code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = {"vocab_file": "sentencepiece.bpe.model"} A_ = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } A_ = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } A_ = "▁" class __lowercase ( lowerCAmelCase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Any="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : int="<mask>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : List[Any] , ) -> None: '''simple docstring''' lowercase = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else mask_token lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A__ , eos_token=A__ , unk_token=A__ , sep_token=A__ , cls_token=A__ , pad_token=A__ , mask_token=A__ , sp_model_kwargs=self.sp_model_kwargs , **A__ , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A__ ) ) lowercase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase = len(self.sp_model ) - 1 lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __a ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase = [self.cls_token_id] lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) if token_ids_a is None: return [1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1, 1] + ([0] * len(A__ )) + [1] def __a ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : Union[str, Any] ) -> Any: '''simple docstring''' return len(self.sp_model ) def __a ( self : Optional[int] ) -> int: '''simple docstring''' lowercase = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self : Optional[int] , __lowerCamelCase : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(A__ , out_type=A__ ) def __a ( self : int , __lowerCamelCase : Optional[int] ) -> str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase = self.sp_model.PieceToId(A__ ) return spm_id if spm_id else self.unk_token_id def __a ( self : List[str] , __lowerCamelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(A__ ) def __a ( self : int , __lowerCamelCase : Any ) -> Any: '''simple docstring''' lowercase = [] lowercase = '''''' lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A__ ) + token lowercase = True lowercase = [] else: current_sub_tokens.append(A__ ) lowercase = False out_string += self.sp_model.decode(A__ ) return out_string.strip() def __getstate__( self : List[str] ) -> Tuple: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self : List[Any] , __lowerCamelCase : Any ) -> Optional[Any]: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , '''wb''' ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,)
604
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } __SCREAMING_SNAKE_CASE = { 'google/fnet-base': 5_1_2, 'google/fnet-large': 5_1_2, } __SCREAMING_SNAKE_CASE = '▁' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "token_type_ids"] __UpperCamelCase = FNetTokenizer def __init__( self : Any , A__ : Any=None , A__ : int=None , A__ : List[str]=False , A__ : int=True , A__ : str=True , A__ : List[Any]="<unk>" , A__ : Dict="[SEP]" , A__ : List[str]="<pad>" , A__ : Union[str, Any]="[CLS]" , A__ : Dict="[MASK]" , **A__ : Tuple , ) -> List[str]: '''simple docstring''' a__ : Optional[int] = ( AddedToken(A__ , lstrip=A__ , rstrip=A__ , normalized=A__ ) if isinstance(A__ , A__ ) else mask_token ) super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , remove_space=A__ , keep_accents=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , **A__ , ) a__ : Optional[Any] = do_lower_case a__ : Dict = remove_space a__ : List[Any] = keep_accents a__ : Optional[Any] = vocab_file a__ : Any = False if not self.vocab_file else True def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Optional[int] = [self.sep_token_id] a__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self : List[Any] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Dict = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Tuple , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ : Union[str, Any] = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ): copyfile(self.vocab_file , A__ ) return (out_vocab_file,)
688
0
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = 4_0_0_0_0_0_0 ) -> int: __lowerCamelCase : Union[str, Any] = [] __lowerCamelCase : Optional[int] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowerCAmelCase__ ) __lowerCamelCase : str = b, a + b return sum(lowerCAmelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
652
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } __SCREAMING_SNAKE_CASE = { 'distilbert-base-uncased': 5_1_2, 'distilbert-base-uncased-distilled-squad': 5_1_2, 'distilbert-base-cased': 5_1_2, 'distilbert-base-cased-distilled-squad': 5_1_2, 'distilbert-base-german-cased': 5_1_2, 'distilbert-base-multilingual-cased': 5_1_2, } __SCREAMING_SNAKE_CASE = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = ["input_ids", "attention_mask"] __UpperCamelCase = DistilBertTokenizer def __init__( self : str , A__ : Optional[Any]=None , A__ : Any=None , A__ : Tuple=True , A__ : List[Any]="[UNK]" , A__ : List[str]="[SEP]" , A__ : Tuple="[PAD]" , A__ : Optional[int]="[CLS]" , A__ : Union[str, Any]="[MASK]" , A__ : List[str]=True , A__ : Any=None , **A__ : int , ) -> str: '''simple docstring''' super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , ) a__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , A__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , A__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , A__ ) != tokenize_chinese_chars ): a__ : int = getattr(A__ , normalizer_state.pop('''type''' ) ) a__ : List[Any] = do_lower_case a__ : str = strip_accents a__ : List[str] = tokenize_chinese_chars a__ : Dict = normalizer_class(**A__ ) a__ : List[Any] = do_lower_case def __lowerCAmelCase ( self : Tuple , A__ : List[str] , A__ : Dict=None ) -> List[str]: '''simple docstring''' a__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : int , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : List[str] = [self.sep_token_id] a__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : str , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' a__ : int = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ )
688
