lowercase : Optional[Any] ) -> Union[str, Any]: _snake_case = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) _snake_case = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' _snake_case = download(__lowercase ) _snake_case = MODELS_MAP[model_name]['sample_rate'] _snake_case = MODELS_MAP[model_name]['sample_size'] _snake_case = Object() _snake_case = sample_size _snake_case = sample_rate _snake_case = 0 _snake_case = UNetaDModel(sample_size=__lowercase , sample_rate=__lowercase ) _snake_case = diffusers_model.state_dict() _snake_case = DiffusionUncond(__lowercase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=__lowercase )['state_dict'] ) _snake_case = orig_model.diffusion_ema.eval() _snake_case = orig_model.state_dict() _snake_case = rename_orig_weights(__lowercase ) _snake_case = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) _snake_case = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(__lowercase ) == 0, f'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('kernel' ) for k in list(__lowercase ) ), f'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": _snake_case = value.squeeze() _snake_case = value diffusers_model.load_state_dict(__lowercase ) _snake_case = 100 _snake_case = 33 _snake_case = IPNDMScheduler(num_train_timesteps=__lowercase ) _snake_case = torch.manual_seed(__lowercase ) _snake_case = torch.randn([1, 2, config.sample_size] , generator=__lowercase ).to(__lowercase ) _snake_case = torch.linspace(1 , 0 , steps + 1 , device=__lowercase )[:-1] _snake_case = get_crash_schedule(__lowercase ) _snake_case = DanceDiffusionPipeline(unet=__lowercase , scheduler=__lowercase ) _snake_case = torch.manual_seed(33 ) _snake_case = pipe(num_inference_steps=__lowercase , generator=__lowercase ).audios _snake_case = sampling.iplms_sample(__lowercase , __lowercase , __lowercase , {} ) _snake_case = generated.clamp(-1 , 1 ) _snake_case = (generated - audio).abs().sum() _snake_case = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , __lowercase ) print('Diff max' , __lowercase ) assert diff_max < 1E-3, f'''Diff max: {diff_max} is too much :-/''' print(f'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') _lowerCamelCase : List[str] = parser.parse_args() main(args)
686
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : Union[str, Any] ) -> List[Any]: _snake_case = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _snake_case = DetaConfig( backbone_config=__lowercase , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=__lowercase , with_box_refine=__lowercase , two_stage=__lowercase , ) # set labels _snake_case = 'huggingface/label-files' if "o365" in model_name: _snake_case = 366 _snake_case = 'object365-id2label.json' else: _snake_case = 91 _snake_case = 'coco-detection-id2label.json' _snake_case = num_labels _snake_case = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset' ) ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def a_ ( __lowercase : int ) -> str: _snake_case = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : str ) -> Union[str, Any]: _snake_case = dct.pop(__lowercase ) _snake_case = val def a_ ( __lowercase : List[str] , __lowercase : str ) -> Dict: _snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:dim, :] _snake_case = in_proj_bias[: dim] _snake_case = in_proj_weight[ dim : dim * 2, : ] _snake_case = in_proj_bias[ dim : dim * 2 ] _snake_case = in_proj_weight[ -dim :, : ] _snake_case = in_proj_bias[-dim :] # fmt: on def a_ ( __lowercase : Dict , __lowercase : Dict ) -> str: # transformer decoder self-attention layers _snake_case = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:hidden_size, :] _snake_case = in_proj_bias[:hidden_size] _snake_case = in_proj_weight[ hidden_size : hidden_size * 2, : ] _snake_case = in_proj_bias[hidden_size : hidden_size * 2] _snake_case = in_proj_weight[-hidden_size:, :] _snake_case = in_proj_bias[-hidden_size:] def a_ ( ) -> List[str]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Tuple ) -> Optional[Any]: _snake_case = get_deta_config(__lowercase ) # load original state dict if model_name == "deta-swin-large": _snake_case = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _snake_case = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__lowercase , param.shape ) # rename keys _snake_case = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_swin_q_k_v(__lowercase , config.backbone_config ) read_in_decoder_q_k_v(__lowercase , __lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "input_proj" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = DetaForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() _snake_case = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__lowercase ) # load image processor _snake_case = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _snake_case = prepare_img() _snake_case = processor(images=__lowercase , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = model(pixel_values.to(__lowercase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _snake_case = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _snake_case = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _snake_case = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _snake_case = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowercase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowercase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
1
import random def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: _snake_case = a[left_index] _snake_case = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _snake_case , _snake_case = a[i], a[j] i += 1 _snake_case , _snake_case = a[i - 1], a[left_index] return i - 1 def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] ) -> Tuple: if left < right: _snake_case = random.randint(__lowercase , right - 1 ) _snake_case , _snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound _snake_case = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> str: _snake_case = input('Enter numbers separated by a comma:\n' ).strip() _snake_case = [int(__lowercase ) for item in user_input.split(',' )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
686
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCamelCase : Dict = '''pt''' elif is_tf_available(): _lowerCamelCase : List[str] = '''tf''' else: _lowerCamelCase : List[Any] = '''jax''' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = PerceiverTokenizer _UpperCAmelCase : Optional[int] = False def A ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : str ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def A ( self : Optional[int] , **lowercase : Dict ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[int] , lowercase : Tuple , lowercase : Optional[Any]=False , lowercase : int=20 , lowercase : Optional[int]=5 ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): try: _snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case = list(filter(lambda lowercase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , lowercase ) ) _snake_case = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: _snake_case = ' ' + output_txt _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = 'Unicode €.' _snake_case = tokenizer(lowercase ) _snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]Unicode €.[SEP]' ) _snake_case = tokenizer('e è é ê ë' ) _snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": _snake_case = list(batch.input_ids.numpy()[0] ) else: _snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('decoder_input_ids' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = [ 'Summary of the text.', 'Another summary.', ] _snake_case = tokenizer( text_target=lowercase , max_length=32 , padding='max_length' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) _snake_case = [f'''<extra_id_{i}>''' for i in range(125 )] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowercase )] _snake_case = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _snake_case = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
686
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : List[Any] , lowercase : Union[str, Any] , lowercase : str=13 , lowercase : Union[str, Any]=32 , lowercase : Union[str, Any]=3 , lowercase : Optional[int]=4 , lowercase : Optional[int]=[10, 20, 30, 40] , lowercase : str=[2, 2, 3, 2] , lowercase : str=True , lowercase : Optional[int]=True , lowercase : Dict=37 , lowercase : Optional[int]="gelu" , lowercase : str=10 , lowercase : int=0.02 , lowercase : Any=["stage2", "stage3", "stage4"] , lowercase : int=3 , lowercase : Any=None , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = num_stages _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = intermediate_size _snake_case = hidden_act _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = out_features _snake_case = num_labels _snake_case = scope _snake_case = num_stages def A ( self : Dict ): '''simple docstring''' _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def A ( self : Any ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def A ( self : Optional[int] ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowercase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=lowercase , loss_ignore_index=255 , num_labels=self.num_labels , ) def A ( self : Dict , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' _snake_case = UperNetForSemanticSegmentation(config=lowercase ) model.to(lowercase ) model.eval() _snake_case = model(lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : int = (UperNetForSemanticSegmentation,) if is_torch_available() else () _UpperCAmelCase : Any = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : int = False _UpperCAmelCase : Tuple = False _UpperCAmelCase : int = False _UpperCAmelCase : Tuple = False _UpperCAmelCase : Dict = False def A ( self : List[str] ): '''simple docstring''' _snake_case = UperNetModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def A ( self : Dict ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : List[Any] ): '''simple docstring''' return def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowercase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def A ( self : int ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def A ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def A ( self : int ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def A ( self : Optional[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def A ( self : int ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def A ( self : List[str] ): '''simple docstring''' pass def A ( self : List[Any] ): '''simple docstring''' def check_hidden_states_output(lowercase : Tuple , lowercase : Tuple , lowercase : Optional[int] ): _snake_case = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowercase , lowercase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(lowercase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowercase , lowercase , lowercase ) def A ( self : Dict ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = _config_zero_init(lowercase ) _snake_case = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case = model_class(config=lowercase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='UperNet does not have tied weights' ) def A ( self : List[Any] ): '''simple docstring''' pass @slow def A ( self : Dict ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = UperNetForSemanticSegmentation.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def a_ ( ) -> int: _snake_case = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) _snake_case = Image.open(__lowercase ).convert('RGB' ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) _snake_case = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowercase ) _snake_case = prepare_img() _snake_case = processor(images=lowercase , return_tensors='pt' ).to(lowercase ) with torch.no_grad(): _snake_case = model(**lowercase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , lowercase ) _snake_case = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase , atol=1E-4 ) ) def A ( self : Any ): '''simple docstring''' _snake_case = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) _snake_case = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowercase ) _snake_case = prepare_img() _snake_case = processor(images=lowercase , return_tensors='pt' ).to(lowercase ) with torch.no_grad(): _snake_case = model(**lowercase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , lowercase ) _snake_case = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase , atol=1E-4 ) )
686
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : int = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ["transformers", "torch", "note_seq"] def __init__( self : List[Any] , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
686
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase : List[Any] = 16 _lowerCamelCase : str = 32 def a_ ( __lowercase : Accelerator , __lowercase : int = 16 ) -> Dict: _snake_case = AutoTokenizer.from_pretrained('bert-base-cased' ) _snake_case = load_dataset('glue' , 'mrpc' ) def tokenize_function(__lowercase : List[str] ): # max_length=None => use the model max length (it's actually the default) _snake_case = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowercase , max_length=__lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _snake_case = datasets.map( __lowercase , batched=__lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _snake_case = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__lowercase : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. _snake_case = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _snake_case = 16 elif accelerator.mixed_precision != "no": _snake_case = 8 else: _snake_case = None return tokenizer.pad( __lowercase , padding='longest' , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors='pt' , ) # Instantiate dataloaders. _snake_case = DataLoader( tokenized_datasets['train'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase ) _snake_case = DataLoader( tokenized_datasets['validation'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase : str = mocked_dataloaders # noqa: F811 def a_ ( __lowercase : Any , __lowercase : List[str] ) -> Tuple: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __lowercase ) == "1": _snake_case = 2 # New Code # _snake_case = int(args.gradient_accumulation_steps ) # Initialize accelerator _snake_case = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case = config['lr'] _snake_case = int(config['num_epochs'] ) _snake_case = int(config['seed'] ) _snake_case = int(config['batch_size'] ) _snake_case = evaluate.load('glue' , 'mrpc' ) set_seed(__lowercase ) _snake_case , _snake_case = get_dataloaders(__lowercase , __lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _snake_case = model.to(accelerator.device ) # Instantiate optimizer _snake_case = AdamW(params=model.parameters() , lr=__lowercase ) # Instantiate scheduler _snake_case = get_linear_schedule_with_warmup( optimizer=__lowercase , num_warmup_steps=100 , num_training_steps=(len(__lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # Now we train the model for epoch in range(__lowercase ): model.train() for step, batch in enumerate(__lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowercase ): _snake_case = model(**__lowercase ) _snake_case = output.loss accelerator.backward(__lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _snake_case = model(**__lowercase ) _snake_case = outputs.logits.argmax(dim=-1 ) _snake_case , _snake_case = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__lowercase , references=__lowercase , ) _snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __lowercase ) def a_ ( ) -> Any: _snake_case = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__lowercase , default=__lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=__lowercase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _snake_case = parser.parse_args() _snake_case = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__lowercase , __lowercase ) if __name__ == "__main__": main()
686
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
1
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def A ( self : Optional[Any] , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' return None class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def A ( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' return None class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[int] = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def A ( self : List[Any] ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowercase , 'tf' , 12 , **lowercase ) @require_torch @slow def A ( self : Optional[Any] ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowercase , 'pt' , 12 , **lowercase ) @require_torch @slow def A ( self : str ): '''simple docstring''' from transformers import BertModel _snake_case = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(lowercase ) ) vocab_file.flush() _snake_case = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _snake_case = BertModel(BertConfig(vocab_size=len(lowercase ) ) ) model.save_pretrained(lowercase ) self._test_export(lowercase , 'pt' , 12 , lowercase ) @require_tf @slow def A ( self : str ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _snake_case = self._test_export(lowercase , 'tf' , 12 , **lowercase ) _snake_case = quantize(Path(lowercase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowercase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def A ( self : Optional[Any] ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _snake_case = self._test_export(lowercase , 'pt' , 12 , **lowercase ) _snake_case = quantize(lowercase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowercase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def A ( self : int , lowercase : List[Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : Any=None , **lowercase : str ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: _snake_case = Path(lowercase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowercase , lowercase , lowercase , lowercase , lowercase , **lowercase ) return path except Exception as e: self.fail(lowercase ) @require_torch @require_tokenizers @slow def A ( self : str ): '''simple docstring''' from transformers import BertModel _snake_case = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) _snake_case = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowercase , lowercase , 'pt' ) @require_tf @require_tokenizers @slow def A ( self : str ): '''simple docstring''' from transformers import TFBertModel _snake_case = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) _snake_case = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowercase , lowercase , 'tf' ) def A ( self : str , lowercase : Dict , lowercase : Dict , lowercase : Optional[Any] ): '''simple docstring''' _snake_case = FeatureExtractionPipeline(lowercase , lowercase ) _snake_case = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] _snake_case , _snake_case , _snake_case , _snake_case = infer_shapes(lowercase , lowercase ) # Assert all variables are present self.assertEqual(len(lowercase ) , len(lowercase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowercase ) self.assertSequenceEqual(variable_names[3:] , lowercase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def A ( self : Dict ): '''simple docstring''' _snake_case = ['input_ids', 'attention_mask', 'token_type_ids'] _snake_case = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} _snake_case , _snake_case = ensure_valid_input(FuncContiguousArgs() , lowercase , lowercase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowercase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowercase ) , set(lowercase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowercase , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _snake_case , _snake_case = ensure_valid_input(FuncNonContiguousArgs() , lowercase , lowercase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowercase ) , 1 ) self.assertEqual(len(lowercase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
686
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : Optional[int] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _lowerCamelCase : List[str] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _lowerCamelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int=None , lowercase : str=True , lowercase : List[str]=False ): '''simple docstring''' if rouge_types is None: _snake_case = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _snake_case = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: _snake_case = scoring.BootstrapAggregator() else: _snake_case = [] for ref, pred in zip(lowercase , lowercase ): _snake_case = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: _snake_case = aggregator.aggregate() else: _snake_case = {} for key in scores[0]: _snake_case = [score[key] for score in scores] return result
686
1
