code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class snake_case_ ( __lowercase ): A_ = "bert" def __init__( self : Tuple , _snake_case : Any=30522 , _snake_case : List[Any]=768 , _snake_case : Tuple=12 , _snake_case : Dict=12 , _snake_case : int=3072 , _snake_case : int="gelu" , _snake_case : Optional[Any]=0.1 , _snake_case : Any=0.1 , _snake_case : List[str]=512 , _snake_case : List[Any]=2 , _snake_case : List[str]=0.02 , _snake_case : Tuple=1E-12 , _snake_case : str=0 , _snake_case : Optional[int]="absolute" , _snake_case : List[Any]=True , _snake_case : List[str]=None , **_snake_case : List[str] , )->str: '''simple docstring''' super().__init__(pad_token_id=_snake_case , **_snake_case ) __lowerCAmelCase : str = vocab_size __lowerCAmelCase : List[Any] = hidden_size __lowerCAmelCase : List[Any] = num_hidden_layers __lowerCAmelCase : str = num_attention_heads __lowerCAmelCase : Union[str, Any] = hidden_act __lowerCAmelCase : List[str] = intermediate_size __lowerCAmelCase : Optional[Any] = hidden_dropout_prob __lowerCAmelCase : Dict = attention_probs_dropout_prob __lowerCAmelCase : Optional[Any] = max_position_embeddings __lowerCAmelCase : Union[str, Any] = type_vocab_size __lowerCAmelCase : Any = initializer_range __lowerCAmelCase : Optional[int] = layer_norm_eps __lowerCAmelCase : Tuple = position_embedding_type __lowerCAmelCase : Union[str, Any] = use_cache __lowerCAmelCase : List[Any] = classifier_dropout class snake_case_ ( __lowercase ): @property def UpperCAmelCase__ ( self : List[str] )->List[Any]: '''simple docstring''' if self.task == "multiple-choice": __lowerCAmelCase : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowerCAmelCase : Dict = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
504
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
0
'''simple docstring''' from statistics import mean, stdev def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase = 3 ): """simple docstring""" lowerCAmelCase__ : Optional[int] = min(__lowercase ) lowerCAmelCase__ : List[Any] = max(__lowercase ) # normalize data return [round((x - x_min) / (x_max - x_min) , __lowercase ) for x in data] def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase = 3 ): """simple docstring""" lowerCAmelCase__ : List[str] = mean(__lowercase ) lowerCAmelCase__ : Optional[Any] = stdev(__lowercase ) # standardize data return [round((x - mu) / (sigma) , __lowercase ) for x in data]
565
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : Optional[int] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _lowerCamelCase : List[str] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _lowerCamelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int=None , lowercase : str=True , lowercase : List[str]=False ): '''simple docstring''' if rouge_types is None: _snake_case = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _snake_case = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: _snake_case = scoring.BootstrapAggregator() else: _snake_case = [] for ref, pred in zip(lowercase , lowercase ): _snake_case = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: _snake_case = aggregator.aggregate() else: _snake_case = {} for key in scores[0]: _snake_case = [score[key] for score in scores] return result
686
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = {'''vocab_file''': '''spiece.model'''} snake_case = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } snake_case = {'''bert_for_seq_generation''': 512} class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[int] = [] UpperCamelCase_ : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int]="<s>" , UpperCAmelCase_ : List[str]="</s>" , UpperCAmelCase_ : Optional[int]="<unk>" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Any="<::::>" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ): SCREAMING_SNAKE_CASE : Dict = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = vocab_file SCREAMING_SNAKE_CASE : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @property def _A ( self : List[str] ): return self.sp_model.get_piece_size() def _A ( self : int ): SCREAMING_SNAKE_CASE : int = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : int = None return state def __setstate__( self : List[Any] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Optional[int] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE : Tuple = {} SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _A ( self : List[str] , UpperCAmelCase_ : str ): return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) def _A ( self : List[Any] , UpperCAmelCase_ : Optional[int] ): return self.sp_model.piece_to_id(UpperCAmelCase_ ) def _A ( self : Tuple , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : List[str] = self.sp_model.IdToPiece(UpperCAmelCase_ ) return token def _A ( self : Dict , UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Tuple = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase_ ) + token SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(UpperCAmelCase_ ) out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def _A ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , "wb" ) as fi: SCREAMING_SNAKE_CASE : Dict = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
62
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "swin2sr" _UpperCAmelCase : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowercase : List[Any]=64 , lowercase : int=1 , lowercase : Union[str, Any]=3 , lowercase : Dict=180 , lowercase : List[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Dict=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : List[str]=2.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : List[str]=False , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-5 , lowercase : Optional[int]=2 , lowercase : Tuple=1.0 , lowercase : List[Any]="1conv" , lowercase : List[Any]="pixelshuffle" , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(lowercase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = upscale _snake_case = img_range _snake_case = resi_connection _snake_case = upsampler
686
0
from __future__ import annotations from random import random from typing import Generic, TypeVar lowerCamelCase : List[str] = TypeVar('KT') lowerCamelCase : Optional[int] = TypeVar('VT') class __lowercase (Generic[KT, VT] ): """simple docstring""" def __init__( self , A = "root" , A = None ) -> str: snake_case : Optional[int] = key snake_case : Union[str, Any] = value snake_case : Optional[int] = [] def __repr__( self ) -> str: return f"""Node({self.key}: {self.value})""" @property def UpperCAmelCase ( self ) -> int: return len(self.forward ) class __lowercase (Generic[KT, VT] ): """simple docstring""" def __init__( self , A = 0.5 , A = 1_6 ) -> str: snake_case : Dict = Node[KT, VT]() snake_case : str = 0 snake_case : Optional[Any] = p snake_case : List[str] = max_level def __str__( self ) -> Any: snake_case : Tuple = list(self ) if len(A ) == 0: return f"""SkipList(level={self.level})""" snake_case : Optional[int] = max((len(str(A ) ) for item in items) , default=4 ) snake_case : List[Any] = max(A , 4 ) + 4 snake_case : Tuple = self.head snake_case : List[Any] = [] snake_case : str = node.forward.copy() lines.append(f"""[{node.key}]""".ljust(A , """-""" ) + """* """ * len(A ) ) lines.append(""" """ * label_size + """| """ * len(A ) ) while len(node.forward ) != 0: snake_case : List[Any] = node.forward[0] lines.append( f"""[{node.key}]""".ljust(A , """-""" ) + """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) ) lines.append(""" """ * label_size + """| """ * len(A ) ) snake_case : str = node.forward lines.append("""None""".ljust(A ) + """* """ * len(A ) ) return f"""SkipList(level={self.level})\n""" + "\n".join(A ) def __iter__( self ) -> List[Any]: snake_case : Any = self.head while len(node.forward ) != 0: yield node.forward[0].key snake_case : Any = node.forward[0] def UpperCAmelCase ( self ) -> Optional[int]: snake_case : List[Any] = 1 while random() < self.p and level < self.max_level: level += 1 return level def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : Tuple = [] snake_case : Tuple = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: snake_case : int = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(A ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def UpperCAmelCase ( self , A ) -> Dict: snake_case , snake_case : Optional[int] = self._locate_node(A ) if node is not None: for i, update_node in enumerate(A ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: snake_case : Optional[int] = node.forward[i] else: snake_case : int = update_node.forward[:i] def UpperCAmelCase ( self , A , A ) -> List[str]: snake_case , snake_case : Tuple = self._locate_node(A ) if node is not None: snake_case : Optional[int] = value else: snake_case : Optional[int] = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , A ): update_vector.append(self.head ) snake_case : Any = level snake_case : List[Any] = Node(A , A ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(A ) else: snake_case : List[str] = new_node def UpperCAmelCase ( self , A ) -> Tuple: snake_case , snake_case : Dict = self._locate_node(A ) if node is not None: return node.value return None def SCREAMING_SNAKE_CASE__ ( ) -> Any: snake_case : Any = SkipList() skip_list.insert("""Key1""" ,3 ) skip_list.insert("""Key2""" ,12 ) skip_list.insert("""Key3""" ,41 ) skip_list.insert("""Key4""" ,-19 ) snake_case : Tuple = skip_list.head snake_case : str = {} while node.level != 0: snake_case : Tuple = node.forward[0] snake_case : int = node.value assert len(__lowercase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def SCREAMING_SNAKE_CASE__ ( ) -> int: snake_case : Tuple = SkipList() skip_list.insert("""Key1""" ,10 ) skip_list.insert("""Key1""" ,12 ) skip_list.insert("""Key5""" ,7 ) skip_list.insert("""Key7""" ,10 ) skip_list.insert("""Key10""" ,5 ) skip_list.insert("""Key7""" ,7 ) skip_list.insert("""Key5""" ,5 ) skip_list.insert("""Key10""" ,10 ) snake_case : List[str] = skip_list.head snake_case : List[Any] = {} while node.level != 0: snake_case : List[Any] = node.forward[0] snake_case : int = node.value if len(__lowercase ) != 4: print() assert len(__lowercase ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: snake_case : int = SkipList() assert skip_list.find("""Some key""" ) is None def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: snake_case : Any = SkipList() skip_list.insert("""Key2""" ,20 ) assert skip_list.find("""Key2""" ) == 20 skip_list.insert("""Some Key""" ,10 ) skip_list.insert("""Key2""" ,8 ) skip_list.insert("""V""" ,13 ) assert skip_list.find("""Y""" ) is None assert skip_list.find("""Key2""" ) == 8 assert skip_list.find("""Some Key""" ) == 10 assert skip_list.find("""V""" ) == 13 def SCREAMING_SNAKE_CASE__ ( ) -> str: snake_case : str = SkipList() skip_list.delete("""Some key""" ) assert len(skip_list.head.forward ) == 0 def SCREAMING_SNAKE_CASE__ ( ) -> Any: snake_case : Dict = SkipList() skip_list.insert("""Key1""" ,12 ) skip_list.insert("""V""" ,13 ) skip_list.insert("""X""" ,14 ) skip_list.insert("""Key2""" ,15 ) skip_list.delete("""V""" ) skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""Key2""" ) is None def SCREAMING_SNAKE_CASE__ ( ) -> Any: snake_case : List[str] = SkipList() skip_list.insert("""Key1""" ,12 ) skip_list.insert("""V""" ,13 ) skip_list.insert("""X""" ,14 ) skip_list.insert("""Key2""" ,15 ) skip_list.delete("""V""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) == 14 assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""X""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key1""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) is None def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: snake_case : List[Any] = SkipList() skip_list.insert("""Key1""" ,12 ) skip_list.insert("""V""" ,13 ) skip_list.insert("""X""" ,142 ) skip_list.insert("""Key2""" ,15 ) skip_list.delete("""X""" ) def traverse_keys(lowercase ): yield node.key for forward_node in node.forward: yield from traverse_keys(__lowercase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def SCREAMING_SNAKE_CASE__ ( ) -> str: def is_sorted(lowercase ): return all(next_item >= item for item, next_item in zip(__lowercase ,lst[1:] ) ) snake_case : Union[str, Any] = SkipList() for i in range(10 ): skip_list.insert(__lowercase ,__lowercase ) assert is_sorted(list(__lowercase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(__lowercase ) ) skip_list.insert(-12 ,-12 ) skip_list.insert(77 ,77 ) assert is_sorted(list(__lowercase ) ) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: snake_case : Any = SkipList() skip_list.insert(2 ,"""2""" ) skip_list.insert(4 ,"""4""" ) skip_list.insert(6 ,"""4""" ) skip_list.insert(4 ,"""5""" ) skip_list.insert(8 ,"""4""" ) skip_list.insert(9 ,"""4""" ) skip_list.delete(4 ) print(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
587
import random def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: _snake_case = a[left_index] _snake_case = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _snake_case , _snake_case = a[i], a[j] i += 1 _snake_case , _snake_case = a[i - 1], a[left_index] return i - 1 def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] ) -> Tuple: if left < right: _snake_case = random.randint(__lowercase , right - 1 ) _snake_case , _snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound _snake_case = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> str: _snake_case = input('Enter numbers separated by a comma:\n' ).strip() _snake_case = [int(__lowercase ) for item in user_input.split(',' )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
686
0
import torch from diffusers import DiffusionPipeline class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Tuple , snake_case :Union[str, Any] , snake_case :List[Any] ): '''simple docstring''' super().__init__() self.register_modules(unet=snake_case , scheduler=snake_case ) def __call__( self :Union[str, Any] ): '''simple docstring''' A_ : List[Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) A_ : Optional[int] = 1 A_ : Dict = self.unet(snake_case , snake_case ).sample A_ : str = self.scheduler.step(snake_case , snake_case , snake_case ).prev_sample A_ : Union[str, Any] = scheduler_output - scheduler_output + torch.ones_like(snake_case ) return result
454
import math def a_ ( __lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __lowercase : float = 0.1 ) -> int: _snake_case = 3 _snake_case = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
686
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer lowerCamelCase =logging.get_logger(__name__) lowerCamelCase ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase ={ '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } lowerCamelCase ={ '''bert-base-uncased''': 5_1_2, '''bert-large-uncased''': 5_1_2, '''bert-base-cased''': 5_1_2, '''bert-large-cased''': 5_1_2, '''bert-base-multilingual-uncased''': 5_1_2, '''bert-base-multilingual-cased''': 5_1_2, '''bert-base-chinese''': 5_1_2, '''bert-base-german-cased''': 5_1_2, '''bert-large-uncased-whole-word-masking''': 5_1_2, '''bert-large-cased-whole-word-masking''': 5_1_2, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 5_1_2, '''bert-large-cased-whole-word-masking-finetuned-squad''': 5_1_2, '''bert-base-cased-finetuned-mrpc''': 5_1_2, '''bert-base-german-dbmdz-cased''': 5_1_2, '''bert-base-german-dbmdz-uncased''': 5_1_2, '''TurkuNLP/bert-base-finnish-cased-v1''': 5_1_2, '''TurkuNLP/bert-base-finnish-uncased-v1''': 5_1_2, '''wietsedv/bert-base-dutch-cased''': 5_1_2, } lowerCamelCase ={ '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = BertTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCamelCase__ : int = getattr(__SCREAMING_SNAKE_CASE , normalizer_state.pop('''type''' ) ) UpperCamelCase__ : Optional[Any] = do_lower_case UpperCamelCase__ : Union[str, Any] = strip_accents UpperCamelCase__ : int = tokenize_chinese_chars UpperCamelCase__ : Union[str, Any] = normalizer_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = do_lower_case def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[int] = [self.sep_token_id] UpperCamelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> Any: """simple docstring""" UpperCamelCase__ : List[str] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE )
285
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
0
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a__: Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def UpperCamelCase ( self,__lowerCamelCase ): if isinstance(__lowerCamelCase,__lowerCamelCase ): A__ = [label.strip() for label in labels.split(''',''' ) if label.strip()] return labels def __call__( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): if len(__lowerCamelCase ) == 0 or len(__lowerCamelCase ) == 0: raise ValueError('''You must include at least one label and at least one sequence.''' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( '''The provided hypothesis_template "{}" was not able to be formatted with the target labels. ''' '''Make sure the passed template includes formatting syntax such as {{}} where the label should go.''' ).format(__lowerCamelCase ) ) if isinstance(__lowerCamelCase,__lowerCamelCase ): A__ = [sequences] A__ = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__lowerCamelCase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCamelCase__ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def __init__( self,__lowerCamelCase=ZeroShotClassificationArgumentHandler(),*__lowerCamelCase,**__lowerCamelCase ): A__ = args_parser super().__init__(*__lowerCamelCase,**__lowerCamelCase ) if self.entailment_id == -1: logger.warning( '''Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ''' '''-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.''' ) @property def UpperCamelCase ( self ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('''entail''' ): return ind return -1 def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=True,__lowerCamelCase=True,__lowerCamelCase=TruncationStrategy.ONLY_FIRST,**__lowerCamelCase ): A__ = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( '''Tokenizer was not supporting padding necessary for zero-shot, attempting to use ''' ''' `pad_token=eos_token`''' ) A__ = self.tokenizer.eos_token try: A__ = self.tokenizer( __lowerCamelCase,add_special_tokens=__lowerCamelCase,return_tensors=__lowerCamelCase,padding=__lowerCamelCase,truncation=__lowerCamelCase,) except Exception as e: if "too short" in str(__lowerCamelCase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. A__ = self.tokenizer( __lowerCamelCase,add_special_tokens=__lowerCamelCase,return_tensors=__lowerCamelCase,padding=__lowerCamelCase,truncation=TruncationStrategy.DO_NOT_TRUNCATE,) else: raise e return inputs def UpperCamelCase ( self,**__lowerCamelCase ): if kwargs.get('''multi_class''',__lowerCamelCase ) is not None: A__ = kwargs['''multi_class'''] logger.warning( '''The `multi_class` argument has been deprecated and renamed to `multi_label`. ''' '''`multi_class` will be removed in a future version of Transformers.''' ) A__ = {} if "candidate_labels" in kwargs: A__ = self._args_parser._parse_labels(kwargs['''candidate_labels'''] ) if "hypothesis_template" in kwargs: A__ = kwargs['''hypothesis_template'''] A__ = {} if "multi_label" in kwargs: A__ = kwargs['''multi_label'''] return preprocess_params, {}, postprocess_params def __call__( self,__lowerCamelCase,*__lowerCamelCase,**__lowerCamelCase,): if len(__lowerCamelCase ) == 0: pass elif len(__lowerCamelCase ) == 1 and "candidate_labels" not in kwargs: A__ = args[0] else: raise ValueError(f"Unable to understand extra arguments {args}" ) return super().__call__(__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=None,__lowerCamelCase="This example is {}." ): A__ , A__ = self._args_parser(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) for i, (candidate_label, sequence_pair) in enumerate(zip(__lowerCamelCase,__lowerCamelCase ) ): A__ = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__lowerCamelCase ) - 1, **model_input, } def UpperCamelCase ( self,__lowerCamelCase ): A__ = inputs['''candidate_label'''] A__ = inputs['''sequence'''] A__ = {k: inputs[k] for k in self.tokenizer.model_input_names} A__ = self.model(**__lowerCamelCase ) A__ = { '''candidate_label''': candidate_label, '''sequence''': sequence, '''is_last''': inputs['''is_last'''], **outputs, } return model_outputs def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=False ): A__ = [outputs['''candidate_label'''] for outputs in model_outputs] A__ = [outputs['''sequence'''] for outputs in model_outputs] A__ = np.concatenate([output['''logits'''].numpy() for output in model_outputs] ) A__ = logits.shape[0] A__ = len(__lowerCamelCase ) A__ = N // n A__ = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__lowerCamelCase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently A__ = self.entailment_id A__ = -1 if entailment_id == 0 else 0 A__ = reshaped_outputs[..., [contradiction_id, entailment_id]] A__ = np.exp(__lowerCamelCase ) / np.exp(__lowerCamelCase ).sum(-1,keepdims=__lowerCamelCase ) A__ = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels A__ = reshaped_outputs[..., self.entailment_id] A__ = np.exp(__lowerCamelCase ) / np.exp(__lowerCamelCase ).sum(-1,keepdims=__lowerCamelCase ) A__ = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
190
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowercase ) for s in shape] )}.npy''' def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() def A ( self : List[Any] , lowercase : Tuple=0 , lowercase : Optional[int]=(4, 4, 64, 64) , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def A ( self : Tuple , lowercase : Any=False , lowercase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = 'bf16' if fpaa else None _snake_case , _snake_case = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder='unet' , dtype=lowercase , revision=lowercase ) return model, params def A ( self : Union[str, Any] , lowercase : str=0 , lowercase : Optional[Any]=(4, 77, 768) , lowercase : int=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def A ( self : str , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1_024) , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 )
686
0
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def __lowerCAmelCase ( A_ : Tuple ) -> List[Any]: __UpperCAmelCase = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , __lowercase ).groups()[0] class UpperCAmelCase__ ( snake_case ): """simple docstring""" def __init__( self: List[str] , __lowerCAmelCase: int , __lowerCAmelCase: str=None , __lowerCAmelCase: Optional[int]=None ) -> Any: '''simple docstring''' __UpperCAmelCase = file_names __UpperCAmelCase = image_transform __UpperCAmelCase = label_to_id def __len__( self: List[Any] ) -> Optional[Any]: '''simple docstring''' return len(self.file_names ) def __getitem__( self: int , __lowerCAmelCase: Optional[Any] ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = self.file_names[idx] __UpperCAmelCase = PIL.Image.open(__lowerCAmelCase ) __UpperCAmelCase = raw_image.convert("RGB" ) if self.image_transform is not None: __UpperCAmelCase = self.image_transform(__lowerCAmelCase ) __UpperCAmelCase = extract_label(__lowerCAmelCase ) if self.label_to_id is not None: __UpperCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def __lowerCAmelCase ( A_ : int , A_ : int ) -> List[Any]: # Initialize accelerator if args.with_tracking: __UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: __UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCAmelCase = config["lr"] __UpperCAmelCase = int(config["num_epochs"] ) __UpperCAmelCase = int(config["seed"] ) __UpperCAmelCase = int(config["batch_size"] ) __UpperCAmelCase = config["image_size"] if not isinstance(__lowercase , (list, tuple) ): __UpperCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": __UpperCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): __UpperCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: __UpperCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: __UpperCAmelCase = os.path.split(__lowercase )[-1].split("." )[0] accelerator.init_trackers(__lowercase , __lowercase ) # Grab all the image filenames __UpperCAmelCase = [os.path.join(args.data_dir , __lowercase ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences __UpperCAmelCase = [extract_label(__lowercase ) for fname in file_names] __UpperCAmelCase = list(set(__lowercase ) ) id_to_label.sort() __UpperCAmelCase = {lbl: i for i, lbl in enumerate(__lowercase )} # Set the seed before splitting the data. np.random.seed(__lowercase ) torch.manual_seed(__lowercase ) torch.cuda.manual_seed_all(__lowercase ) # Split our filenames between train and validation __UpperCAmelCase = np.random.permutation(len(__lowercase ) ) __UpperCAmelCase = int(0.8 * len(__lowercase ) ) __UpperCAmelCase = random_perm[:cut] __UpperCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop __UpperCAmelCase = Compose([RandomResizedCrop(__lowercase , scale=(0.5, 1.0) ), ToTensor()] ) __UpperCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=__lowercase , label_to_id=__lowercase ) # For evaluation, we use a deterministic Resize __UpperCAmelCase = Compose([Resize(__lowercase ), ToTensor()] ) __UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__lowercase , label_to_id=__lowercase ) # Instantiate dataloaders. __UpperCAmelCase = DataLoader(__lowercase , shuffle=__lowercase , batch_size=__lowercase , num_workers=4 ) __UpperCAmelCase = DataLoader(__lowercase , shuffle=__lowercase , batch_size=__lowercase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCAmelCase = create_model("resnet50d" , pretrained=__lowercase , num_classes=len(__lowercase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): __UpperCAmelCase = False for param in model.get_classifier().parameters(): __UpperCAmelCase = True # We normalize the batches of images to be a bit faster. __UpperCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) __UpperCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer __UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler __UpperCAmelCase = OneCycleLR(optimizer=__lowercase , max_lr=__lowercase , epochs=__lowercase , steps_per_epoch=len(__lowercase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # We need to keep track of how many total steps we have iterated over __UpperCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly __UpperCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) __UpperCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint __UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) __UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` __UpperCAmelCase = os.path.splitext(__lowercase )[0] if "epoch" in training_difference: __UpperCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1 __UpperCAmelCase = None else: __UpperCAmelCase = int(training_difference.replace("step_" , "" ) ) __UpperCAmelCase = resume_step // len(__lowercase ) resume_step -= starting_epoch * len(__lowercase ) # Now we train the model for epoch in range(__lowercase , __lowercase ): model.train() if args.with_tracking: __UpperCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step __UpperCAmelCase = accelerator.skip_first_batches(__lowercase , __lowercase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader __UpperCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. __UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __UpperCAmelCase = (batch["image"] - mean) / std __UpperCAmelCase = model(__lowercase ) __UpperCAmelCase = torch.nn.functional.cross_entropy(__lowercase , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__lowercase , __lowercase ): __UpperCAmelCase = F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: __UpperCAmelCase = os.path.join(args.output_dir , __lowercase ) accelerator.save_state(__lowercase ) model.eval() __UpperCAmelCase = 0 __UpperCAmelCase = 0 for step, batch in enumerate(__lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. __UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __UpperCAmelCase = (batch["image"] - mean) / std with torch.no_grad(): __UpperCAmelCase = model(__lowercase ) __UpperCAmelCase = outputs.argmax(dim=-1 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) ) __UpperCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() __UpperCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {1_00 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { "accuracy": 1_00 * eval_metric, "train_loss": total_loss.item() / len(__lowercase ), "epoch": epoch, } , step=__lowercase , ) if checkpointing_steps == "epoch": __UpperCAmelCase = F'''epoch_{epoch}''' if args.output_dir is not None: __UpperCAmelCase = os.path.join(args.output_dir , __lowercase ) accelerator.save_state(__lowercase ) if args.with_tracking: accelerator.end_training() def __lowerCAmelCase ( ) -> List[Any]: __UpperCAmelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=__lowercase , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=__lowercase , default=__lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=__lowercase , default=__lowercase , help="Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch." , ) parser.add_argument( "--output_dir" , type=__lowercase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__lowercase , default=__lowercase , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=__lowercase , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {"lr": 3e-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 2_24} training_function(__lowercase , __lowercase ) if __name__ == "__main__": main()
221
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowercase__ : '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=1_0 , lowerCamelCase__=3 , lowerCamelCase__=3_2 * 8 , lowerCamelCase__=3_2 * 8 , lowerCamelCase__=4 , lowerCamelCase__=6_4 , ): '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = is_training UpperCamelCase = use_auxiliary_loss UpperCamelCase = num_queries UpperCamelCase = num_channels UpperCamelCase = min_size UpperCamelCase = max_size UpperCamelCase = num_labels UpperCamelCase = hidden_dim UpperCamelCase = hidden_dim def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) UpperCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) UpperCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() UpperCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() UpperCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) UpperCamelCase = self.num_queries UpperCamelCase = self.num_labels UpperCamelCase = [1, 1, 1, 1] UpperCamelCase = self.num_channels UpperCamelCase = 6_4 UpperCamelCase = 1_2_8 UpperCamelCase = self.hidden_dim UpperCamelCase = self.hidden_dim UpperCamelCase = self.hidden_dim return config def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = output.encoder_hidden_states UpperCamelCase = output.pixel_decoder_hidden_states UpperCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ): '''simple docstring''' with torch.no_grad(): UpperCamelCase = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) UpperCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) UpperCamelCase = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) UpperCamelCase = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowercase__ ( snake_case_, snake_case_, unittest.TestCase ): '''simple docstring''' _snake_case = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _snake_case = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} _snake_case = False _snake_case = False _snake_case = False _snake_case = False def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = MaskaFormerModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase__ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = (self.model_tester.min_size,) * 2 UpperCamelCase = { '''pixel_values''': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), '''mask_labels''': torch.randn((2, 1_0, *size) , device=lowerCamelCase__ ), '''class_labels''': torch.zeros(2 , 1_0 , device=lowerCamelCase__ ).long(), } UpperCamelCase = self.model_tester.get_config() UpperCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) UpperCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) UpperCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return UpperCamelCase = self.all_model_classes[1] UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs() UpperCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() UpperCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.all_model_classes[1] UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs() UpperCamelCase = True UpperCamelCase = True UpperCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() UpperCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) UpperCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) snake_case_ : Tuple = 1e-4 def __snake_case ( ): UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_vision @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) UpperCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): UpperCamelCase = model(**lowerCamelCase__ ) UpperCamelCase = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) UpperCamelCase = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) UpperCamelCase = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) UpperCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): UpperCamelCase = model(**lowerCamelCase__ ) # masks_queries_logits UpperCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCamelCase = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] UpperCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits UpperCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCamelCase = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() UpperCamelCase = self.default_image_processor UpperCamelCase = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='''pt''' , ) UpperCamelCase = inputs['''pixel_values'''].to(lowerCamelCase__ ) UpperCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['''mask_labels''']] UpperCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['''class_labels''']] with torch.no_grad(): UpperCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
212
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
0
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A=0.0 ,_A = None ,_A = "geglu" ,_A = None ,_A = False ,_A = False ,_A = False ,_A = False ,_A = True ,_A = "layer_norm" ,_A = False ,): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = only_cross_attention _lowerCAmelCase : Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' _lowerCAmelCase : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _lowerCAmelCase : Dict = AdaLayerNorm(_A ,_A ) elif self.use_ada_layer_norm_zero: _lowerCAmelCase : Optional[int] = AdaLayerNormZero(_A ,_A ) else: _lowerCAmelCase : Tuple = nn.LayerNorm(_A ,elementwise_affine=_A ) _lowerCAmelCase : str = Attention( query_dim=_A ,heads=_A ,dim_head=_A ,dropout=_A ,bias=_A ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=_A ,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _lowerCAmelCase : Tuple = ( AdaLayerNorm(_A ,_A ) if self.use_ada_layer_norm else nn.LayerNorm(_A ,elementwise_affine=_A ) ) _lowerCAmelCase : Optional[int] = Attention( query_dim=_A ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=_A ,dim_head=_A ,dropout=_A ,bias=_A ,upcast_attention=_A ,) # is self-attn if encoder_hidden_states is none else: _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : List[Any] = None # 3. Feed-forward _lowerCAmelCase : List[str] = nn.LayerNorm(_A ,elementwise_affine=_A ) _lowerCAmelCase : Tuple = FeedForward(_A ,dropout=_A ,activation_fn=_A ,final_dropout=_A ) # let chunk size default to None _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : List[Any] = 0 def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : str = chunk_size _lowerCAmelCase : int = dim def __lowerCamelCase ( self ,_A ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' if self.use_ada_layer_norm: _lowerCAmelCase : Tuple = self.norma(_A ,_A ) elif self.use_ada_layer_norm_zero: _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : List[str] = self.norma( _A ,_A ,_A ,hidden_dtype=hidden_states.dtype ) else: _lowerCAmelCase : List[Any] = self.norma(_A ) _lowerCAmelCase : Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} _lowerCAmelCase : Optional[int] = self.attna( _A ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=_A ,**_A ,) if self.use_ada_layer_norm_zero: _lowerCAmelCase : str = gate_msa.unsqueeze(1 ) * attn_output _lowerCAmelCase : Optional[Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _lowerCAmelCase : List[Any] = ( self.norma(_A ,_A ) if self.use_ada_layer_norm else self.norma(_A ) ) _lowerCAmelCase : Union[str, Any] = self.attna( _A ,encoder_hidden_states=_A ,attention_mask=_A ,**_A ,) _lowerCAmelCase : List[Any] = attn_output + hidden_states # 3. Feed-forward _lowerCAmelCase : Dict = self.norma(_A ) if self.use_ada_layer_norm_zero: _lowerCAmelCase : str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) _lowerCAmelCase : List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _lowerCAmelCase : Tuple = torch.cat( [self.ff(_A ) for hid_slice in norm_hidden_states.chunk(_A ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,) else: _lowerCAmelCase : Optional[int] = self.ff(_A ) if self.use_ada_layer_norm_zero: _lowerCAmelCase : Optional[int] = gate_mlp.unsqueeze(1 ) * ff_output _lowerCAmelCase : int = ff_output + hidden_states return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A = None ,_A = 4 ,_A = 0.0 ,_A = "geglu" ,_A = False ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Dict = int(dim * mult ) _lowerCAmelCase : str = dim_out if dim_out is not None else dim if activation_fn == "gelu": _lowerCAmelCase : Optional[Any] = GELU(_A ,_A ) if activation_fn == "gelu-approximate": _lowerCAmelCase : str = GELU(_A ,_A ,approximate='tanh' ) elif activation_fn == "geglu": _lowerCAmelCase : Dict = GEGLU(_A ,_A ) elif activation_fn == "geglu-approximate": _lowerCAmelCase : Dict = ApproximateGELU(_A ,_A ) _lowerCAmelCase : Union[str, Any] = nn.ModuleList([] ) # project in self.net.append(_A ) # project dropout self.net.append(nn.Dropout(_A ) ) # project out self.net.append(nn.Linear(_A ,_A ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_A ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' for module in self.net: _lowerCAmelCase : Dict = module(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A = "none" ): '''simple docstring''' super().__init__() _lowerCAmelCase : str = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = approximate def __lowerCamelCase ( self ,_A ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(_A ,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.proj(_A ) _lowerCAmelCase : Union[str, Any] = self.gelu(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : str = nn.Linear(_A ,dim_out * 2 ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(_A ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : List[str] = self.proj(_A ).chunk(2 ,dim=-1 ) return hidden_states * self.gelu(_A ) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Dict = nn.Linear(_A ,_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.proj(_A ) return x * torch.sigmoid(1.7_0_2 * x ) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Dict = nn.Embedding(_A ,_A ) _lowerCAmelCase : Dict = nn.SiLU() _lowerCAmelCase : int = nn.Linear(_A ,embedding_dim * 2 ) _lowerCAmelCase : Optional[int] = nn.LayerNorm(_A ,elementwise_affine=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = self.linear(self.silu(self.emb(_A ) ) ) _lowerCAmelCase, _lowerCAmelCase : Dict = torch.chunk(_A ,2 ) _lowerCAmelCase : Dict = self.norm(_A ) * (1 + scale) + shift return x class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = CombinedTimestepLabelEmbeddings(_A ,_A ) _lowerCAmelCase : int = nn.SiLU() _lowerCAmelCase : Any = nn.Linear(_A ,6 * embedding_dim ,bias=_A ) _lowerCAmelCase : Optional[Any] = nn.LayerNorm(_A ,elementwise_affine=_A ,eps=1E-6 ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.linear(self.silu(self.emb(_A ,_A ,hidden_dtype=_A ) ) ) _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = emb.chunk(6 ,dim=1 ) _lowerCAmelCase : str = self.norm(_A ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A = None ,_A = 1E-5 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Tuple = num_groups _lowerCAmelCase : List[Any] = eps if act_fn is None: _lowerCAmelCase : Union[str, Any] = None else: _lowerCAmelCase : Union[str, Any] = get_activation(_A ) _lowerCAmelCase : Dict = nn.Linear(_A ,out_dim * 2 ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if self.act: _lowerCAmelCase : List[Any] = self.act(_A ) _lowerCAmelCase : int = self.linear(_A ) _lowerCAmelCase : Any = emb[:, :, None, None] _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = emb.chunk(2 ,dim=1 ) _lowerCAmelCase : Union[str, Any] = F.group_norm(_A ,self.num_groups ,eps=self.eps ) _lowerCAmelCase : Optional[int] = x * (1 + scale) + shift return x
259
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "sequence-classification" def __init__( self : Optional[int] , lowercase : Any ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Optional[Any] , lowercase : str , lowercase : Tuple ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : int , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[str] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
686
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( a__ , unittest.TestCase): _lowerCAmelCase = LongformerTokenizer _lowerCAmelCase = True _lowerCAmelCase = LongformerTokenizerFast _lowerCAmelCase = True def UpperCAmelCase_ ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCamelCase : Optional[Any] = dict(zip(A, range(len(A ) ) ) ) lowerCamelCase : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCamelCase : Tuple = {'unk_token': '<unk>'} lowerCamelCase : List[str] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase : str = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) def UpperCAmelCase_ ( self, **A ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCAmelCase_ ( self, **A ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCAmelCase_ ( self, A ): """simple docstring""" lowerCamelCase : int = 'lower newer' lowerCamelCase : Any = 'lower newer' return input_text, output_text def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map ) lowerCamelCase : Dict = 'lower newer' lowerCamelCase : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] lowerCamelCase : int = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A, A ) lowerCamelCase : Tuple = tokens + [tokenizer.unk_token] lowerCamelCase : int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : str = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2], ) @slow def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) lowerCamelCase : int = tokenizer.encode('sequence builders', add_special_tokens=A ) lowerCamelCase : Any = tokenizer.encode('multi-sequence build', add_special_tokens=A ) lowerCamelCase : List[str] = tokenizer.encode( 'sequence builders', add_special_tokens=A, add_prefix_space=A ) lowerCamelCase : Optional[Any] = tokenizer.encode( 'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A ) lowerCamelCase : str = tokenizer.build_inputs_with_special_tokens(A ) lowerCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(A, A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.get_tokenizer() lowerCamelCase : str = 'Encode this sequence.' lowerCamelCase : Union[str, Any] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments lowerCamelCase : Optional[Any] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A, A ) lowerCamelCase : Any = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) lowerCamelCase : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A, A ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) lowerCamelCase : int = tokenizer.encode(A, add_special_tokens=A ) lowerCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A, A ) # Testing spaces after special tokens lowerCamelCase : int = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space lowerCamelCase : int = tokenizer.convert_tokens_to_ids(A ) lowerCamelCase : Union[str, Any] = 'Encode <mask> sequence' lowerCamelCase : Any = 'Encode <mask>sequence' lowerCamelCase : int = tokenizer.encode(A ) lowerCamelCase : Optional[Any] = encoded.index(A ) lowerCamelCase : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A, A ) lowerCamelCase : List[str] = tokenizer.encode(A ) lowerCamelCase : int = encoded.index(A ) lowerCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A, A ) def UpperCAmelCase_ ( self ): """simple docstring""" pass def UpperCAmelCase_ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(A, **A ) lowerCamelCase : List[Any] = self.tokenizer_class.from_pretrained(A, **A ) lowerCamelCase : Tuple = 'A, <mask> AllenNLP sentence.' lowerCamelCase : List[str] = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) lowerCamelCase : List[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), ) lowerCamelCase : Tuple = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowerCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCAmelCase_ ( self ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ): lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A ) lowerCamelCase : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCamelCase : Dict = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['trim_offsets'], A ) def UpperCAmelCase_ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase : List[Any] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` lowerCamelCase : str = F'''{text_of_1_token} {text_of_1_token}''' lowerCamelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) lowerCamelCase : Optional[int] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) lowerCamelCase : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) lowerCamelCase : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) lowerCamelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) lowerCamelCase : Dict = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) lowerCamelCase : Optional[Any] = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) lowerCamelCase : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), ) lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) lowerCamelCase : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), ) lowerCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) lowerCamelCase : Any = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