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]=13 , __lowerCamelCase : Any=7 , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=True , __lowerCamelCase : int=True , __lowerCamelCase : Optional[Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : int=37 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=16 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : int=0.02 , __lowerCamelCase : int=4 , ) -> List[str]: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_attention_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_choices def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_attention_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : int ) -> Optional[Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : List[Any] ) -> Any: '''simple docstring''' __lowercase = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained('albert-base-v2' ) __lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(A__ ) @require_flax class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: '''simple docstring''' __lowercase = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowercase = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) __lowercase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowercase = model(A__ , attention_mask=A__ )[0] __lowercase = (1, 11, 768) self.assertEqual(output.shape , A__ ) __lowercase = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A__ , atol=1E-4 ) )
375
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __SCREAMING_SNAKE_CASE = tuple[int, int] class lowerCAmelCase__ : """simple docstring""" def __init__( self : str , A__ : int , A__ : int , A__ : int , A__ : int , A__ : int , A__ : Node | None , ) -> None: '''simple docstring''' a__ : Optional[int] = pos_x a__ : str = pos_y a__ : Optional[int] = (pos_y, pos_x) a__ : List[str] = goal_x a__ : Any = goal_y a__ : Any = g_cost a__ : Optional[int] = parent a__ : Union[str, Any] = self.calculate_heuristic() a__ : List[Any] = self.g_cost + self.h_cost def __lowerCAmelCase ( self : Union[str, Any] ) -> float: '''simple docstring''' a__ : List[str] = self.pos_x - self.goal_x a__ : List[str] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A__ ) + abs(A__ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : List[Any] , A__ : Node ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , A__ : TPosition , A__ : TPosition ) -> Optional[Any]: '''simple docstring''' a__ : int = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A__ ) a__ : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , A__ ) a__ : Dict = [self.start] a__ : list[Node] = [] a__ : str = False def __lowerCAmelCase ( self : List[str] ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() a__ : Dict = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A__ ) self.closed_nodes.append(A__ ) a__ : List[Any] = self.get_successors(A__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A__ ) else: # retrieve the best current path a__ : Optional[int] = self.open_nodes.pop(self.open_nodes.index(A__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A__ ) else: self.open_nodes.append(A__ ) return [self.start.pos] def __lowerCAmelCase ( self : Optional[Any] , A__ : Node ) -> list[Node]: '''simple docstring''' a__ : Optional[int] = [] for action in delta: a__ : List[Any] = parent.pos_x + action[1] a__ : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A__ , A__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A__ , ) ) return successors def __lowerCAmelCase ( self : List[Any] , A__ : Node | None ) -> list[TPosition]: '''simple docstring''' a__ : Union[str, Any] = node a__ : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) a__ : Any = current_node.parent path.reverse() return path class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , A__ : TPosition , A__ : TPosition ) -> None: '''simple docstring''' a__ : str = AStar(A__ , A__ ) a__ : Optional[int] = AStar(A__ , A__ ) a__ : List[str] = False def __lowerCAmelCase ( self : Tuple ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() a__ : int = self.fwd_astar.open_nodes.pop(0 ) a__ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A__ , A__ ) self.fwd_astar.closed_nodes.append(A__ ) self.bwd_astar.closed_nodes.append(A__ ) a__ : Tuple = current_bwd_node a__ : Optional[int] = current_fwd_node a__ : Optional[int] = { self.fwd_astar: self.fwd_astar.get_successors(A__ ), self.bwd_astar: self.bwd_astar.get_successors(A__ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A__ ) else: # retrieve the best current path a__ : Optional[Any] = astar.open_nodes.pop( astar.open_nodes.index(A__ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A__ ) else: astar.open_nodes.append(A__ ) return [self.fwd_astar.start.pos] def __lowerCAmelCase ( self : List[str] , A__ : Node , A__ : Node ) -> list[TPosition]: '''simple docstring''' a__ : str = self.fwd_astar.retrace_path(A__ ) a__ : List[str] = self.bwd_astar.retrace_path(A__ ) bwd_path.pop() bwd_path.reverse() a__ : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __SCREAMING_SNAKE_CASE = (0, 0) __SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __SCREAMING_SNAKE_CASE = time.time() __SCREAMING_SNAKE_CASE = AStar(init, goal) __SCREAMING_SNAKE_CASE = a_star.search() __SCREAMING_SNAKE_CASE = time.time() - start_time print(f'AStar execution time = {end_time:f} seconds') __SCREAMING_SNAKE_CASE = time.time() __SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) __SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
688