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Any = LongformerTokenizer _UpperCAmelCase : Tuple = True _UpperCAmelCase : Dict = LongformerTokenizerFast _UpperCAmelCase : Optional[Any] = True def A ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowercase , range(len(lowercase ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase ) ) def A ( self : List[Any] , **lowercase : Dict ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[int] , **lowercase : Dict ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = 'lower newer' _snake_case = 'lower newer' return input_text, output_text def A ( self : str ): '''simple docstring''' _snake_case = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case = 'lower newer' _snake_case = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _snake_case = tokenizer.tokenize(lowercase ) # , add_prefix_space=True) self.assertListEqual(lowercase , lowercase ) _snake_case = tokens + [tokenizer.unk_token] _snake_case = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowercase ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowercase ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def A ( self : List[Any] ): '''simple docstring''' _snake_case = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) _snake_case = tokenizer.encode('sequence builders' , add_special_tokens=lowercase ) _snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase ) _snake_case = tokenizer.encode( 'sequence builders' , add_special_tokens=lowercase , add_prefix_space=lowercase ) _snake_case = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowercase , add_prefix_space=lowercase ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowercase ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def A ( self : Any ): '''simple docstring''' _snake_case = self.get_tokenizer() _snake_case = 'Encode this sequence.' _snake_case = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase , lowercase ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase , lowercase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase , lowercase ) # Testing spaces after special tokens _snake_case = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase )} ) # mask token has a left space _snake_case = tokenizer.convert_tokens_to_ids(lowercase ) _snake_case = 'Encode <mask> sequence' _snake_case = 'Encode <mask>sequence' _snake_case = tokenizer.encode(lowercase ) _snake_case = encoded.index(lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase , lowercase ) _snake_case = tokenizer.encode(lowercase ) _snake_case = encoded.index(lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase , lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' pass def A ( self : List[Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) _snake_case = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) _snake_case = 'A, <mask> AllenNLP sentence.' _snake_case = tokenizer_r.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) _snake_case = tokenizer_p.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def A ( self : Tuple ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _snake_case = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _snake_case = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowercase ) self.assertEqual(post_processor_state['add_prefix_space'] , lowercase ) self.assertEqual(post_processor_state['trim_offsets'] , lowercase ) def A ( self : int ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _snake_case = f'''{text_of_1_token} {text_of_1_token}''' _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ) + 1, 1 + len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , )
686
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "swin2sr" _UpperCAmelCase : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowercase : List[Any]=64 , lowercase : int=1 , lowercase : Union[str, Any]=3 , lowercase : Dict=180 , lowercase : List[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Dict=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : List[str]=2.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : List[str]=False , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-5 , lowercase : Optional[int]=2 , lowercase : Tuple=1.0 , lowercase : List[Any]="1conv" , lowercase : List[Any]="pixelshuffle" , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(lowercase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = upscale _snake_case = img_range _snake_case = resi_connection _snake_case = upsampler
686
1
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCAmelCase : Union[str, Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCAmelCase : str = False _UpperCAmelCase : Tuple = False def A ( self : List[Any] , lowercase : Any , lowercase : Any , lowercase : str=False ): '''simple docstring''' _snake_case = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class in get_values(lowercase ): _snake_case = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : int , lowercase : Optional[Any] , lowercase : Optional[Any]=13 , lowercase : int=7 , lowercase : List[str]=True , lowercase : Optional[int]=True , lowercase : int=True , lowercase : List[Any]=True , lowercase : Tuple=99 , lowercase : List[str]=32 , lowercase : Dict=32 , lowercase : int=2 , lowercase : Any=4 , lowercase : Optional[Any]=37 , lowercase : Any="gelu" , lowercase : Union[str, Any]=0.1 , lowercase : List[str]=0.1 , lowercase : Union[str, Any]=512 , lowercase : List[Any]=16 , lowercase : Optional[int]=2 , lowercase : Union[str, Any]=0.02 , lowercase : Tuple=3 , lowercase : int=4 , lowercase : Any=None , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope _snake_case = embedding_size def A ( self : Any ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : int , lowercase : Any , lowercase : Tuple , lowercase : Tuple , lowercase : int , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Dict ): '''simple docstring''' _snake_case = TFMobileBertModel(config=lowercase ) _snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _snake_case = model(lowercase ) _snake_case = [input_ids, input_mask] _snake_case = model(lowercase ) _snake_case = model(lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : Optional[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : Any , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' _snake_case = TFMobileBertForMaskedLM(config=lowercase ) _snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _snake_case = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Optional[Any] , lowercase : str , lowercase : str , lowercase : Union[str, Any] , lowercase : Tuple ): '''simple docstring''' _snake_case = TFMobileBertForNextSentencePrediction(config=lowercase ) _snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _snake_case = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A ( self : int , lowercase : Optional[Any] , lowercase : Any , lowercase : List[str] , lowercase : List[str] , lowercase : Optional[Any] , lowercase : List[Any] , lowercase : int ): '''simple docstring''' _snake_case = TFMobileBertForPreTraining(config=lowercase ) _snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _snake_case = model(lowercase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A ( self : Optional[int] , lowercase : List[Any] , lowercase : List[Any] , lowercase : str , lowercase : Any , lowercase : str , lowercase : int , lowercase : Optional[Any] ): '''simple docstring''' _snake_case = self.num_labels _snake_case = TFMobileBertForSequenceClassification(config=lowercase ) _snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _snake_case = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[str] , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : str , lowercase : Optional[int] , lowercase : List[str] , lowercase : int ): '''simple docstring''' _snake_case = self.num_choices _snake_case = TFMobileBertForMultipleChoice(config=lowercase ) _snake_case = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) _snake_case = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) _snake_case = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) _snake_case = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _snake_case = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Tuple , lowercase : str , lowercase : Tuple , lowercase : Union[str, Any] , lowercase : List[str] , lowercase : Any , lowercase : Dict , lowercase : List[Any] ): '''simple docstring''' _snake_case = self.num_labels _snake_case = TFMobileBertForTokenClassification(config=lowercase ) _snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _snake_case = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : str , lowercase : int , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : List[str] , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = TFMobileBertForQuestionAnswering(config=lowercase ) _snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _snake_case = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Any ): '''simple docstring''' _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = TFMobileBertModelTest.TFMobileBertModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : str ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowercase ) def A ( self : str ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowercase ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowercase ) def A ( self : int ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowercase ) def A ( self : str ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowercase ) def A ( self : int ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowercase ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowercase ) @slow def A ( self : Optional[Any] ): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _snake_case = TFMobileBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def A ( self : Any ): '''simple docstring''' _snake_case = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) _snake_case = tf.constant([[0, 1, 2, 3, 4, 5]] ) _snake_case = model(lowercase )[0] _snake_case = [1, 6, 30_522] self.assertEqual(output.shape , lowercase ) _snake_case = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 )
686
import random def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: _snake_case = a[left_index] _snake_case = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _snake_case , _snake_case = a[i], a[j] i += 1 _snake_case , _snake_case = a[i - 1], a[left_index] return i - 1 def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] ) -> Tuple: if left < right: _snake_case = random.randint(__lowercase , right - 1 ) _snake_case , _snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound _snake_case = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> str: _snake_case = input('Enter numbers separated by a comma:\n' ).strip() _snake_case = [int(__lowercase ) for item in user_input.split(',' )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
686
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : List[Any] = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "blip_2_vision_model" def __init__( self : Tuple , lowercase : List[str]=1_408 , lowercase : List[str]=6_144 , lowercase : Tuple=39 , lowercase : Optional[int]=16 , lowercase : int=224 , lowercase : Dict=14 , lowercase : List[str]="gelu" , lowercase : int=0.00001 , lowercase : int=0.0 , lowercase : List[str]=1E-10 , lowercase : Tuple=True , **lowercase : Any , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = intermediate_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = patch_size _snake_case = image_size _snake_case = initializer_range _snake_case = attention_dropout _snake_case = layer_norm_eps _snake_case = hidden_act _snake_case = qkv_bias @classmethod def A ( cls : Optional[Any] , lowercase : Union[str, os.PathLike] , **lowercase : str ): '''simple docstring''' cls._set_token_in_kwargs(lowercase ) _snake_case , _snake_case = cls.get_config_dict(lowercase , **lowercase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _snake_case = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowercase , **lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "blip_2_qformer" def __init__( self : Union[str, Any] , lowercase : Optional[int]=30_522 , lowercase : Dict=768 , lowercase : Optional[Any]=12 , lowercase : Optional[Any]=12 , lowercase : List[str]=3_072 , lowercase : int="gelu" , lowercase : int=0.1 , lowercase : List[Any]=0.1 , lowercase : Union[str, Any]=512 , lowercase : Optional[Any]=0.02 , lowercase : str=1E-12 , lowercase : Tuple=0 , lowercase : int="absolute" , lowercase : Dict=2 , lowercase : Tuple=1_408 , **lowercase : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , **lowercase ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = position_embedding_type _snake_case = cross_attention_frequency _snake_case = encoder_hidden_size @classmethod def A ( cls : List[str] , lowercase : Union[str, os.PathLike] , **lowercase : Union[str, Any] ): '''simple docstring''' cls._set_token_in_kwargs(lowercase ) _snake_case , _snake_case = cls.get_config_dict(lowercase , **lowercase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _snake_case = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowercase , **lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "blip-2" _UpperCAmelCase : str = True def __init__( self : Optional[int] , lowercase : Dict=None , lowercase : Tuple=None , lowercase : Union[str, Any]=None , lowercase : List[str]=32 , **lowercase : Optional[int] ): '''simple docstring''' super().__init__(**lowercase ) if vision_config is None: _snake_case = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _snake_case = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _snake_case = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _snake_case = BlipaVisionConfig(**lowercase ) _snake_case = BlipaQFormerConfig(**lowercase ) _snake_case = text_config['model_type'] if 'model_type' in text_config else 'opt' _snake_case = CONFIG_MAPPING[text_model_type](**lowercase ) _snake_case = self.text_config.tie_word_embeddings _snake_case = self.text_config.is_encoder_decoder _snake_case = num_query_tokens _snake_case = self.vision_config.hidden_size _snake_case = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _snake_case = 1.0 _snake_case = 0.02 @classmethod def A ( cls : Optional[int] , lowercase : BlipaVisionConfig , lowercase : BlipaQFormerConfig , lowercase : PretrainedConfig , **lowercase : Tuple , ): '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase , ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = copy.deepcopy(self.__dict__ ) _snake_case = self.vision_config.to_dict() _snake_case = self.qformer_config.to_dict() _snake_case = self.text_config.to_dict() _snake_case = self.__class__.model_type return output
686
import math def a_ ( __lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __lowercase : float = 0.1 ) -> int: _snake_case = 3 _snake_case = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
686
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _lowerCamelCase : str = '''0.12''' # assumed parallelism: 8 @require_flax @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @classmethod def A ( cls : Tuple ): '''simple docstring''' _snake_case = TOKEN HfFolder.save_token(lowercase ) @classmethod def A ( cls : List[Any] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-model-flax' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-model-flax-org' ) except HTTPError: pass def A ( self : List[Any] ): '''simple docstring''' _snake_case = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _snake_case = FlaxBertModel(lowercase ) model.push_to_hub('test-model-flax' , use_auth_token=self._token ) _snake_case = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) _snake_case = flatten_dict(unfreeze(model.params ) ) _snake_case = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _snake_case = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='test-model-flax' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase , repo_id='test-model-flax' , push_to_hub=lowercase , use_auth_token=self._token ) _snake_case = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) _snake_case = flatten_dict(unfreeze(model.params ) ) _snake_case = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _snake_case = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase , 1E-3 , msg=f'''{key} not identical''' ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _snake_case = FlaxBertModel(lowercase ) model.push_to_hub('valid_org/test-model-flax-org' , use_auth_token=self._token ) _snake_case = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) _snake_case = flatten_dict(unfreeze(model.params ) ) _snake_case = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _snake_case = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-model-flax-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowercase , repo_id='valid_org/test-model-flax-org' , push_to_hub=lowercase , use_auth_token=self._token ) _snake_case = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) _snake_case = flatten_dict(unfreeze(model.params ) ) _snake_case = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _snake_case = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase , 1E-3 , msg=f'''{key} not identical''' ) def a_ ( __lowercase : Any , __lowercase : Tuple ) -> List[str]: _snake_case = True _snake_case = flatten_dict(modela.params ) _snake_case = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: _snake_case = False return models_are_equal @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) _snake_case = FlaxBertModel(lowercase ) _snake_case = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowercase , lowercase ) ) with self.assertRaises(lowercase ): _snake_case = FlaxBertModel.from_pretrained(lowercase ) _snake_case = FlaxBertModel.from_pretrained(lowercase , subfolder=lowercase ) self.assertTrue(check_models_equal(lowercase , lowercase ) ) def A ( self : Any ): '''simple docstring''' _snake_case = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) _snake_case = FlaxBertModel(lowercase ) _snake_case = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowercase , lowercase ) , max_shard_size='10KB' ) with self.assertRaises(lowercase ): _snake_case = FlaxBertModel.from_pretrained(lowercase ) _snake_case = FlaxBertModel.from_pretrained(lowercase , subfolder=lowercase ) self.assertTrue(check_models_equal(lowercase , lowercase ) ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = 'bert' _snake_case = 'hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(lowercase ): _snake_case = FlaxBertModel.from_pretrained(lowercase ) _snake_case = FlaxBertModel.from_pretrained(lowercase , subfolder=lowercase ) self.assertIsNotNone(lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = 'bert' _snake_case = 'hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(lowercase ): _snake_case = FlaxBertModel.from_pretrained(lowercase ) _snake_case = FlaxBertModel.from_pretrained(lowercase , subfolder=lowercase ) self.assertIsNotNone(lowercase )
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowercase ) for s in shape] )}.npy''' def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() def A ( self : List[Any] , lowercase : Tuple=0 , lowercase : Optional[int]=(4, 4, 64, 64) , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def A ( self : Tuple , lowercase : Any=False , lowercase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = 'bf16' if fpaa else None _snake_case , _snake_case = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder='unet' , dtype=lowercase , revision=lowercase ) return model, params def A ( self : Union[str, Any] , lowercase : str=0 , lowercase : Optional[Any]=(4, 77, 768) , lowercase : int=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def A ( self : str , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1_024) , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 )
686
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : str = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "roformer" def __init__( self : str , lowercase : Optional[int]=50_000 , lowercase : Dict=None , lowercase : Tuple=768 , lowercase : Optional[int]=12 , lowercase : Tuple=12 , lowercase : Dict=3_072 , lowercase : str="gelu" , lowercase : Tuple=0.1 , lowercase : Tuple=0.1 , lowercase : Tuple=1_536 , lowercase : Tuple=2 , lowercase : Optional[Any]=0.02 , lowercase : Dict=1E-12 , lowercase : int=0 , lowercase : Dict=False , lowercase : Any=True , **lowercase : Union[str, Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , **lowercase ) _snake_case = vocab_size _snake_case = hidden_size if embedding_size is None else embedding_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = rotary_value _snake_case = use_cache class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @property def A ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": _snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} _snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
686
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
1