320
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LEDConfig _UpperCAmelCase : int = {} _UpperCAmelCase : List[str] = "gelu" def __init__( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict=13 , lowercase : Dict=7 , lowercase : Tuple=True , lowercase : Dict=False , lowercase : Dict=99 , lowercase : Any=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[str]=37 , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : List[Any]=20 , lowercase : int=2 , lowercase : Optional[Any]=1 , lowercase : List[str]=0 , lowercase : Optional[int]=4 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case = prepare_led_inputs_dict(lowercase , lowercase , lowercase ) _snake_case = tf.concat( [tf.zeros_like(lowercase )[:, :-1], tf.ones_like(lowercase )[:, -1:]] , axis=-1 , ) _snake_case = global_attention_mask return config, inputs_dict def A ( self : str , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = TFLEDModel(config=lowercase ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : str=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase : Optional[int] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : Tuple = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = False _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False def A ( self : Any ): '''simple docstring''' _snake_case = TFLEDModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = tf.zeros_like(inputs_dict['attention_mask'] ) _snake_case = 2 _snake_case = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _snake_case = True _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase : List[str] ): _snake_case = outputs.decoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase : List[str] ): _snake_case = [t.numpy() for t in outputs.encoder_attentions] _snake_case = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = False _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) _snake_case = len(lowercase ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) if self.is_encoder_decoder: _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_decoder_attentions_output(lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase ) ) self.assertEqual(model.config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def a_ ( __lowercase : str ) -> Optional[Any]: return tf.constant(__lowercase , dtype=tf.intaa ) _lowerCamelCase : List[Any] = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, 768) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 ) def A ( self : str ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 , rtol=1E-3 )
686
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _UpperCAmelCase = logging.getLogger(__name__) class snake_case_ ( __lowercase ): A_ = "sequence-classification" def __init__( self : Optional[int] , _snake_case : Any )->Optional[Any]: '''simple docstring''' if type(_snake_case ) == dict: __lowerCAmelCase : Optional[Any] = Namespace(**_snake_case ) __lowerCAmelCase : Any = glue_output_modes[hparams.task] __lowerCAmelCase : Tuple = glue_tasks_num_labels[hparams.task] super().__init__(_snake_case , _snake_case , self.mode ) def UpperCAmelCase__ ( self : Optional[Any] , **_snake_case : Optional[Any] )->str: '''simple docstring''' return self.model(**_snake_case ) def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : str , _snake_case : Tuple )->List[str]: '''simple docstring''' __lowerCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __lowerCAmelCase : List[str] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None __lowerCAmelCase : List[Any] = self(**_snake_case ) __lowerCAmelCase : List[Any] = outputs[0] __lowerCAmelCase : Union[str, Any] = self.trainer.lr_schedulers[0]["""scheduler"""] __lowerCAmelCase : Tuple = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCAmelCase__ ( self : Optional[Any] )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Tuple = self.hparams __lowerCAmelCase : Optional[int] = processors[args.task]() __lowerCAmelCase : List[Any] = processor.get_labels() for mode in ["train", "dev"]: __lowerCAmelCase : Optional[int] = self._feature_file(_snake_case ) if os.path.exists(_snake_case ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , _snake_case ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) __lowerCAmelCase : str = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) __lowerCAmelCase : Tuple = convert_examples_to_features( _snake_case , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , _snake_case ) torch.save(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : Dict , _snake_case : str , _snake_case : int , _snake_case : bool = False )->List[Any]: '''simple docstring''' __lowerCAmelCase : str = """dev""" if mode == """test""" else mode __lowerCAmelCase : List[str] = self._feature_file(_snake_case ) logger.info("""Loading features from cached file %s""" , _snake_case ) __lowerCAmelCase : Dict = torch.load(_snake_case ) __lowerCAmelCase : int = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __lowerCAmelCase : List[str] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __lowerCAmelCase : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __lowerCAmelCase : Union[str, Any] = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __lowerCAmelCase : Union[str, Any] = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(_snake_case , _snake_case , _snake_case , _snake_case ) , batch_size=_snake_case , shuffle=_snake_case , ) def UpperCAmelCase__ ( self : str , _snake_case : Optional[Any] , _snake_case : str )->Optional[int]: '''simple docstring''' __lowerCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __lowerCAmelCase : str = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None __lowerCAmelCase : Any = self(**_snake_case ) __lowerCAmelCase , __lowerCAmelCase : Tuple = outputs[:2] __lowerCAmelCase : Optional[int] = logits.detach().cpu().numpy() __lowerCAmelCase : Optional[int] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCAmelCase__ ( self : int , _snake_case : Optional[int] )->List[Any]: '''simple docstring''' __lowerCAmelCase : int = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() __lowerCAmelCase : int = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __lowerCAmelCase : Tuple = np.argmax(_snake_case , axis=1 ) elif self.hparams.glue_output_mode == "regression": __lowerCAmelCase : Dict = np.squeeze(_snake_case ) __lowerCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) __lowerCAmelCase : Dict = [[] for _ in range(out_label_ids.shape[0] )] __lowerCAmelCase : int = [[] for _ in range(out_label_ids.shape[0] )] __lowerCAmelCase : Any = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , _snake_case , _snake_case )} __lowerCAmelCase : Dict = dict(results.items() ) __lowerCAmelCase : Union[str, Any] = results return ret, preds_list, out_label_list def UpperCAmelCase__ ( self : int , _snake_case : list )->str: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : str = self._eval_end(_snake_case ) __lowerCAmelCase : Optional[int] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCAmelCase__ ( self : List[str] , _snake_case : Any )->Optional[Any]: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = self._eval_end(_snake_case ) __lowerCAmelCase : Tuple = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCAmelCase__ ( _snake_case : Tuple , _snake_case : Any )->Dict: '''simple docstring''' BaseTransformer.add_model_specific_args(_snake_case , _snake_case ) parser.add_argument( """--max_seq_length""" , default=128 , type=_snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=_snake_case , required=_snake_case , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=_snake_case , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: __lowerCAmelCase : Tuple = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) __lowerCAmelCase : Dict = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) __lowerCAmelCase : int = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __lowerCAmelCase : Any = os.path.join( """./results""" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __lowerCAmelCase : Optional[Any] = GLUETransformer(__lowercase ) __lowerCAmelCase : Optional[int] = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __lowerCAmelCase : Optional[Any] = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=__lowercase ) ) __lowerCAmelCase : List[str] = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
504
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCamelCase : Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCamelCase : Union[str, Any] = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCamelCase : Optional[int] = '''zero2''' _lowerCamelCase : List[Any] = '''zero3''' _lowerCamelCase : Dict = [ZEROa, ZEROa] def a_ ( __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _snake_case = parameterized.to_safe_name('_'.join(str(__lowercase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _lowerCamelCase : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' pass def A ( self : str , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : bool = True , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = models[model] _snake_case = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A ( self : Any , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : int = 1 , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _snake_case = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _snake_case = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _snake_case = self.get_launcher(lowercase ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A ( self : List[str] , lowercase : Any=False ): '''simple docstring''' _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
686
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 50 ): """simple docstring""" lowerCAmelCase__ : Optional[int] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
565
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
0
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Dict = BloomTokenizerFast UpperCamelCase_ : Optional[Any] = BloomTokenizerFast UpperCamelCase_ : int = True UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : List[Any] = "tokenizer_file" UpperCamelCase_ : Tuple = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def _A ( self : List[Any] ): super().setUp() SCREAMING_SNAKE_CASE : str = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Tuple = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : int = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] SCREAMING_SNAKE_CASE : int = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] SCREAMING_SNAKE_CASE : int = tokenizer.batch_encode_plus(UpperCAmelCase_ )["input_ids"] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Optional[int] , UpperCAmelCase_ : Optional[int]=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input SCREAMING_SNAKE_CASE : Dict = "This is a simple input" SCREAMING_SNAKE_CASE : Tuple = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE : Union[str, Any] = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE : str = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(UpperCAmelCase_ , max_length=UpperCAmelCase_ ) tokenizer_r.encode_plus(UpperCAmelCase_ , max_length=UpperCAmelCase_ ) tokenizer_r.batch_encode_plus(UpperCAmelCase_ , max_length=UpperCAmelCase_ ) tokenizer_r.encode(UpperCAmelCase_ , max_length=UpperCAmelCase_ ) tokenizer_r.batch_encode_plus(UpperCAmelCase_ , max_length=UpperCAmelCase_ ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) SCREAMING_SNAKE_CASE : str = None # Hotfixing padding = None self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="max_length" ) # Simple input self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="max_length" ) # Simple input self.assertRaises( UpperCAmelCase_ , tokenizer_r.batch_encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="max_length" , ) # Pair input self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="max_length" ) # Pair input self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="max_length" ) # Pair input self.assertRaises( UpperCAmelCase_ , tokenizer_r.batch_encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="max_length" , ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : str = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : Any = load_dataset("xnli" , "all_languages" , split="test" , streaming=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = next(iter(UpperCAmelCase_ ) )["premise"] # pick up one data SCREAMING_SNAKE_CASE : Optional[Any] = list(sample_data.values() ) SCREAMING_SNAKE_CASE : str = list(map(tokenizer.encode , UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = [tokenizer.decode(UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) for x in output_tokens] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : str ): self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
62
import random from .binary_exp_mod import bin_exp_mod def a_ ( __lowercase : int , __lowercase : Any=1_000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__lowercase , __lowercase , __lowercase ) if b != 1: _snake_case = True for _ in range(__lowercase ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCamelCase : Tuple = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
686
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase : Any = logging.get_logger(__name__) # General docstring lowerCamelCase : Optional[Any] = '''RegNetConfig''' # Base docstring lowerCamelCase : int = '''facebook/regnet-y-040''' lowerCamelCase : Optional[Any] = [1, 1_0_8_8, 7, 7] # Image classification docstring lowerCamelCase : Dict = '''facebook/regnet-y-040''' lowerCamelCase : str = '''tabby, tabby cat''' lowerCamelCase : Dict = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __lowercase (tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A , A = 3 , A = 1 , A = 1 , A = "relu" , **A , ) -> Any: super().__init__(**A ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb snake_case : Union[str, Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) snake_case : List[Any] = tf.keras.layers.ConvaD( filters=A , kernel_size=A , strides=A , padding="""VALID""" , groups=A , use_bias=A , name="""convolution""" , ) snake_case : Optional[int] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) snake_case : Dict = ACTaFN[activation] if activation is not None else tf.identity def UpperCAmelCase ( self , A ) -> Dict: snake_case : Optional[int] = self.convolution(self.padding(A ) ) snake_case : int = self.normalization(A ) snake_case : List[str] = self.activation(A ) return hidden_state class __lowercase (tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A , **A ) -> List[Any]: super().__init__(**A ) snake_case : Optional[Any] = config.num_channels snake_case : int = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def UpperCAmelCase ( self , A ) -> List[str]: snake_case : Union[str, Any] = shape_list(A )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) snake_case : Optional[Any] = tf.transpose(A , perm=(0, 2, 3, 1) ) snake_case : str = self.embedder(A ) return hidden_state class __lowercase (tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A , A = 2 , **A ) -> int: super().__init__(**A ) snake_case : Tuple = tf.keras.layers.ConvaD( filters=A , kernel_size=1 , strides=A , use_bias=A , name="""convolution""" ) snake_case : Any = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) def UpperCAmelCase ( self , A , A = False ) -> Dict: return self.normalization(self.convolution(A ) , training=A ) class __lowercase (tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A , A , **A ) -> Any: super().__init__(**A ) snake_case : Dict = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A , name="""pooler""" ) snake_case : Union[str, Any] = [ tf.keras.layers.ConvaD(filters=A , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=A , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : Union[str, Any] = self.pooler(A ) for layer_module in self.attention: snake_case : Optional[int] = layer_module(A ) snake_case : Dict = hidden_state * pooled return hidden_state class __lowercase (tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A , A , A , A = 1 , **A ) -> List[Any]: super().__init__(**A ) snake_case : Optional[Any] = in_channels != out_channels or stride != 1 snake_case : str = max(1 , out_channels // config.groups_width ) snake_case : List[Any] = ( TFRegNetShortCut(A , stride=A , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. snake_case : Union[str, Any] = [ TFRegNetConvLayer(A , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( A , stride=A , groups=A , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(A , kernel_size=1 , activation=A , name="""layer.2""" ), ] snake_case : Union[str, Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : Union[str, Any] = hidden_state for layer_module in self.layers: snake_case : List[str] = layer_module(A ) snake_case : Union[str, Any] = self.shortcut(A ) hidden_state += residual snake_case : Dict = self.activation(A ) return hidden_state class __lowercase (tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A , A , A , A = 1 , **A ) -> List[str]: super().__init__(**A ) snake_case : Dict = in_channels != out_channels or stride != 1 snake_case : Dict = max(1 , out_channels // config.groups_width ) snake_case : Dict = ( TFRegNetShortCut(A , stride=A , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) snake_case : Optional[Any] = [ TFRegNetConvLayer(A , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( A , stride=A , groups=A , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(A , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(A , kernel_size=1 , activation=A , name="""layer.3""" ), ] snake_case : Tuple = ACTaFN[config.hidden_act] def UpperCAmelCase ( self , A ) -> Dict: snake_case : List[str] = hidden_state for layer_module in self.layers: snake_case : Dict = layer_module(A ) snake_case : Any = self.shortcut(A ) hidden_state += residual snake_case : Optional[int] = self.activation(A ) return hidden_state class __lowercase (tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A , A , A , A = 2 , A = 2 , **A ) -> Union[str, Any]: super().__init__(**A ) snake_case : Tuple = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer snake_case : Dict = [ # downsampling is done in the first layer with stride of 2 layer(A , A , A , stride=A , name="""layers.0""" ), *[layer(A , A , A , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def UpperCAmelCase ( self , A ) -> Optional[Any]: for layer_module in self.layers: snake_case : str = layer_module(A ) return hidden_state class __lowercase (tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A , **A ) -> List[str]: super().__init__(**A ) snake_case : List[str] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( A , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(A , config.depths[1:] ) ): self.stages.append(TFRegNetStage(A , A , A , depth=A , name=f"""stages.{i+1}""" ) ) def UpperCAmelCase ( self , A , A = False , A = True ) -> Optional[Any]: snake_case : Any = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: snake_case : Dict = hidden_states + (hidden_state,) snake_case : Union[str, Any] = stage_module(A ) if output_hidden_states: snake_case : int = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=A , hidden_states=A ) @keras_serializable class __lowercase (tf.keras.layers.Layer ): """simple docstring""" _snake_case = RegNetConfig def __init__( self , A , **A ) -> Union[str, Any]: super().__init__(**A ) snake_case : int = config snake_case : Optional[int] = TFRegNetEmbeddings(A , name="""embedder""" ) snake_case : Optional[Any] = TFRegNetEncoder(A , name="""encoder""" ) snake_case : Dict = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A , name="""pooler""" ) @unpack_inputs def UpperCAmelCase ( self , A , A = None , A = None , A = False , ) -> Any: snake_case : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case : List[Any] = self.embedder(A , training=A ) snake_case : Tuple = self.encoder( A , output_hidden_states=A , return_dict=A , training=A ) snake_case : List[Any] = encoder_outputs[0] snake_case : Optional[int] = self.pooler(A ) # Change to NCHW output format have uniformity in the modules snake_case : str = tf.transpose(A , perm=(0, 3, 1, 2) ) snake_case : Dict = tf.transpose(A , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: snake_case : Union[str, Any] = tuple([tf.transpose(A , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A , pooler_output=A , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = RegNetConfig _snake_case = "regnet" _snake_case = "pixel_values" @property def UpperCAmelCase ( self ) -> Dict: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} lowerCamelCase : List[Any] = r''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' lowerCamelCase : Optional[Any] = r''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , UpperCamelCase__ , ) class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A , *A , **A ) -> List[str]: super().__init__(A , *A , **A ) snake_case : Dict = TFRegNetMainLayer(A , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase ( self , A , A = None , A = None , A=False , ) -> List[Any]: snake_case : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case : Dict = return_dict if return_dict is not None else self.config.use_return_dict snake_case : Tuple = self.regnet( pixel_values=A , output_hidden_states=A , return_dict=A , training=A , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n """ , UpperCamelCase__ , ) class __lowercase (UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" def __init__( self , A , *A , **A ) -> Tuple: super().__init__(A , *A , **A ) snake_case : Tuple = config.num_labels snake_case : Any = TFRegNetMainLayer(A , name="""regnet""" ) # classification head snake_case : Dict = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase ( self , A = None , A = None , A = None , A = None , A=False , ) -> Any: snake_case : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case : str = return_dict if return_dict is not None else self.config.use_return_dict snake_case : Any = self.regnet( A , output_hidden_states=A , return_dict=A , training=A ) snake_case : str = outputs.pooler_output if return_dict else outputs[1] snake_case : int = self.classifier[0](A ) snake_case : Union[str, Any] = self.classifier[1](A ) snake_case : Union[str, Any] = None if labels is None else self.hf_compute_loss(labels=A , logits=A ) if not return_dict: snake_case : str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=A , logits=A , hidden_states=outputs.hidden_states )
587
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCamelCase : int = re.compile(r'''\s+''') def a_ ( __lowercase : List[Any] ) -> int: return {"hash": hashlib.mda(re.sub(__lowercase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( __lowercase : List[Any] ) -> Dict: _snake_case = [len(__lowercase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__lowercase ), "line_max": max(__lowercase )} def a_ ( __lowercase : Optional[int] ) -> List[str]: _snake_case = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] ) -> Optional[int]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( __lowercase : Union[str, Any] , __lowercase : int=5 ) -> Optional[Any]: _snake_case = ['auto-generated', 'autogenerated', 'automatically generated'] _snake_case = example['content'].splitlines() for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( __lowercase : List[Any] , __lowercase : int=5 , __lowercase : Tuple=0.0_5 ) -> Union[str, Any]: _snake_case = ['unit tests', 'test file', 'configuration file'] _snake_case = example['content'].splitlines() _snake_case = 0 _snake_case = 0 # first test for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case = example['content'].count('\n' ) _snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( __lowercase : Union[str, Any] ) -> Any: _snake_case = ['def ', 'class ', 'for ', 'while '] _snake_case = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( __lowercase : Tuple , __lowercase : Any=4 ) -> List[str]: _snake_case = example['content'].splitlines() _snake_case = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( __lowercase : Dict ) -> Dict: _snake_case = tokenizer(example['content'] , truncation=__lowercase )['input_ids'] _snake_case = len(example['content'] ) / len(__lowercase ) return {"ratio": ratio} def a_ ( __lowercase : Optional[Any] ) -> Any: _snake_case = {} results.update(get_hash(__lowercase ) ) results.update(line_stats(__lowercase ) ) results.update(alpha_stats(__lowercase ) ) results.update(char_token_ratio(__lowercase ) ) results.update(is_autogenerated(__lowercase ) ) results.update(is_config_or_test(__lowercase ) ) results.update(has_no_keywords(__lowercase ) ) results.update(has_few_assignments(__lowercase ) ) return results def a_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : List[Any] ) -> int: if not check_uniques(__lowercase , __lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( __lowercase : Dict ) -> Dict: with open(__lowercase , 'rb' ) as f_in: with gzip.open(str(__lowercase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowercase , __lowercase ) os.unlink(__lowercase ) # Settings _lowerCamelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCamelCase : Dict = parser.parse_args() if args.num_workers is None: _lowerCamelCase : int = multiprocessing.cpu_count() _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCamelCase : Any = time.time() _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing _lowerCamelCase : Optional[int] = time.time() _lowerCamelCase : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes _lowerCamelCase : List[Any] = set(ds.unique('''hash''')) _lowerCamelCase : Dict = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics _lowerCamelCase : List[Any] = time.time() _lowerCamelCase : Optional[int] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCamelCase : Union[str, Any] = time.time() _lowerCamelCase , _lowerCamelCase : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file _lowerCamelCase : Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCamelCase : int = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCamelCase : Union[str, Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCamelCase : Dict = str(data_dir / F'file-{file_number+1:012}.json') _lowerCamelCase : str = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
686
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ : """simple docstring""" def __init__( self :List[Any] , snake_case :Union[str, Any] , snake_case :str=13 , snake_case :Union[str, Any]=32 , snake_case :Union[str, Any]=3 , snake_case :Optional[int]=4 , snake_case :Optional[int]=[10, 20, 30, 40] , snake_case :str=[2, 2, 3, 2] , snake_case :str=True , snake_case :Optional[int]=True , snake_case :Dict=37 , snake_case :Optional[int]="gelu" , snake_case :str=10 , snake_case :int=0.02 , snake_case :Any=["stage2", "stage3", "stage4"] , snake_case :int=3 , snake_case :Any=None , ): '''simple docstring''' A_ : str = parent A_ : Optional[Any] = batch_size A_ : List[Any] = image_size A_ : Union[str, Any] = num_channels A_ : Tuple = num_stages A_ : int = hidden_sizes A_ : Tuple = depths A_ : Tuple = is_training A_ : Union[str, Any] = use_labels A_ : Union[str, Any] = intermediate_size A_ : List[Any] = hidden_act A_ : Dict = type_sequence_label_size A_ : int = initializer_range A_ : List[str] = out_features A_ : List[str] = num_labels A_ : Optional[int] = scope A_ : Optional[Any] = num_stages def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Any = None if self.use_labels: A_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=snake_case , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=snake_case , loss_ignore_index=255 , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :List[Any] , snake_case :Optional[int] , snake_case :Dict ): '''simple docstring''' A_ : Dict = UperNetForSemanticSegmentation(config=snake_case ) model.to(snake_case ) model.eval() A_ : Union[str, Any] = model(snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Tuple = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ) : Optional[Any] = config_and_inputs A_ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (UperNetForSemanticSegmentation,) if is_torch_available() else () __UpperCamelCase = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Any = UperNetModelTester(self ) A_ : Dict = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' return def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ , A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[str] = model_class(snake_case ) A_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Optional[int] = [*signature.parameters.keys()] A_ : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`" ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' def check_hidden_states_output(snake_case :Tuple , snake_case :Tuple , snake_case :Optional[int] ): A_ : List[Any] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): A_ : Tuple = model(**self._prepare_for_class(snake_case , snake_case ) ) A_ : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : List[str] = self.model_tester.num_stages self.assertEqual(len(snake_case ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A_ , A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[str] = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : Union[str, Any] = True check_hidden_states_output(snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = _config_zero_init(snake_case ) A_ : Any = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: A_ : Dict = model_class(config=snake_case ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip(reason="UperNet does not have tied weights" ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __snake_case ( ) -> int: A_ : Any = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" ) A_ : Optional[Any] = Image.open(__lowercase ).convert("RGB" ) return image @require_torch @require_vision @slow class __magic_name__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : str = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) A_ : Any = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(snake_case ) A_ : Dict = prepare_img() A_ : Dict = processor(images=snake_case , return_tensors="pt" ).to(snake_case ) with torch.no_grad(): A_ : Dict = model(**snake_case ) A_ : Any = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , snake_case ) A_ : List[str] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case , atol=1e-4 ) ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Any = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) A_ : Optional[Any] = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(snake_case ) A_ : Union[str, Any] = prepare_img() A_ : int = processor(images=snake_case , return_tensors="pt" ).to(snake_case ) with torch.no_grad(): A_ : Optional[Any] = model(**snake_case ) A_ : Optional[int] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , snake_case ) A_ : int = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case , atol=1e-4 ) )
454
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : int = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "yolos" def __init__( self : int , lowercase : List[str]=768 , lowercase : Tuple=12 , lowercase : int=12 , lowercase : int=3_072 , lowercase : Optional[int]="gelu" , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Optional[Any]=0.02 , lowercase : List[str]=1E-12 , lowercase : Dict=[512, 864] , lowercase : Union[str, Any]=16 , lowercase : List[Any]=3 , lowercase : List[str]=True , lowercase : Optional[int]=100 , lowercase : int=True , lowercase : Dict=False , lowercase : str=1 , lowercase : int=5 , lowercase : Tuple=2 , lowercase : List[str]=5 , lowercase : Any=2 , lowercase : List[str]=0.1 , **lowercase : int , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = num_detection_tokens _snake_case = use_mid_position_embeddings _snake_case = auxiliary_loss # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 @property def A ( self : List[Any] ): '''simple docstring''' return 12
686
0
from __future__ import annotations import numpy as np def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): return np.maximum(0 , __lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
285
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring _lowerCamelCase : Union[str, Any] = '''ResNetConfig''' # Base docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[Any] = [1, 2_048, 7, 7] # Image classification docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[int] = '''tiger cat''' _lowerCamelCase : str = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Union[str, Any] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def A ( self : Tuple , lowercase : Tensor ): '''simple docstring''' _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowercase ) _snake_case = self.pooler(lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int = 2 ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" , lowercase : int = 4 ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : ResNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , ): '''simple docstring''' super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = input for layer in self.layers: _snake_case = layer(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def A ( self : str , lowercase : Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ResNetConfig _UpperCAmelCase : Tuple = "resnet" _UpperCAmelCase : Optional[Any] = "pixel_values" _UpperCAmelCase : Dict = True def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Union[str, Any] , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = ResNetModel(lowercase ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowercase ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase ) super()._init_backbone(lowercase ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def A ( self : Dict , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowercase ) _snake_case = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
686
0
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def UpperCamelCase__( UpperCamelCase__ : str , UpperCamelCase__ : str )->str: A__ = tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f: f.write('''{"default": {"dataset_size": 42}}''' ) A__ = DatasetInfosDict.from_directory(__lowercase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ), ] , ) def UpperCamelCase__( UpperCamelCase__ : Any , UpperCamelCase__ : DatasetInfo )->str: A__ = str(__lowercase ) dataset_info.write_to_directory(__lowercase ) A__ = DatasetInfo.from_directory(__lowercase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__lowercase , '''dataset_info.json''' ) ) def UpperCamelCase__( )->List[str]: A__ = DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) A__ = dataset_info._to_yaml_dict() assert sorted(__lowercase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) A__ = yaml.safe_dump(__lowercase ) A__ = yaml.safe_load(__lowercase ) assert dataset_info_yaml_dict == reloaded def UpperCamelCase__( )->List[str]: A__ = DatasetInfo() A__ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=42 ), '''v2''': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def UpperCamelCase__( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : DatasetInfosDict )->List[Any]: A__ = str(__lowercase ) dataset_infos_dict.write_to_directory(__lowercase ) A__ = DatasetInfosDict.from_directory(__lowercase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): A__ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml A__ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__lowercase , '''README.md''' ) )
190
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __lowerCAmelCase ( A_ : Union[str, Any] , A_ : List[str] , A_ : Optional[int] , A_ : int , A_ : List[Any]=True , A_ : str="pt" ) -> Union[str, Any]: __UpperCAmelCase = {"add_prefix_space": True} if isinstance(__lowercase , __lowercase ) and not line.startswith(" " ) else {} __UpperCAmelCase = padding_side return tokenizer( [line] , max_length=__lowercase , padding="max_length" if pad_to_max_length else None , truncation=__lowercase , return_tensors=__lowercase , add_special_tokens=__lowercase , **__lowercase , ) def __lowerCAmelCase ( A_ : Optional[Any] , A_ : Optional[Any] , A_ : Any=None , ) -> List[Any]: __UpperCAmelCase = input_ids.ne(__lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCAmelCase__ ( snake_case ): """simple docstring""" def __init__( self: Optional[Any] , __lowerCAmelCase: Dict , __lowerCAmelCase: Tuple , __lowerCAmelCase: int , __lowerCAmelCase: Optional[int] , __lowerCAmelCase: List[Any]="train" , __lowerCAmelCase: Tuple=None , __lowerCAmelCase: Optional[Any]=None , __lowerCAmelCase: List[str]=None , __lowerCAmelCase: Dict="" , ) -> Tuple: '''simple docstring''' super().__init__() __UpperCAmelCase = Path(__lowerCAmelCase ).joinpath(type_path + ".source" ) __UpperCAmelCase = Path(__lowerCAmelCase ).joinpath(type_path + ".target" ) __UpperCAmelCase = self.get_char_lens(self.src_file ) __UpperCAmelCase = max_source_length __UpperCAmelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCAmelCase = tokenizer __UpperCAmelCase = prefix if n_obs is not None: __UpperCAmelCase = self.src_lens[:n_obs] __UpperCAmelCase = src_lang __UpperCAmelCase = tgt_lang def __len__( self: Union[str, Any] ) -> str: '''simple docstring''' return len(self.src_lens ) def __getitem__( self: Optional[int] , __lowerCAmelCase: int ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = index + 1 # linecache starts at 1 __UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , __lowerCAmelCase ).rstrip("\n" ) __UpperCAmelCase = linecache.getline(str(self.tgt_file ) , __lowerCAmelCase ).rstrip("\n" ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , __lowerCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer ) __UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer __UpperCAmelCase = encode_line(__lowerCAmelCase , __lowerCAmelCase , self.max_source_length , "right" ) __UpperCAmelCase = encode_line(__lowerCAmelCase , __lowerCAmelCase , self.max_target_length , "right" ) __UpperCAmelCase = source_inputs["input_ids"].squeeze() __UpperCAmelCase = target_inputs["input_ids"].squeeze() __UpperCAmelCase = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _UpperCAmelCase ( __lowerCAmelCase: Union[str, Any] ) -> Tuple: '''simple docstring''' return [len(__lowerCAmelCase ) for x in Path(__lowerCAmelCase ).open().readlines()] def _UpperCAmelCase ( self: Optional[Any] , __lowerCAmelCase: int ) -> int: '''simple docstring''' __UpperCAmelCase = torch.stack([x["input_ids"] for x in batch] ) __UpperCAmelCase = torch.stack([x["attention_mask"] for x in batch] ) __UpperCAmelCase = torch.stack([x["decoder_input_ids"] for x in batch] ) __UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer.pad_token_id ) __UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer.pad_token_id ) __UpperCAmelCase = trim_batch(__lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase , __UpperCAmelCase = trim_batch(__lowerCAmelCase , __lowerCAmelCase , attention_mask=__lowerCAmelCase ) __UpperCAmelCase = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch a_ = getLogger(__name__) def __lowerCAmelCase ( A_ : List[List] ) -> Dict: return list(itertools.chain.from_iterable(__lowercase ) ) def __lowerCAmelCase ( A_ : str ) -> None: __UpperCAmelCase = get_git_info() save_json(__lowercase , os.path.join(__lowercase , "git_log.json" ) ) def __lowerCAmelCase ( A_ : Tuple , A_ : Any , A_ : Tuple=4 , **A_ : str ) -> str: with open(__lowercase , "w" ) as f: json.dump(__lowercase , __lowercase , indent=__lowercase , **__lowercase ) def __lowerCAmelCase ( A_ : Dict ) -> List[Any]: with open(__lowercase ) as f: return json.load(__lowercase ) def __lowerCAmelCase ( ) -> Optional[Any]: __UpperCAmelCase = git.Repo(search_parent_directories=__lowercase ) __UpperCAmelCase = { "repo_id": str(__lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def __lowerCAmelCase ( A_ : Callable , A_ : Iterable ) -> List: return list(map(__lowercase , __lowercase ) ) def __lowerCAmelCase ( A_ : List[Any] , A_ : str ) -> Any: with open(__lowercase , "wb" ) as f: return pickle.dump(__lowercase , __lowercase ) def __lowerCAmelCase ( A_ : Dict ) -> Any: def remove_articles(A_ : Union[str, Any] ): return re.sub(r"\b(a|an|the)\b" , " " , __lowercase ) def white_space_fix(A_ : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(A_ : List[Any] ): __UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(A_ : List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowercase ) ) ) ) def __lowerCAmelCase ( A_ : List[Any] , A_ : List[Any] ) -> Optional[Any]: __UpperCAmelCase = normalize_answer(__lowercase ).split() __UpperCAmelCase = normalize_answer(__lowercase ).split() __UpperCAmelCase = Counter(__lowercase ) & Counter(__lowercase ) __UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCAmelCase = 1.0 * num_same / len(__lowercase ) __UpperCAmelCase = 1.0 * num_same / len(__lowercase ) __UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def __lowerCAmelCase ( A_ : List[Any] , A_ : Dict ) -> int: return normalize_answer(__lowercase ) == normalize_answer(__lowercase ) def __lowerCAmelCase ( A_ : List[str] , A_ : List[str] ) -> Dict: assert len(__lowercase ) == len(__lowercase ) __UpperCAmelCase = 0 for hypo, pred in zip(__lowercase , __lowercase ): em += exact_match_score(__lowercase , __lowercase ) if len(__lowercase ) > 0: em /= len(__lowercase ) return {"em": em} def __lowerCAmelCase ( A_ : Tuple ) -> Optional[int]: return model_prefix.startswith("rag" ) def __lowerCAmelCase ( A_ : Dict , A_ : Optional[int] , A_ : List[Any] ) -> int: __UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCAmelCase = "dropout_rate" for p in extra_params: if getattr(__lowercase , __lowercase , __lowercase ): if not hasattr(__lowercase , __lowercase ) and not hasattr(__lowercase , equivalent_param[p] ): logger.info("config doesn\'t have a `{}` attribute".format(__lowercase ) ) delattr(__lowercase , __lowercase ) continue __UpperCAmelCase = p if hasattr(__lowercase , __lowercase ) else equivalent_param[p] setattr(__lowercase , __lowercase , getattr(__lowercase , __lowercase ) ) delattr(__lowercase , __lowercase ) return hparams, config
221
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : Union[str, Any] ) -> List[Any]: _snake_case = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _snake_case = DetaConfig( backbone_config=__lowercase , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=__lowercase , with_box_refine=__lowercase , two_stage=__lowercase , ) # set labels _snake_case = 'huggingface/label-files' if "o365" in model_name: _snake_case = 366 _snake_case = 'object365-id2label.json' else: _snake_case = 91 _snake_case = 'coco-detection-id2label.json' _snake_case = num_labels _snake_case = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset' ) ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def a_ ( __lowercase : int ) -> str: _snake_case = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : str ) -> Union[str, Any]: _snake_case = dct.pop(__lowercase ) _snake_case = val def a_ ( __lowercase : List[str] , __lowercase : str ) -> Dict: _snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:dim, :] _snake_case = in_proj_bias[: dim] _snake_case = in_proj_weight[ dim : dim * 2, : ] _snake_case = in_proj_bias[ dim : dim * 2 ] _snake_case = in_proj_weight[ -dim :, : ] _snake_case = in_proj_bias[-dim :] # fmt: on def a_ ( __lowercase : Dict , __lowercase : Dict ) -> str: # transformer decoder self-attention layers _snake_case = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:hidden_size, :] _snake_case = in_proj_bias[:hidden_size] _snake_case = in_proj_weight[ hidden_size : hidden_size * 2, : ] _snake_case = in_proj_bias[hidden_size : hidden_size * 2] _snake_case = in_proj_weight[-hidden_size:, :] _snake_case = in_proj_bias[-hidden_size:] def a_ ( ) -> List[str]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Tuple ) -> Optional[Any]: _snake_case = get_deta_config(__lowercase ) # load original state dict if model_name == "deta-swin-large": _snake_case = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _snake_case = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__lowercase , param.shape ) # rename keys _snake_case = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_swin_q_k_v(__lowercase , config.backbone_config ) read_in_decoder_q_k_v(__lowercase , __lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "input_proj" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = DetaForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() _snake_case = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__lowercase ) # load image processor _snake_case = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _snake_case = prepare_img() _snake_case = processor(images=__lowercase , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = model(pixel_values.to(__lowercase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _snake_case = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _snake_case = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _snake_case = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _snake_case = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowercase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowercase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
0
'''simple docstring''' def __snake_case ( _UpperCAmelCase : Any): if not head: return True # split the list to two parts UpperCamelCase , UpperCamelCase = head.next, head while fast and fast.next: UpperCamelCase = fast.next.next UpperCamelCase = slow.next UpperCamelCase = slow.next UpperCamelCase = None # Don't forget here! But forget still works! # reverse the second part UpperCamelCase = None while second: UpperCamelCase = second.next UpperCamelCase = node UpperCamelCase = second UpperCamelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCamelCase = node.next UpperCamelCase = head.next return True def __snake_case ( _UpperCAmelCase : List[str]): if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCamelCase = UpperCamelCase = UpperCamelCase = head while fast and fast.next: UpperCamelCase , UpperCamelCase = fast.next.next, slow.next # 2. Push the second half into the stack UpperCamelCase = [slow.val] while slow.next: UpperCamelCase = slow.next stack.append(slow.val) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCamelCase = cur.next return True def __snake_case ( _UpperCAmelCase : Any): if not head or not head.next: return True UpperCamelCase = {} UpperCamelCase = 0 while head: if head.val in d: d[head.val].append(__lowercase) else: UpperCamelCase = [pos] UpperCamelCase = head.next pos += 1 UpperCamelCase = pos - 1 UpperCamelCase = 0 for v in d.values(): if len(__lowercase) % 2 != 0: middle += 1 else: UpperCamelCase = 0 for i in range(0, len(__lowercase)): if v[i] + v[len(__lowercase) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