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=16 , lowerCAmelCase__=36 , lowerCAmelCase__=6 , lowerCAmelCase__=6 , lowerCAmelCase__=6 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> List[str]: __magic_name__ : Tuple = parent __magic_name__ : int = batch_size __magic_name__ : Dict = seq_length __magic_name__ : Dict = is_training __magic_name__ : Optional[Any] = use_input_mask __magic_name__ : Tuple = use_token_type_ids __magic_name__ : Optional[Any] = use_labels __magic_name__ : Optional[int] = vocab_size __magic_name__ : int = embedding_size __magic_name__ : str = hidden_size __magic_name__ : Optional[int] = num_hidden_layers __magic_name__ : Dict = num_hidden_groups __magic_name__ : Union[str, Any] = num_attention_heads __magic_name__ : str = intermediate_size __magic_name__ : Tuple = hidden_act __magic_name__ : Optional[int] = hidden_dropout_prob __magic_name__ : str = attention_probs_dropout_prob __magic_name__ : List[str] = max_position_embeddings __magic_name__ : Optional[int] = type_vocab_size __magic_name__ : List[str] = type_sequence_label_size __magic_name__ : Any = initializer_range __magic_name__ : str = num_labels __magic_name__ : Optional[Any] = num_choices __magic_name__ : Optional[int] = scope def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Any = None if self.use_input_mask: __magic_name__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[Any] = None if self.use_token_type_ids: __magic_name__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Tuple = None __magic_name__ : List[Any] = None __magic_name__ : List[Any] = None if self.use_labels: __magic_name__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : str = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self ) -> Optional[Any]: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: __magic_name__ : Any = AlbertModel(config=A__ ) model.to(A__ ) model.eval() __magic_name__ : Tuple = model(A__ , attention_mask=A__ , token_type_ids=A__ ) __magic_name__ : str = model(A__ , token_type_ids=A__ ) __magic_name__ : List[Any] = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Union[str, Any] = AlbertForPreTraining(config=A__ ) model.to(A__ ) model.eval() __magic_name__ : str = model( A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , sentence_order_label=A__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = AlbertForMaskedLM(config=A__ ) model.to(A__ ) model.eval() __magic_name__ : Dict = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: __magic_name__ : Union[str, Any] = AlbertForQuestionAnswering(config=A__ ) model.to(A__ ) model.eval() __magic_name__ : Dict = model( A__ , attention_mask=A__ , token_type_ids=A__ , start_positions=A__ , end_positions=A__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : List[Any] = self.num_labels __magic_name__ : List[Any] = AlbertForSequenceClassification(A__ ) model.to(A__ ) model.eval() __magic_name__ : List[str] = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: __magic_name__ : List[str] = self.num_labels __magic_name__ : Optional[int] = AlbertForTokenClassification(config=A__ ) model.to(A__ ) model.eval() __magic_name__ : Dict = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: __magic_name__ : List[Any] = self.num_choices __magic_name__ : Optional[Any] = AlbertForMultipleChoice(config=A__ ) model.to(A__ ) model.eval() __magic_name__ : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ : Optional[Any] = model( A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = self.prepare_config_and_inputs() ( __magic_name__ ) : Optional[Any] = config_and_inputs __magic_name__ : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): lowercase__ : Union[str, Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowercase__ : Any = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ : List[str] = True def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Optional[int]: __magic_name__ : List[str] = super()._prepare_for_class(A__ , A__ , return_labels=A__ ) if return_labels: if model_class in get_values(A__ ): __magic_name__ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A__ ) __magic_name__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A__ ) return inputs_dict def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = AlbertModelTester(self ) __magic_name__ : str = ConfigTester(self , config_class=A__ , hidden_size=37 ) def __magic_name__ ( self ) -> int: self.config_tester.run_common_tests() def __magic_name__ ( self ) -> Any: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__ ) def __magic_name__ ( self ) -> int: __magic_name__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__ ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__ ) def __magic_name__ ( self ) -> int: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __magic_name__ : Tuple = type self.model_tester.create_and_check_model(*A__ ) @slow def __magic_name__ ( self ) -> List[Any]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : int = AlbertModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @require_torch class snake_case__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> List[str]: __magic_name__ : Union[str, Any] = AlbertModel.from_pretrained("""albert-base-v2""" ) __magic_name__ : Optional[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __magic_name__ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __magic_name__ : Any = model(A__ , attention_mask=A__ )[0] __magic_name__ : str = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , A__ ) __magic_name__ : Any = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A__ , atol=1e-4 ) )
324
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ): # Construct model if gpta_config_file == "": a__ : Union[str, Any] = GPTaConfig() else: a__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase__ ) a__ : Optional[int] = GPTaModel(lowerCAmelCase__ ) # Load weights from numpy load_tf_weights_in_gpta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model a__ : int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME a__ : Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowerCAmelCase__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
688
0
from math import pi, sqrt, tan def lowerCamelCase_(lowerCamelCase_ ) -> Any: if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_(lowerCamelCase_ ) -> int: if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def lowerCamelCase_(lowerCamelCase_ ) -> Optional[int]: if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) UpperCAmelCase = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> str: if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> Any: if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(lowerCAmelCase__ , 2 ) * torus_radius * tube_radius def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def lowerCamelCase_(lowerCamelCase_ ) -> str: if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) UpperCAmelCase = (sidea + sidea + sidea) / 2 UpperCAmelCase = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_(lowerCamelCase_ ) -> Union[str, Any]: if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> int: if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> str: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \\nequal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \\nlength of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print("\nSurface Areas of various geometric shapes: \n") print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