def a_ ( __lowercase : int , __lowercase : str ) -> Dict: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def a_ ( __lowercase : Tuple , __lowercase : Optional[Any]=0 ) -> str: return sorted(__lowercase , key=lambda __lowercase : x[column] ) def a_ ( __lowercase : Union[str, Any] , __lowercase : int , __lowercase : Optional[Any]=float('inf' ) ) -> Dict: for i in range(points_counts - 1 ): for j in range(i + 1 , __lowercase ): _snake_case = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _snake_case = current_dis return min_dis def a_ ( __lowercase : Any , __lowercase : Optional[int] , __lowercase : Optional[int]=float('inf' ) ) -> str: for i in range(min(6 , points_counts - 1 ) , __lowercase ): for j in range(max(0 , i - 6 ) , __lowercase ): _snake_case = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _snake_case = current_dis return min_dis def a_ ( __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : Any ) -> Optional[int]: # base case if points_counts <= 3: return dis_between_closest_pair(__lowercase , __lowercase ) # recursion _snake_case = points_counts // 2 _snake_case = closest_pair_of_points_sqr( __lowercase , points_sorted_on_y[:mid] , __lowercase ) _snake_case = closest_pair_of_points_sqr( __lowercase , points_sorted_on_y[mid:] , points_counts - mid ) _snake_case = min(__lowercase , __lowercase ) _snake_case = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(__lowercase ) _snake_case = dis_between_closest_in_strip( __lowercase , len(__lowercase ) , __lowercase ) return min(__lowercase , __lowercase ) def a_ ( __lowercase : Optional[Any] , __lowercase : int ) -> List[Any]: _snake_case = column_based_sort(__lowercase , column=0 ) _snake_case = column_based_sort(__lowercase , column=1 ) return ( closest_pair_of_points_sqr( __lowercase , __lowercase , __lowercase ) ) ** 0.5 if __name__ == "__main__": _lowerCamelCase : List[str] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
686
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
1
from torch import nn def a_ ( __lowercase : Optional[Any] ) -> Union[str, Any]: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
686
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "sequence-classification" def __init__( self : Optional[int] , lowercase : Any ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Optional[Any] , lowercase : str , lowercase : Tuple ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : int , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[str] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
686
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a_ ( __lowercase : Optional[Any] ) -> int: _snake_case = 384 _snake_case = 7 if "tiny" in model_name: _snake_case = 96 _snake_case = (2, 2, 6, 2) _snake_case = (3, 6, 12, 24) elif "small" in model_name: _snake_case = 96 _snake_case = (2, 2, 18, 2) _snake_case = (3, 6, 12, 24) elif "base" in model_name: _snake_case = 128 _snake_case = (2, 2, 18, 2) _snake_case = (4, 8, 16, 32) _snake_case = 12 _snake_case = 512 elif "large" in model_name: _snake_case = 192 _snake_case = (2, 2, 18, 2) _snake_case = (6, 12, 24, 48) _snake_case = 12 _snake_case = 768 # set label information _snake_case = 150 _snake_case = 'huggingface/label-files' _snake_case = 'ade20k-id2label.json' _snake_case = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = {v: k for k, v in idalabel.items()} _snake_case = SwinConfig( embed_dim=__lowercase , depths=__lowercase , num_heads=__lowercase , window_size=__lowercase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) _snake_case = UperNetConfig( backbone_config=__lowercase , auxiliary_in_channels=__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase , ) return config def a_ ( __lowercase : Tuple ) -> Optional[Any]: _snake_case = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def a_ ( __lowercase : Union[str, Any] , __lowercase : Any , __lowercase : Optional[Any] ) -> List[str]: _snake_case = dct.pop(__lowercase ) _snake_case = val def a_ ( __lowercase : List[str] , __lowercase : Tuple ) -> Optional[Any]: _snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _snake_case = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) _snake_case = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:dim, :] _snake_case = in_proj_bias[: dim] _snake_case = in_proj_weight[ dim : dim * 2, : ] _snake_case = in_proj_bias[ dim : dim * 2 ] _snake_case = in_proj_weight[ -dim :, : ] _snake_case = in_proj_bias[-dim :] # fmt: on def a_ ( __lowercase : Dict ) -> Any: _snake_case , _snake_case = x.shape _snake_case = x.reshape(__lowercase , 4 , in_channel // 4 ) _snake_case = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(__lowercase , __lowercase ) return x def a_ ( __lowercase : Any ) -> Any: _snake_case , _snake_case = x.shape _snake_case = x.reshape(__lowercase , in_channel // 4 , 4 ) _snake_case = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(__lowercase , __lowercase ) return x def a_ ( __lowercase : List[Any] ) -> Union[str, Any]: _snake_case = x.shape[0] _snake_case = x.reshape(4 , in_channel // 4 ) _snake_case = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(__lowercase ) return x def a_ ( __lowercase : Union[str, Any] ) -> Any: _snake_case = x.shape[0] _snake_case = x.reshape(in_channel // 4 , 4 ) _snake_case = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(__lowercase ) return x def a_ ( __lowercase : int , __lowercase : Optional[Any] , __lowercase : List[str] ) -> Tuple: _snake_case = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } _snake_case = model_name_to_url[model_name] _snake_case = torch.hub.load_state_dict_from_url(__lowercase , map_location='cpu' , file_name=__lowercase )[ 'state_dict' ] for name, param in state_dict.items(): print(__lowercase , param.shape ) _snake_case = get_upernet_config(__lowercase ) _snake_case = UperNetForSemanticSegmentation(__lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _snake_case = state_dict.pop(__lowercase ) if "bn" in key: _snake_case = key.replace('bn' , 'batch_norm' ) _snake_case = val # rename keys _snake_case = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_q_k_v(__lowercase , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: _snake_case = reverse_correct_unfold_reduction_order(__lowercase ) if "norm" in key: _snake_case = reverse_correct_unfold_norm_order(__lowercase ) model.load_state_dict(__lowercase ) # verify on image _snake_case = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('RGB' ) _snake_case = SegformerImageProcessor() _snake_case = processor(__lowercase , return_tensors='pt' ).pixel_values with torch.no_grad(): _snake_case = model(__lowercase ) _snake_case = outputs.logits print(logits.shape ) print('First values of logits:' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": _snake_case = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ) elif model_name == "upernet-swin-small": _snake_case = torch.tensor( [[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]] ) elif model_name == "upernet-swin-base": _snake_case = torch.tensor( [[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]] ) elif model_name == "upernet-swin-large": _snake_case = torch.tensor( [[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowercase , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__lowercase ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[F'upernet-swin-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : Any = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LEDConfig _UpperCAmelCase : int = {} _UpperCAmelCase : List[str] = "gelu" def __init__( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict=13 , lowercase : Dict=7 , lowercase : Tuple=True , lowercase : Dict=False , lowercase : Dict=99 , lowercase : Any=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[str]=37 , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : List[Any]=20 , lowercase : int=2 , lowercase : Optional[Any]=1 , lowercase : List[str]=0 , lowercase : Optional[int]=4 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case = prepare_led_inputs_dict(lowercase , lowercase , lowercase ) _snake_case = tf.concat( [tf.zeros_like(lowercase )[:, :-1], tf.ones_like(lowercase )[:, -1:]] , axis=-1 , ) _snake_case = global_attention_mask return config, inputs_dict def A ( self : str , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = TFLEDModel(config=lowercase ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : str=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase : Optional[int] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : Tuple = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = False _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False def A ( self : Any ): '''simple docstring''' _snake_case = TFLEDModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = tf.zeros_like(inputs_dict['attention_mask'] ) _snake_case = 2 _snake_case = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _snake_case = True _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase : List[str] ): _snake_case = outputs.decoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase : List[str] ): _snake_case = [t.numpy() for t in outputs.encoder_attentions] _snake_case = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = False _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) _snake_case = len(lowercase ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) if self.is_encoder_decoder: _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_decoder_attentions_output(lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase ) ) self.assertEqual(model.config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def a_ ( __lowercase : str ) -> Optional[Any]: return tf.constant(__lowercase , dtype=tf.intaa ) _lowerCamelCase : List[Any] = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, 768) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 ) def A ( self : str ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 , rtol=1E-3 )
686
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _lowerCamelCase : Optional[List[str]] = None _lowerCamelCase : int = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _lowerCamelCase : str = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : bool = True _UpperCAmelCase : Optional[str] = None # Automatically constructed _UpperCAmelCase : ClassVar[str] = "PIL.Image.Image" _UpperCAmelCase : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) _UpperCAmelCase : str = field(default="Image" ,init=UpperCAmelCase ,repr=UpperCAmelCase ) def __call__( self : List[Any] ): '''simple docstring''' return self.pa_type def A ( self : Dict , lowercase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(lowercase , lowercase ): _snake_case = np.array(lowercase ) if isinstance(lowercase , lowercase ): return {"path": value, "bytes": None} elif isinstance(lowercase , lowercase ): return {"path": None, "bytes": value} elif isinstance(lowercase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowercase ) elif isinstance(lowercase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowercase ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def A ( self : int , lowercase : dict , lowercase : Tuple=None ): '''simple docstring''' if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: _snake_case = {} _snake_case , _snake_case = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowercase ): _snake_case = PIL.Image.open(lowercase ) else: _snake_case = path.split('::' )[-1] try: _snake_case = string_to_dict(lowercase , config.HUB_DATASETS_URL )['repo_id'] _snake_case = token_per_repo_id.get(lowercase ) except ValueError: _snake_case = None with xopen(lowercase , 'rb' , use_auth_token=lowercase ) as f: _snake_case = BytesIO(f.read() ) _snake_case = PIL.Image.open(bytes_ ) else: _snake_case = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def A ( self : Any ): '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def A ( self : Tuple , lowercase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): '''simple docstring''' if pa.types.is_string(storage.type ): _snake_case = pa.array([None] * len(lowercase ) , type=pa.binary() ) _snake_case = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _snake_case = pa.array([None] * len(lowercase ) , type=pa.string() ) _snake_case = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: _snake_case = storage.field('bytes' ) else: _snake_case = pa.array([None] * len(lowercase ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: _snake_case = storage.field('path' ) else: _snake_case = pa.array([None] * len(lowercase ) , type=pa.string() ) _snake_case = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): _snake_case = pa.array( [encode_np_array(np.array(lowercase ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) _snake_case = pa.array([None] * len(lowercase ) , type=pa.string() ) _snake_case = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(lowercase , self.pa_type ) def A ( self : Dict , lowercase : pa.StructArray ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(lowercase : Any ): with xopen(lowercase , 'rb' ) as f: _snake_case = f.read() return bytes_ _snake_case = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _snake_case = pa.array( [os.path.basename(lowercase ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) _snake_case = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(lowercase , self.pa_type ) def a_ ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _snake_case = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def a_ ( __lowercase : "PIL.Image.Image" ) -> bytes: _snake_case = BytesIO() if image.format in list_image_compression_formats(): _snake_case = image.format else: _snake_case = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(__lowercase , format=__lowercase ) return buffer.getvalue() def a_ ( __lowercase : "PIL.Image.Image" ) -> dict: if hasattr(__lowercase , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__lowercase )} def a_ ( __lowercase : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) _snake_case = array.dtype _snake_case = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER _snake_case = dtype.kind _snake_case = dtype.itemsize _snake_case = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: _snake_case = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: _snake_case = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: _snake_case = dtype_byteorder + dtype_kind + str(__lowercase ) _snake_case = np.dtype(__lowercase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) _snake_case = PIL.Image.fromarray(array.astype(__lowercase ) ) return {"path": None, "bytes": image_to_bytes(__lowercase )} def a_ ( __lowercase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: _snake_case , _snake_case = first_non_null_value(__lowercase ) if isinstance(__lowercase , __lowercase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__lowercase , np.ndarray ): _snake_case = no_op_if_value_is_null(__lowercase ) return [obj_to_image_dict_func(__lowercase ) for obj in objs] elif isinstance(__lowercase , PIL.Image.Image ): _snake_case = no_op_if_value_is_null(__lowercase ) return [obj_to_image_dict_func(__lowercase ) for obj in objs] else: return objs else: return objs
686
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCamelCase : Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCamelCase : Union[str, Any] = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCamelCase : Optional[int] = '''zero2''' _lowerCamelCase : List[Any] = '''zero3''' _lowerCamelCase : Dict = [ZEROa, ZEROa] def a_ ( __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _snake_case = parameterized.to_safe_name('_'.join(str(__lowercase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _lowerCamelCase : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' pass def A ( self : str , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : bool = True , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = models[model] _snake_case = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A ( self : Any , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : int = 1 , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _snake_case = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _snake_case = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _snake_case = self.get_launcher(lowercase ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A ( self : List[str] , lowercase : Any=False ): '''simple docstring''' _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
686
1
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : List[Any] , lowercase : str , lowercase : Union[str, Any]=13 , lowercase : Any=30 , lowercase : int=2 , lowercase : Dict=3 , lowercase : List[str]=True , lowercase : Optional[Any]=True , lowercase : Union[str, Any]=32 , lowercase : Tuple=2 , lowercase : List[Any]=4 , lowercase : Dict=37 , lowercase : Tuple="gelu" , lowercase : Any=0.1 , lowercase : List[str]=0.1 , lowercase : Tuple=10 , lowercase : int=0.02 , lowercase : Tuple=3 , lowercase : List[Any]=None , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case = (image_size // patch_size) ** 2 _snake_case = num_patches + 1 def A ( self : Optional[int] ): '''simple docstring''' _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def A ( self : Dict ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , ) def A ( self : Optional[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Tuple ): '''simple docstring''' _snake_case = TFViTModel(config=lowercase ) _snake_case = model(lowercase , training=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. _snake_case = self.image_size // 2 _snake_case = pixel_values[:, :, :image_size, :image_size] _snake_case = model(lowercase , interpolate_pos_encoding=lowercase , training=lowercase ) _snake_case = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , lowercase : int , lowercase : str , lowercase : Dict ): '''simple docstring''' _snake_case = self.type_sequence_label_size _snake_case = TFViTForImageClassification(lowercase ) _snake_case = model(lowercase , labels=lowercase , training=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. _snake_case = self.image_size // 2 _snake_case = pixel_values[:, :, :image_size, :image_size] _snake_case = model(lowercase , interpolate_pos_encoding=lowercase , training=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case = 1 _snake_case = TFViTForImageClassification(lowercase ) _snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[int] = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () _UpperCAmelCase : Dict = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase : str = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Dict = False def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFViTModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def A ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Tuple ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , tf.keras.layers.Layer ) ) def A ( self : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowercase ) _snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase ) def A ( self : Dict ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) @slow def A ( self : Dict ): '''simple docstring''' _snake_case = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(lowercase ) def a_ ( ) -> List[str]: _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @cached_property def A ( self : Optional[int] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowercase , return_tensors='tf' ) # forward pass _snake_case = model(**lowercase ) # verify the logits _snake_case = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase ) _snake_case = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowercase , atol=1E-4 )
686