212
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCamelCase : Dict = '''pt''' elif is_tf_available(): _lowerCamelCase : List[str] = '''tf''' else: _lowerCamelCase : List[Any] = '''jax''' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = PerceiverTokenizer _UpperCAmelCase : Optional[int] = False def A ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : str ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def A ( self : Optional[int] , **lowercase : Dict ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[int] , lowercase : Tuple , lowercase : Optional[Any]=False , lowercase : int=20 , lowercase : Optional[int]=5 ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): try: _snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case = list(filter(lambda lowercase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , lowercase ) ) _snake_case = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: _snake_case = ' ' + output_txt _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = 'Unicode €.' _snake_case = tokenizer(lowercase ) _snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]Unicode €.[SEP]' ) _snake_case = tokenizer('e è é ê ë' ) _snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": _snake_case = list(batch.input_ids.numpy()[0] ) else: _snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('decoder_input_ids' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = [ 'Summary of the text.', 'Another summary.', ] _snake_case = tokenizer( text_target=lowercase , max_length=32 , padding='max_length' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) _snake_case = [f'''<extra_id_{i}>''' for i in range(125 )] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowercase )] _snake_case = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _snake_case = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
686
0
"""simple docstring""" import math import os import sys def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = '' try: with open(__lowercase , 'rb' ) as binary_file: _lowerCAmelCase : Optional[Any] = binary_file.read() for dat in data: _lowerCAmelCase : List[str] = f"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' lexicon.pop(__lowercase ) _lowerCAmelCase : str = last_match_id if math.loga(__lowercase ).is_integer(): for curr_key in lexicon: _lowerCAmelCase : List[str] = '0' + lexicon[curr_key] _lowerCAmelCase : str = bin(__lowercase )[2:] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {'0': '0', '1': '1'} _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = '', '' _lowerCAmelCase : Union[str, Any] = len(__lowercase ) for i in range(len(__lowercase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _lowerCAmelCase : List[Any] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__lowercase , __lowercase , __lowercase , __lowercase ) index += 1 _lowerCAmelCase : Dict = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": _lowerCAmelCase : List[Any] = lexicon[curr_string] result += last_match_id return result def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = os.path.getsize(__lowercase ) _lowerCAmelCase : List[Any] = bin(__lowercase )[2:] _lowerCAmelCase : List[Any] = len(__lowercase ) return "0" * (length_length - 1) + file_length_binary + compressed def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = 8 try: with open(__lowercase , 'wb' ) as opened_file: _lowerCAmelCase : List[str] = [ to_write[i : i + byte_length] for i in range(0 , len(__lowercase ) , __lowercase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__lowercase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = read_file_binary(__lowercase ) _lowerCAmelCase : Dict = compress_data(__lowercase ) _lowerCAmelCase : List[str] = add_file_length(__lowercase , __lowercase ) write_file_binary(__lowercase , __lowercase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
259
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
0
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict): # Initialise PyTorch model lowerCamelCase : str = BertConfig.from_json_file(__lowercase) print(F'''Building PyTorch model from configuration: {config}''') lowerCamelCase : List[Any] = BertForPreTraining(__lowercase) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''') torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
320
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ["transformers", "torch", "note_seq"] def __init__( self : List[Any] , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
686
0
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int ) -> tuple[int, int]: if b == 0: return (1, 0) ((__lowerCAmelCase) , (__lowerCAmelCase)) : Tuple = extended_euclid(__lowercase , a % b ) __lowerCAmelCase : List[Any] = a // b return (y, x - k * y) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int ) -> int: ((__lowerCAmelCase) , (__lowerCAmelCase)) : int = extended_euclid(__lowercase , __lowercase ) __lowerCAmelCase : Any = na * na __lowerCAmelCase : Optional[int] = ra * x * na + ra * y * na return (n % m + m) % m def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int ) -> int: ((__lowerCAmelCase) , (__lowerCAmelCase)) : Dict = extended_euclid(__lowercase , __lowercase ) if b < 0: __lowerCAmelCase : str = (b % n + n) % n return b def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int ) -> int: __lowerCAmelCase , __lowerCAmelCase : Tuple = invert_modulo(__lowercase , __lowercase ), invert_modulo(__lowercase , __lowercase ) __lowerCAmelCase : str = na * na __lowerCAmelCase : str = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='chinese_remainder_theorem', verbose=True) testmod(name='chinese_remainder_theorem2', verbose=True) testmod(name='invert_modulo', verbose=True) testmod(name='extended_euclid', verbose=True)
504
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : str = KandinskyVaaControlnetImgaImgPipeline __lowercase : Optional[int] = ["image_embeds", "negative_image_embeds", "image", "hint"] __lowercase : str = ["image_embeds", "negative_image_embeds", "image", "hint"] __lowercase : Any = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __lowercase : str = False @property def UpperCAmelCase_ ( self ) -> Any: return 32 @property def UpperCAmelCase_ ( self ) -> Union[str, Any]: return 32 @property def UpperCAmelCase_ ( self ) -> Dict: return self.time_input_dim @property def UpperCAmelCase_ ( self ) -> Tuple: return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self ) -> Optional[Any]: return 100 @property def UpperCAmelCase_ ( self ) -> List[Any]: torch.manual_seed(0 ) lowerCAmelCase__ : Tuple = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowerCAmelCase__ : Optional[int] = UNetaDConditionModel(**__UpperCAmelCase ) return model @property def UpperCAmelCase_ ( self ) -> Union[str, Any]: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCAmelCase_ ( self ) -> Optional[Any]: torch.manual_seed(0 ) lowerCAmelCase__ : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : int = self.dummy_unet lowerCAmelCase__ : Optional[Any] = self.dummy_movq lowerCAmelCase__ : List[Any] = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } lowerCAmelCase__ : Union[str, Any] = DDIMScheduler(**__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=0 ) -> Union[str, Any]: lowerCAmelCase__ : List[str] = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ : Dict = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( __UpperCAmelCase ) # create init_image lowerCAmelCase__ : Any = floats_tensor((1, 3, 64, 64) ,rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = image.cpu().permute(0 ,2 ,3 ,1 )[0] lowerCAmelCase__ : Union[str, Any] = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create hint lowerCAmelCase__ : int = floats_tensor((1, 3, 64, 64) ,rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) if str(__UpperCAmelCase ).startswith("""mps""" ): lowerCAmelCase__ : int = torch.manual_seed(__UpperCAmelCase ) else: lowerCAmelCase__ : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Optional[Any] = """cpu""" lowerCAmelCase__ : str = self.get_dummy_components() lowerCAmelCase__ : int = self.pipeline_class(**__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ : int = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : List[str] = pipe( **self.get_dummy_inputs(__UpperCAmelCase ) ,return_dict=__UpperCAmelCase ,)[0] lowerCAmelCase__ : int = image[0, -3:, -3:, -1] lowerCAmelCase__ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Optional[int] = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) lowerCAmelCase__ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowerCAmelCase__ : List[Any] = init_image.resize((512, 512) ) lowerCAmelCase__ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) lowerCAmelCase__ : int = torch.from_numpy(np.array(__UpperCAmelCase ) ).float() / 2_5_5.0 lowerCAmelCase__ : Union[str, Any] = hint.permute(2 ,0 ,1 ).unsqueeze(0 ) lowerCAmelCase__ : Optional[int] = """A robot, 4k photo""" lowerCAmelCase__ : int = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(__UpperCAmelCase ) lowerCAmelCase__ : str = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" ,torch_dtype=torch.floataa ) lowerCAmelCase__ : int = pipeline.to(__UpperCAmelCase ) pipeline.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = pipe_prior( __UpperCAmelCase ,image=__UpperCAmelCase ,strength=0.8_5 ,generator=__UpperCAmelCase ,negative_prompt="""""" ,).to_tuple() lowerCAmelCase__ : Tuple = pipeline( image=__UpperCAmelCase ,image_embeds=__UpperCAmelCase ,negative_image_embeds=__UpperCAmelCase ,hint=__UpperCAmelCase ,generator=__UpperCAmelCase ,num_inference_steps=100 ,height=512 ,width=512 ,strength=0.5 ,output_type="""np""" ,) lowerCAmelCase__ : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__UpperCAmelCase ,__UpperCAmelCase )
565
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : Optional[int] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _lowerCamelCase : List[str] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _lowerCamelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int=None , lowercase : str=True , lowercase : List[str]=False ): '''simple docstring''' if rouge_types is None: _snake_case = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _snake_case = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: _snake_case = scoring.BootstrapAggregator() else: _snake_case = [] for ref, pred in zip(lowercase , lowercase ): _snake_case = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: _snake_case = aggregator.aggregate() else: _snake_case = {} for key in scores[0]: _snake_case = [score[key] for score in scores] return result
686
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Optional[int]=224 , UpperCAmelCase_ : List[Any]=30 , UpperCAmelCase_ : Tuple=400 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , ): SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {"height": 18, "width": 18} SCREAMING_SNAKE_CASE : Optional[int] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : Any = image_size SCREAMING_SNAKE_CASE : Dict = min_resolution SCREAMING_SNAKE_CASE : int = max_resolution SCREAMING_SNAKE_CASE : List[Any] = do_resize SCREAMING_SNAKE_CASE : Optional[int] = size SCREAMING_SNAKE_CASE : List[str] = do_normalize SCREAMING_SNAKE_CASE : int = image_mean SCREAMING_SNAKE_CASE : str = image_std def _A ( self : Optional[int] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ViTImageProcessor if is_vision_available() else None def _A ( self : Any ): SCREAMING_SNAKE_CASE : int = EfficientFormerImageProcessorTester(self ) @property def _A ( self : Dict ): return self.image_proc_tester.prepare_image_processor_dict() def _A ( self : int ): SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "size" ) ) def _A ( self : List[str] ): pass def _A ( self : Any ): SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : str = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE : int = image_processor(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : Tuple = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = image_processor(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Any = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE : str = image_processor(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
62
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "swin2sr" _UpperCAmelCase : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowercase : List[Any]=64 , lowercase : int=1 , lowercase : Union[str, Any]=3 , lowercase : Dict=180 , lowercase : List[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Dict=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : List[str]=2.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : List[str]=False , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-5 , lowercase : Optional[int]=2 , lowercase : Tuple=1.0 , lowercase : List[Any]="1conv" , lowercase : List[Any]="pixelshuffle" , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(lowercase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = upscale _snake_case = img_range _snake_case = resi_connection _snake_case = upsampler
686
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowercase : """simple docstring""" def __init__( self , A , A=1_3 , A=1_0 , A=3 , A=2 , A=2 , A=2 , A=True , A=True , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=1_0 , A=0.02 , A=0.9 , A=None , ) -> Optional[Any]: snake_case : List[str] = parent snake_case : List[str] = batch_size snake_case : List[Any] = image_size snake_case : Any = num_channels snake_case : int = patch_size snake_case : Any = tubelet_size snake_case : Optional[int] = num_frames snake_case : List[Any] = is_training snake_case : Tuple = use_labels snake_case : int = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Tuple = intermediate_size snake_case : str = hidden_act snake_case : Union[str, Any] = hidden_dropout_prob snake_case : List[str] = attention_probs_dropout_prob snake_case : List[Any] = type_sequence_label_size snake_case : str = initializer_range snake_case : Optional[Any] = mask_ratio snake_case : Tuple = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame snake_case : Tuple = (image_size // patch_size) ** 2 snake_case : int = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos snake_case : str = int(mask_ratio * self.seq_length ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Tuple = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) snake_case : Dict = None if self.use_labels: snake_case : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> Tuple: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , A , A , A ) -> int: snake_case : Any = VideoMAEModel(config=A ) model.to(A ) model.eval() snake_case : Dict = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : List[Any] = VideoMAEForPreTraining(A ) model.to(A ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch snake_case : Any = torch.ones((self.num_masks,) ) snake_case : Union[str, Any] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) snake_case : Tuple = mask.expand(self.batch_size , -1 ).bool() snake_case : List[Any] = model(A , A ) # model only returns predictions for masked patches snake_case : List[str] = mask.sum().item() snake_case : Tuple = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def UpperCAmelCase ( self ) -> List[str]: snake_case : List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case : Dict = config_and_inputs snake_case : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowercase (UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _snake_case = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) _snake_case = False _snake_case = False _snake_case = False _snake_case = False def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : str = VideoMAEModelTester(self ) snake_case : Optional[int] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 ) def UpperCAmelCase ( self , A , A , A=False ) -> Union[str, Any]: snake_case : int = copy.deepcopy(A ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch snake_case : Tuple = torch.ones((self.model_tester.num_masks,) ) snake_case : Any = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) snake_case : Dict = mask.expand(self.model_tester.batch_size , -1 ).bool() snake_case : List[Any] = bool_masked_pos.to(A ) if return_labels: if model_class in [ *get_values(A ), ]: snake_case : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def UpperCAmelCase ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def UpperCAmelCase ( self ) -> Any: pass def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case , snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Tuple = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case , snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Tuple = model_class(A ) snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : Dict = [*signature.parameters.keys()] snake_case : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def UpperCAmelCase ( self ) -> Any: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A ) @slow def UpperCAmelCase ( self ) -> List[Any]: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Tuple = VideoMAEModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( self ) -> List[Any]: if not self.has_attentions: pass else: snake_case , snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Any = True for model_class in self.all_model_classes: snake_case : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks snake_case : Union[str, Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) snake_case : Dict = True snake_case : List[Any] = False snake_case : Any = True snake_case : str = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): snake_case : str = model(**self._prepare_for_class(A , A ) ) snake_case : Optional[Any] = outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case : Tuple = True snake_case : Union[str, Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): snake_case : Any = model(**self._prepare_for_class(A , A ) ) snake_case : str = outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) snake_case : str = len(A ) # Check attention is always last and order is fine snake_case : Dict = True snake_case : Dict = True snake_case : List[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): snake_case : str = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 1 , len(A ) ) snake_case : Optional[Any] = outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCAmelCase ( self ) -> Any: def check_hidden_states_output(A , A , A ): snake_case : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): snake_case : Dict = model(**self._prepare_for_class(A , A ) ) snake_case : Tuple = outputs.hidden_states snake_case : Dict = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(A ) , A ) snake_case : int = self.model_tester.seq_length - self.model_tester.num_masks snake_case : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) snake_case , snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Optional[int] = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : int = True check_hidden_states_output(A , A , A ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase ( self ) -> List[Any]: pass def SCREAMING_SNAKE_CASE__ ( ) -> Dict: snake_case : Optional[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" ,filename="""eating_spaghetti.npy""" ,repo_type="""dataset""" ) snake_case : List[str] = np.load(__lowercase ) return list(__lowercase ) @require_torch @require_vision class __lowercase (unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> List[str]: return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self ) -> List[Any]: snake_case : int = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( A ) snake_case : Optional[int] = self.default_image_processor snake_case : Tuple = prepare_video() snake_case : int = image_processor(A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): snake_case : str = model(**A ) # verify the logits snake_case : Tuple = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , A ) snake_case : Union[str, Any] = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) ) @slow def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Optional[Any] = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(A ) snake_case : Union[str, Any] = self.default_image_processor snake_case : List[str] = prepare_video() snake_case : Tuple = image_processor(A , return_tensors="""pt""" ).to(A ) # add boolean mask, indicating which patches to mask snake_case : List[Any] = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) snake_case : Optional[Any] = torch.load(A ) # forward pass with torch.no_grad(): snake_case : Tuple = model(**A ) # verify the logits snake_case : Tuple = torch.Size([1, 1_4_0_8, 1_5_3_6] ) snake_case : str = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=A ) self.assertEqual(outputs.logits.shape , A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , A , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) snake_case : Optional[int] = torch.tensor([0.51_42] , device=A ) self.assertTrue(torch.allclose(outputs.loss , A , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) snake_case : Union[str, Any] = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=A ).to( A ) with torch.no_grad(): snake_case : Optional[Any] = model(**A ) snake_case : List[str] = torch.tensor(torch.tensor([0.64_69] ) , device=A ) self.assertTrue(torch.allclose(outputs.loss , A , atol=1e-4 ) )
587
import random def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: _snake_case = a[left_index] _snake_case = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _snake_case , _snake_case = a[i], a[j] i += 1 _snake_case , _snake_case = a[i - 1], a[left_index] return i - 1 def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] ) -> Tuple: if left < right: _snake_case = random.randint(__lowercase , right - 1 ) _snake_case , _snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound _snake_case = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> str: _snake_case = input('Enter numbers separated by a comma:\n' ).strip() _snake_case = [int(__lowercase ) for item in user_input.split(',' )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
686
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def __snake_case ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request("GET" , "https://huggingface.co" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("GET" , "https://huggingface.co" , timeout=1.0 ) @pytest.mark.integration def __snake_case ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("GET" , "https://huggingface.co" ) def __snake_case ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head("https://huggingface.co" )
454
import math def a_ ( __lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __lowercase : float = 0.1 ) -> int: _snake_case = 3 _snake_case = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
686
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCamelCase =logging.get_logger(__name__) lowerCamelCase ='''▁''' lowerCamelCase ={ '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase ={ '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } lowerCamelCase ={ '''facebook/m2m100_418M''': 1_0_2_4, } # fmt: off lowerCamelCase ={ '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="m2m100" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=8 , **__SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase__ : Optional[Any] = language_codes UpperCamelCase__ : str = FAIRSEQ_LANGUAGE_CODES[language_codes] UpperCamelCase__ : int = {lang_code: F'''__{lang_code}__''' for lang_code in fairseq_language_code} UpperCamelCase__ : Any = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__SCREAMING_SNAKE_CASE ) for lang_code in fairseq_language_code if self.get_lang_token(__SCREAMING_SNAKE_CASE ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , language_codes=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Union[str, Any] = vocab_file UpperCamelCase__ : Union[str, Any] = load_json(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Union[str, Any] = spm_file UpperCamelCase__ : Optional[int] = load_spm(__SCREAMING_SNAKE_CASE , self.sp_model_kwargs ) UpperCamelCase__ : Any = len(self.encoder ) UpperCamelCase__ : Any = { self.get_lang_token(__SCREAMING_SNAKE_CASE ): self.encoder_size + i for i, lang_code in enumerate(__SCREAMING_SNAKE_CASE ) } UpperCamelCase__ : Dict = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__SCREAMING_SNAKE_CASE )} UpperCamelCase__ : List[str] = {v: k for k, v in self.lang_token_to_id.items()} UpperCamelCase__ : List[str] = src_lang if src_lang is not None else '''en''' UpperCamelCase__ : Any = tgt_lang UpperCamelCase__ : Optional[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) UpperCamelCase__ : Tuple = num_madeup_words @property def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: """simple docstring""" return self._src_lang @src_lang.setter def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder[self.unk_token] ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : Optional[int] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token UpperCamelCase__ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ) -> Union[str, Any]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = [1] * len(self.prefix_tokens ) UpperCamelCase__ : str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> Any: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Dict = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Any = self.__dict__.copy() UpperCamelCase__ : Dict = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase__ : str = {} UpperCamelCase__ : Union[str, Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> Dict: """simple docstring""" UpperCamelCase__ : Union[str, Any] = Path(__SCREAMING_SNAKE_CASE ) if not save_dir.is_dir(): raise OSError(F'''{save_directory} should be a directory''' ) UpperCamelCase__ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) UpperCamelCase__ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __SCREAMING_SNAKE_CASE ) if os.path.abspath(self.spm_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.spm_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: UpperCamelCase__ : Tuple = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (str(__SCREAMING_SNAKE_CASE ), str(__SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro" , **__SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Any = src_lang UpperCamelCase__ : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase__ : Optional[int] = src_lang UpperCamelCase__ : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = self.get_lang_id(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = tgt_lang_id return inputs def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.get_lang_token(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = self.lang_token_to_id[lang_token] UpperCamelCase__ : Tuple = [self.cur_lang_id] UpperCamelCase__ : Optional[int] = [self.eos_token_id] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Tuple = self.get_lang_token(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = self.lang_token_to_id[lang_token] UpperCamelCase__ : Optional[Any] = [self.cur_lang_id] UpperCamelCase__ : Any = [self.eos_token_id] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return self.lang_code_to_token[lang] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[int] = self.get_lang_token(__SCREAMING_SNAKE_CASE ) return self.lang_token_to_id[lang_token] def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : Dict = sentencepiece.SentencePieceProcessor(**__lowercase ) spm.Load(str(__lowercase ) ) return spm def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): with open(__lowercase , '''r''' ) as f: return json.load(__lowercase ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): with open(__lowercase , '''w''' ) as f: json.dump(__lowercase , __lowercase , indent=2 )
285
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
0
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate a__: Dict = trt.Logger(trt.Logger.WARNING) a__: int = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) a__: List[str] = logging.getLogger(__name__) a__: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) a__: Any = parser.parse_args() if args.tokenizer_name: a__: List[str] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) a__: int = args.per_device_eval_batch_size a__: List[str] = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties a__: Optional[Any] = True a__: int = '''temp_engine/bert-fp32.engine''' if args.fpaa: a__: List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: a__: Any = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') a__: Dict = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network a__: int = [network.get_input(i) for i in range(network.num_inputs)] a__: Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: a__: Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) a__: Any = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) a__: Any = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def UpperCamelCase__( UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] )->Any: A__ = np.asarray(inputs['''input_ids'''] , dtype=np.intaa ) A__ = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa ) A__ = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , __lowercase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , __lowercase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , __lowercase ) # start time A__ = time.time() # Run inference context.execute_async( bindings=[int(__lowercase ) for d_inp in d_inputs] + [int(__lowercase ), int(__lowercase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__lowercase , __lowercase , __lowercase ) cuda.memcpy_dtoh_async(__lowercase , __lowercase , __lowercase ) # Synchronize the stream and take time stream.synchronize() # end time A__ = time.time() A__ = end_time - start_time A__ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. a__: Optional[Any] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. a__: Any = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. a__: Any = raw_datasets['''validation'''].column_names a__: Tuple = '''question''' if '''question''' in column_names else column_names[0] a__: Any = '''context''' if '''context''' in column_names else column_names[1] a__: Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). a__: Any = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) a__: Tuple = min(args.max_seq_length, tokenizer.model_max_length) def UpperCamelCase__( UpperCamelCase__ : int )->str: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace A__ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. A__ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=__lowercase , stride=args.doc_stride , return_overflowing_tokens=__lowercase , return_offsets_mapping=__lowercase , padding='''max_length''' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. A__ = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. A__ = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). A__ = tokenized_examples.sequence_ids(__lowercase ) A__ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. A__ = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. A__ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples a__: Any = raw_datasets['''validation'''] # Validation Feature Creation a__: List[Any] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) a__: int = default_data_collator a__: Any = eval_dataset.remove_columns(['example_id', 'offset_mapping']) a__: Optional[int] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def UpperCamelCase__( UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple="eval" )->List[str]: # Post-processing: we match the start logits and end logits to answers in the original context. A__ = postprocess_qa_predictions( examples=__lowercase , features=__lowercase , predictions=__lowercase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=__lowercase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: A__ = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: A__ = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] A__ = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__lowercase , label_ids=__lowercase ) a__: Optional[int] = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def UpperCamelCase__( UpperCamelCase__ : Any )->List[Any]: return trt.volume(engine.get_binding_shape(__lowercase ) ) * engine.get_binding_dtype(__lowercase ).itemsize # Allocate device memory for inputs and outputs. a__: Dict = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer a__: Any = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) a__: Optional[Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) a__: Optional[int] = cuda.mem_alloc(h_outputa.nbytes) a__: Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. a__: List[str] = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(F" Num examples = {len(eval_dataset)}") logger.info(F" Batch size = {args.per_device_eval_batch_size}") a__: Tuple = 0.0 a__: List[Any] = 0 a__: Tuple = timeit.default_timer() a__: Optional[int] = None for step, batch in enumerate(eval_dataloader): a__: Dict = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 a__: Optional[Any] = outputs a__: Any = torch.tensor(start_logits) a__: Union[str, Any] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered a__: Optional[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) a__: Union[str, Any] = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) a__: Any = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) a__: str = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: a__: Optional[Any] = nested_truncate(all_preds, len(eval_dataset)) a__: List[Any] = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000)) logger.info('Total Number of Inference = %d', niter) a__: Tuple = post_processing_function(eval_examples, eval_dataset, all_preds) a__: str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F"Evaluation metrics: {eval_metric}")
190
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowercase ) for s in shape] )}.npy''' def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() def A ( self : List[Any] , lowercase : Tuple=0 , lowercase : Optional[int]=(4, 4, 64, 64) , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def A ( self : Tuple , lowercase : Any=False , lowercase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = 'bf16' if fpaa else None _snake_case , _snake_case = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder='unet' , dtype=lowercase , revision=lowercase ) return model, params def A ( self : Union[str, Any] , lowercase : str=0 , lowercase : Optional[Any]=(4, 77, 768) , lowercase : int=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def A ( self : str , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1_024) , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 )
686
0
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def __lowerCAmelCase ( A_ : str , A_ : List[Any] , A_ : List[str] , A_ : Union[str, Any] ) -> str: __UpperCAmelCase = { "en": "Machine learning is great, isn\'t it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] __UpperCAmelCase = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } __UpperCAmelCase = F'''{src_lang}-{tgt_lang}''' __UpperCAmelCase = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=__lowercase , exist_ok=__lowercase ) __UpperCAmelCase = os.path.join(__lowercase , "README.md" ) print(F'''Generating {path}''' ) with open(__lowercase , "w" , encoding="utf-8" ) as f: f.write(__lowercase ) # make sure we are under the root of the project a_ = Path(__file__).resolve().parent.parent.parent a_ = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: a_ = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
221
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : List[Any] = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = "mgp-str" def __init__( self , lowerCamelCase__=[3_2, 1_2_8] , lowerCamelCase__=4 , lowerCamelCase__=3 , lowerCamelCase__=2_7 , lowerCamelCase__=3_8 , lowerCamelCase__=5_0_2_5_7 , lowerCamelCase__=3_0_5_2_2 , lowerCamelCase__=7_6_8 , lowerCamelCase__=1_2 , lowerCamelCase__=1_2 , lowerCamelCase__=4.0 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=1e-5 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=False , lowerCamelCase__=0.02 , **lowerCamelCase__ , ): '''simple docstring''' super().__init__(**lowerCamelCase__ ) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = max_token_length UpperCamelCase = num_character_labels UpperCamelCase = num_bpe_labels UpperCamelCase = num_wordpiece_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = mlp_ratio UpperCamelCase = distilled UpperCamelCase = layer_norm_eps UpperCamelCase = drop_rate UpperCamelCase = qkv_bias UpperCamelCase = attn_drop_rate UpperCamelCase = drop_path_rate UpperCamelCase = output_aa_attentions UpperCamelCase = initializer_range
212
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
259
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "sequence-classification" def __init__( self : Optional[int] , lowercase : Any ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Optional[Any] , lowercase : str , lowercase : Tuple ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : int , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[str] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
686
0
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split A = datasets.load_iris() A = np.array(data['data']) A = np.array(data['target']) A = data['''target_names'''] A = train_test_split(X, y) def UpperCAmelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : List[str]): return np.linalg.norm(np.array(__lowercase) - np.array(__lowercase)) def UpperCAmelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int=5): lowerCamelCase : Dict = zip(__lowercase , __lowercase) # List of distances of all points from the point to be classified lowerCamelCase : Optional[int] = [] for data_point in data: lowerCamelCase : Dict = euclidean_distance(data_point[0] , __lowercase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. lowerCamelCase : Optional[Any] = [i[1] for i in sorted(__lowercase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowerCamelCase : int = Counter(__lowercase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
320
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LEDConfig _UpperCAmelCase : int = {} _UpperCAmelCase : List[str] = "gelu" def __init__( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict=13 , lowercase : Dict=7 , lowercase : Tuple=True , lowercase : Dict=False , lowercase : Dict=99 , lowercase : Any=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[str]=37 , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : List[Any]=20 , lowercase : int=2 , lowercase : Optional[Any]=1 , lowercase : List[str]=0 , lowercase : Optional[int]=4 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case = prepare_led_inputs_dict(lowercase , lowercase , lowercase ) _snake_case = tf.concat( [tf.zeros_like(lowercase )[:, :-1], tf.ones_like(lowercase )[:, -1:]] , axis=-1 , ) _snake_case = global_attention_mask return config, inputs_dict def A ( self : str , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = TFLEDModel(config=lowercase ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : str=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase : Optional[int] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : Tuple = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = False _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False def A ( self : Any ): '''simple docstring''' _snake_case = TFLEDModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = tf.zeros_like(inputs_dict['attention_mask'] ) _snake_case = 2 _snake_case = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _snake_case = True _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase : List[str] ): _snake_case = outputs.decoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase : List[str] ): _snake_case = [t.numpy() for t in outputs.encoder_attentions] _snake_case = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = False _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) _snake_case = len(lowercase ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) if self.is_encoder_decoder: _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_decoder_attentions_output(lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase ) ) self.assertEqual(model.config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def a_ ( __lowercase : str ) -> Optional[Any]: return tf.constant(__lowercase , dtype=tf.intaa ) _lowerCamelCase : List[Any] = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, 768) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 ) def A ( self : str ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 , rtol=1E-3 )
686
0
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _UpperCAmelCase = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _UpperCAmelCase = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _UpperCAmelCase = '''zero2''' _UpperCAmelCase = '''zero3''' _UpperCAmelCase = [ZEROa, ZEROa] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Tuple ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __lowerCAmelCase : Dict = parameterized.to_safe_name("""_""".join(str(__lowercase ) for x in param.args ) ) return F'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _UpperCAmelCase = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class snake_case_ ( __lowercase ): @parameterized.expand(_snake_case , name_func=_snake_case ) def UpperCAmelCase__ ( self : List[str] , _snake_case : List[Any] , _snake_case : Dict )->int: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def UpperCAmelCase__ ( self : Any , _snake_case : str , _snake_case : List[str] )->List[str]: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @parameterized.expand(_snake_case , name_func=_snake_case ) def UpperCAmelCase__ ( self : List[str] , _snake_case : Optional[Any] , _snake_case : Optional[int] )->Tuple: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) @require_torch_multi_gpu @parameterized.expand(_snake_case , name_func=_snake_case ) def UpperCAmelCase__ ( self : Optional[int] , _snake_case : Union[str, Any] , _snake_case : Union[str, Any] )->List[Any]: '''simple docstring''' self.run_and_check( stage=_snake_case , model=_snake_case , distributed=_snake_case , fpaa=_snake_case , ) def UpperCAmelCase__ ( self : List[str] , _snake_case : Optional[Any] )->Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self : str , _snake_case : str , _snake_case : str , _snake_case : int = 10 , _snake_case : bool = True , _snake_case : bool = True , _snake_case : bool = True , )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = models[model] __lowerCAmelCase : Any = self.run_trainer( stage=_snake_case , model_name=_snake_case , eval_steps=_snake_case , num_train_epochs=1 , distributed=_snake_case , fpaa=_snake_case , ) self.do_checks(_snake_case ) return output_dir def UpperCAmelCase__ ( self : Any , _snake_case : str , _snake_case : str , _snake_case : int = 10 , _snake_case : int = 1 , _snake_case : bool = True , _snake_case : bool = True , )->Any: '''simple docstring''' __lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir("""./xxx""" , after=_snake_case ) __lowerCAmelCase : Dict = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __lowerCAmelCase : Optional[Any] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() __lowerCAmelCase : Tuple = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] __lowerCAmelCase : str = self.get_launcher(_snake_case ) __lowerCAmelCase : str = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_snake_case , env=self.get_env() ) return output_dir def UpperCAmelCase__ ( self : List[str] , _snake_case : Any=False )->Tuple: '''simple docstring''' __lowerCAmelCase : List[Any] = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
504
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCamelCase : Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCamelCase : Union[str, Any] = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCamelCase : Optional[int] = '''zero2''' _lowerCamelCase : List[Any] = '''zero3''' _lowerCamelCase : Dict = [ZEROa, ZEROa] def a_ ( __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _snake_case = parameterized.to_safe_name('_'.join(str(__lowercase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _lowerCamelCase : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' pass def A ( self : str , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : bool = True , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = models[model] _snake_case = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A ( self : Any , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : int = 1 , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _snake_case = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _snake_case = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _snake_case = self.get_launcher(lowercase ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A ( self : List[str] , lowercase : Any=False ): '''simple docstring''' _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
686
0
'''simple docstring''' import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase = logging.getLogger() def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : str = {} lowerCAmelCase__ : int = os.path.join(__lowercase , """all_results.json""" ) if os.path.exists(__lowercase ): with open(__lowercase , """r""" ) as f: lowerCAmelCase__ : Optional[Any] = json.load(__lowercase ) else: raise ValueError(f"""can\'t find {path}""" ) return results _lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> str: import xla_spawn lowerCAmelCase__ : Tuple = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : str = F""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(__UpperCAmelCase ,"""argv""" ,__UpperCAmelCase ): lowerCAmelCase__ : List[Any] = time() xla_spawn.main() lowerCAmelCase__ : List[str] = time() lowerCAmelCase__ : Optional[int] = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.7_5 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start ,500 ) def UpperCAmelCase_ ( self ) -> Dict: import xla_spawn lowerCAmelCase__ : int = """\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n """.split() with patch.object(__UpperCAmelCase ,"""argv""" ,__UpperCAmelCase ): xla_spawn.main()