323
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } __SCREAMING_SNAKE_CASE = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } __SCREAMING_SNAKE_CASE = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: __SCREAMING_SNAKE_CASE = reader.read() __SCREAMING_SNAKE_CASE = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): __SCREAMING_SNAKE_CASE = UNetaDModel(**config) else: __SCREAMING_SNAKE_CASE = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel __SCREAMING_SNAKE_CASE = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __SCREAMING_SNAKE_CASE = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __SCREAMING_SNAKE_CASE = config[key] del config[key] __SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['down_block_types']] __SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: __SCREAMING_SNAKE_CASE = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) __SCREAMING_SNAKE_CASE = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue __SCREAMING_SNAKE_CASE = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: __SCREAMING_SNAKE_CASE = param_value __SCREAMING_SNAKE_CASE = True if not has_changed: __SCREAMING_SNAKE_CASE = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
688
0
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowerCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] ) -> Any: assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str] ) -> str: __lowerCAmelCase =tmp_path / '''cache''' __lowerCAmelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase =JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __lowerCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] ) -> Optional[Any]: __lowerCAmelCase =tmp_path / '''cache''' __lowerCAmelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowerCAmelCase =features.copy() if features else default_expected_features __lowerCAmelCase =( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase =JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def __lowerCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : int ) -> List[str]: __lowerCAmelCase =tmp_path / '''cache''' __lowerCAmelCase ={'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __lowerCAmelCase =features.copy() if features else default_expected_features __lowerCAmelCase =( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase =JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __lowerCAmelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ) -> List[Any]: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} __lowerCAmelCase ={'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __lowerCAmelCase =features.copy() __lowerCAmelCase =( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase =tmp_path / '''cache''' __lowerCAmelCase =JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] ) -> Any: __lowerCAmelCase =tmp_path / '''cache''' __lowerCAmelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowerCAmelCase =JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , split=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def __lowerCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict ) -> Tuple: if issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): __lowerCAmelCase =jsonl_path elif issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): __lowerCAmelCase =[jsonl_path] __lowerCAmelCase =tmp_path / '''cache''' __lowerCAmelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowerCAmelCase =JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) def __lowerCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : int=("train",) ) -> Dict: assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for split in splits: __lowerCAmelCase =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ) -> List[Any]: __lowerCAmelCase =tmp_path / '''cache''' __lowerCAmelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase =JsonDatasetReader({"""train""": jsonl_path} , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __lowerCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase =tmp_path / '''cache''' __lowerCAmelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowerCAmelCase =features.copy() if features else default_expected_features __lowerCAmelCase =( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase =JsonDatasetReader({"""train""": jsonl_path} , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ) -> Optional[int]: if split: __lowerCAmelCase ={split: jsonl_path} else: __lowerCAmelCase ='''train''' __lowerCAmelCase ={'''train''': jsonl_path, '''test''': jsonl_path} __lowerCAmelCase =tmp_path / '''cache''' __lowerCAmelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowerCAmelCase =JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __lowerCAmelCase ( __lowerCamelCase : Optional[Any] ) -> List[Any]: return json.load(lowerCAmelCase__ ) def __lowerCAmelCase ( __lowerCamelCase : Tuple ) -> Optional[Any]: return [json.loads(lowerCAmelCase__ ) for line in buffer] class __a : @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)]) def UpperCamelCase ( self : str , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Tuple)-> List[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(A__ , A__ , lines=A__).write() buffer.seek(0) __lowerCAmelCase =load_json_function(A__) assert isinstance(A__ , A__) assert isinstance(exported_content[0] , A__) assert len(A__) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789"""), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def UpperCamelCase ( self : Union[str, Any] , snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : Dict)-> str: with io.BytesIO() as buffer: JsonDatasetWriter(A__ , A__ , lines=A__ , orient=A__).write() buffer.seek(0) __lowerCAmelCase =load_json(A__) assert isinstance(A__ , A__) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(A__ , """keys""") and not