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def a_ ( __lowercase : List[str] , __lowercase : List[Any] ) -> Tuple: _snake_case = XCLIPTextConfig() # derive patch size from model name _snake_case = model_name.find('patch' ) _snake_case = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) _snake_case = XCLIPVisionConfig(patch_size=__lowercase , num_frames=__lowercase ) if "large" in model_name: _snake_case = 768 _snake_case = 3_072 _snake_case = 12 _snake_case = 1_024 _snake_case = 4_096 _snake_case = 16 _snake_case = 24 _snake_case = 768 _snake_case = 3_072 if model_name == "xclip-large-patch14-16-frames": _snake_case = 336 _snake_case = XCLIPConfig.from_text_vision_configs(__lowercase , __lowercase ) if "large" in model_name: _snake_case = 768 return config def a_ ( __lowercase : Dict ) -> int: # text encoder if name == "token_embedding.weight": _snake_case = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": _snake_case = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: _snake_case = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: _snake_case = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: _snake_case = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: _snake_case = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): _snake_case = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: _snake_case = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: _snake_case = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": _snake_case = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": _snake_case = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): _snake_case = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: _snake_case = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: _snake_case = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: _snake_case = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: _snake_case = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: _snake_case = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: _snake_case = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: _snake_case = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": _snake_case = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): _snake_case = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): _snake_case = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def a_ ( __lowercase : Optional[int] , __lowercase : str ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(__lowercase ) if "attn.in_proj" in key: _snake_case = key.split('.' ) if key.startswith('visual' ): _snake_case = key_split[3] _snake_case = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: _snake_case = val[ :dim, : ] _snake_case = val[ dim : dim * 2, : ] _snake_case = val[ -dim:, : ] else: _snake_case = val[ :dim ] _snake_case = val[ dim : dim * 2 ] _snake_case = val[ -dim: ] else: if "weight" in key: _snake_case = val[ :dim, : ] _snake_case = val[ dim : dim * 2, : ] _snake_case = val[ -dim:, : ] else: _snake_case = val[:dim] _snake_case = val[ dim : dim * 2 ] _snake_case = val[-dim:] elif key.startswith('mit' ): _snake_case = key_split[2] _snake_case = config.vision_config.mit_hidden_size if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val[:dim] _snake_case = val[dim : dim * 2] _snake_case = val[-dim:] else: _snake_case = key_split[2] _snake_case = config.text_config.hidden_size if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[ dim : dim * 2, : ] _snake_case = val[-dim:, :] else: _snake_case = val[:dim] _snake_case = val[ dim : dim * 2 ] _snake_case = val[-dim:] else: _snake_case = rename_key(__lowercase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: _snake_case = val.T _snake_case = val return orig_state_dict def a_ ( __lowercase : int ) -> Tuple: if num_frames == 8: _snake_case = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: _snake_case = 'eating_spaghetti.npy' elif num_frames == 32: _snake_case = 'eating_spaghetti_32_frames.npy' _snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=__lowercase , repo_type='dataset' , ) _snake_case = np.load(__lowercase ) return list(__lowercase ) def a_ ( __lowercase : Optional[Any] , __lowercase : int=None , __lowercase : Tuple=False ) -> str: _snake_case = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } _snake_case = model_to_url[model_name] _snake_case = 8 if "16-frames" in model_name: _snake_case = 16 elif "shot" in model_name: _snake_case = 32 _snake_case = get_xclip_config(__lowercase , __lowercase ) _snake_case = XCLIPModel(__lowercase ) model.eval() if "drive" in checkpoint_url: _snake_case = 'pytorch_model.bin' gdown.cached_download(__lowercase , __lowercase , quiet=__lowercase ) _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] else: _snake_case = torch.hub.load_state_dict_from_url(__lowercase )['model'] _snake_case = convert_state_dict(__lowercase , __lowercase ) _snake_case = XCLIPModel(__lowercase ) _snake_case , _snake_case = model.load_state_dict(__lowercase , strict=__lowercase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() _snake_case = 336 if model_name == 'xclip-large-patch14-16-frames' else 224 _snake_case = VideoMAEImageProcessor(size=__lowercase ) _snake_case = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) _snake_case = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) _snake_case = XCLIPProcessor(image_processor=__lowercase , tokenizer=__lowercase ) _snake_case = prepare_video(__lowercase ) _snake_case = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=__lowercase , return_tensors='pt' , padding=__lowercase ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): _snake_case = model(**__lowercase ) # Verify outputs _snake_case = outputs.logits_per_video _snake_case = logits_per_video.softmax(dim=1 ) print('Probs:' , __lowercase ) # kinetics-400 if model_name == "xclip-base-patch32": _snake_case = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": _snake_case = torch.tensor([[7.0999E-04, 9.9883E-01, 4.5580E-04]] ) elif model_name == "xclip-base-patch16": _snake_case = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": _snake_case = torch.tensor([[7.6937E-04, 9.9728E-01, 1.9473E-03]] ) elif model_name == "xclip-large-patch14": _snake_case = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": _snake_case = torch.tensor([[3.3877E-04, 9.9937E-01, 2.8888E-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": _snake_case = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": _snake_case = torch.tensor([[3.8554E-04, 9.9929E-01, 3.2754E-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": _snake_case = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": _snake_case = torch.tensor([[7.1890E-06, 9.9994E-01, 5.6559E-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": _snake_case = torch.tensor([[1.0320E-05, 9.9993E-01, 6.2435E-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": _snake_case = torch.tensor([[4.1377E-06, 9.9990E-01, 9.8386E-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": _snake_case = torch.tensor([[4.1347E-05, 9.9962E-01, 3.3411E-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": _snake_case = torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": _snake_case = torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": _snake_case = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": _snake_case = torch.tensor([[9.8219E-04, 9.9593E-01, 3.0863E-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": _snake_case = torch.tensor([[3.5082E-04, 9.9785E-01, 1.7966E-03]] ) else: raise ValueError(f'''Model name {model_name} not supported''' ) assert torch.allclose(__lowercase , __lowercase , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(__lowercase , organization='nielsr' ) processor.push_to_hub(__lowercase , organization='nielsr' ) slow_tokenizer.push_to_hub(__lowercase , organization='nielsr' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : Tuple = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
import random from .binary_exp_mod import bin_exp_mod def a_ ( __lowercase : int , __lowercase : Any=1_000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__lowercase , __lowercase , __lowercase ) if b != 1: _snake_case = True for _ in range(__lowercase ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCamelCase : Tuple = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
686
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def a_ ( __lowercase : Union[dict, list, tuple, torch.Tensor] ) -> List[Tuple[int, ...]]: _snake_case = [] if isinstance(__lowercase , __lowercase ): for v in tree.values(): shapes.extend(_fetch_dims(__lowercase ) ) elif isinstance(__lowercase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__lowercase ) ) elif isinstance(__lowercase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def a_ ( __lowercase : int , __lowercase : Tuple[int, ...] ) -> Tuple[int, ...]: _snake_case = [] for d in reversed(__lowercase ): idx.append(flat_idx % d ) _snake_case = flat_idx // d return tuple(reversed(__lowercase ) ) @torch.jit.ignore def a_ ( __lowercase : Sequence[int] , __lowercase : Sequence[int] , __lowercase : Sequence[int] , __lowercase : Optional[Sequence[bool]] = None , __lowercase : Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(__lowercase : List[bool] ) -> None: _snake_case = True for i in range(len(__lowercase ) ): _snake_case = -1 * (i + 1) l[reversed_idx] &= tally _snake_case = l[reversed_idx] if start_edges is None: _snake_case = [s == 0 for s in start] reduce_edge_list(__lowercase ) if end_edges is None: _snake_case = [e == (d - 1) for e, d in zip(__lowercase , __lowercase )] reduce_edge_list(__lowercase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__lowercase ) == 0: return [()] elif len(__lowercase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] _snake_case = [] _snake_case = [] # Dimensions common to start and end can be selected directly for s, e in zip(__lowercase , __lowercase ): if s == e: path_list.append(slice(__lowercase , s + 1 ) ) else: break _snake_case = tuple(__lowercase ) _snake_case = len(__lowercase ) # start == end, and we're done if divergence_idx == len(__lowercase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _snake_case = start[divergence_idx] return tuple( path + (slice(__lowercase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _snake_case = end[divergence_idx] return tuple( path + (slice(__lowercase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) _snake_case = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def a_ ( __lowercase : torch.Tensor , __lowercase : int , __lowercase : int , __lowercase : int ) -> torch.Tensor: _snake_case = t.shape[:no_batch_dims] _snake_case = list(_flat_idx_to_idx(__lowercase , __lowercase ) ) # _get_minimal_slice_set is inclusive _snake_case = list(_flat_idx_to_idx(flat_end - 1 , __lowercase ) ) # Get an ordered list of slices to perform _snake_case = _get_minimal_slice_set( __lowercase , __lowercase , __lowercase , ) _snake_case = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def a_ ( __lowercase : Callable , __lowercase : Dict[str, Any] , __lowercase : int , __lowercase : int , __lowercase : bool = False , __lowercase : Any = None , __lowercase : bool = False , ) -> Any: if not (len(__lowercase ) > 0): raise ValueError('Must provide at least one input' ) _snake_case = [shape[:no_batch_dims] for shape in _fetch_dims(__lowercase )] _snake_case = tuple([max(__lowercase ) for s in zip(*__lowercase )] ) def _prep_inputs(__lowercase : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: _snake_case = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) _snake_case = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: _snake_case = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t _snake_case = tensor_tree_map(_prep_inputs , __lowercase ) _snake_case = None if _out is not None: _snake_case = tensor_tree_map(lambda __lowercase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) _snake_case = 1 for d in orig_batch_dims: flat_batch_dim *= d _snake_case = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__lowercase : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t _snake_case = 0 _snake_case = prepped_outputs for _ in range(__lowercase ): # Chunk the input if not low_mem: _snake_case = _select_chunk else: _snake_case = partial( _chunk_slice , flat_start=__lowercase , flat_end=min(__lowercase , i + chunk_size ) , no_batch_dims=len(__lowercase ) , ) _snake_case = tensor_tree_map(__lowercase , __lowercase ) # Run the layer on the chunk _snake_case = layer(**__lowercase ) # Allocate space for the output if out is None: _snake_case = tensor_tree_map(lambda __lowercase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __lowercase ) # Put the chunk in its pre-allocated space if isinstance(__lowercase , __lowercase ): def assign(__lowercase : dict , __lowercase : dict ) -> None: for k, v in da.items(): if isinstance(__lowercase , __lowercase ): assign(__lowercase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: _snake_case = da[k] assign(__lowercase , __lowercase ) elif isinstance(__lowercase , __lowercase ): for xa, xa in zip(__lowercase , __lowercase ): if _add_into_out: xa[i : i + chunk_size] += xa else: _snake_case = xa elif isinstance(__lowercase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: _snake_case = output_chunk else: raise ValueError('Not supported' ) i += chunk_size _snake_case = tensor_tree_map(lambda __lowercase : t.view(orig_batch_dims + t.shape[1:] ) , __lowercase ) return out class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : int , lowercase : int = 512 , ): '''simple docstring''' _snake_case = max_chunk_size _snake_case = None _snake_case = None def A ( self : str , lowercase : Callable , lowercase : tuple , lowercase : int ): '''simple docstring''' logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size _snake_case = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] _snake_case = [c for c in candidates if c > min_chunk_size] _snake_case = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(lowercase : int ) -> bool: try: with torch.no_grad(): fn(*lowercase , chunk_size=lowercase ) return True except RuntimeError: return False _snake_case = 0 _snake_case = len(lowercase ) - 1 while i > min_viable_chunk_size_index: _snake_case = test_chunk_size(candidates[i] ) if not viable: _snake_case = (min_viable_chunk_size_index + i) // 2 else: _snake_case = i _snake_case = (i + len(lowercase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def A ( self : List[str] , lowercase : Iterable , lowercase : Iterable ): '''simple docstring''' _snake_case = True for aa, aa in zip(lowercase , lowercase ): assert type(lowercase ) == type(lowercase ) if isinstance(lowercase , (list, tuple) ): consistent &= self._compare_arg_caches(lowercase , lowercase ) elif isinstance(lowercase , lowercase ): _snake_case = [v for _, v in sorted(aa.items() , key=lambda lowercase : x[0] )] _snake_case = [v for _, v in sorted(aa.items() , key=lambda lowercase : x[0] )] consistent &= self._compare_arg_caches(lowercase , lowercase ) else: consistent &= aa == aa return consistent def A ( self : Dict , lowercase : Callable , lowercase : tuple , lowercase : int , ): '''simple docstring''' _snake_case = True _snake_case = tree_map(lambda lowercase : a.shape if isinstance(lowercase , torch.Tensor ) else a , lowercase , lowercase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(lowercase ) _snake_case = self._compare_arg_caches(self.cached_arg_data , lowercase ) else: # Otherwise, we can reuse the precomputed value _snake_case = False if not consistent: _snake_case = self._determine_favorable_chunk_size( lowercase , lowercase , lowercase , ) _snake_case = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
686
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCamelCase : int = re.compile(r'''\s+''') def a_ ( __lowercase : List[Any] ) -> int: return {"hash": hashlib.mda(re.sub(__lowercase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( __lowercase : List[Any] ) -> Dict: _snake_case = [len(__lowercase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__lowercase ), "line_max": max(__lowercase )} def a_ ( __lowercase : Optional[int] ) -> List[str]: _snake_case = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] ) -> Optional[int]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( __lowercase : Union[str, Any] , __lowercase : int=5 ) -> Optional[Any]: _snake_case = ['auto-generated', 'autogenerated', 'automatically generated'] _snake_case = example['content'].splitlines() for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( __lowercase : List[Any] , __lowercase : int=5 , __lowercase : Tuple=0.0_5 ) -> Union[str, Any]: _snake_case = ['unit tests', 'test file', 'configuration file'] _snake_case = example['content'].splitlines() _snake_case = 0 _snake_case = 0 # first test for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case = example['content'].count('\n' ) _snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( __lowercase : Union[str, Any] ) -> Any: _snake_case = ['def ', 'class ', 'for ', 'while '] _snake_case = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( __lowercase : Tuple , __lowercase : Any=4 ) -> List[str]: _snake_case = example['content'].splitlines() _snake_case = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( __lowercase : Dict ) -> Dict: _snake_case = tokenizer(example['content'] , truncation=__lowercase )['input_ids'] _snake_case = len(example['content'] ) / len(__lowercase ) return {"ratio": ratio} def a_ ( __lowercase : Optional[Any] ) -> Any: _snake_case = {} results.update(get_hash(__lowercase ) ) results.update(line_stats(__lowercase ) ) results.update(alpha_stats(__lowercase ) ) results.update(char_token_ratio(__lowercase ) ) results.update(is_autogenerated(__lowercase ) ) results.update(is_config_or_test(__lowercase ) ) results.update(has_no_keywords(__lowercase ) ) results.update(has_few_assignments(__lowercase ) ) return results def a_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : List[Any] ) -> int: if not check_uniques(__lowercase , __lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( __lowercase : Dict ) -> Dict: with open(__lowercase , 'rb' ) as f_in: with gzip.open(str(__lowercase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowercase , __lowercase ) os.unlink(__lowercase ) # Settings _lowerCamelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCamelCase : Dict = parser.parse_args() if args.num_workers is None: _lowerCamelCase : int = multiprocessing.cpu_count() _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCamelCase : Any = time.time() _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing _lowerCamelCase : Optional[int] = time.time() _lowerCamelCase : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes _lowerCamelCase : List[Any] = set(ds.unique('''hash''')) _lowerCamelCase : Dict = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics _lowerCamelCase : List[Any] = time.time() _lowerCamelCase : Optional[int] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCamelCase : Union[str, Any] = time.time() _lowerCamelCase , _lowerCamelCase : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file _lowerCamelCase : Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCamelCase : int = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCamelCase : Union[str, Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCamelCase : Dict = str(data_dir / F'file-{file_number+1:012}.json') _lowerCamelCase : str = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
686
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : Optional[int] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _lowerCamelCase : List[str] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _lowerCamelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int=None , lowercase : str=True , lowercase : List[str]=False ): '''simple docstring''' if rouge_types is None: _snake_case = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _snake_case = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: _snake_case = scoring.BootstrapAggregator() else: _snake_case = [] for ref, pred in zip(lowercase , lowercase ): _snake_case = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: _snake_case = aggregator.aggregate() else: _snake_case = {} for key in scores[0]: _snake_case = [score[key] for score in scores] return result
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : int = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "yolos" def __init__( self : int , lowercase : List[str]=768 , lowercase : Tuple=12 , lowercase : int=12 , lowercase : int=3_072 , lowercase : Optional[int]="gelu" , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Optional[Any]=0.02 , lowercase : List[str]=1E-12 , lowercase : Dict=[512, 864] , lowercase : Union[str, Any]=16 , lowercase : List[Any]=3 , lowercase : List[str]=True , lowercase : Optional[int]=100 , lowercase : int=True , lowercase : Dict=False , lowercase : str=1 , lowercase : int=5 , lowercase : Tuple=2 , lowercase : List[str]=5 , lowercase : Any=2 , lowercase : List[str]=0.1 , **lowercase : int , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = num_detection_tokens _snake_case = use_mid_position_embeddings _snake_case = auxiliary_loss # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 @property def A ( self : List[Any] ): '''simple docstring''' return 12
686
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : str = "bert" def __init__( self : Tuple , lowercase : Any=30_522 , lowercase : List[Any]=768 , lowercase : Tuple=12 , lowercase : Dict=12 , lowercase : int=3_072 , lowercase : int="gelu" , lowercase : Optional[Any]=0.1 , lowercase : Any=0.1 , lowercase : List[str]=512 , lowercase : List[Any]=2 , lowercase : List[str]=0.02 , lowercase : Tuple=1E-12 , lowercase : str=0 , lowercase : Optional[int]="absolute" , lowercase : List[Any]=True , lowercase : List[str]=None , **lowercase : List[str] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , **lowercase ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = position_embedding_type _snake_case = use_cache _snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @property def A ( self : List[str] ): '''simple docstring''' if self.task == "multiple-choice": _snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
686