565
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
0
from __future__ import annotations def lowerCamelCase__ ( lowercase , lowercase , lowercase , ): """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
62
import random from .binary_exp_mod import bin_exp_mod def a_ ( __lowercase : int , __lowercase : Any=1_000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__lowercase , __lowercase , __lowercase ) if b != 1: _snake_case = True for _ in range(__lowercase ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCamelCase : Tuple = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
686
0
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,) -> tuple[str, float]: if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif stress < 0: raise ValueError("""Stress cannot be negative""" ) elif tangential_force < 0: raise ValueError("""Tangential Force cannot be negative""" ) elif area < 0: raise ValueError("""Area cannot be negative""" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
587
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCamelCase : int = re.compile(r'''\s+''') def a_ ( __lowercase : List[Any] ) -> int: return {"hash": hashlib.mda(re.sub(__lowercase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( __lowercase : List[Any] ) -> Dict: _snake_case = [len(__lowercase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__lowercase ), "line_max": max(__lowercase )} def a_ ( __lowercase : Optional[int] ) -> List[str]: _snake_case = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] ) -> Optional[int]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( __lowercase : Union[str, Any] , __lowercase : int=5 ) -> Optional[Any]: _snake_case = ['auto-generated', 'autogenerated', 'automatically generated'] _snake_case = example['content'].splitlines() for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( __lowercase : List[Any] , __lowercase : int=5 , __lowercase : Tuple=0.0_5 ) -> Union[str, Any]: _snake_case = ['unit tests', 'test file', 'configuration file'] _snake_case = example['content'].splitlines() _snake_case = 0 _snake_case = 0 # first test for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case = example['content'].count('\n' ) _snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( __lowercase : Union[str, Any] ) -> Any: _snake_case = ['def ', 'class ', 'for ', 'while '] _snake_case = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( __lowercase : Tuple , __lowercase : Any=4 ) -> List[str]: _snake_case = example['content'].splitlines() _snake_case = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( __lowercase : Dict ) -> Dict: _snake_case = tokenizer(example['content'] , truncation=__lowercase )['input_ids'] _snake_case = len(example['content'] ) / len(__lowercase ) return {"ratio": ratio} def a_ ( __lowercase : Optional[Any] ) -> Any: _snake_case = {} results.update(get_hash(__lowercase ) ) results.update(line_stats(__lowercase ) ) results.update(alpha_stats(__lowercase ) ) results.update(char_token_ratio(__lowercase ) ) results.update(is_autogenerated(__lowercase ) ) results.update(is_config_or_test(__lowercase ) ) results.update(has_no_keywords(__lowercase ) ) results.update(has_few_assignments(__lowercase ) ) return results def a_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : List[Any] ) -> int: if not check_uniques(__lowercase , __lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( __lowercase : Dict ) -> Dict: with open(__lowercase , 'rb' ) as f_in: with gzip.open(str(__lowercase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowercase , __lowercase ) os.unlink(__lowercase ) # Settings _lowerCamelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCamelCase : Dict = parser.parse_args() if args.num_workers is None: _lowerCamelCase : int = multiprocessing.cpu_count() _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCamelCase : Any = time.time() _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing _lowerCamelCase : Optional[int] = time.time() _lowerCamelCase : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes _lowerCamelCase : List[Any] = set(ds.unique('''hash''')) _lowerCamelCase : Dict = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics _lowerCamelCase : List[Any] = time.time() _lowerCamelCase : Optional[int] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCamelCase : Union[str, Any] = time.time() _lowerCamelCase , _lowerCamelCase : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file _lowerCamelCase : Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCamelCase : int = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCamelCase : Union[str, Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCamelCase : Dict = str(data_dir / F'file-{file_number+1:012}.json') _lowerCamelCase : str = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
686
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Any = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] _lowerCAmelCase : Tuple = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
454
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : int = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "yolos" def __init__( self : int , lowercase : List[str]=768 , lowercase : Tuple=12 , lowercase : int=12 , lowercase : int=3_072 , lowercase : Optional[int]="gelu" , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Optional[Any]=0.02 , lowercase : List[str]=1E-12 , lowercase : Dict=[512, 864] , lowercase : Union[str, Any]=16 , lowercase : List[Any]=3 , lowercase : List[str]=True , lowercase : Optional[int]=100 , lowercase : int=True , lowercase : Dict=False , lowercase : str=1 , lowercase : int=5 , lowercase : Tuple=2 , lowercase : List[str]=5 , lowercase : Any=2 , lowercase : List[str]=0.1 , **lowercase : int , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = num_detection_tokens _snake_case = use_mid_position_embeddings _snake_case = auxiliary_loss # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 @property def A ( self : List[Any] ): '''simple docstring''' return 12
686
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : Optional[Any] = os.path.abspath(__lowercase ) logger.info(f'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model UpperCamelCase__ : Union[str, Any] = tf.train.list_variables(__lowercase ) UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = [] UpperCamelCase__ : List[Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") UpperCamelCase__ : Tuple = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(f'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' UpperCamelCase__ : str = name[1:] # figure out how many levels deep the name is UpperCamelCase__ : Union[str, Any] = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(__lowercase ) # read data UpperCamelCase__ : List[Any] = tf.train.load_variable(__lowercase , __lowercase ) names.append('''/'''.join(__lowercase ) ) arrays.append(__lowercase ) logger.info(f'''Read a total of {len(__lowercase ):,} layers''' ) # Sanity check if len(set(__lowercase ) ) != 1: raise ValueError(f'''Found layer names with different depths (layer depth {list(set(__lowercase ) )})''' ) UpperCamelCase__ : Union[str, Any] = list(set(__lowercase ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(__lowercase , __lowercase ): UpperCamelCase__ : Union[str, Any] = full_name.split('''/''' ) UpperCamelCase__ : List[Any] = model UpperCamelCase__ : List[str] = [] for i, m_name in enumerate(__lowercase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): UpperCamelCase__ : Optional[int] = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) UpperCamelCase__ : Any = getattr(__lowercase , '''embeddings''' ) UpperCamelCase__ : str = getattr(__lowercase , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) UpperCamelCase__ : Union[str, Any] = getattr(__lowercase , '''encoder''' ) UpperCamelCase__ : Any = getattr(__lowercase , '''layer''' ) UpperCamelCase__ : Union[str, Any] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) UpperCamelCase__ : int = getattr(__lowercase , '''pooler''' ) UpperCamelCase__ : Any = getattr(__lowercase , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) UpperCamelCase__ : List[Any] = getattr(__lowercase , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) UpperCamelCase__ : Optional[int] = getattr(__lowercase , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) UpperCamelCase__ : Optional[int] = getattr(__lowercase , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) UpperCamelCase__ : Union[str, Any] = getattr(__lowercase , '''token_type_embeddings''' ) else: raise ValueError(f'''Unknown embedding layer with name {full_name}''' ) trace.append('''weight''' ) UpperCamelCase__ : Optional[Any] = getattr(__lowercase , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) UpperCamelCase__ : Optional[int] = getattr(__lowercase , '''attention''' ) UpperCamelCase__ : Optional[Any] = getattr(__lowercase , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) UpperCamelCase__ : Union[str, Any] = getattr(__lowercase , '''attention''' ) UpperCamelCase__ : Optional[int] = getattr(__lowercase , '''output''' ) UpperCamelCase__ : Union[str, Any] = getattr(__lowercase , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) UpperCamelCase__ : List[str] = getattr(__lowercase , '''attention''' ) UpperCamelCase__ : Tuple = getattr(__lowercase , '''output''' ) UpperCamelCase__ : List[Any] = getattr(__lowercase , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) UpperCamelCase__ : List[Any] = getattr(__lowercase , '''output''' ) UpperCamelCase__ : List[str] = getattr(__lowercase , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) UpperCamelCase__ : List[str] = getattr(__lowercase , '''output''' ) UpperCamelCase__ : Any = getattr(__lowercase , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) UpperCamelCase__ : List[Any] = getattr(__lowercase , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) UpperCamelCase__ : List[Any] = getattr(__lowercase , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) UpperCamelCase__ : Any = getattr(__lowercase , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) UpperCamelCase__ : List[Any] = getattr(__lowercase , '''intermediate''' ) UpperCamelCase__ : Union[str, Any] = getattr(__lowercase , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) UpperCamelCase__ : List[str] = getattr(__lowercase , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) UpperCamelCase__ : List[Any] = getattr(__lowercase , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) UpperCamelCase__ : Any = getattr(__lowercase , '''weight''' ) else: logger.warning(f'''Ignored {m_name}''' ) # for certain layers reshape is necessary UpperCamelCase__ : Dict = '''.'''.join(__lowercase ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , __lowercase ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''' , __lowercase ): UpperCamelCase__ : Any = array.reshape(pointer.data.shape ) if "kernel" in full_name: UpperCamelCase__ : int = array.transpose() if pointer.shape == array.shape: UpperCamelCase__ : str = torch.from_numpy(__lowercase ) else: raise ValueError( f'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' f''' {array.shape}''' ) logger.info(f'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # Instantiate model logger.info(f'''Loading model based on config from {config_path}...''' ) UpperCamelCase__ : Any = BertConfig.from_json_file(__lowercase ) UpperCamelCase__ : int = BertModel(__lowercase ) # Load weights from checkpoint logger.info(f'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(__lowercase , __lowercase , __lowercase ) # Save pytorch-model logger.info(f'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": lowerCamelCase =argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) lowerCamelCase =parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
285
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring _lowerCamelCase : Union[str, Any] = '''ResNetConfig''' # Base docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[Any] = [1, 2_048, 7, 7] # Image classification docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[int] = '''tiger cat''' _lowerCamelCase : str = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Union[str, Any] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def A ( self : Tuple , lowercase : Tensor ): '''simple docstring''' _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowercase ) _snake_case = self.pooler(lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int = 2 ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" , lowercase : int = 4 ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : ResNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , ): '''simple docstring''' super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = input for layer in self.layers: _snake_case = layer(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def A ( self : str , lowercase : Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ResNetConfig _UpperCAmelCase : Tuple = "resnet" _UpperCAmelCase : Optional[Any] = "pixel_values" _UpperCAmelCase : Dict = True def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Union[str, Any] , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = ResNetModel(lowercase ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowercase ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase ) super()._init_backbone(lowercase ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def A ( self : Dict , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowercase ) _snake_case = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
686
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__: str = logging.get_logger(__name__) a__: str = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = "roformer" def __init__( self,__lowerCamelCase=5_0000,__lowerCamelCase=None,__lowerCamelCase=768,__lowerCamelCase=12,__lowerCamelCase=12,__lowerCamelCase=3072,__lowerCamelCase="gelu",__lowerCamelCase=0.1,__lowerCamelCase=0.1,__lowerCamelCase=1536,__lowerCamelCase=2,__lowerCamelCase=0.02,__lowerCamelCase=1E-12,__lowerCamelCase=0,__lowerCamelCase=False,__lowerCamelCase=True,**__lowerCamelCase,): super().__init__(pad_token_id=__lowerCamelCase,**__lowerCamelCase ) A__ = vocab_size A__ = hidden_size if embedding_size is None else embedding_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = rotary_value A__ = use_cache class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): @property def UpperCamelCase ( self ): if self.task == "multiple-choice": A__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A__ = {0: '''batch''', 1: '''sequence'''} A__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
190
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
0
from datetime import datetime as dt import os from github import Github a_ = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def __lowerCAmelCase ( ) -> Dict: __UpperCAmelCase = Github(os.environ["GITHUB_TOKEN"] ) __UpperCAmelCase = g.get_repo("huggingface/transformers" ) __UpperCAmelCase = repo.get_issues(state="open" ) for issue in open_issues: __UpperCAmelCase = sorted([comment for comment in issue.get_comments()] , key=lambda A_ : i.created_at , reverse=__lowercase ) __UpperCAmelCase = comments[0] if len(__lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
221
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : Union[str, Any] ) -> List[Any]: _snake_case = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _snake_case = DetaConfig( backbone_config=__lowercase , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=__lowercase , with_box_refine=__lowercase , two_stage=__lowercase , ) # set labels _snake_case = 'huggingface/label-files' if "o365" in model_name: _snake_case = 366 _snake_case = 'object365-id2label.json' else: _snake_case = 91 _snake_case = 'coco-detection-id2label.json' _snake_case = num_labels _snake_case = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset' ) ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def a_ ( __lowercase : int ) -> str: _snake_case = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : str ) -> Union[str, Any]: _snake_case = dct.pop(__lowercase ) _snake_case = val def a_ ( __lowercase : List[str] , __lowercase : str ) -> Dict: _snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:dim, :] _snake_case = in_proj_bias[: dim] _snake_case = in_proj_weight[ dim : dim * 2, : ] _snake_case = in_proj_bias[ dim : dim * 2 ] _snake_case = in_proj_weight[ -dim :, : ] _snake_case = in_proj_bias[-dim :] # fmt: on def a_ ( __lowercase : Dict , __lowercase : Dict ) -> str: # transformer decoder self-attention layers _snake_case = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:hidden_size, :] _snake_case = in_proj_bias[:hidden_size] _snake_case = in_proj_weight[ hidden_size : hidden_size * 2, : ] _snake_case = in_proj_bias[hidden_size : hidden_size * 2] _snake_case = in_proj_weight[-hidden_size:, :] _snake_case = in_proj_bias[-hidden_size:] def a_ ( ) -> List[str]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Tuple ) -> Optional[Any]: _snake_case = get_deta_config(__lowercase ) # load original state dict if model_name == "deta-swin-large": _snake_case = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _snake_case = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__lowercase , param.shape ) # rename keys _snake_case = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_swin_q_k_v(__lowercase , config.backbone_config ) read_in_decoder_q_k_v(__lowercase , __lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "input_proj" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = DetaForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() _snake_case = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__lowercase ) # load image processor _snake_case = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _snake_case = prepare_img() _snake_case = processor(images=__lowercase , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = model(pixel_values.to(__lowercase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _snake_case = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _snake_case = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _snake_case = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _snake_case = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowercase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowercase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device snake_case_ : List[Any] = False class lowercase__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = pipe( image=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''' , ).images UpperCamelCase = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
212
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCamelCase : Dict = '''pt''' elif is_tf_available(): _lowerCamelCase : List[str] = '''tf''' else: _lowerCamelCase : List[Any] = '''jax''' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = PerceiverTokenizer _UpperCAmelCase : Optional[int] = False def A ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : str ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def A ( self : Optional[int] , **lowercase : Dict ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[int] , lowercase : Tuple , lowercase : Optional[Any]=False , lowercase : int=20 , lowercase : Optional[int]=5 ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): try: _snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case = list(filter(lambda lowercase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , lowercase ) ) _snake_case = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: _snake_case = ' ' + output_txt _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = 'Unicode €.' _snake_case = tokenizer(lowercase ) _snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]Unicode €.[SEP]' ) _snake_case = tokenizer('e è é ê ë' ) _snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": _snake_case = list(batch.input_ids.numpy()[0] ) else: _snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('decoder_input_ids' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = [ 'Summary of the text.', 'Another summary.', ] _snake_case = tokenizer( text_target=lowercase , max_length=32 , padding='max_length' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) _snake_case = [f'''<extra_id_{i}>''' for i in range(125 )] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowercase )] _snake_case = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _snake_case = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
686
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCAmelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = state_dict.pop(__lowercase ) _lowerCAmelCase : int = val def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _lowerCAmelCase : List[Any] = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) _lowerCAmelCase : List[Any] = value else: _lowerCAmelCase : Optional[Any] = value return new_state_dict def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Tuple = '' if is_panoptic: _lowerCAmelCase : Union[str, Any] = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _lowerCAmelCase : Optional[Any] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _lowerCAmelCase : str = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[:256, :] _lowerCAmelCase : int = in_proj_bias[:256] _lowerCAmelCase : Optional[Any] = in_proj_weight[256:512, :] _lowerCAmelCase : List[str] = in_proj_bias[256:512] _lowerCAmelCase : Tuple = in_proj_weight[-256:, :] _lowerCAmelCase : Any = in_proj_bias[-256:] def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase : List[str] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: _lowerCAmelCase : str = 'resnet101' if "dc5" in model_name: _lowerCAmelCase : int = True _lowerCAmelCase : List[Any] = 'panoptic' in model_name if is_panoptic: _lowerCAmelCase : Optional[Any] = 250 else: _lowerCAmelCase : Optional[Any] = 91 _lowerCAmelCase : List[str] = 'huggingface/label-files' _lowerCAmelCase : int = 'coco-detection-id2label.json' _lowerCAmelCase : List[str] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase : List[str] = {int(__lowercase ): v for k, v in idalabel.items()} _lowerCAmelCase : Union[str, Any] = idalabel _lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor _lowerCAmelCase : List[str] = 'coco_panoptic' if is_panoptic else 'coco_detection' _lowerCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=__lowercase ) # prepare image _lowerCAmelCase : List[str] = prepare_img() _lowerCAmelCase : int = image_processor(images=__lowercase , return_tensors='pt' ) _lowerCAmelCase : Optional[Any] = encoding['pixel_values'] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub _lowerCAmelCase : Optional[int] = torch.hub.load('DeppMeng/ConditionalDETR' , __lowercase , pretrained=__lowercase ).eval() _lowerCAmelCase : Optional[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: _lowerCAmelCase : List[str] = 'conditional_detr.' + src rename_key(__lowercase , __lowercase , __lowercase ) _lowerCAmelCase : int = rename_backbone_keys(__lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(__lowercase , is_panoptic=__lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _lowerCAmelCase : Any = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): _lowerCAmelCase : Any = state_dict.pop(__lowercase ) _lowerCAmelCase : List[str] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _lowerCAmelCase : str = state_dict.pop(__lowercase ) _lowerCAmelCase : Optional[int] = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: _lowerCAmelCase : Tuple = state_dict.pop(__lowercase ) _lowerCAmelCase : Tuple = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): _lowerCAmelCase : Union[str, Any] = state_dict.pop(__lowercase ) _lowerCAmelCase : Optional[int] = val # finally, create HuggingFace model and load state dict _lowerCAmelCase : List[Any] = ConditionalDetrForSegmentation(__lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() model.push_to_hub(repo_id=__lowercase , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion _lowerCAmelCase : str = conditional_detr(__lowercase ) _lowerCAmelCase : str = model(__lowercase ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) image_processor.save_pretrained(__lowercase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _lowerCAmelCase = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
259
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __snake_case ( a__): _lowerCAmelCase = "pegasus" _lowerCAmelCase = ["past_key_values"] _lowerCAmelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, A=5_0265, A=1024, A=12, A=4096, A=16, A=12, A=4096, A=16, A=0.0, A=0.0, A=True, A=True, A="gelu", A=1024, A=0.1, A=0.0, A=0.0, A=0.02, A=0, A=False, A=0, A=1, A=1, **A, ): """simple docstring""" lowerCamelCase : List[str] = vocab_size lowerCamelCase : List[str] = max_position_embeddings lowerCamelCase : Tuple = d_model lowerCamelCase : Optional[Any] = encoder_ffn_dim lowerCamelCase : Tuple = encoder_layers lowerCamelCase : Optional[Any] = encoder_attention_heads lowerCamelCase : str = decoder_ffn_dim lowerCamelCase : List[str] = decoder_layers lowerCamelCase : Tuple = decoder_attention_heads lowerCamelCase : Dict = dropout lowerCamelCase : Tuple = attention_dropout lowerCamelCase : List[Any] = activation_dropout lowerCamelCase : int = activation_function lowerCamelCase : int = init_std lowerCamelCase : Optional[int] = encoder_layerdrop lowerCamelCase : Tuple = decoder_layerdrop lowerCamelCase : Optional[Any] = use_cache lowerCamelCase : int = encoder_layers lowerCamelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=A, eos_token_id=A, is_encoder_decoder=A, decoder_start_token_id=A, forced_eos_token_id=A, **A, ) @property def UpperCAmelCase_ ( self ): """simple docstring""" return self.encoder_attention_heads @property def UpperCAmelCase_ ( self ): """simple docstring""" return self.d_model
320
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ["transformers", "torch", "note_seq"] def __init__( self : List[Any] , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
686
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class snake_case_ : def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : Union[str, Any] )->str: '''simple docstring''' return None class snake_case_ : def UpperCAmelCase__ ( self : Union[str, Any] , _snake_case : int , _snake_case : int , _snake_case : Union[str, Any] , _snake_case : int )->Any: '''simple docstring''' return None class snake_case_ ( unittest.TestCase ): A_ = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def UpperCAmelCase__ ( self : List[Any] )->Optional[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_snake_case , """tf""" , 12 , **_snake_case ) @require_torch @slow def UpperCAmelCase__ ( self : Optional[Any] )->List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_snake_case , """pt""" , 12 , **_snake_case ) @require_torch @slow def UpperCAmelCase__ ( self : str )->Union[str, Any]: '''simple docstring''' from transformers import BertModel __lowerCAmelCase : Optional[int] = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(_snake_case ) ) vocab_file.flush() __lowerCAmelCase : Optional[Any] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: __lowerCAmelCase : Optional[Any] = BertModel(BertConfig(vocab_size=len(_snake_case ) ) ) model.save_pretrained(_snake_case ) self._test_export(_snake_case , """pt""" , 12 , _snake_case ) @require_tf @slow def UpperCAmelCase__ ( self : str )->List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __lowerCAmelCase : str = self._test_export(_snake_case , """tf""" , 12 , **_snake_case ) __lowerCAmelCase : Optional[int] = quantize(Path(_snake_case ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_snake_case ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def UpperCAmelCase__ ( self : Optional[Any] )->Any: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __lowerCAmelCase : List[Any] = self._test_export(_snake_case , """pt""" , 12 , **_snake_case ) __lowerCAmelCase : Optional[Any] = quantize(_snake_case ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_snake_case ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def UpperCAmelCase__ ( self : int , _snake_case : List[Any] , _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : Any=None , **_snake_case : str )->List[Any]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: __lowerCAmelCase : List[str] = Path(_snake_case ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case ) return path except Exception as e: self.fail(_snake_case ) @require_torch @require_tokenizers @slow def UpperCAmelCase__ ( self : str )->List[Any]: '''simple docstring''' from transformers import BertModel __lowerCAmelCase : List[str] = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) __lowerCAmelCase : Tuple = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(_snake_case , _snake_case , """pt""" ) @require_tf @require_tokenizers @slow def UpperCAmelCase__ ( self : str )->Optional[Any]: '''simple docstring''' from transformers import TFBertModel __lowerCAmelCase : Dict = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) __lowerCAmelCase : Any = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(_snake_case , _snake_case , """tf""" ) def UpperCAmelCase__ ( self : str , _snake_case : Dict , _snake_case : Dict , _snake_case : Optional[Any] )->str: '''simple docstring''' __lowerCAmelCase : Tuple = FeatureExtractionPipeline(_snake_case , _snake_case ) __lowerCAmelCase : List[Any] = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[Any] = infer_shapes(_snake_case , _snake_case ) # Assert all variables are present self.assertEqual(len(_snake_case ) , len(_snake_case ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , _snake_case ) self.assertSequenceEqual(variable_names[3:] , _snake_case ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} ) def UpperCAmelCase__ ( self : Dict )->int: '''simple docstring''' __lowerCAmelCase : List[str] = ["""input_ids""", """attention_mask""", """token_type_ids"""] __lowerCAmelCase : List[str] = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} __lowerCAmelCase , __lowerCAmelCase : Dict = ensure_valid_input(FuncContiguousArgs() , _snake_case , _snake_case ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(_snake_case ) , 3 ) # Should have exactly the same input names self.assertEqual(set(_snake_case ) , set(_snake_case ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(_snake_case , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) __lowerCAmelCase , __lowerCAmelCase : Dict = ensure_valid_input(FuncNonContiguousArgs() , _snake_case , _snake_case ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(_snake_case ) , 1 ) self.assertEqual(len(_snake_case ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] , """input_ids""" ) def UpperCAmelCase__ ( self : Union[str, Any] )->List[str]: '''simple docstring''' __lowerCAmelCase : Tuple = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
504
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class lowerCAmelCase_: '''simple docstring''' __lowercase : int = BlenderbotConfig __lowercase : Optional[Any] = {} __lowercase : Union[str, Any] = "gelu" def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=13 ,__UpperCAmelCase=7 ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,__UpperCAmelCase=99 ,__UpperCAmelCase=32 ,__UpperCAmelCase=2 ,__UpperCAmelCase=4 ,__UpperCAmelCase=37 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=20 ,__UpperCAmelCase=2 ,__UpperCAmelCase=1 ,__UpperCAmelCase=0 ,) -> List[str]: lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : Any = batch_size lowerCAmelCase__ : List[Any] = seq_length lowerCAmelCase__ : int = is_training lowerCAmelCase__ : Optional[int] = use_labels lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : Dict = num_hidden_layers lowerCAmelCase__ : Tuple = num_attention_heads lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : Optional[Any] = hidden_dropout_prob lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob lowerCAmelCase__ : Any = max_position_embeddings lowerCAmelCase__ : Dict = eos_token_id lowerCAmelCase__ : List[Any] = pad_token_id lowerCAmelCase__ : int = bos_token_id def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) lowerCAmelCase__ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) lowerCAmelCase__ : Optional[int] = tf.concat([input_ids, eos_tensor] ,axis=1 ) lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase__ : Dict = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) lowerCAmelCase__ : str = prepare_blenderbot_inputs_dict(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) return config, inputs_dict def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : str = TFBlenderbotModel(config=__UpperCAmelCase ).get_decoder() lowerCAmelCase__ : str = inputs_dict["""input_ids"""] lowerCAmelCase__ : Optional[Any] = input_ids[:1, :] lowerCAmelCase__ : Tuple = inputs_dict["""attention_mask"""][:1, :] lowerCAmelCase__ : Optional[Any] = inputs_dict["""head_mask"""] lowerCAmelCase__ : Union[str, Any] = 1 # first forward pass lowerCAmelCase__ : str = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,head_mask=__UpperCAmelCase ,use_cache=__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Tuple = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase__ : int = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowerCAmelCase__ : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and lowerCAmelCase__ : int = tf.concat([input_ids, next_tokens] ,axis=-1 ) lowerCAmelCase__ : Dict = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) lowerCAmelCase__ : Tuple = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase )[0] lowerCAmelCase__ : List[Any] = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,past_key_values=__UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice lowerCAmelCase__ : Tuple = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) lowerCAmelCase__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase__ : List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCAmelCase ,__UpperCAmelCase ,rtol=1E-3 ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , ): """simple docstring""" if attention_mask is None: lowerCAmelCase__ : Any = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCAmelCase__ : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCAmelCase__ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase__ : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase__ : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : int = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowercase : int = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowercase : List[Any] = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Dict = True __lowercase : Tuple = False __lowercase : List[Any] = False def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : str = TFBlenderbotModelTester(self ) lowerCAmelCase__ : Union[str, Any] = ConfigTester(self ,config_class=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Any: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) @require_tokenizers @require_tf class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' __lowercase : int = ["My friends are cool but they eat too many carbs."] __lowercase : int = "facebook/blenderbot-400M-distill" @cached_property def UpperCAmelCase_ ( self ) -> Union[str, Any]: return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : Tuple = self.tokenizer(self.src_text ,return_tensors="""tf""" ) lowerCAmelCase__ : Union[str, Any] = self.model.generate( model_inputs.input_ids ,) lowerCAmelCase__ : str = self.tokenizer.batch_decode(generated_ids.numpy() ,skip_special_tokens=__UpperCAmelCase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
565
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : Optional[int] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _lowerCamelCase : List[str] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _lowerCamelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int=None , lowercase : str=True , lowercase : List[str]=False ): '''simple docstring''' if rouge_types is None: _snake_case = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _snake_case = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: _snake_case = scoring.BootstrapAggregator() else: _snake_case = [] for ref, pred in zip(lowercase , lowercase ): _snake_case = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: _snake_case = aggregator.aggregate() else: _snake_case = {} for key in scores[0]: _snake_case = [score[key] for score in scores] return result
686
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy snake_case = logging.getLogger(__name__) def lowerCamelCase__ ( lowercase , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = False , ): """simple docstring""" SCREAMING_SNAKE_CASE : str = bnb_quantization_config.load_in_abit SCREAMING_SNAKE_CASE : Optional[int] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed." ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed." ) SCREAMING_SNAKE_CASE : str = [] # custom device map if isinstance(__lowercase , __lowercase ) and len(device_map.keys() ) > 1: SCREAMING_SNAKE_CASE : Dict = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: SCREAMING_SNAKE_CASE : Dict = get_keys_to_not_convert(__lowercase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowercase ) SCREAMING_SNAKE_CASE : Dict = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : str = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowercase ) # compatibility with peft SCREAMING_SNAKE_CASE : Union[str, Any] = load_in_abit SCREAMING_SNAKE_CASE : Tuple = load_in_abit SCREAMING_SNAKE_CASE : Dict = get_parameter_device(__lowercase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager." ) SCREAMING_SNAKE_CASE : int = replace_with_bnb_layers(__lowercase , __lowercase , modules_to_not_convert=__lowercase ) # convert param to the right dtype SCREAMING_SNAKE_CASE : str = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace(".weight" , "" ).replace(".bias" , "" ) SCREAMING_SNAKE_CASE : str = getattr(__lowercase , __lowercase , __lowercase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowercase ): param.to(__lowercase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda." ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): SCREAMING_SNAKE_CASE : List[Any] = replace_with_bnb_layers( __lowercase , __lowercase , modules_to_not_convert=__lowercase ) SCREAMING_SNAKE_CASE : Any = get_quantized_model_device_map( __lowercase , __lowercase , __lowercase , max_memory=__lowercase , no_split_module_classes=__lowercase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Union[str, Any] = any(x in list(device_map.values() ) for x in ["cpu", "disk"] ) load_checkpoint_in_model( __lowercase , __lowercase , __lowercase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowercase , offload_state_dict=__lowercase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowercase , device_map=__lowercase , offload_dir=__lowercase ) def lowerCamelCase__ ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): SCREAMING_SNAKE_CASE : List[Any] = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info("The device_map was not initialized." "Setting device_map to `{\'\':torch.cuda.current_device()}`." ) if isinstance(__lowercase , __lowercase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or " "\'sequential\'." ) SCREAMING_SNAKE_CASE : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : str = special_dtypes SCREAMING_SNAKE_CASE : Optional[Any] = no_split_module_classes SCREAMING_SNAKE_CASE : List[Any] = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": SCREAMING_SNAKE_CASE : Tuple = get_balanced_memory( __lowercase , low_zero=(device_map == "balanced_low_0") , max_memory=__lowercase , **__lowercase , ) SCREAMING_SNAKE_CASE : Optional[Any] = max_memory SCREAMING_SNAKE_CASE : Union[str, Any] = infer_auto_device_map(__lowercase , **__lowercase ) if isinstance(__lowercase , __lowercase ): # check if don't have any quantized module on the cpu SCREAMING_SNAKE_CASE : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules SCREAMING_SNAKE_CASE : Any = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " ) else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" ) del device_map_without_some_modules return device_map def lowerCamelCase__ ( lowercase , lowercase , lowercase=None , lowercase=None ): """simple docstring""" if modules_to_not_convert is None: SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = _replace_with_bnb_layers( __lowercase , __lowercase , __lowercase , __lowercase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def lowerCamelCase__ ( lowercase , lowercase , lowercase=None , lowercase=None , ): """simple docstring""" SCREAMING_SNAKE_CASE : str = False for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE : Dict = [] current_key_name.append(__lowercase ) if isinstance(__lowercase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` SCREAMING_SNAKE_CASE : str = ".".join(__lowercase ) SCREAMING_SNAKE_CASE : Dict = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: SCREAMING_SNAKE_CASE : Optional[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE : Dict = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowercase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE : List[str] = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can\'t be both False" ) SCREAMING_SNAKE_CASE : Dict = module.weight.data if module.bias is not None: SCREAMING_SNAKE_CASE : Dict = module.bias.data bnb_module.requires_grad_(__lowercase ) setattr(__lowercase , __lowercase , __lowercase ) SCREAMING_SNAKE_CASE : int = True if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = _replace_with_bnb_layers( __lowercase , __lowercase , __lowercase , __lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCamelCase__ ( lowercase ): """simple docstring""" with init_empty_weights(): SCREAMING_SNAKE_CASE : Dict = deepcopy(__lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` SCREAMING_SNAKE_CASE : List[Any] = find_tied_parameters(__lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowercase , __lowercase ): SCREAMING_SNAKE_CASE : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE : List[str] = sum(__lowercase , [] ) SCREAMING_SNAKE_CASE : int = len(__lowercase ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE : int = False if hasattr(__lowercase , "base_model_prefix" ): SCREAMING_SNAKE_CASE : Any = not hasattr(__lowercase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE : Dict = list(model.named_children() ) SCREAMING_SNAKE_CASE : List[Any] = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE : List[Any] = set(__lowercase ) - set(__lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = list(set(__lowercase ) ) + list(__lowercase ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE : List[Any] = [".weight", ".bias"] SCREAMING_SNAKE_CASE : str = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE : Any = name.replace(__lowercase , "" ) filtered_module_names.append(__lowercase ) return filtered_module_names def lowerCamelCase__ ( lowercase ): """simple docstring""" for m in model.modules(): if isinstance(__lowercase , bnb.nn.Linearabit ): return True return False def lowerCamelCase__ ( lowercase ): """simple docstring""" return next(parameter.parameters() ).device def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(__lowercase , __lowercase , 0 , dtype=__lowercase , value=__lowercase ) SCREAMING_SNAKE_CASE : str = param_name SCREAMING_SNAKE_CASE : Union[str, Any] = model if "." in tensor_name: SCREAMING_SNAKE_CASE : str = tensor_name.split("." ) for split in splits[:-1]: SCREAMING_SNAKE_CASE : Optional[Any] = getattr(__lowercase , __lowercase ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = new_module SCREAMING_SNAKE_CASE : List[Any] = splits[-1] # offload weights SCREAMING_SNAKE_CASE : Tuple = False offload_weight(module._parameters[tensor_name] , __lowercase , __lowercase , index=__lowercase ) if hasattr(module._parameters[tensor_name] , "SCB" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB" ) , __lowercase , index=__lowercase , ) else: offload_weight(__lowercase , __lowercase , __lowercase , index=__lowercase ) offload_weight(__lowercase , param_name.replace("weight" , "SCB" ) , __lowercase , index=__lowercase ) set_module_tensor_to_device(__lowercase , __lowercase , "meta" , dtype=__lowercase , value=torch.empty(*param.size() ) )
62
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "swin2sr" _UpperCAmelCase : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowercase : List[Any]=64 , lowercase : int=1 , lowercase : Union[str, Any]=3 , lowercase : Dict=180 , lowercase : List[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Dict=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : List[str]=2.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : List[str]=False , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-5 , lowercase : Optional[int]=2 , lowercase : Tuple=1.0 , lowercase : List[Any]="1conv" , lowercase : List[Any]="pixelshuffle" , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(lowercase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = upscale _snake_case = img_range _snake_case = resi_connection _snake_case = upsampler
686
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: # Initialise PyTorch model snake_case : Optional[int] = MobileBertConfig.from_json_file(__lowercase ) print(f"""Building PyTorch model from configuration: {config}""" ) snake_case : List[Any] = MobileBertForPreTraining(__lowercase ) # Load weights from tf checkpoint snake_case : List[str] = load_tf_weights_in_mobilebert(__lowercase ,__lowercase ,__lowercase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() ,__lowercase ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
587