hasattr(exported_content[0] , """keys""") if len_at: assert len(exported_content[len_at]) == 10 else: assert len(A__) == 10 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)]) def UpperCamelCase ( self : Dict , snake_case_ : str , snake_case_ : Any , snake_case_ : List[str])-> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(A__ , A__ , lines=A__ , num_proc=2).write() buffer.seek(0) __lowerCAmelCase =load_json_function(A__) assert isinstance(A__ , A__) assert isinstance(exported_content[0] , A__) assert len(A__) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789"""), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def UpperCamelCase ( self : Optional[Any] , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : List[str])-> Any: with io.BytesIO() as buffer: JsonDatasetWriter(A__ , A__ , lines=A__ , orient=A__ , num_proc=2).write() buffer.seek(0) __lowerCAmelCase =load_json(A__) assert isinstance(A__ , A__) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(A__ , """keys""") and not hasattr(exported_content[0] , """keys""") if len_at: assert len(exported_content[len_at]) == 10 else: assert len(A__) == 10 def UpperCamelCase ( self : Dict , snake_case_ : int)-> List[str]: with pytest.raises(A__): with io.BytesIO() as buffer: JsonDatasetWriter(A__ , A__ , num_proc=0) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")]) def UpperCamelCase ( self : Optional[Any] , snake_case_ : int , snake_case_ : List[str] , snake_case_ : str , snake_case_ : int , snake_case_ : Tuple)-> Tuple: __lowerCAmelCase =tmp_path_factory.mktemp("""data""") / F"""test.json.{extension}""" __lowerCAmelCase =str(shared_datadir / F"""test_file.json.{extension}""") JsonDatasetWriter(A__ , A__ , compression=A__).write() with fsspec.open(A__ , """rb""" , compression="""infer""") as f: __lowerCAmelCase =f.read() with fsspec.open(A__ , """rb""" , compression="""infer""") as f: __lowerCAmelCase =f.read() assert exported_content == original_content
354
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = (KDPMaDiscreteScheduler,) __UpperCamelCase = 10 def __lowerCAmelCase ( self : Optional[Any] , **A__ : Optional[int] ) -> int: '''simple docstring''' a__ : Optional[int] = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**A__ ) return config def __lowerCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=A__ ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=A__ , beta_end=A__ ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A__ ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A__ ) def __lowerCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' a__ : Any = self.scheduler_classes[0] a__ : str = self.get_scheduler_config(prediction_type='''v_prediction''' ) a__ : Dict = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps ) a__ : Tuple = self.dummy_model() a__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma a__ : Dict = sample.to(A__ ) for i, t in enumerate(scheduler.timesteps ): a__ : Optional[Any] = scheduler.scale_model_input(A__ , A__ ) a__ : Union[str, Any] = model(A__ , A__ ) a__ : List[str] = scheduler.step(A__ , A__ , A__ ) a__ : Optional[Any] = output.prev_sample a__ : Tuple = torch.sum(torch.abs(A__ ) ) a__ : Optional[int] = torch.mean(torch.abs(A__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_002 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' if torch_device == "mps": return a__ : List[Any] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : Tuple = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps ) a__ : List[Any] = self.dummy_model() a__ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma a__ : Any = sample.to(A__ ) for i, t in enumerate(scheduler.timesteps ): a__ : str = scheduler.scale_model_input(A__ , A__ ) a__ : List[str] = model(A__ , A__ ) a__ : str = scheduler.step(A__ , A__ , A__ ) a__ : List[Any] = output.prev_sample a__ : Dict = torch.sum(torch.abs(A__ ) ) a__ : Optional[Any] = torch.mean(torch.abs(A__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> int: '''simple docstring''' if torch_device == "mps": return a__ : Optional[int] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : List[Any] = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps , device=A__ ) a__ : Union[str, Any] = self.dummy_model() a__ : List[Any] = self.dummy_sample_deter.to(A__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: a__ : Optional[int] = scheduler.scale_model_input(A__ , A__ ) a__ : List[Any] = model(A__ , A__ ) a__ : Any = scheduler.step(A__ , A__ , A__ ) a__ : List[str] = output.prev_sample a__ : Any = torch.sum(torch.abs(A__ ) ) a__ : Union[str, Any] = torch.mean(torch.abs(A__ ) ) if str(A__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3
688
0
"""simple docstring""" def _lowerCAmelCase ( lowerCamelCase__ : int = 1_0_0_0 ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Dict = 2**power _SCREAMING_SNAKE_CASE : Optional[int] = 0 while n: _SCREAMING_SNAKE_CASE : Optional[Any] = r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
572
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' a__ : str = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None a__ , a__ : List[Any] = get_aligned_output_features_output_indices(A__ , A__ , A__ ) self.assertEqual(A__ , ['''c'''] ) self.assertEqual(A__ , [2] ) # Out indices set to match out features a__ , a__ : Optional[int] = get_aligned_output_features_output_indices(['''a''', '''c'''] , A__ , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [0, 2] ) # Out features set to match out indices a__ , a__ : int = get_aligned_output_features_output_indices(A__ , [0, 2] , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [0, 2] ) # Out features selected from negative indices a__ , a__ : List[str] = get_aligned_output_features_output_indices(A__ , [-3, -1] , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [-3, -1] ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , A__ ) # Out features must be a list with self.assertRaises(A__ ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(A__ ): verify_out_features_out_indices(A__ , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(A__ ): verify_out_features_out_indices(A__ , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(A__ ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def __lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' a__ : Optional[Any] = BackboneMixin() a__ : int = ['''a''', '''b''', '''c'''] a__ : List[Any] = ['''a''', '''c'''] a__ : Tuple = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly a__ : Dict = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) a__ : int = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