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring _lowerCamelCase : Union[str, Any] = '''ResNetConfig''' # Base docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[Any] = [1, 2_048, 7, 7] # Image classification docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[int] = '''tiger cat''' _lowerCamelCase : str = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Union[str, Any] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def A ( self : Tuple , lowercase : Tensor ): '''simple docstring''' _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowercase ) _snake_case = self.pooler(lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int = 2 ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" , lowercase : int = 4 ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : ResNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , ): '''simple docstring''' super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = input for layer in self.layers: _snake_case = layer(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def A ( self : str , lowercase : Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ResNetConfig _UpperCAmelCase : Tuple = "resnet" _UpperCAmelCase : Optional[Any] = "pixel_values" _UpperCAmelCase : Dict = True def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Union[str, Any] , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = ResNetModel(lowercase ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowercase ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase ) super()._init_backbone(lowercase ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def A ( self : Dict , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowercase ) _snake_case = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
686
1
import numpy as np def a_ ( __lowercase : np.ndarray , __lowercase : np.ndarray , __lowercase : float = 1E-12 , __lowercase : int = 100 , ) -> tuple[float, np.ndarray]: assert np.shape(__lowercase )[0] == np.shape(__lowercase )[1] # Ensure proper dimensionality. assert np.shape(__lowercase )[0] == np.shape(__lowercase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__lowercase ) == np.iscomplexobj(__lowercase ) _snake_case = np.iscomplexobj(__lowercase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__lowercase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _snake_case = False _snake_case = 0 _snake_case = 0 _snake_case = 1E12 while not convergence: # Multiple matrix by the vector. _snake_case = np.dot(__lowercase , __lowercase ) # Normalize the resulting output vector. _snake_case = w / np.linalg.norm(__lowercase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _snake_case = vector.conj().T if is_complex else vector.T _snake_case = np.dot(__lowercase , np.dot(__lowercase , __lowercase ) ) # Check convergence. _snake_case = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _snake_case = True _snake_case = lambda_ if is_complex: _snake_case = np.real(lambda_ ) return lambda_, vector def a_ ( ) -> None: _snake_case = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _snake_case = np.array([41, 4, 20] ) _snake_case = real_input_matrix.astype(np.complexaaa ) _snake_case = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _snake_case = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _snake_case = real_input_matrix _snake_case = real_vector elif problem_type == "complex": _snake_case = complex_input_matrix _snake_case = complex_vector # Our implementation. _snake_case , _snake_case = power_iteration(__lowercase , __lowercase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _snake_case , _snake_case = np.linalg.eigh(__lowercase ) # Last eigenvalue is the maximum one. _snake_case = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _snake_case = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__lowercase ) - np.abs(__lowercase ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
686
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Any , lowercase : int , lowercase : List[str]=100 , lowercase : Union[str, Any]=13 , lowercase : Optional[Any]=30 , lowercase : Dict=2 , lowercase : int=3 , lowercase : Union[str, Any]=True , lowercase : List[str]=True , lowercase : int=32 , lowercase : Optional[Any]=4 , lowercase : List[str]=4 , lowercase : str=37 , lowercase : Optional[Any]="gelu" , lowercase : Tuple=0.1 , lowercase : Dict=0.1 , lowercase : Optional[int]=10 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=3 , lowercase : Optional[Any]=None , lowercase : List[Any]=[0, 1, 2, 3] , ): '''simple docstring''' _snake_case = parent _snake_case = 100 _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = scope _snake_case = out_indices _snake_case = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case = (image_size // patch_size) ** 2 _snake_case = num_patches + 1 def A ( self : List[str] ): '''simple docstring''' _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels, pixel_labels def A ( self : Tuple ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : List[Any] ): '''simple docstring''' _snake_case = BeitModel(config=lowercase ) model.to(lowercase ) model.eval() _snake_case = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : str , lowercase : List[str] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] ): '''simple docstring''' _snake_case = BeitForMaskedImageModeling(config=lowercase ) model.to(lowercase ) model.eval() _snake_case = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def A ( self : int , lowercase : Optional[int] , lowercase : Tuple , lowercase : Tuple , lowercase : int ): '''simple docstring''' _snake_case = self.type_sequence_label_size _snake_case = BeitForImageClassification(lowercase ) model.to(lowercase ) model.eval() _snake_case = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case = 1 _snake_case = BeitForImageClassification(lowercase ) model.to(lowercase ) model.eval() _snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : List[str] , lowercase : Dict , lowercase : Optional[Any] , lowercase : List[str] , lowercase : Any ): '''simple docstring''' _snake_case = self.num_labels _snake_case = BeitForSemanticSegmentation(lowercase ) model.to(lowercase ) model.eval() _snake_case = model(lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _snake_case = model(lowercase , labels=lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def A ( self : List[str] ): '''simple docstring''' _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _UpperCAmelCase : int = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Tuple = False _UpperCAmelCase : int = False def A ( self : int ): '''simple docstring''' _snake_case = BeitModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def A ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def A ( self : Any ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def A ( self : Dict ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowercase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase ) def A ( self : Dict ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def A ( self : Dict ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(lowercase ), BeitForMaskedImageModeling]: continue _snake_case = model_class(lowercase ) model.to(lowercase ) model.train() _snake_case = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) _snake_case = model(**lowercase ).loss loss.backward() def A ( self : Tuple ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _snake_case = False _snake_case = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(lowercase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _snake_case = model_class(lowercase ) model.gradient_checkpointing_enable() model.to(lowercase ) model.train() _snake_case = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) _snake_case = model(**lowercase ).loss loss.backward() def A ( self : int ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = _config_zero_init(lowercase ) for model_class in self.all_model_classes: _snake_case = model_class(config=lowercase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def A ( self : Tuple ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = BeitModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def a_ ( ) -> List[str]: _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @cached_property def A ( self : List[Any] ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def A ( self : Any ): '''simple docstring''' _snake_case = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(lowercase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowercase , return_tensors='pt' ).pixel_values.to(lowercase ) # prepare bool_masked_pos _snake_case = torch.ones((1, 196) , dtype=torch.bool ).to(lowercase ) # forward pass with torch.no_grad(): _snake_case = model(pixel_values=lowercase , bool_masked_pos=lowercase ) _snake_case = outputs.logits # verify the logits _snake_case = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , lowercase ) _snake_case = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(lowercase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , lowercase , atol=1E-2 ) ) @slow def A ( self : int ): '''simple docstring''' _snake_case = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(lowercase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowercase , return_tensors='pt' ).to(lowercase ) # forward pass with torch.no_grad(): _snake_case = model(**lowercase ) _snake_case = outputs.logits # verify the logits _snake_case = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , lowercase ) _snake_case = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(lowercase ) self.assertTrue(torch.allclose(logits[0, :3] , lowercase , atol=1E-4 ) ) _snake_case = 281 self.assertEqual(logits.argmax(-1 ).item() , lowercase ) @slow def A ( self : List[str] ): '''simple docstring''' _snake_case = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( lowercase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowercase , return_tensors='pt' ).to(lowercase ) # forward pass with torch.no_grad(): _snake_case = model(**lowercase ) _snake_case = outputs.logits # verify the logits _snake_case = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , lowercase ) _snake_case = torch.tensor([1.6881, -0.2787, 0.5901] ).to(lowercase ) self.assertTrue(torch.allclose(logits[0, :3] , lowercase , atol=1E-4 ) ) _snake_case = 2_396 self.assertEqual(logits.argmax(-1 ).item() , lowercase ) @slow def A ( self : List[Any] ): '''simple docstring''' _snake_case = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) _snake_case = model.to(lowercase ) _snake_case = BeitImageProcessor(do_resize=lowercase , size=640 , do_center_crop=lowercase ) _snake_case = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _snake_case = Image.open(ds[0]['file'] ) _snake_case = image_processor(images=lowercase , return_tensors='pt' ).to(lowercase ) # forward pass with torch.no_grad(): _snake_case = model(**lowercase ) _snake_case = outputs.logits # verify the logits _snake_case = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , lowercase ) _snake_case = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: _snake_case = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=lowercase , ) else: _snake_case = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowercase , atol=1E-4 ) ) @slow def A ( self : Optional[int] ): '''simple docstring''' _snake_case = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) _snake_case = model.to(lowercase ) _snake_case = BeitImageProcessor(do_resize=lowercase , size=640 , do_center_crop=lowercase ) _snake_case = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _snake_case = Image.open(ds[0]['file'] ) _snake_case = image_processor(images=lowercase , return_tensors='pt' ).to(lowercase ) # forward pass with torch.no_grad(): _snake_case = model(**lowercase ) _snake_case = outputs.logits.detach().cpu() _snake_case = image_processor.post_process_semantic_segmentation(outputs=lowercase , target_sizes=[(500, 300)] ) _snake_case = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowercase ) _snake_case = image_processor.post_process_semantic_segmentation(outputs=lowercase ) _snake_case = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , lowercase )
686
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : Union[str, Any] ) -> List[Any]: _snake_case = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _snake_case = DetaConfig( backbone_config=__lowercase , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=__lowercase , with_box_refine=__lowercase , two_stage=__lowercase , ) # set labels _snake_case = 'huggingface/label-files' if "o365" in model_name: _snake_case = 366 _snake_case = 'object365-id2label.json' else: _snake_case = 91 _snake_case = 'coco-detection-id2label.json' _snake_case = num_labels _snake_case = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset' ) ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def a_ ( __lowercase : int ) -> str: _snake_case = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : str ) -> Union[str, Any]: _snake_case = dct.pop(__lowercase ) _snake_case = val def a_ ( __lowercase : List[str] , __lowercase : str ) -> Dict: _snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:dim, :] _snake_case = in_proj_bias[: dim] _snake_case = in_proj_weight[ dim : dim * 2, : ] _snake_case = in_proj_bias[ dim : dim * 2 ] _snake_case = in_proj_weight[ -dim :, : ] _snake_case = in_proj_bias[-dim :] # fmt: on def a_ ( __lowercase : Dict , __lowercase : Dict ) -> str: # transformer decoder self-attention layers _snake_case = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:hidden_size, :] _snake_case = in_proj_bias[:hidden_size] _snake_case = in_proj_weight[ hidden_size : hidden_size * 2, : ] _snake_case = in_proj_bias[hidden_size : hidden_size * 2] _snake_case = in_proj_weight[-hidden_size:, :] _snake_case = in_proj_bias[-hidden_size:] def a_ ( ) -> List[str]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Tuple ) -> Optional[Any]: _snake_case = get_deta_config(__lowercase ) # load original state dict if model_name == "deta-swin-large": _snake_case = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _snake_case = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__lowercase , param.shape ) # rename keys _snake_case = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_swin_q_k_v(__lowercase , config.backbone_config ) read_in_decoder_q_k_v(__lowercase , __lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "input_proj" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = DetaForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() _snake_case = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__lowercase ) # load image processor _snake_case = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _snake_case = prepare_img() _snake_case = processor(images=__lowercase , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = model(pixel_values.to(__lowercase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _snake_case = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _snake_case = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _snake_case = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _snake_case = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowercase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowercase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
1
from __future__ import annotations def a_ ( __lowercase : str , __lowercase : list[str] | None = None ) -> list[list[str]]: _snake_case = word_bank or [] # create a table _snake_case = len(__lowercase ) + 1 _snake_case = [] for _ in range(__lowercase ): table.append([] ) # seed value _snake_case = [[]] # because empty string has empty combination # iterate through the indices for i in range(__lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__lowercase )] == word: _snake_case = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__lowercase )]: combination.reverse() return table[len(__lowercase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
686
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCamelCase : Dict = '''pt''' elif is_tf_available(): _lowerCamelCase : List[str] = '''tf''' else: _lowerCamelCase : List[Any] = '''jax''' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = PerceiverTokenizer _UpperCAmelCase : Optional[int] = False def A ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : str ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def A ( self : Optional[int] , **lowercase : Dict ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[int] , lowercase : Tuple , lowercase : Optional[Any]=False , lowercase : int=20 , lowercase : Optional[int]=5 ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): try: _snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case = list(filter(lambda lowercase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , lowercase ) ) _snake_case = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: _snake_case = ' ' + output_txt _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = 'Unicode €.' _snake_case = tokenizer(lowercase ) _snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]Unicode €.[SEP]' ) _snake_case = tokenizer('e è é ê ë' ) _snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": _snake_case = list(batch.input_ids.numpy()[0] ) else: _snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('decoder_input_ids' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = [ 'Summary of the text.', 'Another summary.', ] _snake_case = tokenizer( text_target=lowercase , max_length=32 , padding='max_length' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) _snake_case = [f'''<extra_id_{i}>''' for i in range(125 )] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowercase )] _snake_case = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _snake_case = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
686
1
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def a_ ( __lowercase : str , __lowercase : str ) -> str: _snake_case = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) _snake_case = DatasetInfosDict.from_directory(__lowercase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def a_ ( __lowercase : Any , __lowercase : DatasetInfo ) -> str: _snake_case = str(__lowercase ) dataset_info.write_to_directory(__lowercase ) _snake_case = DatasetInfo.from_directory(__lowercase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__lowercase , 'dataset_info.json' ) ) def a_ ( ) -> List[str]: _snake_case = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1_337 , post_processing_size=442 , dataset_size=1_234 , size_in_bytes=1_337 + 442 + 1_234 , ) _snake_case = dataset_info._to_yaml_dict() assert sorted(__lowercase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _snake_case = yaml.safe_dump(__lowercase ) _snake_case = yaml.safe_load(__lowercase ) assert dataset_info_yaml_dict == reloaded def a_ ( ) -> List[str]: _snake_case = DatasetInfo() _snake_case = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1_337 ), } ), ] , ) def a_ ( __lowercase : Optional[Any] , __lowercase : DatasetInfosDict ) -> List[Any]: _snake_case = str(__lowercase ) dataset_infos_dict.write_to_directory(__lowercase ) _snake_case = DatasetInfosDict.from_directory(__lowercase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _snake_case = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _snake_case = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__lowercase , 'README.md' ) )
686
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[str] = ["image_processor", "tokenizer"] _UpperCAmelCase : Optional[int] = "BlipImageProcessor" _UpperCAmelCase : Tuple = ("BertTokenizer", "BertTokenizerFast") def __init__( self : str , lowercase : List[str] , lowercase : Dict ): '''simple docstring''' _snake_case = False super().__init__(lowercase , lowercase ) _snake_case = self.image_processor def __call__( self : List[str] , lowercase : ImageInput = None , lowercase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase : bool = True , lowercase : Union[bool, str, PaddingStrategy] = False , lowercase : Union[bool, str, TruncationStrategy] = None , lowercase : Optional[int] = None , lowercase : int = 0 , lowercase : Optional[int] = None , lowercase : Optional[bool] = None , lowercase : bool = False , lowercase : bool = False , lowercase : bool = False , lowercase : bool = False , lowercase : bool = False , lowercase : bool = True , lowercase : Optional[Union[str, TensorType]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: _snake_case = self.tokenizer _snake_case = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) return text_encoding # add pixel_values _snake_case = self.image_processor(lowercase , return_tensors=lowercase ) if text is not None: _snake_case = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) else: _snake_case = None if text_encoding is not None: encoding_image_processor.update(lowercase ) return encoding_image_processor def A ( self : Dict , *lowercase : Any , **lowercase : Optional[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A ( self : Tuple , *lowercase : int , **lowercase : Any ): '''simple docstring''' return self.tokenizer.decode(*lowercase , **lowercase ) @property def A ( self : List[str] ): '''simple docstring''' _snake_case = self.tokenizer.model_input_names _snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
686
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ["transformers", "torch", "note_seq"] def __init__( self : List[Any] , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
686
1
import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
686