import random def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: _snake_case = a[left_index] _snake_case = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _snake_case , _snake_case = a[i], a[j] i += 1 _snake_case , _snake_case = a[i - 1], a[left_index] return i - 1 def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] ) -> Tuple: if left < right: _snake_case = random.randint(__lowercase , right - 1 ) _snake_case , _snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound _snake_case = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> str: _snake_case = input('Enter numbers separated by a comma:\n' ).strip() _snake_case = [int(__lowercase ) for item in user_input.split(',' )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
686
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self :Optional[Any] , snake_case :List[Any] , snake_case :Union[str, Any]=7 , snake_case :str=3 , snake_case :Dict=18 , snake_case :Optional[Any]=30 , snake_case :List[Any]=400 , snake_case :int=True , snake_case :Optional[Any]=None , snake_case :int=True , ): '''simple docstring''' A_ : str = size if size is not None else {"height": 18, "width": 18} A_ : List[Any] = parent A_ : Any = batch_size A_ : List[Any] = num_channels A_ : List[Any] = image_size A_ : Any = min_resolution A_ : Tuple = max_resolution A_ : Optional[Any] = do_resize A_ : Tuple = size A_ : str = apply_ocr def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Any = LayoutLMvaImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , "do_resize" ) ) self.assertTrue(hasattr(snake_case , "size" ) ) self.assertTrue(hasattr(snake_case , "apply_ocr" ) ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) A_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input A_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , snake_case ) self.assertIsInstance(encoding.boxes , snake_case ) # Test batched A_ : Union[str, Any] = image_processing(snake_case , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input A_ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A_ : Any = image_processing(snake_case , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input A_ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A_ : List[Any] = image_processing(snake_case , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Optional[int] = LayoutLMvaImageProcessor() from datasets import load_dataset A_ : Any = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) A_ : Any = Image.open(ds[0]["file"] ).convert("RGB" ) A_ : Optional[int] = image_processing(snake_case , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 A_ : int = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 A_ : Optional[int] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , snake_case ) self.assertListEqual(encoding.boxes , snake_case ) # with apply_OCR = False A_ : List[str] = LayoutLMvaImageProcessor(apply_ocr=snake_case ) A_ : List[Any] = image_processing(snake_case , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
454
import math def a_ ( __lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __lowercase : float = 0.1 ) -> int: _snake_case = 3 _snake_case = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
686
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowerCamelCase =logging.get_logger(__name__) # General docstring lowerCamelCase ='''ResNetConfig''' # Base docstring lowerCamelCase ='''microsoft/resnet-50''' lowerCamelCase =[1, 2_0_4_8, 7, 7] # Image classification docstring lowerCamelCase ='''microsoft/resnet-50''' lowerCamelCase ='''tiger cat''' lowerCamelCase =[ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = "relu" ) -> str: """simple docstring""" super().__init__() UpperCamelCase__ : str = nn.Convad( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2 , bias=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Any = self.convolution(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = self.normalization(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = self.activation(__SCREAMING_SNAKE_CASE ) return hidden_state class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" super().__init__() UpperCamelCase__ : List[Any] = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) UpperCamelCase__ : Optional[int] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) UpperCamelCase__ : Any = config.num_channels def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ : Any = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) UpperCamelCase__ : Optional[int] = self.embedder(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = self.pooler(__SCREAMING_SNAKE_CASE ) return embedding class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase__ : List[str] = nn.Convad(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 , stride=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ : List[Any] = self.convolution(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = self.normalization(__SCREAMING_SNAKE_CASE ) return hidden_state class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = "relu" ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase__ : str = in_channels != out_channels or stride != 1 UpperCamelCase__ : List[Any] = ( ResNetShortCut(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase__ : Optional[Any] = nn.Sequential( ResNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE ) , ResNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , activation=__SCREAMING_SNAKE_CASE ) , ) UpperCamelCase__ : str = ACTaFN[activation] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase__ : Dict = hidden_state UpperCamelCase__ : Optional[int] = self.layer(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = self.shortcut(__SCREAMING_SNAKE_CASE ) hidden_state += residual UpperCamelCase__ : Optional[Any] = self.activation(__SCREAMING_SNAKE_CASE ) return hidden_state class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = "relu" , __SCREAMING_SNAKE_CASE = 4 ) -> List[str]: """simple docstring""" super().__init__() UpperCamelCase__ : List[Any] = in_channels != out_channels or stride != 1 UpperCamelCase__ : Optional[Any] = out_channels // reduction UpperCamelCase__ : int = ( ResNetShortCut(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase__ : Dict = nn.Sequential( ResNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ) , ResNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE ) , ResNetConvLayer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 , activation=__SCREAMING_SNAKE_CASE ) , ) UpperCamelCase__ : Optional[int] = ACTaFN[activation] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ : List[Any] = hidden_state UpperCamelCase__ : int = self.layer(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = self.shortcut(__SCREAMING_SNAKE_CASE ) hidden_state += residual UpperCamelCase__ : str = self.activation(__SCREAMING_SNAKE_CASE ) return hidden_state class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 , __SCREAMING_SNAKE_CASE = 2 , ) -> Optional[int]: """simple docstring""" super().__init__() UpperCamelCase__ : List[Any] = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer UpperCamelCase__ : int = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , activation=config.hidden_act ) , *[layer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase__ : Optional[Any] = input for layer in self.layers: UpperCamelCase__ : List[Any] = layer(__SCREAMING_SNAKE_CASE ) return hidden_state class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" super().__init__() UpperCamelCase__ : int = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( __SCREAMING_SNAKE_CASE , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCamelCase__ : List[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__SCREAMING_SNAKE_CASE , config.depths[1:] ): self.stages.append(ResNetStage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , depth=__SCREAMING_SNAKE_CASE ) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True ) -> List[str]: """simple docstring""" UpperCamelCase__ : int = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase__ : Optional[int] = hidden_states + (hidden_state,) UpperCamelCase__ : Tuple = stage_module(__SCREAMING_SNAKE_CASE ) if output_hidden_states: UpperCamelCase__ : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=__SCREAMING_SNAKE_CASE , hidden_states=__SCREAMING_SNAKE_CASE , ) class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ResNetConfig SCREAMING_SNAKE_CASE_ = "resnet" SCREAMING_SNAKE_CASE_ = "pixel_values" SCREAMING_SNAKE_CASE_ = True def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(__SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> Optional[int]: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Optional[Any] = value lowerCamelCase =r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowerCamelCase =r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , UpperCamelCase_ , ) class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = config UpperCamelCase__ : Tuple = ResNetEmbeddings(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = ResNetEncoder(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Optional[Any] = self.embedder(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = self.encoder( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = encoder_outputs[0] UpperCamelCase__ : Union[str, Any] = self.pooler(__SCREAMING_SNAKE_CASE ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__SCREAMING_SNAKE_CASE , pooler_output=__SCREAMING_SNAKE_CASE , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '''\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ''' , UpperCamelCase_ , ) class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = config.num_labels UpperCamelCase__ : Any = ResNetModel(__SCREAMING_SNAKE_CASE ) # classification head UpperCamelCase__ : Any = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ) -> Any: """simple docstring""" UpperCamelCase__ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Optional[Any] = self.resnet(__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase__ : Dict = self.classifier(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase__ : List[str] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase__ : Optional[Any] = '''single_label_classification''' else: UpperCamelCase__ : Union[str, Any] = '''multi_label_classification''' if self.config.problem_type == "regression": UpperCamelCase__ : Optional[Any] = MSELoss() if self.num_labels == 1: UpperCamelCase__ : Dict = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase__ : str = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif self.config.problem_type == "single_label_classification": UpperCamelCase__ : str = CrossEntropyLoss() UpperCamelCase__ : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase__ : Optional[int] = BCEWithLogitsLoss() UpperCamelCase__ : int = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not return_dict: UpperCamelCase__ : int = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states ) @add_start_docstrings( '''\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ''' , UpperCamelCase_ , ) class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) super()._init_backbone(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = [config.embedding_size] + config.hidden_sizes UpperCamelCase__ : List[str] = ResNetEmbeddings(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = ResNetEncoder(__SCREAMING_SNAKE_CASE ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE ) @replace_return_docstrings(output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : Union[str, Any] = self.embedder(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = self.encoder(__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = outputs.hidden_states UpperCamelCase__ : List[Any] = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: UpperCamelCase__ : str = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=__SCREAMING_SNAKE_CASE , )
285
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = (UniPCMultistepScheduler,) __SCREAMING_SNAKE_CASE = (("num_inference_steps", 25),) def UpperCamelCase ( self,**__lowerCamelCase ): A__ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**__lowerCamelCase ) return config def UpperCamelCase ( self,__lowerCamelCase=0,**__lowerCamelCase ): A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop('''num_inference_steps''',__lowerCamelCase ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config(**__lowerCamelCase ) A__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals A__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase ) A__ = scheduler_class.from_pretrained(__lowerCamelCase ) new_scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals A__ = dummy_past_residuals[: new_scheduler.config.solver_order] A__ , A__ = sample, sample for t in range(__lowerCamelCase,time_step + scheduler.config.solver_order + 1 ): A__ = scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ).prev_sample A__ = new_scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self,__lowerCamelCase=0,**__lowerCamelCase ): A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop('''num_inference_steps''',__lowerCamelCase ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) A__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase ) A__ = scheduler_class.from_pretrained(__lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) A__ = dummy_past_residuals[: new_scheduler.config.solver_order] A__ = scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ).prev_sample A__ = new_scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self,__lowerCamelCase=None,**__lowerCamelCase ): if scheduler is None: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**__lowerCamelCase ) A__ = scheduler_class(**__lowerCamelCase ) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**__lowerCamelCase ) A__ = scheduler_class(**__lowerCamelCase ) A__ = 10 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): A__ = model(__lowerCamelCase,__lowerCamelCase ) A__ = scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ).prev_sample return sample def UpperCamelCase ( self ): A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop('''num_inference_steps''',__lowerCamelCase ) for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**__lowerCamelCase ) A__ = self.dummy_sample A__ = 0.1 * sample if num_inference_steps is not None and hasattr(__lowerCamelCase,'''set_timesteps''' ): scheduler.set_timesteps(__lowerCamelCase ) elif num_inference_steps is not None and not hasattr(__lowerCamelCase,'''set_timesteps''' ): A__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A__ = [residual + 0.2, residual + 0.15, residual + 0.10] A__ = dummy_past_residuals[: scheduler.config.solver_order] A__ = scheduler.timesteps[5] A__ = scheduler.timesteps[6] A__ = scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ).prev_sample A__ = scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ).prev_sample self.assertEqual(output_a.shape,sample.shape ) self.assertEqual(output_a.shape,output_a.shape ) def UpperCamelCase ( self ): A__ = UniPCMultistepScheduler(**self.get_scheduler_config() ) A__ = self.full_loop(scheduler=__lowerCamelCase ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 A__ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A__ = DEISMultistepScheduler.from_config(scheduler.config ) A__ = DPMSolverMultistepScheduler.from_config(scheduler.config ) A__ = UniPCMultistepScheduler.from_config(scheduler.config ) A__ = self.full_loop(scheduler=__lowerCamelCase ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def UpperCamelCase ( self ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def UpperCamelCase ( self ): self.check_over_configs(thresholding=__lowerCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowerCamelCase,prediction_type=__lowerCamelCase,sample_max_value=__lowerCamelCase,solver_order=__lowerCamelCase,solver_type=__lowerCamelCase,) def UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def UpperCamelCase ( self ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowerCamelCase,solver_type=__lowerCamelCase,prediction_type=__lowerCamelCase,) A__ = self.full_loop( solver_order=__lowerCamelCase,solver_type=__lowerCamelCase,prediction_type=__lowerCamelCase,) assert not torch.isnan(__lowerCamelCase ).any(), "Samples have nan numbers" def UpperCamelCase ( self ): self.check_over_configs(lower_order_final=__lowerCamelCase ) self.check_over_configs(lower_order_final=__lowerCamelCase ) def UpperCamelCase ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__lowerCamelCase,time_step=0 ) def UpperCamelCase ( self ): A__ = self.full_loop() A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def UpperCamelCase ( self ): A__ = self.full_loop(prediction_type='''v_prediction''' ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.1014 ) < 1E-3 def UpperCamelCase ( self ): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(thresholding=__lowerCamelCase,dynamic_thresholding_ratio=0 ) A__ = scheduler_class(**__lowerCamelCase ) A__ = 10 A__ = self.dummy_model() A__ = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): A__ = model(__lowerCamelCase,__lowerCamelCase ) A__ = scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ).prev_sample assert sample.dtype == torch.floataa def UpperCamelCase ( self,**__lowerCamelCase ): for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config(**__lowerCamelCase ) A__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
190
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowercase ) for s in shape] )}.npy''' def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() def A ( self : List[Any] , lowercase : Tuple=0 , lowercase : Optional[int]=(4, 4, 64, 64) , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def A ( self : Tuple , lowercase : Any=False , lowercase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = 'bf16' if fpaa else None _snake_case , _snake_case = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder='unet' , dtype=lowercase , revision=lowercase ) return model, params def A ( self : Union[str, Any] , lowercase : str=0 , lowercase : Optional[Any]=(4, 77, 768) , lowercase : int=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def A ( self : str , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1_024) , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 )
686
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("""0.8.3"""): raise Exception("""requires gluonnlp == 0.8.3""") if version.parse(mx.__version__) != version.parse("""1.5.0"""): raise Exception("""requires mxnet == 1.5.0""") logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def __lowerCAmelCase ( A_ : str , A_ : str ) -> Union[str, Any]: __UpperCAmelCase = { "attention_cell": "multi_head", "num_layers": 4, "units": 10_24, "hidden_size": 7_68, "max_length": 5_12, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 10_24, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1e-5, "token_type_vocab_size": 2, } __UpperCAmelCase = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __UpperCAmelCase = BERTEncoder( attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=__lowercase , output_all_encodings=__lowercase , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , __lowercase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __UpperCAmelCase = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab __UpperCAmelCase = os.path.join(get_home_dir() , "models" ) __UpperCAmelCase = _load_vocab(__lowercase , __lowercase , __lowercase , cls=__lowercase ) __UpperCAmelCase = nlp.model.BERTModel( __lowercase , len(__lowercase ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=__lowercase , use_token_type_embed=__lowercase , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=__lowercase , use_decoder=__lowercase , ) original_bort.load_parameters(__lowercase , cast_dtype=__lowercase , ignore_extra=__lowercase ) __UpperCAmelCase = original_bort._collect_params_with_prefix() # Build our config 🤗 __UpperCAmelCase = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.02, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(__lowercase ), } __UpperCAmelCase = BertConfig.from_dict(__lowercase ) __UpperCAmelCase = BertForMaskedLM(__lowercase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(A_ : str ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(A_ : Optional[int] , A_ : Optional[int] ): __UpperCAmelCase = hf_param.shape __UpperCAmelCase = to_torch(params[gluon_param] ) __UpperCAmelCase = gluon_param.shape assert ( shape_hf == shape_gluon ), F'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param __UpperCAmelCase = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" ) __UpperCAmelCase = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" ) __UpperCAmelCase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" ) __UpperCAmelCase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __UpperCAmelCase = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __UpperCAmelCase = hf_bort_model.bert.encoder.layer[i] # self attention __UpperCAmelCase = layer.attention.self __UpperCAmelCase = check_and_map_params( self_attn.key.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) __UpperCAmelCase = check_and_map_params( self_attn.key.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) __UpperCAmelCase = check_and_map_params( self_attn.query.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) __UpperCAmelCase = check_and_map_params( self_attn.query.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) __UpperCAmelCase = check_and_map_params( self_attn.value.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) __UpperCAmelCase = check_and_map_params( self_attn.value.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output __UpperCAmelCase = layer.attention.output __UpperCAmelCase = check_and_map_params( self_output.dense.bias , F'''encoder.transformer_cells.{i}.proj.bias''' ) __UpperCAmelCase = check_and_map_params( self_output.dense.weight , F'''encoder.transformer_cells.{i}.proj.weight''' ) __UpperCAmelCase = check_and_map_params( self_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.layer_norm.beta''' ) __UpperCAmelCase = check_and_map_params( self_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate __UpperCAmelCase = layer.intermediate __UpperCAmelCase = check_and_map_params( intermediate.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) __UpperCAmelCase = check_and_map_params( intermediate.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output __UpperCAmelCase = layer.output __UpperCAmelCase = check_and_map_params( bert_output.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) __UpperCAmelCase = check_and_map_params( bert_output.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) __UpperCAmelCase = check_and_map_params( bert_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) __UpperCAmelCase = check_and_map_params( bert_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __UpperCAmelCase = RobertaTokenizer.from_pretrained("roberta-base" ) __UpperCAmelCase = tokenizer.encode_plus(__lowercase )["input_ids"] # Get gluon output __UpperCAmelCase = mx.nd.array([input_ids] ) __UpperCAmelCase = original_bort(inputs=__lowercase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__lowercase ) __UpperCAmelCase = BertModel.from_pretrained(__lowercase ) hf_bort_model.eval() __UpperCAmelCase = tokenizer.encode_plus(__lowercase , return_tensors="pt" ) __UpperCAmelCase = hf_bort_model(**__lowercase )[0] __UpperCAmelCase = output_gluon[0].asnumpy() __UpperCAmelCase = output_hf[0].detach().numpy() __UpperCAmelCase = np.max(np.abs(hf_layer - gluon_layer ) ).item() __UpperCAmelCase = np.allclose(__lowercase , __lowercase , atol=1e-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:" , __lowercase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a_ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
221
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = "microsoft/speecht5_tts" _snake_case = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _snake_case = "text_reader" _snake_case = SpeechTaProcessor _snake_case = SpeechTaForTextToSpeech _snake_case = SpeechTaHifiGan _snake_case = ["text"] _snake_case = ["audio"] def UpperCAmelCase ( self ): '''simple docstring''' if self.post_processor is None: UpperCamelCase = '''microsoft/speecht5_hifigan''' super().setup() def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__=None ): '''simple docstring''' UpperCamelCase = self.pre_processor(text=lowerCamelCase__ , return_tensors='''pt''' , truncation=lowerCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) UpperCamelCase = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) UpperCamelCase = torch.tensor(embeddings_dataset[7_3_0_5]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCamelCase__ ).cpu().detach()
212
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
0
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _lowerCAmelCase = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") _lowerCAmelCase = F'''https://www.google.com/search?q={query}&num=100''' _lowerCAmelCase = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: _lowerCAmelCase = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: _lowerCAmelCase = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )['''url'''][0] webbrowser.open(link)
259
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "sequence-classification" def __init__( self : Optional[int] , lowercase : Any ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Optional[Any] , lowercase : str , lowercase : Tuple ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : int , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[str] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
686
0
'''simple docstring''' import math def UpperCAmelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : List[str]): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(__lowercase) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen') if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. A = '''Enter the base and the power separated by a comma: ''' A = map(int, input(prompt).split(',')) A = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. A = res(xa, ya) A = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
320
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LEDConfig _UpperCAmelCase : int = {} _UpperCAmelCase : List[str] = "gelu" def __init__( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict=13 , lowercase : Dict=7 , lowercase : Tuple=True , lowercase : Dict=False , lowercase : Dict=99 , lowercase : Any=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[str]=37 , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : List[Any]=20 , lowercase : int=2 , lowercase : Optional[Any]=1 , lowercase : List[str]=0 , lowercase : Optional[int]=4 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case = prepare_led_inputs_dict(lowercase , lowercase , lowercase ) _snake_case = tf.concat( [tf.zeros_like(lowercase )[:, :-1], tf.ones_like(lowercase )[:, -1:]] , axis=-1 , ) _snake_case = global_attention_mask return config, inputs_dict def A ( self : str , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = TFLEDModel(config=lowercase ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : str=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase : Optional[int] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : Tuple = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = False _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False def A ( self : Any ): '''simple docstring''' _snake_case = TFLEDModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = tf.zeros_like(inputs_dict['attention_mask'] ) _snake_case = 2 _snake_case = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _snake_case = True _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase : List[str] ): _snake_case = outputs.decoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase : List[str] ): _snake_case = [t.numpy() for t in outputs.encoder_attentions] _snake_case = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = False _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) _snake_case = len(lowercase ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) if self.is_encoder_decoder: _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_decoder_attentions_output(lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase ) ) self.assertEqual(model.config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def a_ ( __lowercase : str ) -> Optional[Any]: return tf.constant(__lowercase , dtype=tf.intaa ) _lowerCamelCase : List[Any] = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, 768) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 ) def A ( self : str ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 , rtol=1E-3 )
686
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[Any] ) -> int: __lowerCAmelCase : Optional[Any] = 384 __lowerCAmelCase : Dict = 7 if "tiny" in model_name: __lowerCAmelCase : str = 96 __lowerCAmelCase : Tuple = (2, 2, 6, 2) __lowerCAmelCase : Dict = (3, 6, 12, 24) elif "small" in model_name: __lowerCAmelCase : int = 96 __lowerCAmelCase : Any = (2, 2, 18, 2) __lowerCAmelCase : List[str] = (3, 6, 12, 24) elif "base" in model_name: __lowerCAmelCase : Optional[Any] = 128 __lowerCAmelCase : List[Any] = (2, 2, 18, 2) __lowerCAmelCase : int = (4, 8, 16, 32) __lowerCAmelCase : Any = 12 __lowerCAmelCase : List[Any] = 512 elif "large" in model_name: __lowerCAmelCase : Optional[int] = 192 __lowerCAmelCase : Union[str, Any] = (2, 2, 18, 2) __lowerCAmelCase : Optional[Any] = (6, 12, 24, 48) __lowerCAmelCase : Tuple = 12 __lowerCAmelCase : int = 768 # set label information __lowerCAmelCase : str = 150 __lowerCAmelCase : Dict = """huggingface/label-files""" __lowerCAmelCase : Optional[Any] = """ade20k-id2label.json""" __lowerCAmelCase : str = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase : int = {int(__lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase : Tuple = {v: k for k, v in idalabel.items()} __lowerCAmelCase : Any = SwinConfig( embed_dim=__lowercase , depths=__lowercase , num_heads=__lowercase , window_size=__lowercase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) __lowerCAmelCase : Tuple = UperNetConfig( backbone_config=__lowercase , auxiliary_in_channels=__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase , ) return config def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Tuple ) -> Optional[Any]: __lowerCAmelCase : List[Any] = [] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Optional[Any] ) -> List[str]: __lowerCAmelCase : str = dct.pop(__lowercase ) __lowerCAmelCase : Tuple = val def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Tuple ) -> Optional[Any]: __lowerCAmelCase : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase : Any = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase : Dict = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) __lowerCAmelCase : List[str] = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase : Dict = in_proj_weight[:dim, :] __lowerCAmelCase : Optional[int] = in_proj_bias[: dim] __lowerCAmelCase : Tuple = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase : int = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase : int = in_proj_weight[ -dim :, : ] __lowerCAmelCase : Tuple = in_proj_bias[-dim :] # fmt: on def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Dict ) -> Any: __lowerCAmelCase , __lowerCAmelCase : str = x.shape __lowerCAmelCase : Dict = x.reshape(__lowercase , 4 , in_channel // 4 ) __lowerCAmelCase : List[str] = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(__lowercase , __lowercase ) return x def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Any ) -> Any: __lowerCAmelCase , __lowerCAmelCase : Optional[int] = x.shape __lowerCAmelCase : List[Any] = x.reshape(__lowercase , in_channel // 4 , 4 ) __lowerCAmelCase : Union[str, Any] = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(__lowercase , __lowercase ) return x def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :List[Any] ) -> Union[str, Any]: __lowerCAmelCase : Optional[int] = x.shape[0] __lowerCAmelCase : Union[str, Any] = x.reshape(4 , in_channel // 4 ) __lowerCAmelCase : List[str] = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(__lowercase ) return x def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Any: __lowerCAmelCase : Dict = x.shape[0] __lowerCAmelCase : Union[str, Any] = x.reshape(in_channel // 4 , 4 ) __lowerCAmelCase : int = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(__lowercase ) return x def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :List[str] ) -> Tuple: __lowerCAmelCase : Optional[Any] = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } __lowerCAmelCase : str = model_name_to_url[model_name] __lowerCAmelCase : Optional[int] = torch.hub.load_state_dict_from_url(__lowercase , map_location="""cpu""" , file_name=__lowercase )[ """state_dict""" ] for name, param in state_dict.items(): print(__lowercase , param.shape ) __lowerCAmelCase : Optional[int] = get_upernet_config(__lowercase ) __lowerCAmelCase : Optional[Any] = UperNetForSemanticSegmentation(__lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __lowerCAmelCase : List[Any] = state_dict.pop(__lowercase ) if "bn" in key: __lowerCAmelCase : Optional[Any] = key.replace("""bn""" , """batch_norm""" ) __lowerCAmelCase : Optional[int] = val # rename keys __lowerCAmelCase : Optional[int] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_q_k_v(__lowercase , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: __lowerCAmelCase : Dict = reverse_correct_unfold_reduction_order(__lowercase ) if "norm" in key: __lowerCAmelCase : List[str] = reverse_correct_unfold_norm_order(__lowercase ) model.load_state_dict(__lowercase ) # verify on image __lowerCAmelCase : str = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" __lowerCAmelCase : str = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert("""RGB""" ) __lowerCAmelCase : str = SegformerImageProcessor() __lowerCAmelCase : Optional[int] = processor(__lowercase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): __lowerCAmelCase : Union[str, Any] = model(__lowercase ) __lowerCAmelCase : int = outputs.logits print(logits.shape ) print("""First values of logits:""" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": __lowerCAmelCase : List[str] = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ) elif model_name == "upernet-swin-small": __lowerCAmelCase : Optional[int] = torch.tensor( [[-7.19_21, -7.19_21, -6.95_32], [-7.19_21, -7.19_21, -6.95_32], [-7.09_08, -7.09_08, -6.85_34]] ) elif model_name == "upernet-swin-base": __lowerCAmelCase : Tuple = torch.tensor( [[-6.58_51, -6.58_51, -6.43_30], [-6.58_51, -6.58_51, -6.43_30], [-6.47_63, -6.47_63, -6.32_54]] ) elif model_name == "upernet-swin-large": __lowerCAmelCase : Optional[int] = torch.tensor( [[-7.52_97, -7.52_97, -7.38_02], [-7.52_97, -7.52_97, -7.38_02], [-7.40_44, -7.40_44, -7.25_86]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowercase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__lowercase ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[f'''upernet-swin-{size}''' for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _UpperCAmelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
504
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCamelCase : Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCamelCase : Union[str, Any] = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCamelCase : Optional[int] = '''zero2''' _lowerCamelCase : List[Any] = '''zero3''' _lowerCamelCase : Dict = [ZEROa, ZEROa] def a_ ( __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _snake_case = parameterized.to_safe_name('_'.join(str(__lowercase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _lowerCamelCase : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' pass def A ( self : str , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : bool = True , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = models[model] _snake_case = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A ( self : Any , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : int = 1 , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _snake_case = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _snake_case = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _snake_case = self.get_launcher(lowercase ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A ( self : List[str] , lowercase : Any=False ): '''simple docstring''' _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
686
0
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline _lowerCAmelCase = '''path-to-your-trained-model''' _lowerCAmelCase = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') _lowerCAmelCase = '''A photo of sks dog in a bucket''' _lowerCAmelCase = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
565
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
0
def lowerCamelCase__ ( lowercase = 50 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
62
import random from .binary_exp_mod import bin_exp_mod def a_ ( __lowercase : int , __lowercase : Any=1_000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__lowercase , __lowercase , __lowercase ) if b != 1: _snake_case = True for _ in range(__lowercase ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCamelCase : Tuple = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
686
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class __lowercase (UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" _snake_case = "resnet" _snake_case = ["basic", "bottleneck"] def __init__( self , A=3 , A=6_4 , A=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , A=[3, 4, 6, 3] , A="bottleneck" , A="relu" , A=False , A=None , A=None , **A , ) -> str: super().__init__(**A ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) snake_case : List[str] = num_channels snake_case : Dict = embedding_size snake_case : Any = hidden_sizes snake_case : Optional[Any] = depths snake_case : Any = layer_type snake_case : Dict = hidden_act snake_case : Tuple = downsample_in_first_stage snake_case : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(A ) + 1 )] snake_case , snake_case : str = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = version.parse("""1.11""" ) @property def UpperCAmelCase ( self ) -> Optional[Any]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase ( self ) -> Optional[int]: return 1e-3
587
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCamelCase : int = re.compile(r'''\s+''') def a_ ( __lowercase : List[Any] ) -> int: return {"hash": hashlib.mda(re.sub(__lowercase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( __lowercase : List[Any] ) -> Dict: _snake_case = [len(__lowercase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__lowercase ), "line_max": max(__lowercase )} def a_ ( __lowercase : Optional[int] ) -> List[str]: _snake_case = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] ) -> Optional[int]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( __lowercase : Union[str, Any] , __lowercase : int=5 ) -> Optional[Any]: _snake_case = ['auto-generated', 'autogenerated', 'automatically generated'] _snake_case = example['content'].splitlines() for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( __lowercase : List[Any] , __lowercase : int=5 , __lowercase : Tuple=0.0_5 ) -> Union[str, Any]: _snake_case = ['unit tests', 'test file', 'configuration file'] _snake_case = example['content'].splitlines() _snake_case = 0 _snake_case = 0 # first test for _, line in zip(range(__lowercase ) , __lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case = example['content'].count('\n' ) _snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( __lowercase : Union[str, Any] ) -> Any: _snake_case = ['def ', 'class ', 'for ', 'while '] _snake_case = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( __lowercase : Tuple , __lowercase : Any=4 ) -> List[str]: _snake_case = example['content'].splitlines() _snake_case = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( __lowercase : Dict ) -> Dict: _snake_case = tokenizer(example['content'] , truncation=__lowercase )['input_ids'] _snake_case = len(example['content'] ) / len(__lowercase ) return {"ratio": ratio} def a_ ( __lowercase : Optional[Any] ) -> Any: _snake_case = {} results.update(get_hash(__lowercase ) ) results.update(line_stats(__lowercase ) ) results.update(alpha_stats(__lowercase ) ) results.update(char_token_ratio(__lowercase ) ) results.update(is_autogenerated(__lowercase ) ) results.update(is_config_or_test(__lowercase ) ) results.update(has_no_keywords(__lowercase ) ) results.update(has_few_assignments(__lowercase ) ) return results def a_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : List[Any] ) -> int: if not check_uniques(__lowercase , __lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( __lowercase : Dict ) -> Dict: with open(__lowercase , 'rb' ) as f_in: with gzip.open(str(__lowercase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowercase , __lowercase ) os.unlink(__lowercase ) # Settings _lowerCamelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCamelCase : Dict = parser.parse_args() if args.num_workers is None: _lowerCamelCase : int = multiprocessing.cpu_count() _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCamelCase : Any = time.time() _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing _lowerCamelCase : Optional[int] = time.time() _lowerCamelCase : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes _lowerCamelCase : List[Any] = set(ds.unique('''hash''')) _lowerCamelCase : Dict = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics _lowerCamelCase : List[Any] = time.time() _lowerCamelCase : Optional[int] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCamelCase : Union[str, Any] = time.time() _lowerCamelCase , _lowerCamelCase : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file _lowerCamelCase : Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCamelCase : int = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCamelCase : Union[str, Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCamelCase : Dict = str(data_dir / F'file-{file_number+1:012}.json') _lowerCamelCase : str = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
686
0
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Any , snake_case :NestedDataStructureLike[PathLike] , snake_case :Optional[NamedSplit] = None , snake_case :Optional[Features] = None , snake_case :str = None , snake_case :bool = False , snake_case :bool = False , snake_case :Optional[str] = None , snake_case :Optional[int] = None , **snake_case :Tuple , ): '''simple docstring''' super().__init__( snake_case , split=snake_case , features=snake_case , cache_dir=snake_case , keep_in_memory=snake_case , streaming=snake_case , num_proc=snake_case , **snake_case , ) A_ : str = field A_ : Tuple = path_or_paths if isinstance(snake_case , snake_case ) else {self.split: path_or_paths} A_ : int = Json( cache_dir=snake_case , data_files=snake_case , features=snake_case , field=snake_case , **snake_case , ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' if self.streaming: A_ : Optional[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ : Optional[Any] = None A_ : Tuple = None A_ : Optional[int] = None A_ : Tuple = None self.builder.download_and_prepare( download_config=snake_case , download_mode=snake_case , verification_mode=snake_case , base_path=snake_case , num_proc=self.num_proc , ) A_ : Any = self.builder.as_dataset( split=self.split , verification_mode=snake_case , in_memory=self.keep_in_memory ) return dataset class __magic_name__ : """simple docstring""" def __init__( self :int , snake_case :Dataset , snake_case :Union[PathLike, BinaryIO] , snake_case :Optional[int] = None , snake_case :Optional[int] = None , **snake_case :Any , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0." ) A_ : List[Any] = dataset A_ : Tuple = path_or_buf A_ : Union[str, Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A_ : Optional[Any] = num_proc A_ : Union[str, Any] = "utf-8" A_ : Any = to_json_kwargs def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Optional[Any] = self.to_json_kwargs.pop("path_or_buf" , snake_case ) A_ : List[Any] = self.to_json_kwargs.pop("orient" , "records" ) A_ : str = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) A_ : Optional[Any] = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) A_ : Tuple = self.to_json_kwargs.pop("compression" , snake_case ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"`datasets` currently does not support {compression} compression" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=snake_case ) as buffer: A_ : str = self._write(file_obj=snake_case , orient=snake_case , lines=snake_case , index=snake_case , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"The compression parameter is not supported when writing to a buffer, but compression={compression}" " was passed. Please provide a local path instead." ) A_ : Any = self._write( file_obj=self.path_or_buf , orient=snake_case , lines=snake_case , index=snake_case , **self.to_json_kwargs ) return written def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :Dict ): '''simple docstring''' A_ , A_ , A_ , A_ , A_ : List[Any] = args A_ : int = query_table( table=self.dataset.data , key=slice(snake_case , offset + self.batch_size ) , indices=self.dataset._indices , ) A_ : int = batch.to_pandas().to_json( path_or_buf=snake_case , orient=snake_case , lines=snake_case , index=snake_case , **snake_case ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :BinaryIO , snake_case :Dict , snake_case :Dict , snake_case :str , **snake_case :Dict , ): '''simple docstring''' A_ : Dict = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): A_ : Union[str, Any] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(snake_case ) else: A_ , A_ : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , snake_case , snake_case )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(snake_case ) return written
454
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : int = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "yolos" def __init__( self : int , lowercase : List[str]=768 , lowercase : Tuple=12 , lowercase : int=12 , lowercase : int=3_072 , lowercase : Optional[int]="gelu" , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Optional[Any]=0.02 , lowercase : List[str]=1E-12 , lowercase : Dict=[512, 864] , lowercase : Union[str, Any]=16 , lowercase : List[Any]=3 , lowercase : List[str]=True , lowercase : Optional[int]=100 , lowercase : int=True , lowercase : Dict=False , lowercase : str=1 , lowercase : int=5 , lowercase : Tuple=2 , lowercase : List[str]=5 , lowercase : Any=2 , lowercase : List[str]=0.1 , **lowercase : int , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = num_detection_tokens _snake_case = use_mid_position_embeddings _snake_case = auxiliary_loss # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 @property def A ( self : List[Any] ): '''simple docstring''' return 12