688
0
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def __lowerCamelCase ( UpperCAmelCase_ ) ->int: if num <= 0: raise ValueError('math domain error' ) return quad(lowerCAmelCase__ , 0 , lowerCAmelCase__ , args=(lowerCAmelCase__) )[0] def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ ) ->int: return math.pow(lowerCAmelCase__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
368
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __a ( lowerCAmelCase__ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any ): a__ : Dict = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue a__ : Any = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) a__ : int = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) a__ : Optional[Any] = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) a__ : Dict = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) a__ : List[str] = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) a__ : List[Any] = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) a__ : str = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) a__ : List[Any] = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) a__ : List[Any] = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) a__ : str = key.replace('''image_encoder.module''' , '''flava.image_model''' ) a__ : Dict = key.replace('''text_encoder.module''' , '''flava.text_model''' ) a__ : List[Any] = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) a__ : List[str] = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) a__ : List[str] = key.replace('''text_projection''' , '''flava.text_projection''' ) a__ : Any = key.replace('''image_projection''' , '''flava.image_projection''' ) a__ : Any = value.float() for key, value in codebook_state_dict.items(): a__ : List[str] = value return upgrade @torch.no_grad() def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict=None ): if config_path is not None: a__ : Tuple = FlavaConfig.from_pretrained(lowerCAmelCase__ ) else: a__ : Optional[int] = FlavaConfig() a__ : List[Any] = FlavaForPreTraining(lowerCAmelCase__ ).eval() a__ : Optional[int] = convert_dalle_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , save_checkpoint=lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): a__ : List[str] = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) else: a__ : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' ) a__ : List[Any] = upgrade_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) a__ : Any = hf_model.state_dict() a__ : Optional[Any] = count_parameters(lowerCAmelCase__ ) a__ : int = count_parameters(lowerCAmelCase__ ) + count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) hf_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __SCREAMING_SNAKE_CASE = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
688
0
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a_ = logging.getLogger(__name__) class _UpperCamelCase ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Tuple , a : Dict , a : Union[str, Any] , a : Any , a : int=None ) -> List[str]: """simple docstring""" super().__init__( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = None def __UpperCamelCase ( self : Dict , a : int ) -> Dict: """simple docstring""" logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually SCREAMING_SNAKE_CASE : str = self._infer_socket_ifname() # avoid clash with the NCCL port SCREAMING_SNAKE_CASE : int = str(distributed_port + 1 ) SCREAMING_SNAKE_CASE : Dict = dist.new_group(ranks=A__ , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def __UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def __UpperCamelCase ( self : Optional[int] , a : Any , a : Union[str, Any] , a : List[Any]=torch.floataa ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = torch.empty(A__ , dtype=A__ ) dist.scatter(A__ , src=0 , scatter_list=A__ , group=self.process_group ) return target_tensor def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = psutil.net_if_addrs() # a hacky way to deal with varying network interface names SCREAMING_SNAKE_CASE : str = next((addr for addr in addrs if addr.startswith("e" )) , A__ ) return ifname def __UpperCamelCase ( self : Optional[Any] , a : np.ndarray , a : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): SCREAMING_SNAKE_CASE : Tuple = self._main_retrieve(A__ , A__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A__ ) # distributed training SCREAMING_SNAKE_CASE : List[str] = dist.get_world_size(group=self.process_group ) # gather logic SCREAMING_SNAKE_CASE : Optional[int] = None if self._is_main(): SCREAMING_SNAKE_CASE : int = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A__ )] dist.gather(torch.tensor(A__ ) , dst=0 , gather_list=A__ , group=self.process_group ) # scatter logic SCREAMING_SNAKE_CASE : Optional[Any] = question_hidden_states.shape[0] SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Any = [] if self._is_main(): assert len(A__ ) == world_size SCREAMING_SNAKE_CASE : int = self._main_retrieve(torch.cat(A__ ).numpy() , A__ ) SCREAMING_SNAKE_CASE : Any = torch.tensor(A__ ), torch.tensor(A__ ) SCREAMING_SNAKE_CASE : List[str] = self._chunk_tensor(A__ , A__ ) SCREAMING_SNAKE_CASE : Optional[int] = self._chunk_tensor(A__ , A__ ) SCREAMING_SNAKE_CASE : List[str] = self._scattered(A__ , [n_queries, n_docs] , target_type=torch.intaa ) SCREAMING_SNAKE_CASE : Optional[Any] = self._scattered(A__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A__ )
25