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[str] = "mgp-str" def __init__( self : List[Any] , lowercase : List[str]=[32, 128] , lowercase : str=4 , lowercase : Tuple=3 , lowercase : str=27 , lowercase : List[str]=38 , lowercase : Any=50_257 , lowercase : Optional[int]=30_522 , lowercase : Dict=768 , lowercase : Optional[int]=12 , lowercase : Dict=12 , lowercase : Any=4.0 , lowercase : Any=True , lowercase : Any=False , lowercase : Any=1E-5 , lowercase : List[Any]=0.0 , lowercase : int=0.0 , lowercase : Tuple=0.0 , lowercase : Union[str, Any]=False , lowercase : Union[str, Any]=0.02 , **lowercase : Optional[int] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = max_token_length _snake_case = num_character_labels _snake_case = num_bpe_labels _snake_case = num_wordpiece_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = mlp_ratio _snake_case = distilled _snake_case = layer_norm_eps _snake_case = drop_rate _snake_case = qkv_bias _snake_case = attn_drop_rate _snake_case = drop_path_rate _snake_case = output_aa_attentions _snake_case = initializer_range
686
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : Optional[int] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _lowerCamelCase : List[str] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _lowerCamelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int=None , lowercase : str=True , lowercase : List[str]=False ): '''simple docstring''' if rouge_types is None: _snake_case = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _snake_case = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: _snake_case = scoring.BootstrapAggregator() else: _snake_case = [] for ref, pred in zip(lowercase , lowercase ): _snake_case = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: _snake_case = aggregator.aggregate() else: _snake_case = {} for key in scores[0]: _snake_case = [score[key] for score in scores] return result
686
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : str = CycleDiffusionPipeline _UpperCAmelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } _UpperCAmelCase : int = PipelineTesterMixin.required_optional_params - {"latents"} _UpperCAmelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) _UpperCAmelCase : int = IMAGE_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS def A ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _snake_case = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , num_train_timesteps=1_000 , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) _snake_case = CLIPTextModel(lowercase ) _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def A ( self : Any , lowercase : List[Any] , lowercase : List[str]=0 ): '''simple docstring''' _snake_case = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase ) ).to(lowercase ) _snake_case = image / 2 + 0.5 if str(lowercase ).startswith('mps' ): _snake_case = torch.manual_seed(lowercase ) else: _snake_case = torch.Generator(device=lowercase ).manual_seed(lowercase ) _snake_case = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = CycleDiffusionPipeline(**lowercase ) _snake_case = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_dummy_inputs(lowercase ) _snake_case = pipe(**lowercase ) _snake_case = output.images _snake_case = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) _snake_case = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.get_dummy_components() for name, module in components.items(): if hasattr(lowercase , 'half' ): _snake_case = module.half() _snake_case = CycleDiffusionPipeline(**lowercase ) _snake_case = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _snake_case = self.get_dummy_inputs(lowercase ) _snake_case = pipe(**lowercase ) _snake_case = output.images _snake_case = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) _snake_case = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def A ( self : Dict ): '''simple docstring''' return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def A ( self : List[str] ): '''simple docstring''' return super().test_inference_batch_single_identical() @skip_mps def A ( self : Optional[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def A ( self : Any ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def A ( self : Optional[Any] ): '''simple docstring''' return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[str] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : int ): '''simple docstring''' _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) _snake_case = init_image.resize((512, 512) ) _snake_case = 'CompVis/stable-diffusion-v1-4' _snake_case = DDIMScheduler.from_pretrained(lowercase , subfolder='scheduler' ) _snake_case = CycleDiffusionPipeline.from_pretrained( lowercase , scheduler=lowercase , safety_checker=lowercase , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() _snake_case = 'A black colored car' _snake_case = 'A blue colored car' _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=lowercase , source_prompt=lowercase , image=lowercase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase , output_type='np' , ) _snake_case = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def A ( self : str ): '''simple docstring''' _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) _snake_case = init_image.resize((512, 512) ) _snake_case = 'CompVis/stable-diffusion-v1-4' _snake_case = DDIMScheduler.from_pretrained(lowercase , subfolder='scheduler' ) _snake_case = CycleDiffusionPipeline.from_pretrained(lowercase , scheduler=lowercase , safety_checker=lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() _snake_case = 'A black colored car' _snake_case = 'A blue colored car' _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=lowercase , source_prompt=lowercase , image=lowercase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase , output_type='np' , ) _snake_case = output.images assert np.abs(image - expected_image ).max() < 2E-2
686
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "swin2sr" _UpperCAmelCase : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowercase : List[Any]=64 , lowercase : int=1 , lowercase : Union[str, Any]=3 , lowercase : Dict=180 , lowercase : List[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Dict=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : List[str]=2.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : List[str]=False , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-5 , lowercase : Optional[int]=2 , lowercase : Tuple=1.0 , lowercase : List[Any]="1conv" , lowercase : List[Any]="pixelshuffle" , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(lowercase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = upscale _snake_case = img_range _snake_case = resi_connection _snake_case = upsampler
686
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _lowerCamelCase : str = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def a_ ( __lowercase : Any=True ) -> List[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=UpperCAmelCase ) ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = None _UpperCAmelCase : List[Any] = None def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Union[str, Any] ): '''simple docstring''' with TemporaryDirectory() as tmp_dir: _snake_case = dataset_module_factory(lowercase , cache_dir=lowercase ) _snake_case = import_main_class(dataset_module.module_path , dataset=lowercase ) _snake_case = builder_cls( cache_dir=lowercase , config_name=lowercase , hash=dataset_module.hash , ) _snake_case = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowercase ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) _snake_case = cached_path(lowercase , cache_dir=lowercase ) self.assertTrue(os.path.exists(lowercase ) ) @pytest.mark.integration def a_ ( __lowercase : List[Any] ) -> List[str]: _snake_case = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' _snake_case = dataset_module_factory('wikipedia' , cache_dir=__lowercase ) _snake_case = import_main_class(dataset_module.module_path ) _snake_case = builder_cls( cache_dir=__lowercase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _snake_case = None builder_instance.download_and_prepare() _snake_case = builder_instance.as_dataset() assert ds @pytest.mark.integration def a_ ( __lowercase : int ) -> int: _snake_case = dataset_module_factory('wikipedia' , cache_dir=__lowercase ) _snake_case = import_main_class(dataset_module.module_path , dataset=__lowercase ) _snake_case = builder_cls( cache_dir=__lowercase , config_name='20220301.frr' , hash=dataset_module.hash , ) _snake_case = builder_instance.as_streaming_dataset() assert ds assert isinstance(__lowercase , __lowercase ) assert "train" in ds assert isinstance(ds['train'] , __lowercase ) assert next(iter(ds['train'] ) )
686
import random def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: _snake_case = a[left_index] _snake_case = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _snake_case , _snake_case = a[i], a[j] i += 1 _snake_case , _snake_case = a[i - 1], a[left_index] return i - 1 def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] ) -> Tuple: if left < right: _snake_case = random.randint(__lowercase , right - 1 ) _snake_case , _snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound _snake_case = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> str: _snake_case = input('Enter numbers separated by a comma:\n' ).strip() _snake_case = [int(__lowercase ) for item in user_input.split(',' )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
686
1
from __future__ import annotations import numpy as np def a_ ( __lowercase : list[float] ) -> List[Any]: return np.maximum(0 , __lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
686
import math def a_ ( __lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __lowercase : float = 0.1 ) -> int: _snake_case = 3 _snake_case = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
686
1
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _lowerCamelCase : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , *lowercase : Optional[Any] , **lowercase : str ): '''simple docstring''' warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase )
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] ): '''simple docstring''' _snake_case = tempfile.mkdtemp() # fmt: off _snake_case = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _snake_case = dict(zip(lowercase , range(len(lowercase ) ) ) ) _snake_case = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase ) ) _snake_case = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48145466, 0.4578275, 0.40821073], 'image_std': [0.26862954, 0.26130258, 0.27577711], } _snake_case = os.path.join(self.tmpdirname , lowercase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(lowercase , lowercase ) def A ( self : str , **lowercase : Union[str, Any] ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **lowercase ) def A ( self : List[Any] , **lowercase : Any ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **lowercase ) def A ( self : Optional[int] , **lowercase : Optional[Any] ): '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A ( self : int ): '''simple docstring''' _snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _snake_case = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self : Tuple ): '''simple docstring''' _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() _snake_case = self.get_image_processor() _snake_case = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_slow.save_pretrained(self.tmpdirname ) _snake_case = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase ) _snake_case = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_fast.save_pretrained(self.tmpdirname ) _snake_case = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase ) self.assertIsInstance(processor_fast.tokenizer , lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase ) self.assertIsInstance(processor_fast.image_processor , lowercase ) def A ( self : Any ): '''simple docstring''' _snake_case = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _snake_case = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _snake_case = self.get_image_processor(do_normalize=lowercase ) _snake_case = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) def A ( self : Dict ): '''simple docstring''' _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) _snake_case = self.prepare_image_inputs() _snake_case = image_processor(lowercase , return_tensors='np' ) _snake_case = processor(images=lowercase , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A ( self : Any ): '''simple docstring''' _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) _snake_case = 'lower newer' _snake_case = processor(text=lowercase , return_tensors='np' ) _snake_case = tokenizer(lowercase , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) _snake_case = 'lower newer' _snake_case = self.prepare_image_inputs() _snake_case = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = 'google/owlvit-base-patch32' _snake_case = OwlViTProcessor.from_pretrained(lowercase ) _snake_case = ['cat', 'nasa badge'] _snake_case = processor(text=lowercase ) _snake_case = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def A ( self : List[Any] ): '''simple docstring''' _snake_case = 'google/owlvit-base-patch32' _snake_case = OwlViTProcessor.from_pretrained(lowercase ) _snake_case = [['cat', 'nasa badge'], ['person']] _snake_case = processor(text=lowercase ) _snake_case = 16 _snake_case = len(lowercase ) _snake_case = max([len(lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def A ( self : List[Any] ): '''simple docstring''' _snake_case = 'google/owlvit-base-patch32' _snake_case = OwlViTProcessor.from_pretrained(lowercase ) _snake_case = ['cat', 'nasa badge'] _snake_case = processor(text=lowercase ) _snake_case = 16 _snake_case = inputs['input_ids'] _snake_case = [ [49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) _snake_case = self.prepare_image_inputs() _snake_case = self.prepare_image_inputs() _snake_case = processor(images=lowercase , query_images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def A ( self : Tuple ): '''simple docstring''' _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) _snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _snake_case = processor.batch_decode(lowercase ) _snake_case = tokenizer.batch_decode(lowercase ) self.assertListEqual(lowercase , lowercase )
686
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowercase ) for s in shape] )}.npy''' def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() def A ( self : List[Any] , lowercase : Tuple=0 , lowercase : Optional[int]=(4, 4, 64, 64) , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def A ( self : Tuple , lowercase : Any=False , lowercase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = 'bf16' if fpaa else None _snake_case , _snake_case = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder='unet' , dtype=lowercase , revision=lowercase ) return model, params def A ( self : Union[str, Any] , lowercase : str=0 , lowercase : Optional[Any]=(4, 77, 768) , lowercase : int=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def A ( self : str , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1_024) , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 )
686
1
import comet # From: unbabel-comet import torch import datasets _lowerCamelCase : Union[str, Any] = datasets.logging.get_logger(__name__) _lowerCamelCase : int = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' _lowerCamelCase : Any = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' _lowerCamelCase : Tuple = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://unbabel.github.io/COMET/html/index.html' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'sources': datasets.Value('string' , id='sequence' ), 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/Unbabel/COMET'] , reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] , ) def A ( self : Union[str, Any] , lowercase : List[Any] ): '''simple docstring''' if self.config_name == "default": _snake_case = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: _snake_case = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def A ( self : Any , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Any , lowercase : Tuple=None , lowercase : int=False ): '''simple docstring''' if gpus is None: _snake_case = 1 if torch.cuda.is_available() else 0 _snake_case = {'src': sources, 'mt': predictions, 'ref': references} _snake_case = [dict(zip(lowercase , lowercase ) ) for t in zip(*data.values() )] _snake_case , _snake_case = self.scorer.predict(lowercase , gpus=lowercase , progress_bar=lowercase ) return {"mean_score": mean_score, "scores": scores}
686
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
1
def a_ ( __lowercase : int = 50 ) -> int: _snake_case = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'{solution() = }')
686
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
1
def a_ ( __lowercase : str ) -> list: return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__lowercase ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
686
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "sequence-classification" def __init__( self : Optional[int] , lowercase : Any ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Optional[Any] , lowercase : str , lowercase : Tuple ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : int , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[str] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
686
1
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LEDConfig _UpperCAmelCase : int = {} _UpperCAmelCase : List[str] = "gelu" def __init__( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict=13 , lowercase : Dict=7 , lowercase : Tuple=True , lowercase : Dict=False , lowercase : Dict=99 , lowercase : Any=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[str]=37 , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : List[Any]=20 , lowercase : int=2 , lowercase : Optional[Any]=1 , lowercase : List[str]=0 , lowercase : Optional[int]=4 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case = prepare_led_inputs_dict(lowercase , lowercase , lowercase ) _snake_case = tf.concat( [tf.zeros_like(lowercase )[:, :-1], tf.ones_like(lowercase )[:, -1:]] , axis=-1 , ) _snake_case = global_attention_mask return config, inputs_dict def A ( self : str , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = TFLEDModel(config=lowercase ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : str=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase : Optional[int] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : Tuple = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = False _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False def A ( self : Any ): '''simple docstring''' _snake_case = TFLEDModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = tf.zeros_like(inputs_dict['attention_mask'] ) _snake_case = 2 _snake_case = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _snake_case = True _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase : List[str] ): _snake_case = outputs.decoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase : List[str] ): _snake_case = [t.numpy() for t in outputs.encoder_attentions] _snake_case = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = False _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) _snake_case = len(lowercase ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) if self.is_encoder_decoder: _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_decoder_attentions_output(lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase ) ) self.assertEqual(model.config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def a_ ( __lowercase : str ) -> Optional[Any]: return tf.constant(__lowercase , dtype=tf.intaa ) _lowerCamelCase : List[Any] = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, 768) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 ) def A ( self : str ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 , rtol=1E-3 )
686
1
def a_ ( __lowercase : str , __lowercase : str ) -> str: _snake_case = len(__lowercase ) _snake_case = len(__lowercase ) _snake_case = ( first_str_length if first_str_length > second_str_length else second_str_length ) _snake_case = [] for char_count in range(__lowercase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(__lowercase ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
686
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCamelCase : Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCamelCase : Union[str, Any] = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCamelCase : Optional[int] = '''zero2''' _lowerCamelCase : List[Any] = '''zero3''' _lowerCamelCase : Dict = [ZEROa, ZEROa] def a_ ( __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _snake_case = parameterized.to_safe_name('_'.join(str(__lowercase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _lowerCamelCase : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' pass def A ( self : str , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : bool = True , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = models[model] _snake_case = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A ( self : Any , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : int = 1 , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _snake_case = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _snake_case = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _snake_case = self.get_launcher(lowercase ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A ( self : List[str] , lowercase : Any=False ): '''simple docstring''' _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