686
0
def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): def count_of_possible_combinations(UpperCamelCase__ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__lowercase ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): def count_of_possible_combinations_with_dp_array( UpperCamelCase__ , UpperCamelCase__ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] UpperCamelCase__ : List[str] = sum( count_of_possible_combinations_with_dp_array(target - item , __lowercase ) for item in array ) UpperCamelCase__ : Optional[Any] = answer return answer UpperCamelCase__ : Tuple = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : Union[str, Any] = [0] * (target + 1) UpperCamelCase__ : Dict = 1 for i in range(1 , target + 1 ): for j in range(__lowercase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase =3 lowerCamelCase =5 lowerCamelCase =[1, 2, 5] print(combination_sum_iv(n, array, target))
285
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring _lowerCamelCase : Union[str, Any] = '''ResNetConfig''' # Base docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[Any] = [1, 2_048, 7, 7] # Image classification docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[int] = '''tiger cat''' _lowerCamelCase : str = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Union[str, Any] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def A ( self : Tuple , lowercase : Tensor ): '''simple docstring''' _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowercase ) _snake_case = self.pooler(lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int = 2 ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" , lowercase : int = 4 ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : ResNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , ): '''simple docstring''' super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = input for layer in self.layers: _snake_case = layer(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def A ( self : str , lowercase : Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ResNetConfig _UpperCAmelCase : Tuple = "resnet" _UpperCAmelCase : Optional[Any] = "pixel_values" _UpperCAmelCase : Dict = True def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Union[str, Any] , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = ResNetModel(lowercase ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowercase ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase ) super()._init_backbone(lowercase ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def A ( self : Dict , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowercase ) _snake_case = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
686
0
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def UpperCamelCase__( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] )->Tuple: A__ = XCLIPTextConfig() # derive patch size from model name A__ = model_name.find('''patch''' ) A__ = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) A__ = XCLIPVisionConfig(patch_size=__lowercase , num_frames=__lowercase ) if "large" in model_name: A__ = 7_68 A__ = 30_72 A__ = 12 A__ = 10_24 A__ = 40_96 A__ = 16 A__ = 24 A__ = 7_68 A__ = 30_72 if model_name == "xclip-large-patch14-16-frames": A__ = 3_36 A__ = XCLIPConfig.from_text_vision_configs(__lowercase , __lowercase ) if "large" in model_name: A__ = 7_68 return config def UpperCamelCase__( UpperCamelCase__ : Dict )->int: # text encoder if name == "token_embedding.weight": A__ = name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": A__ = name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: A__ = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: A__ = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: A__ = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: A__ = name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): A__ = name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: A__ = name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: A__ = name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": A__ = name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": A__ = name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): A__ = name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: A__ = name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: A__ = name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: A__ = name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: A__ = name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: A__ = name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: A__ = name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: A__ = name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": A__ = name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): A__ = name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): A__ = name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def UpperCamelCase__( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str )->Optional[Any]: for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(__lowercase ) if "attn.in_proj" in key: A__ = key.split('''.''' ) if key.startswith('''visual''' ): A__ = key_split[3] A__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: A__ = val[ :dim, : ] A__ = val[ dim : dim * 2, : ] A__ = val[ -dim:, : ] else: A__ = val[ :dim ] A__ = val[ dim : dim * 2 ] A__ = val[ -dim: ] else: if "weight" in key: A__ = val[ :dim, : ] A__ = val[ dim : dim * 2, : ] A__ = val[ -dim:, : ] else: A__ = val[:dim] A__ = val[ dim : dim * 2 ] A__ = val[-dim:] elif key.startswith('''mit''' ): A__ = key_split[2] A__ = config.vision_config.mit_hidden_size if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = key_split[2] A__ = config.text_config.hidden_size if "weight" in key: A__ = val[:dim, :] A__ = val[ dim : dim * 2, : ] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[ dim : dim * 2 ] A__ = val[-dim:] else: A__ = rename_key(__lowercase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: A__ = val.T A__ = val return orig_state_dict def UpperCamelCase__( UpperCamelCase__ : int )->Tuple: if num_frames == 8: A__ = '''eating_spaghetti_8_frames.npy''' elif num_frames == 16: A__ = '''eating_spaghetti.npy''' elif num_frames == 32: A__ = '''eating_spaghetti_32_frames.npy''' A__ = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=__lowercase , repo_type='''dataset''' , ) A__ = np.load(__lowercase ) return list(__lowercase ) def UpperCamelCase__( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int=None , UpperCamelCase__ : Tuple=False )->str: A__ = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } A__ = model_to_url[model_name] A__ = 8 if "16-frames" in model_name: A__ = 16 elif "shot" in model_name: A__ = 32 A__ = get_xclip_config(__lowercase , __lowercase ) A__ = XCLIPModel(__lowercase ) model.eval() if "drive" in checkpoint_url: A__ = '''pytorch_model.bin''' gdown.cached_download(__lowercase , __lowercase , quiet=__lowercase ) A__ = torch.load(__lowercase , map_location='''cpu''' )['''model'''] else: A__ = torch.hub.load_state_dict_from_url(__lowercase )['''model'''] A__ = convert_state_dict(__lowercase , __lowercase ) A__ = XCLIPModel(__lowercase ) A__ , A__ = model.load_state_dict(__lowercase , strict=__lowercase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() A__ = 3_36 if model_name == '''xclip-large-patch14-16-frames''' else 2_24 A__ = VideoMAEImageProcessor(size=__lowercase ) A__ = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) A__ = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) A__ = XCLIPProcessor(image_processor=__lowercase , tokenizer=__lowercase ) A__ = prepare_video(__lowercase ) A__ = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=__lowercase , return_tensors='''pt''' , padding=__lowercase ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): A__ = model(**__lowercase ) # Verify outputs A__ = outputs.logits_per_video A__ = logits_per_video.softmax(dim=1 ) print('''Probs:''' , __lowercase ) # kinetics-400 if model_name == "xclip-base-patch32": A__ = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": A__ = torch.tensor([[7.0_9_9_9e-0_4, 9.9_8_8_3e-0_1, 4.5_5_8_0e-0_4]] ) elif model_name == "xclip-base-patch16": A__ = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": A__ = torch.tensor([[7.6_9_3_7e-0_4, 9.9_7_2_8e-0_1, 1.9_4_7_3e-0_3]] ) elif model_name == "xclip-large-patch14": A__ = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": A__ = torch.tensor([[3.3_8_7_7e-0_4, 9.9_9_3_7e-0_1, 2.8_8_8_8e-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": A__ = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": A__ = torch.tensor([[3.8_5_5_4e-0_4, 9.9_9_2_9e-0_1, 3.2_7_5_4e-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": A__ = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": A__ = torch.tensor([[7.1_8_9_0e-0_6, 9.9_9_9_4e-0_1, 5.6_5_5_9e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": A__ = torch.tensor([[1.0_3_2_0e-0_5, 9.9_9_9_3e-0_1, 6.2_4_3_5e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": A__ = torch.tensor([[4.1_3_7_7e-0_6, 9.9_9_9_0e-0_1, 9.8_3_8_6e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": A__ = torch.tensor([[4.1_3_4_7e-0_5, 9.9_9_6_2e-0_1, 3.3_4_1_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": A__ = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": A__ = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": A__ = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": A__ = torch.tensor([[9.8_2_1_9e-0_4, 9.9_5_9_3e-0_1, 3.0_8_6_3e-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": A__ = torch.tensor([[3.5_0_8_2e-0_4, 9.9_7_8_5e-0_1, 1.7_9_6_6e-0_3]] ) else: raise ValueError(f"Model name {model_name} not supported" ) assert torch.allclose(__lowercase , __lowercase , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__lowercase ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(__lowercase , organization='''nielsr''' ) processor.push_to_hub(__lowercase , organization='''nielsr''' ) slow_tokenizer.push_to_hub(__lowercase , organization='''nielsr''' ) if __name__ == "__main__": a__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='xclip-base-patch32', type=str, help='Name of the model.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a__: Tuple = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
190
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
0
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self: str , __lowerCAmelCase: Any , __lowerCAmelCase: Any=7 , __lowerCAmelCase: Any=3 , __lowerCAmelCase: str=18 , __lowerCAmelCase: Union[str, Any]=30 , __lowerCAmelCase: List[Any]=400 , __lowerCAmelCase: Tuple=True , __lowerCAmelCase: str=None , __lowerCAmelCase: Optional[Any]=True , __lowerCAmelCase: List[str]=[0.5, 0.5, 0.5] , __lowerCAmelCase: List[str]=[0.5, 0.5, 0.5] , ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = size if size is not None else {"height": 18, "width": 18} __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = image_size __UpperCAmelCase = min_resolution __UpperCAmelCase = max_resolution __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = do_normalize __UpperCAmelCase = image_mean __UpperCAmelCase = image_std def _UpperCAmelCase ( self: List[Any] ) -> Optional[int]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCAmelCase__ ( snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : int = DPTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self: Any ) -> Dict: '''simple docstring''' __UpperCAmelCase = DPTImageProcessingTester(self ) @property def _UpperCAmelCase ( self: Union[str, Any] ) -> List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self: int ) -> Any: '''simple docstring''' __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(__lowerCAmelCase , "image_std" ) ) self.assertTrue(hasattr(__lowerCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(__lowerCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(__lowerCAmelCase , "size" ) ) def _UpperCAmelCase ( self: Tuple ) -> Any: '''simple docstring''' __UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) __UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def _UpperCAmelCase ( self: Optional[int] ) -> List[str]: '''simple docstring''' __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _UpperCAmelCase ( self: Any ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _UpperCAmelCase ( self: str ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
221
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def a_ ( __lowercase : Union[str, Any] ) -> List[Any]: _snake_case = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _snake_case = DetaConfig( backbone_config=__lowercase , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=__lowercase , with_box_refine=__lowercase , two_stage=__lowercase , ) # set labels _snake_case = 'huggingface/label-files' if "o365" in model_name: _snake_case = 366 _snake_case = 'object365-id2label.json' else: _snake_case = 91 _snake_case = 'coco-detection-id2label.json' _snake_case = num_labels _snake_case = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset' ) ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def a_ ( __lowercase : int ) -> str: _snake_case = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : str ) -> Union[str, Any]: _snake_case = dct.pop(__lowercase ) _snake_case = val def a_ ( __lowercase : List[str] , __lowercase : str ) -> Dict: _snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:dim, :] _snake_case = in_proj_bias[: dim] _snake_case = in_proj_weight[ dim : dim * 2, : ] _snake_case = in_proj_bias[ dim : dim * 2 ] _snake_case = in_proj_weight[ -dim :, : ] _snake_case = in_proj_bias[-dim :] # fmt: on def a_ ( __lowercase : Dict , __lowercase : Dict ) -> str: # transformer decoder self-attention layers _snake_case = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:hidden_size, :] _snake_case = in_proj_bias[:hidden_size] _snake_case = in_proj_weight[ hidden_size : hidden_size * 2, : ] _snake_case = in_proj_bias[hidden_size : hidden_size * 2] _snake_case = in_proj_weight[-hidden_size:, :] _snake_case = in_proj_bias[-hidden_size:] def a_ ( ) -> List[str]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Tuple ) -> Optional[Any]: _snake_case = get_deta_config(__lowercase ) # load original state dict if model_name == "deta-swin-large": _snake_case = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _snake_case = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__lowercase , param.shape ) # rename keys _snake_case = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_swin_q_k_v(__lowercase , config.backbone_config ) read_in_decoder_q_k_v(__lowercase , __lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "input_proj" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _snake_case = state_dict.pop(__lowercase ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = DetaForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() _snake_case = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__lowercase ) # load image processor _snake_case = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _snake_case = prepare_img() _snake_case = processor(images=__lowercase , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = model(pixel_values.to(__lowercase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _snake_case = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _snake_case = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _snake_case = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _snake_case = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowercase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowercase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
0
'''simple docstring''' import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __snake_case ( _UpperCAmelCase : List[Any], _UpperCAmelCase : Any, _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Optional[int]): UpperCamelCase = s.rsplit(__lowercase, __lowercase) return new.join(__lowercase) def __snake_case ( _UpperCAmelCase : List[Any]): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items()) def __snake_case ( _UpperCAmelCase : List[str]): UpperCamelCase = {} UpperCamelCase = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: UpperCamelCase = key.replace(f'{group_key}.', f'{group_key}.group.') if "res_path" in key: UpperCamelCase = key.replace('''res_path.''', '''res_path.path.''') if key.endswith('''.w'''): UpperCamelCase = rreplace(__lowercase, '''.w''', '''.weight''', 1) if key.endswith('''.b'''): UpperCamelCase = rreplace(__lowercase, '''.b''', '''.bias''', 1) UpperCamelCase = value.float() return upgrade @torch.no_grad() def __snake_case ( _UpperCAmelCase : List[str], _UpperCAmelCase : List[str], _UpperCAmelCase : Optional[Any]=None, _UpperCAmelCase : str=True): from dall_e import Encoder UpperCamelCase = Encoder() if os.path.exists(__lowercase): UpperCamelCase = torch.load(__lowercase) else: UpperCamelCase = torch.hub.load_state_dict_from_url(__lowercase) if isinstance(__lowercase, __lowercase): UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(__lowercase) if config_path is not None: UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(__lowercase) else: UpperCamelCase = FlavaImageCodebookConfig() UpperCamelCase = FlavaImageCodebook(__lowercase).eval() UpperCamelCase = encoder.state_dict() UpperCamelCase = upgrade_state_dict(__lowercase) hf_model.load_state_dict(__lowercase) UpperCamelCase = hf_model.state_dict() UpperCamelCase = count_parameters(__lowercase) UpperCamelCase = count_parameters(__lowercase) assert torch.allclose(__lowercase, __lowercase, atol=1E-3) if save_checkpoint: hf_model.save_pretrained(__lowercase) else: return hf_state_dict if __name__ == "__main__": snake_case_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') snake_case_ : Optional[int] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
212
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCamelCase : Dict = '''pt''' elif is_tf_available(): _lowerCamelCase : List[str] = '''tf''' else: _lowerCamelCase : List[Any] = '''jax''' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = PerceiverTokenizer _UpperCAmelCase : Optional[int] = False def A ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : str ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def A ( self : Optional[int] , **lowercase : Dict ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[int] , lowercase : Tuple , lowercase : Optional[Any]=False , lowercase : int=20 , lowercase : Optional[int]=5 ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): try: _snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case = list(filter(lambda lowercase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , lowercase ) ) _snake_case = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: _snake_case = ' ' + output_txt _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = 'Unicode €.' _snake_case = tokenizer(lowercase ) _snake_case = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]Unicode €.[SEP]' ) _snake_case = tokenizer('e è é ê ë' ) _snake_case = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _snake_case = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _snake_case = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": _snake_case = list(batch.input_ids.numpy()[0] ) else: _snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('decoder_input_ids' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer _snake_case = [ 'Summary of the text.', 'Another summary.', ] _snake_case = tokenizer( text_target=lowercase , max_length=32 , padding='max_length' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _snake_case = tokenizer.__class__.from_pretrained(lowercase ) _snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowercase ) _snake_case = [f'''<extra_id_{i}>''' for i in range(125 )] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] _snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowercase )] _snake_case = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _snake_case = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
686
0
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger("""transformers.models.encodec""") _lowerCAmelCase = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } _lowerCAmelCase = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } _lowerCAmelCase = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } _lowerCAmelCase = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } _lowerCAmelCase = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } _lowerCAmelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _lowerCAmelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _lowerCAmelCase = [] _lowerCAmelCase = [] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for attribute in key.split('.' ): _lowerCAmelCase : str = getattr(__lowercase , __lowercase ) if weight_type is not None: _lowerCAmelCase : Tuple = getattr(__lowercase , __lowercase ).shape else: _lowerCAmelCase : Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCAmelCase : str = value elif weight_type == "weight_g": _lowerCAmelCase : List[Any] = value elif weight_type == "weight_v": _lowerCAmelCase : Dict = value elif weight_type == "bias": _lowerCAmelCase : List[str] = value elif weight_type == "running_mean": _lowerCAmelCase : Any = value elif weight_type == "running_var": _lowerCAmelCase : List[Any] = value elif weight_type == "num_batches_tracked": _lowerCAmelCase : int = value elif weight_type == "weight_ih_l0": _lowerCAmelCase : Optional[Any] = value elif weight_type == "weight_hh_l0": _lowerCAmelCase : List[Any] = value elif weight_type == "bias_ih_l0": _lowerCAmelCase : Tuple = value elif weight_type == "bias_hh_l0": _lowerCAmelCase : List[Any] = value elif weight_type == "weight_ih_l1": _lowerCAmelCase : Dict = value elif weight_type == "weight_hh_l1": _lowerCAmelCase : int = value elif weight_type == "bias_ih_l1": _lowerCAmelCase : Union[str, Any] = value elif weight_type == "bias_hh_l1": _lowerCAmelCase : List[Any] = value else: _lowerCAmelCase : Tuple = value logger.info(f"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] if model_name == "encodec_24khz" or "encodec_32khz": _lowerCAmelCase : int = MAPPING_24K elif model_name == "encodec_48khz": _lowerCAmelCase : Optional[int] = MAPPING_48K else: raise ValueError(f"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(__lowercase , __lowercase ): logger.info(f"""{name} was ignored""" ) continue _lowerCAmelCase : Any = False for key, mapped_key in MAPPING.items(): if "*" in key: _lowerCAmelCase, _lowerCAmelCase : str = key.split('.*.' ) if prefix in name and suffix in name: _lowerCAmelCase : str = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue _lowerCAmelCase : List[str] = True if "*" in mapped_key: _lowerCAmelCase : Optional[Any] = name.split(__lowercase )[0].split('.' )[-2] _lowerCAmelCase : Union[str, Any] = mapped_key.replace('*' , __lowercase ) if "weight_g" in name: _lowerCAmelCase : Tuple = 'weight_g' elif "weight_v" in name: _lowerCAmelCase : Dict = 'weight_v' elif "weight_ih_l0" in name: _lowerCAmelCase : Optional[Any] = 'weight_ih_l0' elif "weight_hh_l0" in name: _lowerCAmelCase : int = 'weight_hh_l0' elif "bias_ih_l0" in name: _lowerCAmelCase : Dict = 'bias_ih_l0' elif "bias_hh_l0" in name: _lowerCAmelCase : List[Any] = 'bias_hh_l0' elif "weight_ih_l1" in name: _lowerCAmelCase : List[Any] = 'weight_ih_l1' elif "weight_hh_l1" in name: _lowerCAmelCase : str = 'weight_hh_l1' elif "bias_ih_l1" in name: _lowerCAmelCase : Optional[int] = 'bias_ih_l1' elif "bias_hh_l1" in name: _lowerCAmelCase : str = 'bias_hh_l1' elif "bias" in name: _lowerCAmelCase : int = 'bias' elif "weight" in name: _lowerCAmelCase : int = 'weight' elif "running_mean" in name: _lowerCAmelCase : List[Any] = 'running_mean' elif "running_var" in name: _lowerCAmelCase : List[Any] = 'running_var' elif "num_batches_tracked" in name: _lowerCAmelCase : Optional[int] = 'num_batches_tracked' else: _lowerCAmelCase : List[Any] = None set_recursively(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(f"""Unused weights: {unused_weights}""" ) @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , ): '''simple docstring''' if config_path is not None: _lowerCAmelCase : Any = EncodecConfig.from_pretrained(__lowercase ) else: _lowerCAmelCase : Dict = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _lowerCAmelCase : List[Any] = [8, 5, 4, 4] _lowerCAmelCase : int = [2.2] _lowerCAmelCase : Any = 64 _lowerCAmelCase : Union[str, Any] = 32000 _lowerCAmelCase : List[str] = 2048 _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : Any = False _lowerCAmelCase : str = False elif model_name == "encodec_48khz": _lowerCAmelCase : Tuple = [8, 5, 4, 2] _lowerCAmelCase : List[Any] = [3.0, 6.0, 12.0, 24.0] _lowerCAmelCase : Optional[Any] = 48000 _lowerCAmelCase : Any = 2 _lowerCAmelCase : str = False _lowerCAmelCase : Any = 'time_group_norm' _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : Union[str, Any] = 1.0 _lowerCAmelCase : Dict = 0.01 else: raise ValueError(f"""Unknown model name: {model_name}""" ) _lowerCAmelCase : Any = EncodecModel(__lowercase ) _lowerCAmelCase : Tuple = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__lowercase ) _lowerCAmelCase : Optional[Any] = torch.load(__lowercase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _lowerCAmelCase : Union[str, Any] = original_checkpoint['best_state'] recursively_load_weights(__lowercase , __lowercase , __lowercase ) model.save_pretrained(__lowercase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(__lowercase ) model.push_to_hub(__lowercase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _lowerCAmelCase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
259
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
0
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __snake_case ( unittest.TestCase): def UpperCAmelCase_ ( self, A, A ): """simple docstring""" lowerCamelCase : Optional[int] = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = None lowerCamelCase : List[str] = 20 lowerCamelCase : Dict = self._get_uniform_logits(batch_size=2, length=A ) # tweak scores to not be uniform anymore lowerCamelCase : Any = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase : Optional[Any] = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase : List[Any] = jax.nn.softmax(A, axis=-1 ) lowerCamelCase : Union[str, Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase : List[Any] = jax.nn.softmax(temp_dist_warper_sharper(A, scores.copy(), cur_len=A ), axis=-1 ) lowerCamelCase : List[Any] = jax.nn.softmax(temp_dist_warper_smoother(A, scores.copy(), cur_len=A ), axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :], warped_prob_sharp[0, :], atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :], warped_prob_smooth[0, :], atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max(), warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min(), warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max(), warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min(), warped_prob_smooth[1, :].min() ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Any = None lowerCamelCase : List[Any] = 10 lowerCamelCase : List[str] = 2 # create ramp distribution lowerCamelCase : Union[str, Any] = np.broadcast_to(np.arange(A )[None, :], (batch_size, vocab_size) ).copy() lowerCamelCase : List[Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase : int = FlaxTopKLogitsWarper(3 ) lowerCamelCase : Optional[Any] = top_k_warp(A, A, cur_len=A ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist(), 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist(), 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase : int = 5 lowerCamelCase : Union[str, Any] = FlaxTopKLogitsWarper(top_k=1, filter_value=0.0, min_tokens_to_keep=3 ) lowerCamelCase : Dict = np.broadcast_to(np.arange(A )[None, :], (batch_size, length) ).copy() lowerCamelCase : Tuple = top_k_warp_safety_check(A, A, cur_len=A ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist(), [2, 2] ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = 10 lowerCamelCase : List[Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase : str = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCamelCase : List[Any] = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase : Union[str, Any] = np.exp(top_p_warp(A, A, cur_len=A ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase : Tuple = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(A, A, atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase : List[str] = np.broadcast_to(np.arange(A )[None, :], (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase : Optional[int] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCamelCase : Dict = FlaxTopPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0 ) lowerCamelCase : Optional[Any] = top_p_warp(A, A, cur_len=A ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist(), [3, 2] ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[int] = 20 lowerCamelCase : Optional[Any] = 4 lowerCamelCase : Union[str, Any] = 0 lowerCamelCase : int = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=A ) # check that min length is applied at length 5 lowerCamelCase : Tuple = ids_tensor((batch_size, 20), vocab_size=20 ) lowerCamelCase : Union[str, Any] = 5 lowerCamelCase : Any = self._get_uniform_logits(A, A ) lowerCamelCase : Tuple = min_dist_processor(A, A, cur_len=A ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(), 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 lowerCamelCase : str = self._get_uniform_logits(A, A ) lowerCamelCase : Optional[Any] = 15 lowerCamelCase : str = min_dist_processor(A, A, cur_len=A ) self.assertFalse(jnp.isinf(A ).any() ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Dict = 20 lowerCamelCase : Union[str, Any] = 4 lowerCamelCase : Optional[Any] = 0 lowerCamelCase : str = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=A ) # check that all scores are -inf except the bos_token_id score lowerCamelCase : str = ids_tensor((batch_size, 1), vocab_size=20 ) lowerCamelCase : str = 1 lowerCamelCase : Tuple = self._get_uniform_logits(A, A ) lowerCamelCase : List[str] = logits_processor(A, A, cur_len=A ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist(), 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase : Union[str, Any] = 3 lowerCamelCase : Optional[Any] = self._get_uniform_logits(A, A ) lowerCamelCase : str = logits_processor(A, A, cur_len=A ) self.assertFalse(jnp.isinf(A ).any() ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = 20 lowerCamelCase : int = 4 lowerCamelCase : Any = 0 lowerCamelCase : Any = 5 lowerCamelCase : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=A, eos_token_id=A ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase : Optional[Any] = ids_tensor((batch_size, 4), vocab_size=20 ) lowerCamelCase : int = 4 lowerCamelCase : Tuple = self._get_uniform_logits(A, A ) lowerCamelCase : List[str] = logits_processor(A, A, cur_len=A ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist(), 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase : List[Any] = 3 lowerCamelCase : Dict = self._get_uniform_logits(A, A ) lowerCamelCase : List[str] = logits_processor(A, A, cur_len=A ) self.assertFalse(jnp.isinf(A ).any() ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : str = 4 lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : List[str] = 15 lowerCamelCase : int = 2 lowerCamelCase : List[Any] = 1 lowerCamelCase : List[Any] = 15 # dummy input_ids and scores lowerCamelCase : Optional[int] = ids_tensor((batch_size, sequence_length), A ) lowerCamelCase : Any = input_ids.copy() lowerCamelCase : Any = self._get_uniform_logits(A, A ) lowerCamelCase : List[str] = scores.copy() # instantiate all dist processors lowerCamelCase : Tuple = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase : Tuple = FlaxTopKLogitsWarper(3 ) lowerCamelCase : str = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase : List[str] = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=A ) lowerCamelCase : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=A ) lowerCamelCase : str = FlaxForcedEOSTokenLogitsProcessor(max_length=A, eos_token_id=A ) lowerCamelCase : str = 10 # no processor list lowerCamelCase : str = temp_dist_warp(A, A, cur_len=A ) lowerCamelCase : List[Any] = top_k_warp(A, A, cur_len=A ) lowerCamelCase : List[Any] = top_p_warp(A, A, cur_len=A ) lowerCamelCase : Dict = min_dist_proc(A, A, cur_len=A ) lowerCamelCase : Any = bos_dist_proc(A, A, cur_len=A ) lowerCamelCase : List[str] = eos_dist_proc(A, A, cur_len=A ) # with processor list lowerCamelCase : Union[str, Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase : Any = processor(A, A, cur_len=A ) # scores should be equal self.assertTrue(jnp.allclose(A, A, atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist() ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[str] = 4 lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : Optional[int] = 15 lowerCamelCase : Any = 2 lowerCamelCase : Union[str, Any] = 1 lowerCamelCase : Dict = 15 # dummy input_ids and scores lowerCamelCase : int = ids_tensor((batch_size, sequence_length), A ) lowerCamelCase : Optional[int] = input_ids.copy() lowerCamelCase : str = self._get_uniform_logits(A, A ) lowerCamelCase : Dict = scores.copy() # instantiate all dist processors lowerCamelCase : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase : int = FlaxTopKLogitsWarper(3 ) lowerCamelCase : Union[str, Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase : Dict = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=A ) lowerCamelCase : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=A ) lowerCamelCase : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=A, eos_token_id=A ) lowerCamelCase : Union[str, Any] = 10 # no processor list def run_no_processor_list(A, A, A ): lowerCamelCase : Optional[Any] = temp_dist_warp(A, A, cur_len=A ) lowerCamelCase : Any = top_k_warp(A, A, cur_len=A ) lowerCamelCase : int = top_p_warp(A, A, cur_len=A ) lowerCamelCase : Dict = min_dist_proc(A, A, cur_len=A ) lowerCamelCase : Dict = bos_dist_proc(A, A, cur_len=A ) lowerCamelCase : Tuple = eos_dist_proc(A, A, cur_len=A ) return scores # with processor list def run_processor_list(A, A, A ): lowerCamelCase : Tuple = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase : Union[str, Any] = processor(A, A, cur_len=A ) return scores lowerCamelCase : List[Any] = jax.jit(A ) lowerCamelCase : int = jax.jit(A ) lowerCamelCase : Any = jitted_run_no_processor_list(A, A, A ) lowerCamelCase : Optional[int] = jitted_run_processor_list(A, A, A ) # scores should be equal self.assertTrue(jnp.allclose(A, A, atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist() )
320
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ["transformers", "torch", "note_seq"] def __init__( self : List[Any] , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
686
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _UpperCAmelCase = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Any=True ) -> List[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__lowercase ) ) class snake_case_ ( __lowercase ): A_ = None A_ = None def UpperCAmelCase__ ( self : List[str] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] )->Optional[int]: '''simple docstring''' with TemporaryDirectory() as tmp_dir: __lowerCAmelCase : Optional[int] = dataset_module_factory(_snake_case , cache_dir=_snake_case ) __lowerCAmelCase : Optional[Any] = import_main_class(dataset_module.module_path , dataset=_snake_case ) __lowerCAmelCase : Any = builder_cls( cache_dir=_snake_case , config_name=_snake_case , hash=dataset_module.hash , ) __lowerCAmelCase : Any = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_snake_case ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) __lowerCAmelCase : List[Any] = cached_path(_snake_case , cache_dir=_snake_case ) self.assertTrue(os.path.exists(_snake_case ) ) @pytest.mark.integration def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :List[Any] ) -> List[str]: __lowerCAmelCase : List[Any] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" __lowerCAmelCase : Dict = dataset_module_factory("""wikipedia""" , cache_dir=__lowercase ) __lowerCAmelCase : Any = import_main_class(dataset_module.module_path ) __lowerCAmelCase : Tuple = builder_cls( cache_dir=__lowercase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __lowerCAmelCase : Union[str, Any] = None builder_instance.download_and_prepare() __lowerCAmelCase : int = builder_instance.as_dataset() assert ds @pytest.mark.integration def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> int: __lowerCAmelCase : Optional[Any] = dataset_module_factory("""wikipedia""" , cache_dir=__lowercase ) __lowerCAmelCase : str = import_main_class(dataset_module.module_path , dataset=__lowercase ) __lowerCAmelCase : int = builder_cls( cache_dir=__lowercase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) __lowerCAmelCase : Dict = builder_instance.as_streaming_dataset() assert ds assert isinstance(__lowercase , __lowercase ) assert "train" in ds assert isinstance(ds["""train"""] , __lowercase ) assert next(iter(ds["""train"""] ) )
504
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase = 16 _lowerCAmelCase = 32 def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase = 16 ): """simple docstring""" lowerCAmelCase__ : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ : List[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowercase , max_length=__lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ : int = datasets.map( __lowercase , batched=__lowercase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ : Optional[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ : Union[str, Any] = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ : Optional[Any] = 8 else: lowerCAmelCase__ : int = None return tokenizer.pad( __lowercase , padding="""longest""" , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCAmelCase__ : str = DataLoader( tokenized_datasets["""train"""] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase ) lowerCAmelCase__ : List[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCAmelCase = mocked_dataloaders # noqa: F811 def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __lowercase ) == "1": lowerCAmelCase__ : Optional[Any] = 2 # New Code # lowerCAmelCase__ : Dict = int(args.gradient_accumulation_steps ) lowerCAmelCase__ : List[Any] = int(args.local_sgd_steps ) # Initialize accelerator lowerCAmelCase__ : Any = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ : List[Any] = config["""lr"""] lowerCAmelCase__ : List[str] = int(config["""num_epochs"""] ) lowerCAmelCase__ : Any = int(config["""seed"""] ) lowerCAmelCase__ : int = int(config["""batch_size"""] ) lowerCAmelCase__ : Dict = evaluate.load("""glue""" , """mrpc""" ) set_seed(__lowercase ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = get_dataloaders(__lowercase , __lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ : Any = AdamW(params=model.parameters() , lr=__lowercase ) # Instantiate scheduler lowerCAmelCase__ : List[Any] = get_linear_schedule_with_warmup( optimizer=__lowercase , num_warmup_steps=100 , num_training_steps=(len(__lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # Now we train the model for epoch in range(__lowercase ): model.train() with LocalSGD( accelerator=__lowercase , model=__lowercase , local_sgd_steps=__lowercase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowercase ): lowerCAmelCase__ : str = model(**__lowercase ) lowerCAmelCase__ : List[str] = output.loss accelerator.backward(__lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ : Any = model(**__lowercase ) lowerCAmelCase__ : List[Any] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__lowercase , references=__lowercase , ) lowerCAmelCase__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowercase ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__lowercase , default=__lowercase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__lowercase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=__lowercase , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowerCAmelCase__ : List[Any] = parser.parse_args() lowerCAmelCase__ : int = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__lowercase , __lowercase ) if __name__ == "__main__": main()
565
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : Optional[int] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _lowerCamelCase : List[str] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _lowerCamelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int=None , lowercase : str=True , lowercase : List[str]=False ): '''simple docstring''' if rouge_types is None: _snake_case = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _snake_case = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: _snake_case = scoring.BootstrapAggregator() else: _snake_case = [] for ref, pred in zip(lowercase , lowercase ): _snake_case = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: _snake_case = aggregator.aggregate() else: _snake_case = {} for key in scores[0]: _snake_case = [score[key] for score in scores] return result
686
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch snake_case = logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Any=6.0 , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : List[str]="fp4" , UpperCAmelCase_ : int=False , **UpperCAmelCase_ : Optional[Any] , ): SCREAMING_SNAKE_CASE : List[Any] = load_in_abit SCREAMING_SNAKE_CASE : int = load_in_abit SCREAMING_SNAKE_CASE : str = llm_inta_threshold SCREAMING_SNAKE_CASE : Union[str, Any] = llm_inta_skip_modules SCREAMING_SNAKE_CASE : Tuple = llm_inta_enable_fpaa_cpu_offload SCREAMING_SNAKE_CASE : Union[str, Any] = llm_inta_has_fpaa_weight SCREAMING_SNAKE_CASE : Tuple = bnb_abit_quant_type SCREAMING_SNAKE_CASE : Optional[int] = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.floataa elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : List[str] = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , torch.dtype ): SCREAMING_SNAKE_CASE : Optional[int] = bnb_abit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" ) self.post_init() def _A ( self : Optional[int] ): if not isinstance(self.llm_inta_threshold , UpperCAmelCase_ ): raise ValueError("llm_int8_threshold must be a float" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , UpperCAmelCase_ ): raise ValueError("llm_int8_skip_modules must be a list of strings" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , UpperCAmelCase_ ): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" ) if not isinstance(self.llm_inta_has_fpaa_weight , UpperCAmelCase_ ): raise ValueError("llm_int8_has_fp16_weight must be a boolean" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" ) if not isinstance(self.bnb_abit_quant_type , UpperCAmelCase_ ): raise ValueError("bnb_4bit_quant_type must be a string" ) if not isinstance(self.bnb_abit_use_double_quant , UpperCAmelCase_ ): raise ValueError("bnb_4bit_use_double_quant must be a boolean" ) if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def _A ( self : List[Any] ): return self.load_in_abit or self.load_in_abit def _A ( self : str ): if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _A ( cls : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE : List[Any] = cls(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = [] for key, value in kwargs.items(): if hasattr(UpperCAmelCase_ , UpperCAmelCase_ ): setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) to_remove.append(UpperCAmelCase_ ) for key in to_remove: kwargs.pop(UpperCAmelCase_ , UpperCAmelCase_ ) if return_unused_kwargs: return config, kwargs else: return config def _A ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, os.PathLike] ): with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as writer: SCREAMING_SNAKE_CASE : Union[str, Any] = self.to_dict() SCREAMING_SNAKE_CASE : Optional[Any] = json.dumps(UpperCAmelCase_ , indent=2 , sort_keys=UpperCAmelCase_ ) + "\n" writer.write(UpperCAmelCase_ ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Any = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Any = str(output["bnb_4bit_compute_dtype"] ).split("." )[1] return output def __repr__( self : Any ): return f'''{self.__class__.__name__} {self.to_json_string()}''' def _A ( self : Union[str, Any] , UpperCAmelCase_ : bool = True ): if use_diff is True: SCREAMING_SNAKE_CASE : List[str] = self.to_diff_dict() else: SCREAMING_SNAKE_CASE : str = self.to_dict() return json.dumps(UpperCAmelCase_ , indent=2 , sort_keys=UpperCAmelCase_ ) + "\n" def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Tuple = self.to_dict() # get the default config dict SCREAMING_SNAKE_CASE : List[str] = BitsAndBytesConfig().to_dict() SCREAMING_SNAKE_CASE : Optional[int] = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: SCREAMING_SNAKE_CASE : Dict = value return serializable_config_dict
62
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "swin2sr" _UpperCAmelCase : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowercase : List[Any]=64 , lowercase : int=1 , lowercase : Union[str, Any]=3 , lowercase : Dict=180 , lowercase : List[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Dict=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : List[str]=2.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : List[str]=False , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-5 , lowercase : Optional[int]=2 , lowercase : Tuple=1.0 , lowercase : List[Any]="1conv" , lowercase : List[Any]="pixelshuffle" , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(lowercase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = upscale _snake_case = img_range _snake_case = resi_connection _snake_case = upsampler
686
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCamelCase : Any = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
587