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 3 class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" pass def __a ( lowerCAmelCase__ : List[str] ): for shard in shards: for i in range(lowerCAmelCase__ ): yield {"i": i, "shard": shard} def __a ( ): a__ : str = int(os.environ['''RANK'''] ) a__ : int = int(os.environ['''WORLD_SIZE'''] ) a__ : str = ArgumentParser() parser.add_argument('''--streaming''' , type=lowerCAmelCase__ ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase__ ) parser.add_argument('''--num_workers''' , type=lowerCAmelCase__ , default=0 ) a__ : int = parser.parse_args() a__ : List[str] = args.streaming a__ : Dict = args.num_workers a__ : Dict = {'''shards''': [F'shard_{shard_idx}' for shard_idx in range(lowerCAmelCase__ )]} a__ : Tuple = IterableDataset.from_generator(lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ ) if not streaming: a__ : str = Dataset.from_list(list(lowerCAmelCase__ ) ) a__ : Optional[int] = split_dataset_by_node(lowerCAmelCase__ , rank=lowerCAmelCase__ , world_size=lowerCAmelCase__ ) a__ : Dict = torch.utils.data.DataLoader(lowerCAmelCase__ , num_workers=lowerCAmelCase__ ) a__ : str = NUM_SHARDS * NUM_ITEMS_PER_SHARD a__ : Dict = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) a__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
688
0
"""simple docstring""" import unittest from knapsack import knapsack as k class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> int: __lowercase : Optional[Any] = 0 __lowercase : List[Any] = [0] __lowercase : Any = [0] __lowercase : List[str] = len(A__ ) self.assertEqual(k.knapsack(A__ , A__ , A__ , A__ ) , 0 ) __lowercase : Dict = [60] __lowercase : Union[str, Any] = [10] __lowercase : Optional[int] = len(A__ ) self.assertEqual(k.knapsack(A__ , A__ , A__ , A__ ) , 0 ) def _lowerCamelCase ( self ) -> List[str]: __lowercase : Dict = 3 __lowercase : Tuple = [1, 2, 3] __lowercase : List[str] = [3, 2, 1] __lowercase : Dict = len(A__ ) self.assertEqual(k.knapsack(A__ , A__ , A__ , A__ ) , 5 ) def _lowerCamelCase ( self ) -> Tuple: __lowercase : int = 50 __lowercase : List[str] = [60, 1_00, 1_20] __lowercase : Union[str, Any] = [10, 20, 30] __lowercase : int = len(A__ ) self.assertEqual(k.knapsack(A__ , A__ , A__ , A__ ) , 2_20 ) if __name__ == "__main__": unittest.main()
76
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __SCREAMING_SNAKE_CASE = open # noqa: we just need to have a builtin inside this module to test it properly
688
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> Union[str, Any]: __snake_case = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __UpperCAmelCase ( _UpperCAmelCase : int = 1_00 ) -> List[str]: __snake_case = 1 __snake_case = 2 for i in range(2 , max_n + 1 ): __snake_case = pre_numerator __snake_case = 2 * i // 3 if i % 3 == 0 else 1 __snake_case = cur_numerator __snake_case = e_cont * pre_numerator + temp return sum_digits(lowerCAmelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
69
'''simple docstring''' import enum import shutil import sys __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = shutil.get_terminal_size() __SCREAMING_SNAKE_CASE = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class lowerCAmelCase__ ( enum.Enum ): """simple docstring""" __UpperCamelCase = 0 __UpperCamelCase = 1 def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict="" ): sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int="" ): forceWrite(F'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def __a ( ): forceWrite('''\r''' ) def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : str ): forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def __a ( ): forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def __a ( ): reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
688
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
604
'''simple docstring''' import inspect import unittest class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def __lowerCAmelCase ( self : int ) -> str: '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps a__ : Optional[int] = inspect.getmembers(A__ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": a__ : int = '''k-diffusion''' elif backend == "invisible_watermark": a__ : int = '''invisible-watermark''' assert backend in deps, F'{backend} is not in the deps table!'
688
0
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class A_ ( lowerCAmelCase_ , unittest.TestCase ): _UpperCAmelCase : str = RoFormerTokenizer _UpperCAmelCase : int = RoFormerTokenizerFast _UpperCAmelCase : int = True _UpperCAmelCase : int = True def lowerCAmelCase ( self : Dict): super().setUp() def lowerCAmelCase ( self : Dict ,**SCREAMING_SNAKE_CASE__ : List[str]): return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' ,**A__) def lowerCAmelCase ( self : Optional[Any] ,**SCREAMING_SNAKE_CASE__ : List[Any]): return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' ,**A__) def lowerCAmelCase ( self : Dict): __lowerCamelCase : Optional[Any] = '''永和服装饰品有限公司,今天天气非常好''' __lowerCamelCase : Tuple = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def lowerCAmelCase ( self : List[str]): __lowerCamelCase : Union[str, Any] = self.get_tokenizer() __lowerCamelCase : List[str] = self.get_chinese_input_output_texts() __lowerCamelCase : Dict = tokenizer.tokenize(A__) self.assertListEqual(A__ ,output_text.split()) __lowerCamelCase : Tuple = tokens + [tokenizer.unk_token] __lowerCamelCase : Optional[int] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(A__) ,A__) def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : str = self.get_rust_tokenizer() __lowerCamelCase : Union[str, Any] = self.get_chinese_input_output_texts() __lowerCamelCase : Tuple = tokenizer.tokenize(A__) self.assertListEqual(A__ ,output_text.split()) __lowerCamelCase : Optional[Any] = tokens + [tokenizer.unk_token] __lowerCamelCase : Any = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(A__) ,A__) def lowerCAmelCase ( self : Union[str, Any]): pass def lowerCAmelCase ( self : Tuple): pass def lowerCAmelCase ( self : Union[str, Any]): pass
652