686
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : int = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "yolos" def __init__( self : int , lowercase : List[str]=768 , lowercase : Tuple=12 , lowercase : int=12 , lowercase : int=3_072 , lowercase : Optional[int]="gelu" , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Optional[Any]=0.02 , lowercase : List[str]=1E-12 , lowercase : Dict=[512, 864] , lowercase : Union[str, Any]=16 , lowercase : List[Any]=3 , lowercase : List[str]=True , lowercase : Optional[int]=100 , lowercase : int=True , lowercase : Dict=False , lowercase : str=1 , lowercase : int=5 , lowercase : Tuple=2 , lowercase : List[str]=5 , lowercase : Any=2 , lowercase : List[str]=0.1 , **lowercase : int , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = num_detection_tokens _snake_case = use_mid_position_embeddings _snake_case = auxiliary_loss # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 @property def A ( self : List[Any] ): '''simple docstring''' return 12
686
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
from graphs.minimum_spanning_tree_kruskal import kruskal def a_ ( ) -> Tuple: _snake_case = 9 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = kruskal(__lowercase , __lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__lowercase ) == sorted(__lowercase )
686
import random from .binary_exp_mod import bin_exp_mod def a_ ( __lowercase : int , __lowercase : Any=1_000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__lowercase , __lowercase , __lowercase ) if b != 1: _snake_case = True for _ in range(__lowercase ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCamelCase : Tuple = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
686
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : int = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "convbert" def __init__( self : Dict , lowercase : List[Any]=30_522 , lowercase : Optional[Any]=768 , lowercase : Optional[int]=12 , lowercase : List[str]=12 , lowercase : int=3_072 , lowercase : List[Any]="gelu" , lowercase : List[Any]=0.1 , lowercase : Optional[int]=0.1 , lowercase : Optional[Any]=512 , lowercase : Union[str, Any]=2 , lowercase : Any=0.02 , lowercase : List[str]=1E-12 , lowercase : int=1 , lowercase : List[Any]=0 , lowercase : str=2 , lowercase : str=768 , lowercase : int=2 , lowercase : List[Any]=9 , lowercase : Tuple=1 , lowercase : List[str]=None , **lowercase : str , ): '''simple docstring''' super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase , ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = embedding_size _snake_case = head_ratio _snake_case = conv_kernel_size _snake_case = num_groups _snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @property def A ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": _snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
686
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCamelCase : int = re.compile(r'''\s+''') def a_ ( __lowercase : List[Any] ) -> int: return {"hash": hashlib.mda(re.sub(__lowercase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( __lowercase : List[Any] ) -> Dict: _snake_case = [len(__lowercase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__lowercase ), "line_max": max(__lowercase )} def a_ ( __lowercase : Optional[int] ) -> List[str]: _snake_case = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] ) -> Optional[int]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( __lowercase : Union[str, Any] , __lowercase : int=5 ) -> Optional[Any]: _snake_case = ['auto-generated', 'autogenerated', 'automatically generated'] _snake_case = example['content'].splitlines() for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( __lowercase : List[Any] , __lowercase : int=5 , __lowercase : Tuple=0.0_5 ) -> Union[str, Any]: _snake_case = ['unit tests', 'test file', 'configuration file'] _snake_case = example['content'].splitlines() _snake_case = 0 _snake_case = 0 # first test for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case = example['content'].count('\n' ) _snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( __lowercase : Union[str, Any] ) -> Any: _snake_case = ['def ', 'class ', 'for ', 'while '] _snake_case = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( __lowercase : Tuple , __lowercase : Any=4 ) -> List[str]: _snake_case = example['content'].splitlines() _snake_case = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( __lowercase : Dict ) -> Dict: _snake_case = tokenizer(example['content'] , truncation=__lowercase )['input_ids'] _snake_case = len(example['content'] ) / len(__lowercase ) return {"ratio": ratio} def a_ ( __lowercase : Optional[Any] ) -> Any: _snake_case = {} results.update(get_hash(__lowercase ) ) results.update(line_stats(__lowercase ) ) results.update(alpha_stats(__lowercase ) ) results.update(char_token_ratio(__lowercase ) ) results.update(is_autogenerated(__lowercase ) ) results.update(is_config_or_test(__lowercase ) ) results.update(has_no_keywords(__lowercase ) ) results.update(has_few_assignments(__lowercase ) ) return results def a_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : List[Any] ) -> int: if not check_uniques(__lowercase , __lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( __lowercase : Dict ) -> Dict: with open(__lowercase , 'rb' ) as f_in: with gzip.open(str(__lowercase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowercase , __lowercase ) os.unlink(__lowercase ) # Settings _lowerCamelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCamelCase : Dict = parser.parse_args() if args.num_workers is None: _lowerCamelCase : int = multiprocessing.cpu_count() _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCamelCase : Any = time.time() _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing _lowerCamelCase : Optional[int] = time.time() _lowerCamelCase : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes _lowerCamelCase : List[Any] = set(ds.unique('''hash''')) _lowerCamelCase : Dict = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics _lowerCamelCase : List[Any] = time.time() _lowerCamelCase : Optional[int] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCamelCase : Union[str, Any] = time.time() _lowerCamelCase , _lowerCamelCase : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file _lowerCamelCase : Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCamelCase : int = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCamelCase : Union[str, Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCamelCase : Dict = str(data_dir / F'file-{file_number+1:012}.json') _lowerCamelCase : str = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
686
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _lowerCamelCase : int = get_tests_dir('''fixtures''') class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[int] ): '''simple docstring''' _snake_case = mock.Mock() _snake_case = 500 _snake_case = {} _snake_case = HTTPError _snake_case = {} # Download this model to make sure it's in the cache. _snake_case = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=lowercase ) as mock_head: _snake_case = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def A ( self : List[Any] ): '''simple docstring''' _snake_case = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @classmethod def A ( cls : Tuple ): '''simple docstring''' _snake_case = TOKEN HfFolder.save_token(lowercase ) @classmethod def A ( cls : Any ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def A ( self : List[str] ): '''simple docstring''' _snake_case = WavaVecaFeatureExtractor.from_pretrained(lowercase ) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token ) _snake_case = WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase , repo_id='test-feature-extractor' , push_to_hub=lowercase , use_auth_token=self._token ) _snake_case = WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = WavaVecaFeatureExtractor.from_pretrained(lowercase ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token ) _snake_case = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=lowercase , use_auth_token=self._token ) _snake_case = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) def A ( self : str ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() _snake_case = CustomFeatureExtractor.from_pretrained(lowercase ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) _snake_case = AutoFeatureExtractor.from_pretrained( f'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=lowercase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : int = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "yolos" def __init__( self : int , lowercase : List[str]=768 , lowercase : Tuple=12 , lowercase : int=12 , lowercase : int=3_072 , lowercase : Optional[int]="gelu" , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Optional[Any]=0.02 , lowercase : List[str]=1E-12 , lowercase : Dict=[512, 864] , lowercase : Union[str, Any]=16 , lowercase : List[Any]=3 , lowercase : List[str]=True , lowercase : Optional[int]=100 , lowercase : int=True , lowercase : Dict=False , lowercase : str=1 , lowercase : int=5 , lowercase : Tuple=2 , lowercase : List[str]=5 , lowercase : Any=2 , lowercase : List[str]=0.1 , **lowercase : int , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = num_detection_tokens _snake_case = use_mid_position_embeddings _snake_case = auxiliary_loss # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 @property def A ( self : List[Any] ): '''simple docstring''' return 12
686
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "swin2sr" _UpperCAmelCase : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowercase : List[Any]=64 , lowercase : int=1 , lowercase : Union[str, Any]=3 , lowercase : Dict=180 , lowercase : List[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Dict=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : List[str]=2.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : List[str]=False , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-5 , lowercase : Optional[int]=2 , lowercase : Tuple=1.0 , lowercase : List[Any]="1conv" , lowercase : List[Any]="pixelshuffle" , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(lowercase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = upscale _snake_case = img_range _snake_case = resi_connection _snake_case = upsampler
686
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring _lowerCamelCase : Union[str, Any] = '''ResNetConfig''' # Base docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[Any] = [1, 2_048, 7, 7] # Image classification docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[int] = '''tiger cat''' _lowerCamelCase : str = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Union[str, Any] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def A ( self : Tuple , lowercase : Tensor ): '''simple docstring''' _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowercase ) _snake_case = self.pooler(lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int = 2 ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" , lowercase : int = 4 ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : ResNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , ): '''simple docstring''' super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = input for layer in self.layers: _snake_case = layer(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def A ( self : str , lowercase : Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ResNetConfig _UpperCAmelCase : Tuple = "resnet" _UpperCAmelCase : Optional[Any] = "pixel_values" _UpperCAmelCase : Dict = True def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Union[str, Any] , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = ResNetModel(lowercase ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowercase ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase ) super()._init_backbone(lowercase ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def A ( self : Dict , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowercase ) _snake_case = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
686
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def a_ ( __lowercase : int = 3 ) -> qiskit.result.counts.Counts: if isinstance(__lowercase , __lowercase ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(__lowercase ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) _snake_case = QuantumRegister(__lowercase , 'qr' ) _snake_case = ClassicalRegister(__lowercase , 'cr' ) _snake_case = QuantumCircuit(__lowercase , __lowercase ) _snake_case = number_of_qubits for i in range(__lowercase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__lowercase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , __lowercase , __lowercase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__lowercase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__lowercase , __lowercase ) # simulate with 10000 shots _snake_case = Aer.get_backend('qasm_simulator' ) _snake_case = execute(__lowercase , __lowercase , shots=10_000 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print( F'Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}' )
686
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
from __future__ import annotations def a_ ( __lowercase : float , __lowercase : float , __lowercase : float , ) -> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative in a semiconductor' ) elif hole_conc < 0: raise ValueError('Hole concentration cannot be negative in a semiconductor' ) elif intrinsic_conc < 0: raise ValueError( 'Intrinsic concentration cannot be negative in a semiconductor' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
686
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : Union[str, Any] ) -> List[Any]: _snake_case = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _snake_case = DetaConfig( backbone_config=__lowercase , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=__lowercase , with_box_refine=__lowercase , two_stage=__lowercase , ) # set labels _snake_case = 'huggingface/label-files' if "o365" in model_name: _snake_case = 366 _snake_case = 'object365-id2label.json' else: _snake_case = 91 _snake_case = 'coco-detection-id2label.json' _snake_case = num_labels _snake_case = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset' ) ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def a_ ( __lowercase : int ) -> str: _snake_case = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : str ) -> Union[str, Any]: _snake_case = dct.pop(__lowercase ) _snake_case = val def a_ ( __lowercase : List[str] , __lowercase : str ) -> Dict: _snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:dim, :] _snake_case = in_proj_bias[: dim] _snake_case = in_proj_weight[ dim : dim * 2, : ] _snake_case = in_proj_bias[ dim : dim * 2 ] _snake_case = in_proj_weight[ -dim :, : ] _snake_case = in_proj_bias[-dim :] # fmt: on def a_ ( __lowercase : Dict , __lowercase : Dict ) -> str: # transformer decoder self-attention layers _snake_case = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:hidden_size, :] _snake_case = in_proj_bias[:hidden_size] _snake_case = in_proj_weight[ hidden_size : hidden_size * 2, : ] _snake_case = in_proj_bias[hidden_size : hidden_size * 2] _snake_case = in_proj_weight[-hidden_size:, :] _snake_case = in_proj_bias[-hidden_size:] def a_ ( ) -> List[str]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Tuple ) -> Optional[Any]: _snake_case = get_deta_config(__lowercase ) # load original state dict if model_name == "deta-swin-large": _snake_case = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _snake_case = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__lowercase , param.shape ) # rename keys _snake_case = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_swin_q_k_v(__lowercase , config.backbone_config ) read_in_decoder_q_k_v(__lowercase , __lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "input_proj" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = DetaForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() _snake_case = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__lowercase ) # load image processor _snake_case = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _snake_case = prepare_img() _snake_case = processor(images=__lowercase , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = model(pixel_values.to(__lowercase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _snake_case = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _snake_case = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _snake_case = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _snake_case = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowercase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowercase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCamelCase : str = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def a_ ( __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[Any] , __lowercase : List[str] , __lowercase : List[str] ) -> Optional[Any]: for attribute in key.split('.' ): _snake_case = getattr(__lowercase , __lowercase ) if weight_type is not None: _snake_case = getattr(__lowercase , __lowercase ).shape else: _snake_case = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": _snake_case = value elif weight_type == "weight_g": _snake_case = value elif weight_type == "weight_v": _snake_case = value elif weight_type == "bias": _snake_case = value elif weight_type == "running_mean": _snake_case = value elif weight_type == "running_var": _snake_case = value elif weight_type == "num_batches_tracked": _snake_case = value elif weight_type == "inv_freq": _snake_case = value else: _snake_case = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def a_ ( __lowercase : Tuple , __lowercase : List[str] , __lowercase : int ) -> List[str]: _snake_case = [] _snake_case = fairseq_model.state_dict() _snake_case = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _snake_case = False if "conv_layers" in name: load_conv_layer( __lowercase , __lowercase , __lowercase , __lowercase , hf_model.config.feat_extract_norm == 'group' , ) _snake_case = True else: for key, mapped_key in MAPPING.items(): _snake_case = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _snake_case = True if "*" in mapped_key: _snake_case = name.split(__lowercase )[0].split('.' )[-2] _snake_case = mapped_key.replace('*' , __lowercase ) if "pos_bias_u" in name: _snake_case = None elif "pos_bias_v" in name: _snake_case = None elif "weight_g" in name: _snake_case = 'weight_g' elif "weight_v" in name: _snake_case = 'weight_v' elif "bias" in name: _snake_case = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _snake_case = 'weight' elif "running_mean" in name: _snake_case = 'running_mean' elif "inv_freq" in name: _snake_case = 'inv_freq' elif "running_var" in name: _snake_case = 'running_var' elif "num_batches_tracked" in name: _snake_case = 'num_batches_tracked' else: _snake_case = None set_recursively(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def a_ ( __lowercase : List[str] , __lowercase : Union[str, Any] , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : List[str] ) -> Optional[int]: _snake_case = full_name.split('conv_layers.' )[-1] _snake_case = name.split('.' ) _snake_case = int(items[0] ) _snake_case = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowercase ) @torch.no_grad() def a_ ( __lowercase : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : Tuple=None , __lowercase : str=None , __lowercase : Optional[int]=True ) -> Any: if config_path is not None: _snake_case = WavaVecaConformerConfig.from_pretrained(__lowercase , hidden_act='swish' ) else: _snake_case = WavaVecaConformerConfig() if "rope" in checkpoint_path: _snake_case = 'rotary' if is_finetuned: if dict_path: _snake_case = Dictionary.load(__lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _snake_case = target_dict.pad_index _snake_case = target_dict.bos_index _snake_case = target_dict.eos_index _snake_case = len(target_dict.symbols ) _snake_case = os.path.join(__lowercase , 'vocab.json' ) if not os.path.isdir(__lowercase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__lowercase ) ) return os.makedirs(__lowercase , exist_ok=__lowercase ) _snake_case = target_dict.indices # fairseq has the <pad> and <s> switched _snake_case = 0 _snake_case = 1 with open(__lowercase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__lowercase , __lowercase ) _snake_case = WavaVecaCTCTokenizer( __lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__lowercase , ) _snake_case = True if config.feat_extract_norm == 'layer' else False _snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__lowercase , return_attention_mask=__lowercase , ) _snake_case = WavaVecaProcessor(feature_extractor=__lowercase , tokenizer=__lowercase ) processor.save_pretrained(__lowercase ) _snake_case = WavaVecaConformerForCTC(__lowercase ) else: _snake_case = WavaVecaConformerForPreTraining(__lowercase ) if is_finetuned: _snake_case , _snake_case , _snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _snake_case = argparse.Namespace(task='audio_pretraining' ) _snake_case = fairseq.tasks.setup_task(__lowercase ) _snake_case , _snake_case , _snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowercase ) _snake_case = model[0].eval() recursively_load_weights(__lowercase , __lowercase , not is_finetuned ) hf_wavavec.save_pretrained(__lowercase ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