import random def a_ ( __lowercase : str , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: _snake_case = a[left_index] _snake_case = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _snake_case , _snake_case = a[i], a[j] i += 1 _snake_case , _snake_case = a[i - 1], a[left_index] return i - 1 def a_ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[int] ) -> Tuple: if left < right: _snake_case = random.randint(__lowercase , right - 1 ) _snake_case , _snake_case = ( a[left], a[pivot], ) # switches the pivot with the left most bound _snake_case = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> str: _snake_case = input('Enter numbers separated by a comma:\n' ).strip() _snake_case = [int(__lowercase ) for item in user_input.split(',' )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
686
0
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) _lowerCAmelCase : Union[str, Any] = tf.data.AUTOTUNE def __snake_case ( ) -> List[Any]: A_ : str = argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=__lowercase , default="roberta-base" , help="The model config to use. Note that we don\'t copy the model\'s weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=__lowercase , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=__lowercase , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=__lowercase , help="Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=__lowercase , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=__lowercase , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=__lowercase , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=__lowercase , default=2**18 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=__lowercase , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=__lowercase , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=__lowercase , default=1e-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=__lowercase , default=1e-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=__lowercase , default=512 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=__lowercase , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=__lowercase , required=__lowercase , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=__lowercase , help="Model ID to upload to on the Hugging Face Hub." ) A_ : Tuple = parser.parse_args() return args def __snake_case ( _lowerCAmelCase : Dict ) -> List[str]: try: if args.tpu_name: A_ : Dict = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: A_ : Any = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(__lowercase ) tf.tpu.experimental.initialize_tpu_system(__lowercase ) return tpu def __snake_case ( _lowerCAmelCase : Optional[int] ) -> str: A_ : str = 0 for file in file_list: A_ : int = file.split("/" )[-1] A_ : Optional[int] = re.search(r"-\d+-(\d+)\.tfrecord" , __lowercase ).group(1 ) A_ : Optional[int] = int(__lowercase ) num_samples += sample_count return num_samples def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str]=None ) -> Union[str, Any]: A_ : int = count_samples(__lowercase ) A_ : Tuple = tf.data.Dataset.from_tensor_slices(__lowercase ) if shuffle: A_ : str = dataset.shuffle(len(__lowercase ) ) A_ : Optional[Any] = tf.data.TFRecordDataset(__lowercase , num_parallel_reads=__lowercase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here A_ : Union[str, Any] = dataset.apply(tf.data.experimental.assert_cardinality(__lowercase ) ) A_ : Optional[Any] = dataset.map(__lowercase , num_parallel_calls=__lowercase ) if shuffle: assert shuffle_buffer_size is not None A_ : Union[str, Any] = dataset.shuffle(args.shuffle_buffer_size ) A_ : Optional[Any] = dataset.batch(__lowercase , drop_remainder=__lowercase ) A_ : Union[str, Any] = dataset.map(__lowercase , num_parallel_calls=__lowercase ) A_ : Optional[int] = dataset.prefetch(__lowercase ) return dataset def __snake_case ( _lowerCAmelCase : int ) -> List[Any]: if not args.no_tpu: A_ : List[Any] = initialize_tpu(__lowercase ) A_ : str = tf.distribute.TPUStrategy(__lowercase ) else: A_ : List[Any] = tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) A_ : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer ) A_ : int = AutoConfig.from_pretrained(args.pretrained_model_config ) A_ : str = tokenizer.vocab_size A_ : str = tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(f"No .tfrecord files found in {args.train_dataset}." ) A_ : List[str] = tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." ) A_ : Dict = count_samples(__lowercase ) A_ : Dict = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) A_ : str = steps_per_epoch * args.num_epochs with strategy.scope(): A_ : Any = TFAutoModelForMaskedLM.from_config(__lowercase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built A_ , A_ : int = create_optimizer( num_train_steps=__lowercase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__lowercase , metrics=["accuracy"] ) def decode_fn(_lowerCAmelCase : Optional[Any] ): A_ : Tuple = { "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(__lowercase , __lowercase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. A_ : Optional[int] = DataCollatorForLanguageModeling( tokenizer=__lowercase , mlm_probability=args.mlm_probability , mlm=__lowercase , return_tensors="tf" ) def mask_with_collator(_lowerCAmelCase : Optional[int] ): # TF really needs an isin() function A_ : Optional[Any] = ( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) A_ , A_ : List[Any] = data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(__lowercase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=__lowercase , ) return batch A_ : Dict = args.per_replica_batch_size * strategy.num_replicas_in_sync A_ : Tuple = prepare_dataset( __lowercase , decode_fn=__lowercase , mask_fn=__lowercase , batch_size=__lowercase , shuffle=__lowercase , shuffle_buffer_size=args.shuffle_buffer_size , ) A_ : str = prepare_dataset( __lowercase , decode_fn=__lowercase , mask_fn=__lowercase , batch_size=__lowercase , shuffle=__lowercase , ) A_ : List[str] = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=__lowercase ) ) model.fit( __lowercase , validation_data=__lowercase , epochs=args.num_epochs , callbacks=__lowercase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
454
import math def a_ ( __lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __lowercase : float = 0.1 ) -> int: _snake_case = 3 _snake_case = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
686
0
import os import jsonlines import numpy as np from tqdm import tqdm lowerCamelCase =2_0_4_8 lowerCamelCase =4_0_9_6 lowerCamelCase =4_2 lowerCamelCase =os.environ.pop("PROCESS_TRAIN", "false") lowerCamelCase ={'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): def choose_first(UpperCamelCase__ , UpperCamelCase__=False ): assert isinstance(__lowercase , __lowercase ) if len(__lowercase ) == 1: UpperCamelCase__ : List[str] = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: UpperCamelCase__ : Any = {k: [a[k]] for k in a} if len(a['''start_token'''] ) > 0: break return a UpperCamelCase__ : Tuple = {'''id''': example['''id''']} UpperCamelCase__ : Optional[int] = example['''annotations'''] UpperCamelCase__ : Union[str, Any] = annotation['''yes_no_answer'''] if 0 in yes_no_answer or 1 in yes_no_answer: UpperCamelCase__ : Dict = ['''yes'''] if 1 in yes_no_answer else ['''no'''] UpperCamelCase__ : List[str] = [] UpperCamelCase__ : Optional[int] = [] UpperCamelCase__ : Dict = ['''<cls>'''] else: UpperCamelCase__ : Union[str, Any] = ['''short'''] UpperCamelCase__ : Any = choose_first(annotation['''short_answers'''] ) if len(out['''start_token'''] ) == 0: # answer will be long if short is not available UpperCamelCase__ : int = ['''long'''] UpperCamelCase__ : Optional[int] = choose_first(annotation['''long_answer'''] , is_long_answer=__lowercase ) UpperCamelCase__ : Tuple = [] answer.update(__lowercase ) # disregard some samples if len(answer['''start_token'''] ) > 1 or answer["start_token"] == answer["end_token"]: UpperCamelCase__ : Union[str, Any] = True else: UpperCamelCase__ : Tuple = False UpperCamelCase__ : str = ['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text'''] if not all(isinstance(answer[k] , __lowercase ) for k in cols ): raise ValueError('''Issue in ID''' , example['''id'''] ) return answer def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__=False ): UpperCamelCase__ : Tuple = _get_single_answer(__lowercase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCamelCase__ : List[Any] = example['''document''']['''tokens'''] UpperCamelCase__ : Optional[Any] = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) return { "context": " ".join(__lowercase ), "answer": { "start_token": -1_0_0, # ignore index in cross-entropy "end_token": -1_0_0, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples UpperCamelCase__ : Union[str, Any] = ['''start_token''', '''end_token'''] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 UpperCamelCase__ : Any = example['''document''']['''tokens'''] UpperCamelCase__ : str = answer['''start_token'''] UpperCamelCase__ : List[str] = answer['''end_token'''] UpperCamelCase__ : Optional[int] = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 UpperCamelCase__ : Dict = ''' '''.join(context[start_token:end_token] ) # checking above code if assertion: UpperCamelCase__ : Optional[int] = doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']] UpperCamelCase__ : List[str] = doc['''token'''][answer['''start_token'''] : answer['''end_token''']] UpperCamelCase__ : List[str] = ''' '''.join([old[i] for i in range(len(__lowercase ) ) if not is_html[i]] ) if new != old: print('''ID:''' , example['''id'''] ) print('''New:''' , __lowercase , end='''\n''' ) print('''Old:''' , __lowercase , end='''\n\n''' ) return { "context": " ".join(__lowercase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=2_0_4_8 , UpperCamelCase__=4_0_9_6 , UpperCamelCase__=True ): # overlap will be of doc_stride - q_len UpperCamelCase__ : int = get_context_and_ans(__lowercase , assertion=__lowercase ) UpperCamelCase__ : int = out['''answer'''] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } UpperCamelCase__ : Dict = tokenizer(example['''question''']['''text'''] , out['''context'''] ).input_ids UpperCamelCase__ : int = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCamelCase__ : Any = [] UpperCamelCase__ : List[str] = [] UpperCamelCase__ : int = input_ids[:q_len] UpperCamelCase__ : List[str] = range(__lowercase , len(__lowercase ) , max_length - doc_stride ) for i in doc_start_indices: UpperCamelCase__ : int = i + max_length - q_len UpperCamelCase__ : Dict = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['''category'''][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_0_0] * len(__lowercase ), "end_token": [-1_0_0] * len(__lowercase ), "category": category, }, } UpperCamelCase__ : int = out['''context'''].split() UpperCamelCase__ : Tuple = splitted_context[answer['''end_token''']] UpperCamelCase__ : str = len( tokenizer( ''' '''.join(splitted_context[: answer['''start_token''']] ) , add_special_tokens=__lowercase , ).input_ids ) UpperCamelCase__ : List[str] = len( tokenizer(''' '''.join(splitted_context[: answer['''end_token''']] ) , add_special_tokens=__lowercase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token UpperCamelCase__ : List[str] = len(tokenizer(__lowercase , add_special_tokens=__lowercase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 UpperCamelCase__ : str = input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive UpperCamelCase__ : Any = answer['''start_token'''] UpperCamelCase__ : str = answer['''end_token'''] if assertion: UpperCamelCase__ : List[Any] = tokenizer.decode(__lowercase ) if answer["span"] != new: print('''ISSUE IN TOKENIZATION''' ) print('''OLD:''' , answer['''span'''] ) print('''NEW:''' , __lowercase , end='''\n\n''' ) if len(__lowercase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } UpperCamelCase__ : Dict = input_ids[:q_len] UpperCamelCase__ : Any = range(__lowercase , len(__lowercase ) , max_length - doc_stride ) UpperCamelCase__ : int = [] UpperCamelCase__ : Any = [] UpperCamelCase__ : str = [] UpperCamelCase__ : Optional[Any] = [] # null, yes, no, long, short for i in doc_start_indices: UpperCamelCase__ : Any = i + max_length - q_len UpperCamelCase__ : Dict = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: UpperCamelCase__ : Dict = start_token - i + q_len UpperCamelCase__ : List[str] = end_token - i + q_len answers_category.append(answer['''category'''][0] ) # ["short"] -> "short" else: UpperCamelCase__ : int = -1_0_0 UpperCamelCase__ : List[str] = -1_0_0 answers_category.append('''null''' ) UpperCamelCase__ : str = inputs[-1][start_token : end_token + 1] answers_start_token.append(__lowercase ) answers_end_token.append(__lowercase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('''ISSUE in strided for ID:''' , example['''id'''] ) print('''New:''' , tokenizer.decode(__lowercase ) ) print('''Old:''' , tokenizer.decode(__lowercase ) , end='''\n\n''' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=2_0_4_8 , UpperCamelCase__=4_0_9_6 , UpperCamelCase__=False ): UpperCamelCase__ : Optional[Any] = get_strided_contexts_and_ans( __lowercase , __lowercase , doc_stride=__lowercase , max_length=__lowercase , assertion=__lowercase , ) return example def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): with jsonlines.open(__lowercase , '''a''' ) as writer: for example in tqdm(__lowercase , total=len(__lowercase ) , desc='''Saving samples ... ''' ): UpperCamelCase__ : Tuple = example['''labels'''] for ids, start, end, cat in zip( example['''input_ids'''] , labels['''start_token'''] , labels['''end_token'''] , labels['''category'''] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { '''input_ids''': ids, '''start_token''': start, '''end_token''': end, '''category''': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer lowerCamelCase =load_dataset("natural_questions") lowerCamelCase =BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") lowerCamelCase =data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] lowerCamelCase ={ '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } lowerCamelCase =data.map(prepare_inputs, fn_kwargs=fn_kwargs) lowerCamelCase =data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) lowerCamelCase ='''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
285
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): debug_launcher(test_script.main ) def UpperCamelCase ( self ): debug_launcher(test_ops.main )
190
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowercase ) for s in shape] )}.npy''' def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() def A ( self : List[Any] , lowercase : Tuple=0 , lowercase : Optional[int]=(4, 4, 64, 64) , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def A ( self : Tuple , lowercase : Any=False , lowercase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = 'bf16' if fpaa else None _snake_case , _snake_case = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder='unet' , dtype=lowercase , revision=lowercase ) return model, params def A ( self : Union[str, Any] , lowercase : str=0 , lowercase : Optional[Any]=(4, 77, 768) , lowercase : int=False ): '''simple docstring''' _snake_case = jnp.bfloataa if fpaa else jnp.floataa _snake_case = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def A ( self : str , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' _snake_case , _snake_case = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowercase ) _snake_case = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) _snake_case = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1_024) , fpaa=lowercase ) _snake_case = model.apply( {'params': params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape _snake_case = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 )
686
0
import os def __lowerCAmelCase ( ) -> Optional[int]: with open(os.path.dirname(__lowercase ) + "/grid.txt" ) as f: __UpperCAmelCase = [] # noqa: E741 for _ in range(20 ): l.append([int(__lowercase ) for x in f.readline().split()] ) __UpperCAmelCase = 0 # right for i in range(20 ): for j in range(17 ): __UpperCAmelCase = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: __UpperCAmelCase = temp # down for i in range(17 ): for j in range(20 ): __UpperCAmelCase = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: __UpperCAmelCase = temp # diagonal 1 for i in range(17 ): for j in range(17 ): __UpperCAmelCase = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: __UpperCAmelCase = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): __UpperCAmelCase = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: __UpperCAmelCase = temp return maximum if __name__ == "__main__": print(solution())
221
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : Dict = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys snake_case_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
212
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
0
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__lowercase ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if index == len(__lowercase ): return True # Recursive Step for i in range(__lowercase ): if valid_coloring(graph[index] , __lowercase , __lowercase ): # Color current vertex _lowerCAmelCase : str = i # Validate coloring if util_color(__lowercase , __lowercase , __lowercase , index + 1 ): return True # Backtrack _lowerCAmelCase : Optional[Any] = -1 return False def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = [-1] * len(__lowercase ) if util_color(__lowercase , __lowercase , __lowercase , 0 ): return colored_vertices return []
259
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "sequence-classification" def __init__( self : Optional[int] , lowercase : Any ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Optional[Any] , lowercase : str , lowercase : Tuple ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : int , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[str] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
686
0
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int]): assert isinstance(__lowercase , __lowercase) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True]) def UpperCAmelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any]): lowerCamelCase : str = tmp_path / 'cache' lowerCamelCase : str = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase : List[Any] = ParquetDatasetReader(__lowercase , cache_dir=__lowercase , keep_in_memory=__lowercase).read() _check_parquet_dataset(__lowercase , __lowercase) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def UpperCAmelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str]): lowerCamelCase : List[str] = tmp_path / 'cache' lowerCamelCase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase : int = features.copy() if features else default_expected_features lowerCamelCase : List[Any] = ( Features({feature: Value(__lowercase) for feature, dtype in features.items()}) if features is not None else None ) lowerCamelCase : List[str] = ParquetDatasetReader(__lowercase , features=__lowercase , cache_dir=__lowercase).read() _check_parquet_dataset(__lowercase , __lowercase) @pytest.mark.parametrize('split' , [None, NamedSplit('train'), 'train', 'test']) def UpperCAmelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str]): lowerCamelCase : Any = tmp_path / 'cache' lowerCamelCase : Union[str, Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase : Tuple = ParquetDatasetReader(__lowercase , cache_dir=__lowercase , split=__lowercase).read() _check_parquet_dataset(__lowercase , __lowercase) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list]) def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str]): if issubclass(__lowercase , __lowercase): lowerCamelCase : List[str] = parquet_path elif issubclass(__lowercase , __lowercase): lowerCamelCase : int = [parquet_path] lowerCamelCase : int = tmp_path / 'cache' lowerCamelCase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase : str = ParquetDatasetReader(__lowercase , cache_dir=__lowercase).read() _check_parquet_dataset(__lowercase , __lowercase) def UpperCAmelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple=("train",)): assert isinstance(__lowercase , __lowercase) for split in splits: lowerCamelCase : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True]) def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str): lowerCamelCase : List[str] = tmp_path / 'cache' lowerCamelCase : List[str] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase : Tuple = ParquetDatasetReader( {'train': parquet_path} , cache_dir=__lowercase , keep_in_memory=__lowercase).read() _check_parquet_datasetdict(__lowercase , __lowercase) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def UpperCAmelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str]): lowerCamelCase : List[Any] = tmp_path / 'cache' lowerCamelCase : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase : Optional[int] = features.copy() if features else default_expected_features lowerCamelCase : Optional[Any] = ( Features({feature: Value(__lowercase) for feature, dtype in features.items()}) if features is not None else None ) lowerCamelCase : Optional[Any] = ParquetDatasetReader({'train': parquet_path} , features=__lowercase , cache_dir=__lowercase).read() _check_parquet_datasetdict(__lowercase , __lowercase) @pytest.mark.parametrize('split' , [None, NamedSplit('train'), 'train', 'test']) def UpperCAmelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int]): if split: lowerCamelCase : Dict = {split: parquet_path} else: lowerCamelCase : int = 'train' lowerCamelCase : List[str] = {'train': parquet_path, 'test': parquet_path} lowerCamelCase : Optional[int] = tmp_path / 'cache' lowerCamelCase : int = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase : Dict = ParquetDatasetReader(__lowercase , cache_dir=__lowercase).read() _check_parquet_datasetdict(__lowercase , __lowercase , splits=list(path.keys())) assert all(dataset[split].split == split for split in path.keys()) def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any]): lowerCamelCase : Dict = ParquetDatasetWriter(__lowercase , tmp_path / 'foo.parquet') assert writer.write() > 0 lowerCamelCase : Optional[int] = pq.ParquetFile(tmp_path / 'foo.parquet') lowerCamelCase : List[Any] = pf.read() assert dataset.data.table == output_table def UpperCAmelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict): lowerCamelCase : Optional[int] = str(shared_datadir / 'test_image_rgb.jpg') lowerCamelCase : Optional[int] = {'image': [image_path]} lowerCamelCase : Dict = Features({'image': Image()}) lowerCamelCase : Optional[Any] = Dataset.from_dict(__lowercase , features=__lowercase) lowerCamelCase : Union[str, Any] = ParquetDatasetWriter(__lowercase , tmp_path / 'foo.parquet') assert writer.write() > 0 lowerCamelCase : Optional[int] = Dataset.from_parquet(str(tmp_path / 'foo.parquet')) assert dataset.features == reloaded_dataset.features lowerCamelCase : int = ParquetDatasetReader(str(tmp_path / 'foo.parquet') , streaming=__lowercase).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' , [ (Features({'foo': Value('int32')}), None), (Features({'image': Image(), 'foo': Value('int32')}), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio())}), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCAmelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int): assert get_writer_batch_size(__lowercase) == expected
320
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LEDConfig _UpperCAmelCase : int = {} _UpperCAmelCase : List[str] = "gelu" def __init__( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict=13 , lowercase : Dict=7 , lowercase : Tuple=True , lowercase : Dict=False , lowercase : Dict=99 , lowercase : Any=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[str]=37 , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : List[Any]=20 , lowercase : int=2 , lowercase : Optional[Any]=1 , lowercase : List[str]=0 , lowercase : Optional[int]=4 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case = prepare_led_inputs_dict(lowercase , lowercase , lowercase ) _snake_case = tf.concat( [tf.zeros_like(lowercase )[:, :-1], tf.ones_like(lowercase )[:, -1:]] , axis=-1 , ) _snake_case = global_attention_mask return config, inputs_dict def A ( self : str , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = TFLEDModel(config=lowercase ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : str=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase : Optional[int] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : Tuple = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = False _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False def A ( self : Any ): '''simple docstring''' _snake_case = TFLEDModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = tf.zeros_like(inputs_dict['attention_mask'] ) _snake_case = 2 _snake_case = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _snake_case = True _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase : List[str] ): _snake_case = outputs.decoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase : List[str] ): _snake_case = [t.numpy() for t in outputs.encoder_attentions] _snake_case = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = False _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) _snake_case = len(lowercase ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) if self.is_encoder_decoder: _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_decoder_attentions_output(lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase ) ) self.assertEqual(model.config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def a_ ( __lowercase : str ) -> Optional[Any]: return tf.constant(__lowercase , dtype=tf.intaa ) _lowerCamelCase : List[Any] = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, 768) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 ) def A ( self : str ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 , rtol=1E-3 )
686
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration _UpperCAmelCase = '''facebook/wmt19-en-de''' _UpperCAmelCase = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model _UpperCAmelCase = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) _UpperCAmelCase = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test _UpperCAmelCase = tokenizer(['Making tiny model'], return_tensors='pt') _UpperCAmelCase = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save _UpperCAmelCase = '''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
504
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCamelCase : Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCamelCase : Union[str, Any] = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCamelCase : Optional[int] = '''zero2''' _lowerCamelCase : List[Any] = '''zero3''' _lowerCamelCase : Dict = [ZEROa, ZEROa] def a_ ( __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _snake_case = parameterized.to_safe_name('_'.join(str(__lowercase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _lowerCamelCase : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): '''simple docstring''' self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' pass def A ( self : str , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : bool = True , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = models[model] _snake_case = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A ( self : Any , lowercase : str , lowercase : str , lowercase : int = 10 , lowercase : int = 1 , lowercase : bool = True , lowercase : bool = True , ): '''simple docstring''' _snake_case = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _snake_case = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _snake_case = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _snake_case = self.get_launcher(lowercase ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A ( self : List[str] , lowercase : Any=False ): '''simple docstring''' _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
686
0
'''simple docstring''' import math def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 0.1 ): """simple docstring""" lowerCAmelCase__ : Tuple = 3 lowerCAmelCase__ : str = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
565
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = ["pixel_values"] def __init__( self : Any , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = size if size is not None else {"shortest_edge": 384} SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = do_resize SCREAMING_SNAKE_CASE : Tuple = size # Default value set here for backwards compatibility where the value in config is None SCREAMING_SNAKE_CASE : List[str] = crop_pct if crop_pct is not None else 224 / 256 SCREAMING_SNAKE_CASE : str = resample SCREAMING_SNAKE_CASE : List[Any] = do_rescale SCREAMING_SNAKE_CASE : Optional[Any] = rescale_factor SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize SCREAMING_SNAKE_CASE : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _A ( self : int , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : float , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : int , ): SCREAMING_SNAKE_CASE : Tuple = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE : Tuple = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct SCREAMING_SNAKE_CASE : List[str] = int(shortest_edge / crop_pct ) SCREAMING_SNAKE_CASE : Optional[int] = get_resize_output_image_size(UpperCAmelCase_ , size=UpperCAmelCase_ , default_to_square=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=UpperCAmelCase_ , size=(shortest_edge, shortest_edge) , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( UpperCAmelCase_ , size=(shortest_edge, shortest_edge) , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Any , ): return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : Optional[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Union[str, Any] , ): return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : int , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : int , ): SCREAMING_SNAKE_CASE : str = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Any = crop_pct if crop_pct is not None else self.crop_pct SCREAMING_SNAKE_CASE : Dict = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : List[str] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : int = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : Optional[int] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : int = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : str = size if size is not None else self.size SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Any = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : Optional[int] = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , crop_pct=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : int = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : List[str] = [self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ ) for image in images] SCREAMING_SNAKE_CASE : Optional[Any] = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images] SCREAMING_SNAKE_CASE : List[Any] = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ )
62
import random from .binary_exp_mod import bin_exp_mod def a_ ( __lowercase : int , __lowercase : Any=1_000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__lowercase , __lowercase , __lowercase ) if b != 1: _snake_case = True for _ in range(__lowercase ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCamelCase : Tuple = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
686
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = [] for part_id in partition_order: _lowerCAmelCase :Dict = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(__magic_name__ ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Dict = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _lowerCAmelCase :int = spark.range(100 ).repartition(1 ) _lowerCAmelCase :Dict = Spark(__magic_name__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _lowerCAmelCase :Tuple = spark.range(10 ).repartition(2 ) _lowerCAmelCase :Dict = [1, 0] _lowerCAmelCase :str = _generate_iterable_examples(__magic_name__ , __magic_name__ ) # Reverse the partitions. _lowerCAmelCase :List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__magic_name__ , __magic_name__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): _lowerCAmelCase , _lowerCAmelCase :Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Any = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _lowerCAmelCase :Tuple = spark.range(10 ).repartition(1 ) _lowerCAmelCase :List[Any] = SparkExamplesIterable(__magic_name__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__magic_name__ ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :List[Any] = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _lowerCAmelCase :Dict = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: _lowerCAmelCase :int = lambda __magic_name__ : x.reverse() _lowerCAmelCase :List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(__magic_name__ , [2, 1, 0] ) _lowerCAmelCase :Dict = SparkExamplesIterable(__magic_name__ ).shuffle_data_sources(__magic_name__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__magic_name__ ): _lowerCAmelCase , _lowerCAmelCase :List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Dict = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _lowerCAmelCase :Optional[int] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 _lowerCAmelCase :Union[str, Any] = SparkExamplesIterable(__magic_name__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 _lowerCAmelCase :Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(__magic_name__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(__magic_name__ ): _lowerCAmelCase , _lowerCAmelCase :str = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _lowerCAmelCase :str = SparkExamplesIterable(__magic_name__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 _lowerCAmelCase :Union[str, Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__magic_name__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(__magic_name__ ): _lowerCAmelCase , _lowerCAmelCase :List[str] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Any = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _lowerCAmelCase :Optional[Any] = spark.range(100 ).repartition(1 ) _lowerCAmelCase :str = Spark(__magic_name__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
687
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[str] = 'ylacombe/bark-small' _lowerCAmelCase :int = tempfile.mkdtemp() _lowerCAmelCase :List[str] = 'en_speaker_1' _lowerCAmelCase :Union[str, Any] = 'This is a test string' _lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json' _lowerCAmelCase :str = 'speaker_embeddings' def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :List[Any] = self.get_tokenizer() _lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase :Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase :List[Any] = 35 _lowerCAmelCase :Optional[int] = 2 _lowerCAmelCase :Dict = 8 _lowerCAmelCase :Dict = { 'semantic_prompt': np.ones(_UpperCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Tuple = self.get_tokenizer() _lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = processor(text=self.input_string ) _lowerCAmelCase :List[str] = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
687
1
from __future__ import annotations from math import pi, sqrt def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float ): """simple docstring""" if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
687
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : int = 'bert' def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :Tuple = hidden_size _lowerCAmelCase :Dict = num_hidden_layers _lowerCAmelCase :Optional[Any] = num_attention_heads _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :int = intermediate_size _lowerCAmelCase :Tuple = hidden_dropout_prob _lowerCAmelCase :Tuple = attention_probs_dropout_prob _lowerCAmelCase :List[Any] = max_position_embeddings _lowerCAmelCase :Dict = type_vocab_size _lowerCAmelCase :Any = initializer_range _lowerCAmelCase :int = layer_norm_eps _lowerCAmelCase :List[Any] = position_embedding_type _lowerCAmelCase :int = use_cache _lowerCAmelCase :Union[str, Any] = classifier_dropout class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): if self.task == "multiple-choice": _lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
687
1
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = AutoencoderKL lowerCamelCase : int = 'sample' lowerCamelCase : Optional[int] = 1e-2 @property def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[int] = 4 _lowerCAmelCase :int = 3 _lowerCAmelCase :List[Any] = (32, 32) _lowerCAmelCase :Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(_UpperCAmelCase ) return {"sample": image} @property def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return (3, 32, 32) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return (3, 32, 32) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[int] = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } _lowerCAmelCase :Optional[Any] = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self: Tuple ): pass def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def SCREAMING_SNAKE_CASE__ ( self: str ): # enable deterministic behavior for gradient checkpointing _lowerCAmelCase , _lowerCAmelCase :str = self.prepare_init_args_and_inputs_for_common() _lowerCAmelCase :Any = self.model_class(**_UpperCAmelCase ) model.to(_UpperCAmelCase ) assert not model.is_gradient_checkpointing and model.training _lowerCAmelCase :str = model(**_UpperCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _lowerCAmelCase :Optional[int] = torch.randn_like(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _lowerCAmelCase :List[str] = self.model_class(**_UpperCAmelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_UpperCAmelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _lowerCAmelCase :int = model_a(**_UpperCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _lowerCAmelCase :str = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) _lowerCAmelCase :str = dict(model.named_parameters() ) _lowerCAmelCase :Optional[Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Dict = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(_UpperCAmelCase ) _lowerCAmelCase :List[str] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :int = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) _lowerCAmelCase :Any = model.to(_UpperCAmelCase ) model.eval() if torch_device == "mps": _lowerCAmelCase :Optional[Any] = torch.manual_seed(0 ) else: _lowerCAmelCase :Optional[int] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase :Tuple = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _lowerCAmelCase :str = image.to(_UpperCAmelCase ) with torch.no_grad(): _lowerCAmelCase :str = model(_UpperCAmelCase , sample_posterior=_UpperCAmelCase , generator=_UpperCAmelCase ).sample _lowerCAmelCase :Any = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _lowerCAmelCase :Union[str, Any] = torch.tensor( [ -4.0_0_7_8e-0_1, -3.8_3_2_3e-0_4, -1.2_6_8_1e-0_1, -1.1_4_6_2e-0_1, 2.0_0_9_5e-0_1, 1.0_8_9_3e-0_1, -8.8_2_4_7e-0_2, -3.0_3_6_1e-0_1, -9.8_6_4_4e-0_3, ] ) elif torch_device == "cpu": _lowerCAmelCase :Dict = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: _lowerCAmelCase :Optional[Any] = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(_UpperCAmelCase , _UpperCAmelCase , rtol=1e-2 ) ) @slow class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): return f"""gaussian_noise_s={seed}_shape={"_".join([str(_UpperCAmelCase ) for s in shape] )}.npy""" def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int=0 , _UpperCAmelCase: List[str]=(4, 3, 512, 512) , _UpperCAmelCase: Dict=False ): _lowerCAmelCase :List[str] = torch.floataa if fpaa else torch.floataa _lowerCAmelCase :str = torch.from_numpy(load_hf_numpy(self.get_file_format(_UpperCAmelCase , _UpperCAmelCase ) ) ).to(_UpperCAmelCase ).to(_UpperCAmelCase ) return image def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: int="CompVis/stable-diffusion-v1-4" , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = 'fp16' if fpaa else None _lowerCAmelCase :Optional[Any] = torch.floataa if fpaa else torch.floataa _lowerCAmelCase :Optional[int] = AutoencoderKL.from_pretrained( _UpperCAmelCase , subfolder='vae' , torch_dtype=_UpperCAmelCase , revision=_UpperCAmelCase , ) model.to(_UpperCAmelCase ).eval() return model def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple=0 ): if torch_device == "mps": return torch.manual_seed(_UpperCAmelCase ) return torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: List[Any] ): _lowerCAmelCase :Union[str, Any] = self.get_sd_vae_model() _lowerCAmelCase :Union[str, Any] = self.get_sd_image(_UpperCAmelCase ) _lowerCAmelCase :Any = self.get_generator(_UpperCAmelCase ) with torch.no_grad(): _lowerCAmelCase :str = model(_UpperCAmelCase , generator=_UpperCAmelCase , sample_posterior=_UpperCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase :List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase :Optional[Any] = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Dict ): _lowerCAmelCase :List[str] = self.get_sd_vae_model(fpaa=_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = self.get_sd_image(_UpperCAmelCase , fpaa=_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = self.get_generator(_UpperCAmelCase ) with torch.no_grad(): _lowerCAmelCase :Optional[int] = model(_UpperCAmelCase , generator=_UpperCAmelCase , sample_posterior=_UpperCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase :Union[str, Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase :Union[str, Any] = torch.tensor(_UpperCAmelCase ) assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: List[str] , _UpperCAmelCase: List[str] , _UpperCAmelCase: Tuple ): _lowerCAmelCase :Optional[int] = self.get_sd_vae_model() _lowerCAmelCase :Union[str, Any] = self.get_sd_image(_UpperCAmelCase ) with torch.no_grad(): _lowerCAmelCase :str = model(_UpperCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase :Any = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase :Dict = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :List[str] = self.get_sd_vae_model() _lowerCAmelCase :str = self.get_sd_image(_UpperCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase :Dict = model.decode(_UpperCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase :List[str] = sample[-1, -2:, :2, -2:].flatten().cpu() _lowerCAmelCase :Any = torch.tensor(_UpperCAmelCase ) assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Tuple ): _lowerCAmelCase :Optional[int] = self.get_sd_vae_model(fpaa=_UpperCAmelCase ) _lowerCAmelCase :Any = self.get_sd_image(_UpperCAmelCase , shape=(3, 4, 64, 64) , fpaa=_UpperCAmelCase ) with torch.no_grad(): _lowerCAmelCase :Union[str, Any] = model.decode(_UpperCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase :Optional[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase :str = torch.tensor(_UpperCAmelCase ) assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :int = self.get_sd_vae_model(fpaa=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.get_sd_image(_UpperCAmelCase , shape=(3, 4, 64, 64) , fpaa=_UpperCAmelCase ) with torch.no_grad(): _lowerCAmelCase :int = model.decode(_UpperCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase :Tuple = model.decode(_UpperCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = self.get_sd_vae_model() _lowerCAmelCase :Union[str, Any] = self.get_sd_image(_UpperCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model.decode(_UpperCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase :Union[str, Any] = model.decode(_UpperCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: Dict , _UpperCAmelCase: int ): _lowerCAmelCase :List[str] = self.get_sd_vae_model() _lowerCAmelCase :List[str] = self.get_sd_image(_UpperCAmelCase ) _lowerCAmelCase :str = self.get_generator(_UpperCAmelCase ) with torch.no_grad(): _lowerCAmelCase :int = model.encode(_UpperCAmelCase ).latent_dist _lowerCAmelCase :int = dist.sample(generator=_UpperCAmelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _lowerCAmelCase :str = sample[0, -1, -3:, -3:].flatten().cpu() _lowerCAmelCase :Optional[Any] = torch.tensor(_UpperCAmelCase ) _lowerCAmelCase :str = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=_UpperCAmelCase )
687