686
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCamelCase : Dict = '''pt''' elif is_tf_available(): _lowerCamelCase : List[str] = '''tf''' else: _lowerCamelCase : List[Any] = '''jax''' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = PerceiverTokenizer _UpperCAmelCase : Optional[int] = False def A ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : str ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def A ( self : Optional[int] , **lowercase : Dict ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[int] , lowercase : Tuple , lowercase : Optional[Any]=False , lowercase : int=20 , lowercase : Optional[int]=5 ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): try: _snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case = list(filter(lambda lowercase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , lowercase ) ) _snake_case = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: _snake_case = ' ' + output_txt _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = 'Unicode €.' _snake_case = tokenizer(lowercase ) _snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]Unicode €.[SEP]' ) _snake_case = tokenizer('e è é ê ë' ) _snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": _snake_case = list(batch.input_ids.numpy()[0] ) else: _snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('decoder_input_ids' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = [ 'Summary of the text.', 'Another summary.', ] _snake_case = tokenizer( text_target=lowercase , max_length=32 , padding='max_length' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) _snake_case = [f'''<extra_id_{i}>''' for i in range(125 )] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowercase )] _snake_case = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _snake_case = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
686
1
def a_ ( __lowercase : int = 3 , __lowercase : int = 7 , __lowercase : int = 1_000_000 ) -> int: _snake_case = 0 _snake_case = 1 for current_denominator in range(1 , limit + 1 ): _snake_case = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _snake_case = current_numerator _snake_case = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
686
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
1
def a_ ( __lowercase : Tuple ) -> Any: _snake_case = [0] * len(__lowercase ) _snake_case = [] _snake_case = [] _snake_case = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__lowercase ) ): if indegree[i] == 0: queue.append(__lowercase ) while queue: _snake_case = queue.pop(0 ) cnt += 1 topo.append(__lowercase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__lowercase ) if cnt != len(__lowercase ): print('Cycle exists' ) else: print(__lowercase ) # Adjacency List of Graph _lowerCamelCase : Union[str, Any] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
686
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ["transformers", "torch", "note_seq"] def __init__( self : List[Any] , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
686
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "microsoft/speecht5_tts" _UpperCAmelCase : Dict = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _UpperCAmelCase : Dict = "text_reader" _UpperCAmelCase : int = SpeechTaProcessor _UpperCAmelCase : Optional[int] = SpeechTaForTextToSpeech _UpperCAmelCase : Union[str, Any] = SpeechTaHifiGan _UpperCAmelCase : Optional[Any] = ["text"] _UpperCAmelCase : Any = ["audio"] def A ( self : Optional[Any] ): '''simple docstring''' if self.post_processor is None: _snake_case = 'microsoft/speecht5_hifigan' super().setup() def A ( self : Tuple , lowercase : str , lowercase : Dict=None ): '''simple docstring''' _snake_case = self.pre_processor(text=lowercase , return_tensors='pt' , truncation=lowercase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) _snake_case = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) _snake_case = torch.tensor(embeddings_dataset[7_305]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def A ( self : List[str] , lowercase : Union[str, Any] ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowercase ) def A ( self : List[str] , lowercase : List[Any] ): '''simple docstring''' with torch.no_grad(): return self.post_processor(lowercase ).cpu().detach()
686
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : Optional[int] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _lowerCamelCase : List[str] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _lowerCamelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int=None , lowercase : str=True , lowercase : List[str]=False ): '''simple docstring''' if rouge_types is None: _snake_case = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _snake_case = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: _snake_case = scoring.BootstrapAggregator() else: _snake_case = [] for ref, pred in zip(lowercase , lowercase ): _snake_case = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: _snake_case = aggregator.aggregate() else: _snake_case = {} for key in scores[0]: _snake_case = [score[key] for score in scores] return result
686
1
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "sequence-classification" def __init__( self : Optional[int] , lowercase : Any ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Optional[Any] , lowercase : str , lowercase : Tuple ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : int , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[str] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
686
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "swin2sr" _UpperCAmelCase : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowercase : List[Any]=64 , lowercase : int=1 , lowercase : Union[str, Any]=3 , lowercase : Dict=180 , lowercase : List[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Dict=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : List[str]=2.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : List[str]=False , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-5 , lowercase : Optional[int]=2 , lowercase : Tuple=1.0 , lowercase : List[Any]="1conv" , lowercase : List[Any]="pixelshuffle" , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(lowercase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = upscale _snake_case = img_range _snake_case = resi_connection _snake_case = upsampler
686
1
import math from collections.abc import Callable def a_ ( __lowercase : Callable[[float], float] , __lowercase : float , __lowercase : float ) -> float: _snake_case = xa _snake_case = xa while True: if x_n == x_na or function(__lowercase ) == function(__lowercase ): raise ZeroDivisionError('float division by zero, could not find root' ) _snake_case = x_na - ( function(__lowercase ) / ((function(__lowercase ) - function(__lowercase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na _snake_case = x_na _snake_case = x_na def a_ ( __lowercase : float ) -> float: return math.pow(__lowercase , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
686
import random def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: _snake_case = a[left_index] _snake_case = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _snake_case , _snake_case = a[i], a[j] i += 1 _snake_case , _snake_case = a[i - 1], a[left_index] return i - 1 def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] ) -> Tuple: if left < right: _snake_case = random.randint(__lowercase , right - 1 ) _snake_case , _snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound _snake_case = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> str: _snake_case = input('Enter numbers separated by a comma:\n' ).strip() _snake_case = [int(__lowercase ) for item in user_input.split(',' )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
686
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def a_ ( __lowercase : str , __lowercase : str , __lowercase : str , __lowercase : PreTrainedTokenizer , __lowercase : int , __lowercase : Optional[int] = None , ) -> Tuple: _snake_case = {} if train_file is not None: _snake_case = [train_file] if eval_file is not None: _snake_case = [eval_file] if test_file is not None: _snake_case = [test_file] _snake_case = datasets.load_dataset('csv' , data_files=__lowercase ) _snake_case = list(ds[list(files.keys() )[0]].features.keys() ) _snake_case = features_name.pop(__lowercase ) _snake_case = list(set(ds[list(files.keys() )[0]][label_name] ) ) _snake_case = {label: i for i, label in enumerate(__lowercase )} _snake_case = tokenizer.model_input_names _snake_case = {} if len(__lowercase ) == 1: for k in files.keys(): _snake_case = ds[k].map( lambda __lowercase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__lowercase , max_length=__lowercase , padding='max_length' ) , batched=__lowercase , ) elif len(__lowercase ) == 2: for k in files.keys(): _snake_case = ds[k].map( lambda __lowercase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__lowercase , max_length=__lowercase , padding='max_length' , ) , batched=__lowercase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _snake_case = {k: v for k, v in ex.items() if k in input_names} _snake_case = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _snake_case = {k: v for k, v in ex.items() if k in input_names} _snake_case = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _snake_case = {k: v for k, v in ex.items() if k in input_names} _snake_case = labelaid[ex[label_name]] yield (d, label) _snake_case = ( tf.data.Dataset.from_generator( __lowercase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _snake_case = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _snake_case = ( tf.data.Dataset.from_generator( __lowercase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _snake_case = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _snake_case = ( tf.data.Dataset.from_generator( __lowercase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _snake_case = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _lowerCamelCase : List[str] = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : int = field(metadata={"help": "Which column contains the label"} ) _UpperCAmelCase : str = field(default=UpperCAmelCase ,metadata={"help": "The path of the training file"} ) _UpperCAmelCase : Optional[str] = field(default=UpperCAmelCase ,metadata={"help": "The path of the development file"} ) _UpperCAmelCase : Optional[str] = field(default=UpperCAmelCase ,metadata={"help": "The path of the test file"} ) _UpperCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) _UpperCAmelCase : bool = field( default=UpperCAmelCase ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCAmelCase : Optional[str] = field( default=UpperCAmelCase ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCAmelCase : Optional[str] = field( default=UpperCAmelCase ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCAmelCase : bool = field(default=UpperCAmelCase ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _UpperCAmelCase : Optional[str] = field( default=UpperCAmelCase ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) def a_ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _snake_case , _snake_case , _snake_case = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _snake_case , _snake_case , _snake_case , _snake_case = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__lowercase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__lowercase ) , labelaid=__lowercase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _snake_case = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , ) def compute_metrics(__lowercase : EvalPrediction ) -> Dict: _snake_case = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _snake_case = TFTrainer( model=__lowercase , args=__lowercase , train_dataset=__lowercase , eval_dataset=__lowercase , compute_metrics=__lowercase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _snake_case = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _snake_case = trainer.evaluate() _snake_case = os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(__lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(__lowercase ) return results if __name__ == "__main__": main()
686
import math def a_ ( __lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __lowercase : float = 0.1 ) -> int: _snake_case = 3 _snake_case = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
686
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCamelCase : Any = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = ["pixel_values"] def __init__( self : Any , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : float = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : int , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = size if size is not None else {'shortest_edge': 384} _snake_case = get_size_dict(lowercase , default_to_square=lowercase ) _snake_case = do_resize _snake_case = size # Default value set here for backwards compatibility where the value in config is None _snake_case = crop_pct if crop_pct is not None else 224 / 256 _snake_case = resample _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : int , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : float , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : int , ): '''simple docstring''' _snake_case = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) _snake_case = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _snake_case = int(shortest_edge / crop_pct ) _snake_case = get_resize_output_image_size(lowercase , size=lowercase , default_to_square=lowercase ) _snake_case = resize(image=lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowercase , size=(shortest_edge, shortest_edge) , data_format=lowercase , **lowercase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowercase , size=(shortest_edge, shortest_edge) , resample=lowercase , data_format=lowercase , **lowercase ) def A ( self : Tuple , lowercase : np.ndarray , lowercase : Union[int, float] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Any , ): '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[Any] , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def A ( self : int , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : float = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : ChannelDimension = ChannelDimension.FIRST , **lowercase : int , ): '''simple docstring''' _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = crop_pct if crop_pct is not None else self.crop_pct _snake_case = resample if resample is not None else self.resample _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = size if size is not None else self.size _snake_case = get_size_dict(lowercase , default_to_square=lowercase ) _snake_case = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(lowercase ) for image in images] if do_resize: _snake_case = [self.resize(image=lowercase , size=lowercase , crop_pct=lowercase , resample=lowercase ) for image in images] if do_rescale: _snake_case = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: _snake_case = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] _snake_case = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _snake_case = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
1
def a_ ( __lowercase : int , __lowercase : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def a_ ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
686
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowercase ) for s in shape] )}.npy''' def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() def A ( self : List[Any] , lowercase : Tuple=0 , lowercase : Optional[int]=(4, 4, 64, 64) , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def A ( self : Tuple , lowercase : Any=False , lowercase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = 'bf16' if fpaa else None _snake_case , _snake_case = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder='unet' , dtype=lowercase , revision=lowercase ) return model, params def A ( self : Union[str, Any] , lowercase : str=0 , lowercase : Optional[Any]=(4, 77, 768) , lowercase : int=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def A ( self : str , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1_024) , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 )
686
1
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def A ( self : str ): '''simple docstring''' for model_name in ["bert-base-uncased"]: _snake_case = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _snake_case = TFAutoModel.from_pretrained(lowercase , from_pt=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _snake_case = AutoModel.from_pretrained(lowercase , from_tf=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) @slow def A ( self : Optional[int] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: _snake_case = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _snake_case = TFAutoModelForPreTraining.from_pretrained(lowercase , from_pt=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _snake_case = AutoModelForPreTraining.from_pretrained(lowercase , from_tf=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) @slow def A ( self : str ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _snake_case = TFAutoModelForCausalLM.from_pretrained(lowercase , from_pt=lowercase ) _snake_case , _snake_case = TFAutoModelForCausalLM.from_pretrained( lowercase , output_loading_info=lowercase , from_pt=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _snake_case = AutoModelForCausalLM.from_pretrained(lowercase , from_tf=lowercase ) _snake_case , _snake_case = AutoModelForCausalLM.from_pretrained( lowercase , output_loading_info=lowercase , from_tf=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) @slow def A ( self : int ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _snake_case = TFAutoModelWithLMHead.from_pretrained(lowercase , from_pt=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _snake_case = AutoModelWithLMHead.from_pretrained(lowercase , from_tf=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) @slow def A ( self : int ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _snake_case = TFAutoModelForMaskedLM.from_pretrained(lowercase , from_pt=lowercase ) _snake_case , _snake_case = TFAutoModelForMaskedLM.from_pretrained( lowercase , output_loading_info=lowercase , from_pt=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _snake_case = AutoModelForMaskedLM.from_pretrained(lowercase , from_tf=lowercase ) _snake_case , _snake_case = AutoModelForMaskedLM.from_pretrained( lowercase , output_loading_info=lowercase , from_tf=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) @slow def A ( self : Optional[int] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase , from_pt=lowercase ) _snake_case , _snake_case = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase , output_loading_info=lowercase , from_pt=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _snake_case = AutoModelForSeqaSeqLM.from_pretrained(lowercase , from_tf=lowercase ) _snake_case , _snake_case = AutoModelForSeqaSeqLM.from_pretrained( lowercase , output_loading_info=lowercase , from_tf=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) @slow def A ( self : Optional[int] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: _snake_case = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _snake_case = TFAutoModelForSequenceClassification.from_pretrained(lowercase , from_pt=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _snake_case = AutoModelForSequenceClassification.from_pretrained(lowercase , from_tf=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) @slow def A ( self : int ): '''simple docstring''' for model_name in ["bert-base-uncased"]: _snake_case = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _snake_case = TFAutoModelForQuestionAnswering.from_pretrained(lowercase , from_pt=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _snake_case = AutoModelForQuestionAnswering.from_pretrained(lowercase , from_tf=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = TFAutoModelWithLMHead.from_pretrained(lowercase , from_pt=lowercase ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase ) , 14_410 ) _snake_case = AutoModelWithLMHead.from_pretrained(lowercase , from_tf=lowercase ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase ) , 14_410 ) def A ( self : Tuple ): '''simple docstring''' _snake_case = TFAutoModelWithLMHead.from_pretrained(lowercase , from_pt=lowercase ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase ) , 14_410 ) _snake_case = AutoModelWithLMHead.from_pretrained(lowercase , from_tf=lowercase ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase ) , 14_410 )
686
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
1