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def UpperCamelCase_( __magic_name__ : Any ): """simple docstring""" _lowerCAmelCase :Optional[int] = 384 _lowerCAmelCase :str = 7 if "tiny" in model_name: _lowerCAmelCase :Optional[Any] = 96 _lowerCAmelCase :Optional[int] = (2, 2, 6, 2) _lowerCAmelCase :int = (3, 6, 12, 24) elif "small" in model_name: _lowerCAmelCase :Tuple = 96 _lowerCAmelCase :Optional[int] = (2, 2, 18, 2) _lowerCAmelCase :List[str] = (3, 6, 12, 24) elif "base" in model_name: _lowerCAmelCase :Union[str, Any] = 128 _lowerCAmelCase :List[Any] = (2, 2, 18, 2) _lowerCAmelCase :Optional[int] = (4, 8, 16, 32) _lowerCAmelCase :Dict = 12 _lowerCAmelCase :Optional[Any] = 512 elif "large" in model_name: _lowerCAmelCase :List[str] = 192 _lowerCAmelCase :str = (2, 2, 18, 2) _lowerCAmelCase :List[Any] = (6, 12, 24, 48) _lowerCAmelCase :Optional[int] = 12 _lowerCAmelCase :List[str] = 768 # set label information _lowerCAmelCase :List[str] = 150 _lowerCAmelCase :Optional[int] = 'huggingface/label-files' _lowerCAmelCase :Tuple = 'ade20k-id2label.json' _lowerCAmelCase :Union[str, Any] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase :Dict = {int(__magic_name__ ): v for k, v in idalabel.items()} _lowerCAmelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} _lowerCAmelCase :Tuple = SwinConfig( embed_dim=__magic_name__ , depths=__magic_name__ , num_heads=__magic_name__ , window_size=__magic_name__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) _lowerCAmelCase :Dict = UperNetConfig( backbone_config=__magic_name__ , auxiliary_in_channels=__magic_name__ , num_labels=__magic_name__ , idalabel=__magic_name__ , labelaid=__magic_name__ , ) return config def UpperCamelCase_( __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Tuple = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.stages.{i}.downsample.reduction.weight""", f"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.weight""", f"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.bias""", f"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : Optional[int] ): """simple docstring""" _lowerCAmelCase :List[Any] = dct.pop(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = val def UpperCamelCase_( __magic_name__ : List[Any] , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCAmelCase :int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCAmelCase :Tuple = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) _lowerCAmelCase :Dict = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase :Union[str, Any] = in_proj_weight[:dim, :] _lowerCAmelCase :Tuple = in_proj_bias[: dim] _lowerCAmelCase :Optional[Any] = in_proj_weight[ dim : dim * 2, : ] _lowerCAmelCase :Optional[int] = in_proj_bias[ dim : dim * 2 ] _lowerCAmelCase :Union[str, Any] = in_proj_weight[ -dim :, : ] _lowerCAmelCase :Optional[int] = in_proj_bias[-dim :] # fmt: on def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = x.shape _lowerCAmelCase :Tuple = x.reshape(__magic_name__ , 4 , in_channel // 4 ) _lowerCAmelCase :str = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(__magic_name__ , __magic_name__ ) return x def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :str = x.shape _lowerCAmelCase :Union[str, Any] = x.reshape(__magic_name__ , in_channel // 4 , 4 ) _lowerCAmelCase :List[str] = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(__magic_name__ , __magic_name__ ) return x def UpperCamelCase_( __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = x.shape[0] _lowerCAmelCase :Optional[int] = x.reshape(4 , in_channel // 4 ) _lowerCAmelCase :Optional[int] = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(__magic_name__ ) return x def UpperCamelCase_( __magic_name__ : List[str] ): """simple docstring""" _lowerCAmelCase :Optional[int] = x.shape[0] _lowerCAmelCase :int = x.reshape(in_channel // 4 , 4 ) _lowerCAmelCase :Optional[int] = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(__magic_name__ ) return x def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Any = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } _lowerCAmelCase :List[Any] = model_name_to_url[model_name] _lowerCAmelCase :Union[str, Any] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='cpu' , file_name=__magic_name__ )[ 'state_dict' ] for name, param in state_dict.items(): print(__magic_name__ , param.shape ) _lowerCAmelCase :Union[str, Any] = get_upernet_config(__magic_name__ ) _lowerCAmelCase :int = UperNetForSemanticSegmentation(__magic_name__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase :Union[str, Any] = state_dict.pop(__magic_name__ ) if "bn" in key: _lowerCAmelCase :List[str] = key.replace('bn' , 'batch_norm' ) _lowerCAmelCase :Optional[int] = val # rename keys _lowerCAmelCase :Optional[Any] = create_rename_keys(__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: _lowerCAmelCase :Union[str, Any] = reverse_correct_unfold_reduction_order(__magic_name__ ) if "norm" in key: _lowerCAmelCase :Optional[Any] = reverse_correct_unfold_norm_order(__magic_name__ ) model.load_state_dict(__magic_name__ ) # verify on image _lowerCAmelCase :List[str] = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' _lowerCAmelCase :Union[str, Any] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ).convert('RGB' ) _lowerCAmelCase :Dict = SegformerImageProcessor() _lowerCAmelCase :Dict = processor(__magic_name__ , return_tensors='pt' ).pixel_values with torch.no_grad(): _lowerCAmelCase :Dict = model(__magic_name__ ) _lowerCAmelCase :List[str] = outputs.logits print(logits.shape ) print('First values of logits:' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": _lowerCAmelCase :Dict = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": _lowerCAmelCase :Any = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": _lowerCAmelCase :Any = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": _lowerCAmelCase :Optional[Any] = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __magic_name__ , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__magic_name__ ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-swin-tiny""", type=str, choices=[F'''upernet-swin-{size}''' for size in ["""tiny""", """small""", """base""", """large"""]], help="""Name of the Swin + UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) a = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
687
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
1
import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCAmelCase_ : """simple docstring""" def __init__( self: Any , _UpperCAmelCase: Tuple ): _lowerCAmelCase :Dict = data _lowerCAmelCase :Tuple = [0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0] @staticmethod def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Dict ): return ((n << b) | (n >> (32 - b))) & 0xFFFFFFFF def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Dict = b'\x80' + b'\x00' * (63 - (len(self.data ) + 8) % 64) _lowerCAmelCase :Union[str, Any] = self.data + padding + struct.pack('>Q' , 8 * len(self.data ) ) return padded_data def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Dict ): _lowerCAmelCase :Dict = list(struct.unpack('>16L' , _UpperCAmelCase ) ) + [0] * 64 for i in range(16 , 80 ): _lowerCAmelCase :Optional[int] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Union[str, Any] = self.padding() _lowerCAmelCase :Optional[Any] = self.split_blocks() for block in self.blocks: _lowerCAmelCase :List[str] = self.expand_block(_UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = self.h for i in range(0 , 80 ): if 0 <= i < 20: _lowerCAmelCase :Dict = (b & c) | ((~b) & d) _lowerCAmelCase :str = 0x5A827999 elif 20 <= i < 40: _lowerCAmelCase :Dict = b ^ c ^ d _lowerCAmelCase :int = 0x6ED9EBA1 elif 40 <= i < 60: _lowerCAmelCase :Optional[Any] = (b & c) | (b & d) | (c & d) _lowerCAmelCase :Union[str, Any] = 0x8F1BBCDC elif 60 <= i < 80: _lowerCAmelCase :Dict = b ^ c ^ d _lowerCAmelCase :Tuple = 0xCA62C1D6 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :List[str] = ( self.rotate(_UpperCAmelCase , 5 ) + f + e + k + expanded_block[i] & 0xFFFFFFFF, a, self.rotate(_UpperCAmelCase , 30 ), c, d, ) _lowerCAmelCase :List[Any] = ( self.h[0] + a & 0xFFFFFFFF, self.h[1] + b & 0xFFFFFFFF, self.h[2] + c & 0xFFFFFFFF, self.h[3] + d & 0xFFFFFFFF, self.h[4] + e & 0xFFFFFFFF, ) return ("{:08x}" * 5).format(*self.h ) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Optional[int] = b'Test String' assert SHAaHash(__magic_name__ ).final_hash() == hashlib.shaa(__magic_name__ ).hexdigest() # noqa: S324 def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Dict = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase :List[str] = parser.parse_args() _lowerCAmelCase :Union[str, Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase :Any = f.read() else: _lowerCAmelCase :int = bytes(__magic_name__ , 'utf-8' ) print(SHAaHash(__magic_name__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
687
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Tuple = ['image_processor', 'tokenizer'] lowerCamelCase : str = 'ChineseCLIPImageProcessor' lowerCamelCase : List[Any] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self: List[str] , _UpperCAmelCase: Dict=None , _UpperCAmelCase: Union[str, Any]=None , **_UpperCAmelCase: List[str] ): _lowerCAmelCase :int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) _lowerCAmelCase :Dict = kwargs.pop('feature_extractor' ) _lowerCAmelCase :Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :str = self.image_processor def __call__( self: int , _UpperCAmelCase: Dict=None , _UpperCAmelCase: Dict=None , _UpperCAmelCase: List[Any]=None , **_UpperCAmelCase: Optional[Any] ): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase :Tuple = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: _lowerCAmelCase :Union[str, Any] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: _lowerCAmelCase :Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str , *_UpperCAmelCase: Dict , **_UpperCAmelCase: Any ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , *_UpperCAmelCase: List[Any] , **_UpperCAmelCase: Any ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Any = self.tokenizer.model_input_names _lowerCAmelCase :Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE__ ( self: Dict ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class
687
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
from __future__ import annotations import math def UpperCamelCase_( __magic_name__ : int , __magic_name__ : int , __magic_name__ : bool , __magic_name__ : list[int] , __magic_name__ : float ): """simple docstring""" if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(__magic_name__ ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __magic_name__ , __magic_name__ , __magic_name__ ) , minimax(depth + 1 , node_index * 2 + 1 , __magic_name__ , __magic_name__ , __magic_name__ ) , ) return min( minimax(depth + 1 , node_index * 2 , __magic_name__ , __magic_name__ , __magic_name__ ) , minimax(depth + 1 , node_index * 2 + 1 , __magic_name__ , __magic_name__ , __magic_name__ ) , ) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :int = [90, 23, 6, 33, 21, 65, 123, 34423] _lowerCAmelCase :Dict = math.log(len(__magic_name__ ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , __magic_name__ , __magic_name__ , __magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ): _lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20} _lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase :str = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :Optional[Any] = num_channels _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :int = min_resolution _lowerCAmelCase :List[str] = max_resolution _lowerCAmelCase :List[str] = do_resize _lowerCAmelCase :Optional[int] = size _lowerCAmelCase :str = do_center_crop _lowerCAmelCase :int = crop_size _lowerCAmelCase :Optional[int] = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: int ): # Initialize image_processing _lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): # Initialize image_processing _lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Any ): # Initialize image_processing _lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
687
1
import qiskit def UpperCamelCase_( __magic_name__ : int , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Any = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowerCAmelCase :Optional[Any] = qiskit.QuantumCircuit(__magic_name__ , __magic_name__ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _lowerCAmelCase :Any = qiskit.execute(__magic_name__ , __magic_name__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__magic_name__ ) if __name__ == "__main__": a = single_qubit_measure(2, 2) print(F'''Total count for various states are: {counts}''')
687
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : Optional[datasets.Features] = None class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Any = PandasConfig def SCREAMING_SNAKE_CASE__ ( self: int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :Any = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :Any = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , 'rb' ) as f: _lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
687
1
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Tuple , *_UpperCAmelCase: Union[str, Any] , **_UpperCAmelCase: Optional[int] ): warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
687
import glob import os import random from string import ascii_lowercase, digits import cva a = """""" a = """""" a = """""" a = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ ) print('Processing...' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase :Optional[Any] = random_chars(32 ) _lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" ) _lowerCAmelCase :str = [] for anno in new_annos[index]: _lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__magic_name__ ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = [] _lowerCAmelCase :Union[str, Any] = [] for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ): _lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__magic_name__ ) as in_file: _lowerCAmelCase :Union[str, Any] = in_file.readlines() _lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" ) _lowerCAmelCase :Tuple = [] for obj_list in obj_lists: _lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :Any = [] _lowerCAmelCase :Optional[Any] = [] for idx in range(len(__magic_name__ ) ): _lowerCAmelCase :Optional[int] = [] _lowerCAmelCase :Optional[Any] = img_list[idx] path_list.append(__magic_name__ ) _lowerCAmelCase :List[str] = anno_list[idx] _lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ ) if flip_type == 1: _lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase_( __magic_name__ : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase :str = ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
687
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a = logging.get_logger(__name__) a = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : List[str] = 'umt5' lowerCamelCase : List[str] = ['past_key_values'] def __init__( self: Union[str, Any] , _UpperCAmelCase: Tuple=25_0112 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Any=64 , _UpperCAmelCase: Dict=1024 , _UpperCAmelCase: str=8 , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: List[Any]=6 , _UpperCAmelCase: Any=32 , _UpperCAmelCase: int=128 , _UpperCAmelCase: List[str]=0.1 , _UpperCAmelCase: Dict=1e-6 , _UpperCAmelCase: Dict=1.0 , _UpperCAmelCase: Tuple="gated-gelu" , _UpperCAmelCase: int=True , _UpperCAmelCase: List[Any]=True , _UpperCAmelCase: List[str]="T5Tokenizer" , _UpperCAmelCase: List[str]=True , _UpperCAmelCase: Union[str, Any]=0 , _UpperCAmelCase: Optional[int]=1 , _UpperCAmelCase: Tuple=0 , **_UpperCAmelCase: Optional[int] , ): super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) _lowerCAmelCase :Dict = vocab_size _lowerCAmelCase :str = d_model _lowerCAmelCase :Dict = d_kv _lowerCAmelCase :Dict = d_ff _lowerCAmelCase :Union[str, Any] = num_layers _lowerCAmelCase :Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _lowerCAmelCase :Dict = num_heads _lowerCAmelCase :Optional[int] = relative_attention_num_buckets _lowerCAmelCase :List[Any] = relative_attention_max_distance _lowerCAmelCase :Dict = dropout_rate _lowerCAmelCase :Tuple = layer_norm_epsilon _lowerCAmelCase :Any = initializer_factor _lowerCAmelCase :Any = feed_forward_proj _lowerCAmelCase :Dict = use_cache _lowerCAmelCase :Any = self.feed_forward_proj.split('-' ) _lowerCAmelCase :Optional[int] = act_info[-1] _lowerCAmelCase :List[Any] = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": _lowerCAmelCase :List[Any] = 'gelu_new' @property def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): return self.d_model @property def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): return self.num_heads @property def SCREAMING_SNAKE_CASE__ ( self: Dict ): return self.num_layers class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[Any] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: _lowerCAmelCase :int = 'past_encoder_sequence + sequence' _lowerCAmelCase :int = {0: 'batch'} _lowerCAmelCase :Tuple = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _lowerCAmelCase :Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} _lowerCAmelCase :Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def SCREAMING_SNAKE_CASE__ ( self: List[str] ): return 13 @property def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): return 5e-4
687
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ ) _lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ ) return torch.mm(__magic_name__ , normalized_text_embeds.t() ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = CLIPConfig lowerCamelCase : Any = ['CLIPEncoderLayer'] def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ): super().__init__(_UpperCAmelCase ) _lowerCAmelCase :Any = CLIPVisionModel(config.vision_config ) _lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) _lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ): _lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowerCAmelCase :str = [] _lowerCAmelCase :List[Any] = image_embeds.shape[0] for i in range(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx] _lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) _lowerCAmelCase :Any = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): _lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx] _lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) _lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ): _lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) _lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :Any = 0.0 _lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 ) _lowerCAmelCase :List[str] = special_care * 0.0_1 _lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
1
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def UpperCamelCase_( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _lowerCAmelCase :Optional[Any] = '__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , __magic_name__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def UpperCamelCase_( ): """simple docstring""" assert _test_patching.open is open _lowerCAmelCase :Any = '__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , __magic_name__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Optional[int] = '__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , __magic_name__ ): pass def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :str = '__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , __magic_name__ ) is None with patch_submodule(_test_patching , 'len' , __magic_name__ ): assert _test_patching.len is mock assert _test_patching.len is len def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Optional[int] = '__test_patch_submodule_start_and_stop_mock__' _lowerCAmelCase :Optional[int] = patch_submodule(_test_patching , 'open' , __magic_name__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def UpperCamelCase_( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _lowerCAmelCase :Optional[Any] = '__test_patch_submodule_successive_join__' _lowerCAmelCase :List[Any] = '__test_patch_submodule_successive_dirname__' _lowerCAmelCase :List[str] = '__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , __magic_name__ ): with patch_submodule(_test_patching , 'os.rename' , __magic_name__ ): with patch_submodule(_test_patching , 'os.path.dirname' , __magic_name__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , __magic_name__ ): with patch_submodule(_test_patching , 'os.path.join' , __magic_name__ ): with patch_submodule(_test_patching , 'os.path.dirname' , __magic_name__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :List[Any] = '__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , __magic_name__ ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , __magic_name__ ): pass
687
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase :str = (b_lata + b_lata) / 2 _lowerCAmelCase :Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2) _lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2 _lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2) _lowerCAmelCase :str = sin(sigma / 2 ) ** 2 _lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
1
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase :str = (b_lata + b_lata) / 2 _lowerCAmelCase :Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2) _lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2 _lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2) _lowerCAmelCase :str = sin(sigma / 2 ) ** 2 _lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'encoder-decoder' lowerCamelCase : Optional[Any] = True def __init__( self: str , **_UpperCAmelCase: int ): super().__init__(**_UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' ) _lowerCAmelCase :Dict = encoder_config.pop('model_type' ) _lowerCAmelCase :str = kwargs.pop('decoder' ) _lowerCAmelCase :str = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCAmelCase :Dict = True _lowerCAmelCase :List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase :Optional[int] = self.encoder.to_dict() _lowerCAmelCase :Union[str, Any] = self.decoder.to_dict() _lowerCAmelCase :List[str] = self.__class__.model_type return output
687
1
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase: Union[str, Any] , **_UpperCAmelCase: List[Any] ): pass @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" lowerCamelCase : List[str] = MODEL_FOR_OBJECT_DETECTION_MAPPING def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: str , _UpperCAmelCase: List[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Dict = ObjectDetectionPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Any = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 ) self.assertGreater(len(_UpperCAmelCase ) , 0 ) for detected_object in outputs: self.assertEqual( _UpperCAmelCase , { 'score': ANY(_UpperCAmelCase ), 'label': ANY(_UpperCAmelCase ), 'box': {'xmin': ANY(_UpperCAmelCase ), 'ymin': ANY(_UpperCAmelCase ), 'xmax': ANY(_UpperCAmelCase ), 'ymax': ANY(_UpperCAmelCase )}, } , ) import datasets _lowerCAmelCase :str = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) _lowerCAmelCase :int = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] _lowerCAmelCase :Optional[Any] = object_detector(_UpperCAmelCase , threshold=0.0 ) self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for outputs in batch_outputs: self.assertGreater(len(_UpperCAmelCase ) , 0 ) for detected_object in outputs: self.assertEqual( _UpperCAmelCase , { 'score': ANY(_UpperCAmelCase ), 'label': ANY(_UpperCAmelCase ), 'box': {'xmin': ANY(_UpperCAmelCase ), 'ymin': ANY(_UpperCAmelCase ), 'xmax': ANY(_UpperCAmelCase ), 'ymax': ANY(_UpperCAmelCase )}, } , ) @require_tf @unittest.skip('Object detection not implemented in TF' ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): pass @require_torch def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :int = 'hf-internal-testing/tiny-detr-mobilenetsv3' _lowerCAmelCase :List[Any] = AutoModelForObjectDetection.from_pretrained(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = AutoFeatureExtractor.from_pretrained(_UpperCAmelCase ) _lowerCAmelCase :List[str] = ObjectDetectionPipeline(model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) _lowerCAmelCase :Tuple = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ] , ) _lowerCAmelCase :Dict = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Any = 'facebook/detr-resnet-50' _lowerCAmelCase :Union[str, Any] = AutoModelForObjectDetection.from_pretrained(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = AutoFeatureExtractor.from_pretrained(_UpperCAmelCase ) _lowerCAmelCase :Dict = ObjectDetectionPipeline(model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) _lowerCAmelCase :str = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) _lowerCAmelCase :List[str] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :int = 'facebook/detr-resnet-50' _lowerCAmelCase :Optional[int] = pipeline('object-detection' , model=_UpperCAmelCase ) _lowerCAmelCase :Dict = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) _lowerCAmelCase :List[Any] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Dict = 0.9_9_8_5 _lowerCAmelCase :List[str] = 'facebook/detr-resnet-50' _lowerCAmelCase :str = pipeline('object-detection' , model=_UpperCAmelCase ) _lowerCAmelCase :List[str] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=_UpperCAmelCase ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) @require_torch @require_pytesseract @slow def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :str = 'Narsil/layoutlmv3-finetuned-funsd' _lowerCAmelCase :int = 0.9_9_9_3 _lowerCAmelCase :int = pipeline('object-detection' , model=_UpperCAmelCase , threshold=_UpperCAmelCase ) _lowerCAmelCase :Any = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ] , )
687
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
1
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor a = logging.getLogger(__name__) a = 50 # max width of layer names a = 70 # max width of quantizer names def UpperCamelCase_( __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Any = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=__magic_name__ , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=__magic_name__ , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=__magic_name__ , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=__magic_name__ , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=__magic_name__ , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=__magic_name__ , type=__magic_name__ , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=__magic_name__ , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def UpperCamelCase_( __magic_name__ : List[Any] ): """simple docstring""" if args.calibrator == "max": _lowerCAmelCase :Any = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) _lowerCAmelCase :Dict = 'histogram' elif args.calibrator == "mse": _lowerCAmelCase :Any = 'histogram' else: raise ValueError(f"""Invalid calibrator {args.calibrator}""" ) _lowerCAmelCase :Optional[Any] = QuantDescriptor(num_bits=args.aprec , calib_method=__magic_name__ ) _lowerCAmelCase :Tuple = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__magic_name__ ) quant_nn.QuantLinear.set_default_quant_desc_weight(__magic_name__ ) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : str=False , __magic_name__ : str=False ): """simple docstring""" logger.info('Configuring Model for Quantization' ) logger.info(f"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__magic_name__ , ['embeddings'] , which='weight' , _disabled=__magic_name__ ) if args.quant_disable: set_quantizer_by_name(__magic_name__ , [''] , _disabled=__magic_name__ ) if args.quant_disable_keyword: set_quantizer_by_name(__magic_name__ , args.quant_disable_keyword , _disabled=__magic_name__ ) if args.quant_disable_layer_module: set_quantizer_by_name(__magic_name__ , [r'layer.\d+.' + args.quant_disable_layer_module] , _disabled=__magic_name__ ) if args.quant_enable_layer_module: set_quantizer_by_name(__magic_name__ , [r'layer.\d+.' + args.quant_enable_layer_module] , _disabled=__magic_name__ ) if args.recalibrate_weights: recalibrate_weights(__magic_name__ ) if args.fuse_qkv: fuse_qkv(__magic_name__ , __magic_name__ ) if args.clip_gelu: clip_gelu(__magic_name__ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__magic_name__ ) def UpperCamelCase_( __magic_name__ : Tuple ): """simple docstring""" logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f"""{name:80}: {module}""" ) def UpperCamelCase_( __magic_name__ : List[Any] , __magic_name__ : Any ): """simple docstring""" logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__magic_name__ ) def UpperCamelCase_( __magic_name__ : Any , __magic_name__ : Any ): """simple docstring""" def fusea(__magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Dict ): for mod in [qq, qk, qv]: if not hasattr(__magic_name__ , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return _lowerCAmelCase :List[Any] = qq._amax.detach().item() _lowerCAmelCase :str = qk._amax.detach().item() _lowerCAmelCase :Optional[Any] = qv._amax.detach().item() _lowerCAmelCase :str = max(__magic_name__ , __magic_name__ , __magic_name__ ) qq._amax.fill_(__magic_name__ ) qk._amax.fill_(__magic_name__ ) qv._amax.fill_(__magic_name__ ) logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(f"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : int ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): _lowerCAmelCase :List[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__magic_name__ ) _lowerCAmelCase :List[Any] = mod._input_quantizer._amax.data.detach().item() logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(__magic_name__ , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: _lowerCAmelCase :Union[str, Any] = mod.weight.shape[0] _lowerCAmelCase :str = mod._weight_quantizer._amax.detach() _lowerCAmelCase :List[str] = torch.ones(__magic_name__ , dtype=amax.dtype , device=amax.device ) * amax print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(__magic_name__ , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _lowerCAmelCase :str = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _lowerCAmelCase :Union[str, Any] = set(range(len(mod.weight.size() ) ) ) - axis_set _lowerCAmelCase :str = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__magic_name__ , keepdims=__magic_name__ ).detach() logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) _lowerCAmelCase :Optional[Any] = amax def UpperCamelCase_( __magic_name__ : List[str] , __magic_name__ : List[str]=25 , __magic_name__ : int=180 , __magic_name__ : List[Any]=None ): """simple docstring""" if ignore is None: _lowerCAmelCase :Any = [] elif not isinstance(__magic_name__ , __magic_name__ ): _lowerCAmelCase :str = [ignore] _lowerCAmelCase :str = 0 for name, mod in model.named_modules(): if not hasattr(__magic_name__ , 'weight' ): continue _lowerCAmelCase :Optional[Any] = max(__magic_name__ , len(__magic_name__ ) ) for name, mod in model.named_modules(): _lowerCAmelCase :Any = getattr(__magic_name__ , '_input_quantizer' , __magic_name__ ) _lowerCAmelCase :Optional[Any] = getattr(__magic_name__ , '_weight_quantizer' , __magic_name__ ) if not hasattr(__magic_name__ , 'weight' ): continue if type(__magic_name__ ) in ignore: continue if [True for s in ignore if type(__magic_name__ ) is str and s in name]: continue _lowerCAmelCase :Union[str, Any] = f"""Act:{input_q.extra_repr()}""" _lowerCAmelCase :Optional[Any] = f"""Wgt:{weight_q.extra_repr()}""" _lowerCAmelCase :Optional[Any] = f"""{name:{name_width}} {act_str} {wgt_str}""" if len(__magic_name__ ) <= line_width: logger.info(__magic_name__ ) else: logger.info(f"""{name:{name_width}} {act_str}""" ) logger.info(f"""{" ":{name_width}} {wgt_str}""" ) def UpperCamelCase_( __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :str = 0 for name, mod in model.named_modules(): if isinstance(__magic_name__ , pytorch_quantization.nn.TensorQuantizer ): print(f"""{name:80} {mod}""" ) count += 1 print(f"""{count} TensorQuantizers found in model""" ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :str = getattr(__magic_name__ , __magic_name__ , __magic_name__ ) if quantizer_mod is not None: assert hasattr(__magic_name__ , __magic_name__ ) setattr(__magic_name__ , __magic_name__ , __magic_name__ ) else: logger.warning(f"""{name} has no {quantizer}""" ) def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int="both" , **__magic_name__ : Any ): """simple docstring""" _lowerCAmelCase :Dict = f"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" if which in ["input", "both"]: set_quantizer(__magic_name__ , __magic_name__ , '_input_quantizer' , __magic_name__ , __magic_name__ ) if which in ["weight", "both"]: set_quantizer(__magic_name__ , __magic_name__ , '_weight_quantizer' , __magic_name__ , __magic_name__ ) logger.info(__magic_name__ ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(__magic_name__ , '_input_quantizer' ) or hasattr(__magic_name__ , '_weight_quantizer' ): for n in names: if re.search(__magic_name__ , __magic_name__ ): set_quantizers(__magic_name__ , __magic_name__ , **__magic_name__ ) elif name.endswith('_quantizer' ): for n in names: if re.search(__magic_name__ , __magic_name__ ): _lowerCAmelCase :Optional[Any] = f"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" setattr(__magic_name__ , __magic_name__ , __magic_name__ ) logger.info(__magic_name__ )
687
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a = HfApi() a = {} # fmt: off a = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) a = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) a = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) a = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) a = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) a = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) a = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) a = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) a = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) a = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) a = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) a = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) a = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) a = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) a = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on a = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
687
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[int] = 10 def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :str = [1, 2, 3, 4] _lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Optional[int] = '' _lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[Any] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = ['It was the best of times.'] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :List[str] = 101 _lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
687
1
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def UpperCamelCase_( __magic_name__ : int = 8 ): """simple docstring""" _lowerCAmelCase :List[str] = ascii_letters + digits + punctuation return "".join(secrets.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : int ): """simple docstring""" i -= len(__magic_name__ ) _lowerCAmelCase :int = i // 3 _lowerCAmelCase :Any = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCAmelCase :Dict = ( chars_incl + random(__magic_name__ , quotient + remainder ) + random(__magic_name__ , __magic_name__ ) + random(__magic_name__ , __magic_name__ ) ) _lowerCAmelCase :Dict = list(__magic_name__ ) shuffle(__magic_name__ ) return "".join(__magic_name__ ) # random is a generalised function for letters, characters and numbers def UpperCamelCase_( __magic_name__ : str , __magic_name__ : int ): """simple docstring""" return "".join(secrets.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Any ): """simple docstring""" pass # Put your code here... def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Any ): """simple docstring""" pass # Put your code here... def UpperCamelCase_( __magic_name__ : Any , __magic_name__ : Optional[Any] ): """simple docstring""" pass # Put your code here... def UpperCamelCase_( __magic_name__ : str , __magic_name__ : int = 8 ): """simple docstring""" if len(__magic_name__ ) < min_length: # Your Password must be at least 8 characters long return False _lowerCAmelCase :int = any(char in ascii_uppercase for char in password ) _lowerCAmelCase :Tuple = any(char in ascii_lowercase for char in password ) _lowerCAmelCase :Union[str, Any] = any(char in digits for char in password ) _lowerCAmelCase :Dict = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = int(input('Please indicate the max length of your password: ' ).strip() ) _lowerCAmelCase :Optional[int] = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(__magic_name__ ) ) print( 'Alternative Password generated:' , alternative_password_generator(__magic_name__ , __magic_name__ ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
687
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
687
1
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCamelCase_( __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Any ): """simple docstring""" _lowerCAmelCase :str = AlbertConfig.from_json_file(__magic_name__ ) print(f"""Building PyTorch model from configuration: {config}""" ) _lowerCAmelCase :int = AlbertForPreTraining(__magic_name__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(__magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __magic_name__ ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
687
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[jnp.ndarray] = None lowerCamelCase : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def SCREAMING_SNAKE_CASE__ ( cls: List[str] ): return cls() @dataclass class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : jnp.ndarray lowerCamelCase : jnp.ndarray lowerCamelCase : KarrasVeSchedulerState class UpperCAmelCase_ (snake_case__ , snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): return True @register_to_config def __init__( self: int , _UpperCAmelCase: float = 0.0_2 , _UpperCAmelCase: float = 100 , _UpperCAmelCase: float = 1.0_0_7 , _UpperCAmelCase: float = 80 , _UpperCAmelCase: float = 0.0_5 , _UpperCAmelCase: float = 50 , ): pass def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): return KarrasVeSchedulerState.create() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: KarrasVeSchedulerState , _UpperCAmelCase: int , _UpperCAmelCase: Tuple = () ): _lowerCAmelCase :Tuple = jnp.arange(0 , _UpperCAmelCase )[::-1].copy() _lowerCAmelCase :List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=_UpperCAmelCase , schedule=jnp.array(_UpperCAmelCase , dtype=jnp.floataa ) , timesteps=_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: KarrasVeSchedulerState , _UpperCAmelCase: jnp.ndarray , _UpperCAmelCase: float , _UpperCAmelCase: random.KeyArray , ): if self.config.s_min <= sigma <= self.config.s_max: _lowerCAmelCase :Optional[int] = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: _lowerCAmelCase :List[Any] = 0 # sample eps ~ N(0, S_noise^2 * I) _lowerCAmelCase :str = random.split(_UpperCAmelCase , num=1 ) _lowerCAmelCase :Optional[int] = self.config.s_noise * random.normal(key=_UpperCAmelCase , shape=sample.shape ) _lowerCAmelCase :Tuple = sigma + gamma * sigma _lowerCAmelCase :Optional[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: KarrasVeSchedulerState , _UpperCAmelCase: jnp.ndarray , _UpperCAmelCase: float , _UpperCAmelCase: float , _UpperCAmelCase: jnp.ndarray , _UpperCAmelCase: bool = True , ): _lowerCAmelCase :List[Any] = sample_hat + sigma_hat * model_output _lowerCAmelCase :Union[str, Any] = (sample_hat - pred_original_sample) / sigma_hat _lowerCAmelCase :int = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_UpperCAmelCase , derivative=_UpperCAmelCase , state=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: KarrasVeSchedulerState , _UpperCAmelCase: jnp.ndarray , _UpperCAmelCase: float , _UpperCAmelCase: float , _UpperCAmelCase: jnp.ndarray , _UpperCAmelCase: jnp.ndarray , _UpperCAmelCase: jnp.ndarray , _UpperCAmelCase: bool = True , ): _lowerCAmelCase :Union[str, Any] = sample_prev + sigma_prev * model_output _lowerCAmelCase :str = (sample_prev - pred_original_sample) / sigma_prev _lowerCAmelCase :int = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_UpperCAmelCase , derivative=_UpperCAmelCase , state=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: KarrasVeSchedulerState , _UpperCAmelCase: Any , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any ): raise NotImplementedError()
687
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Union[str, Any] ): """simple docstring""" if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Any = ['pixel_values'] def __init__( self: Optional[int] , _UpperCAmelCase: bool = True , _UpperCAmelCase: Dict[str, int] = None , _UpperCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase: bool = True , _UpperCAmelCase: Dict[str, int] = None , _UpperCAmelCase: bool = True , _UpperCAmelCase: Union[int, float] = 1 / 255 , _UpperCAmelCase: bool = True , _UpperCAmelCase: Optional[Union[float, List[float]]] = None , _UpperCAmelCase: Optional[Union[float, List[float]]] = None , **_UpperCAmelCase: Any , ): super().__init__(**_UpperCAmelCase ) _lowerCAmelCase :Any = size if size is not None else {'shortest_edge': 224} _lowerCAmelCase :Optional[int] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowerCAmelCase :List[str] = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) _lowerCAmelCase :Optional[int] = do_resize _lowerCAmelCase :str = size _lowerCAmelCase :List[str] = do_center_crop _lowerCAmelCase :Tuple = crop_size _lowerCAmelCase :Tuple = resample _lowerCAmelCase :Optional[Any] = do_rescale _lowerCAmelCase :Dict = rescale_factor _lowerCAmelCase :List[Any] = do_normalize _lowerCAmelCase :int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase :Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: np.ndarray , _UpperCAmelCase: Dict[str, int] , _UpperCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase: List[str] , ): _lowerCAmelCase :int = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: _lowerCAmelCase :Tuple = get_resize_output_image_size(_UpperCAmelCase , size['shortest_edge'] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: _lowerCAmelCase :str = (size['height'], size['width']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: np.ndarray , _UpperCAmelCase: Dict[str, int] , _UpperCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase: List[Any] , ): _lowerCAmelCase :Tuple = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: np.ndarray , _UpperCAmelCase: Union[int, float] , _UpperCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase: Any , ): return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: np.ndarray , _UpperCAmelCase: Union[float, List[float]] , _UpperCAmelCase: Union[float, List[float]] , _UpperCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase: List[str] , ): return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: ImageInput , _UpperCAmelCase: bool = None , _UpperCAmelCase: Dict[str, int] = None , _UpperCAmelCase: PILImageResampling = None , _UpperCAmelCase: bool = None , _UpperCAmelCase: Dict[str, int] = None , _UpperCAmelCase: bool = None , _UpperCAmelCase: float = None , _UpperCAmelCase: bool = None , _UpperCAmelCase: Optional[Union[float, List[float]]] = None , _UpperCAmelCase: Optional[Union[float, List[float]]] = None , _UpperCAmelCase: Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowerCAmelCase :Optional[Any] = to_numpy_array(_UpperCAmelCase ) if do_resize: _lowerCAmelCase :Optional[int] = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: _lowerCAmelCase :Tuple = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: _lowerCAmelCase :int = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: _lowerCAmelCase :Optional[Any] = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) _lowerCAmelCase :List[str] = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: ImageInput , _UpperCAmelCase: bool = None , _UpperCAmelCase: Dict[str, int] = None , _UpperCAmelCase: PILImageResampling = None , _UpperCAmelCase: bool = None , _UpperCAmelCase: Dict[str, int] = None , _UpperCAmelCase: bool = None , _UpperCAmelCase: float = None , _UpperCAmelCase: bool = None , _UpperCAmelCase: Optional[Union[float, List[float]]] = None , _UpperCAmelCase: Optional[Union[float, List[float]]] = None , _UpperCAmelCase: Optional[Union[str, TensorType]] = None , _UpperCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase: str , ): _lowerCAmelCase :str = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase :List[Any] = resample if resample is not None else self.resample _lowerCAmelCase :List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase :List[Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase :int = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase :int = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase :Optional[Any] = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase :Optional[Any] = image_std if image_std is not None else self.image_std _lowerCAmelCase :Dict = size if size is not None else self.size _lowerCAmelCase :List[Any] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) _lowerCAmelCase :Any = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase :Dict = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) _lowerCAmelCase :Dict = make_batched(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] _lowerCAmelCase :Optional[int] = {'pixel_values': videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
687
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = a while True: _lowerCAmelCase :str = Decimal(__magic_name__ ) - ( Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__magic_name__ ) ) < precision: # noqa: S307 return float(__magic_name__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
687
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ): """simple docstring""" _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] _lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] _lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""] _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""] _lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :int = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' ) _lowerCAmelCase :List[Any] = {} _lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight'] _lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias'] _lowerCAmelCase :Dict = checkpoint['time_embed.2.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias'] _lowerCAmelCase :List[Any] = unet_config['down_block_types'] _lowerCAmelCase :Any = unet_config['layers_per_block'] _lowerCAmelCase :List[Any] = unet_config['attention_head_dim'] _lowerCAmelCase :Tuple = unet_config['block_out_channels'] _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Optional[int] = channels_list[0] for i, layer_type in enumerate(__magic_name__ ): _lowerCAmelCase :Tuple = channels_list[i] _lowerCAmelCase :Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}""" _lowerCAmelCase :str = f"""input_blocks.{current_layer}.1""" _lowerCAmelCase :Optional[Any] = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0""" _lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 _lowerCAmelCase :Dict = current_channels # hardcoded the mid-block for now _lowerCAmelCase :int = 'mid_block.resnets.0' _lowerCAmelCase :Optional[Any] = 'middle_block.0' _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[int] = 'mid_block.attentions.0' _lowerCAmelCase :Optional[int] = 'middle_block.1' _lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1' _lowerCAmelCase :Optional[int] = 'middle_block.2' _lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :str = unet_config['up_block_types'] for i, layer_type in enumerate(__magic_name__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1""" _lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}""" _lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1""" _lowerCAmelCase :int = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :str = checkpoint['out.0.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias'] _lowerCAmelCase :List[Any] = checkpoint['out.2.weight'] _lowerCAmelCase :Dict = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
687
1