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __a ( lowerCAmelCase__ : Dict ): a__ , a__ : int = image.size a__ , a__ : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a__ : Tuple = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) a__ : List[Any] = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0 a__ : Any = image[None].transpose(0 , 3 , 1 , 2 ) a__ : Dict = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , A__ : VQModel , A__ : UNetaDModel , A__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> str: '''simple docstring''' super().__init__() self.register_modules(vqvae=A__ , unet=A__ , scheduler=A__ ) @torch.no_grad() def __call__( self : List[str] , A__ : Union[torch.Tensor, PIL.Image.Image] = None , A__ : Optional[int] = 1 , A__ : Optional[int] = 1_0_0 , A__ : Optional[float] = 0.0 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(A__ , PIL.Image.Image ): a__ : List[Any] = 1 elif isinstance(A__ , torch.Tensor ): a__ : List[str] = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A__ )}' ) if isinstance(A__ , PIL.Image.Image ): a__ : Union[str, Any] = preprocess(A__ ) a__ , a__ : Dict = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image a__ : Optional[int] = (batch_size, self.unet.config.in_channels // 2, height, width) a__ : Optional[int] = next(self.unet.parameters() ).dtype a__ : List[str] = randn_tensor(A__ , generator=A__ , device=self.device , dtype=A__ ) a__ : Any = image.to(device=self.device , dtype=A__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(A__ , device=self.device ) a__ : int = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler a__ : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a__ : Union[str, Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a__ : str = {} if accepts_eta: a__ : Dict = eta for t in self.progress_bar(A__ ): # concat latents and low resolution image in the channel dimension. a__ : str = torch.cat([latents, image] , dim=1 ) a__ : Optional[Any] = self.scheduler.scale_model_input(A__ , A__ ) # predict the noise residual a__ : Union[str, Any] = self.unet(A__ , A__ ).sample # compute the previous noisy sample x_t -> x_t-1 a__ : Union[str, Any] = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample # decode the image latents with the VQVAE a__ : List[Any] = self.vqvae.decode(A__ ).sample a__ : List[Any] = torch.clamp(A__ , -1.0 , 1.0 ) a__ : Optional[Any] = image / 2 + 0.5 a__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a__ : Union[str, Any] = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE_ : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') SCREAMING_SNAKE_CASE_ : List[str] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) SCREAMING_SNAKE_CASE_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def SCREAMING_SNAKE_CASE ( snake_case ) -> Optional[Any]: with open(lowerCAmelCase__ , 'rb' ) as f: __lowercase = Image.open(lowerCAmelCase__ ) return im.convert('RGB' ) @dataclass class snake_case_ : '''simple docstring''' __UpperCamelCase = field( default=lowerCAmelCase_ , metadata={ '''help''': '''Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).''' } , ) __UpperCamelCase = field( default=lowerCAmelCase_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __UpperCamelCase = field(default=lowerCAmelCase_ , metadata={'''help''': '''A folder containing the training data.'''} ) __UpperCamelCase = field(default=lowerCAmelCase_ , metadata={'''help''': '''A folder containing the validation data.'''} ) __UpperCamelCase = field( default=0.1_5 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) __UpperCamelCase = field( default=lowerCAmelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __UpperCamelCase = field( default=lowerCAmelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class snake_case_ : '''simple docstring''' __UpperCamelCase = field( default='''google/vit-base-patch16-224-in21k''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) __UpperCamelCase = field( default=lowerCAmelCase_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(lowerCAmelCase_ )} , ) __UpperCamelCase = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __UpperCamelCase = field( default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) __UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __UpperCamelCase = field(default=lowerCAmelCase_ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __UpperCamelCase = field( default=lowerCAmelCase_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __UpperCamelCase = field( default=lowerCAmelCase_ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def SCREAMING_SNAKE_CASE ( snake_case ) -> str: __lowercase = torch.stack([example['pixel_values'] for example in examples] ) __lowercase = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def SCREAMING_SNAKE_CASE ( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' , lowerCAmelCase__ , lowerCAmelCase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowercase = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. __lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: __lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='image-classification' , use_auth_token=True if model_args.use_auth_token else None , ) else: __lowercase = {} if data_args.train_dir is not None: __lowercase = os.path.join(data_args.train_dir , '**' ) if data_args.validation_dir is not None: __lowercase = os.path.join(data_args.validation_dir , '**' ) __lowercase = load_dataset( 'imagefolder' , data_files=lowerCAmelCase__ , cache_dir=model_args.cache_dir , task='image-classification' , ) # If we don't have a validation split, split off a percentage of train as validation. __lowercase = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCAmelCase__ ) and data_args.train_val_split > 0.0: __lowercase = dataset['''train'''].train_test_split(data_args.train_val_split ) __lowercase = split['''train'''] __lowercase = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __lowercase = dataset['''train'''].features['''labels'''].names __lowercase = {}, {} for i, label in enumerate(lowerCAmelCase__ ): __lowercase = str(lowerCAmelCase__ ) __lowercase = label # Load the accuracy metric from the datasets package __lowercase = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(snake_case ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) __lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase__ ) , labelaid=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , finetuning_task='image-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowercase = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) __lowercase = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: __lowercase = image_processor.size['''shortest_edge'''] else: __lowercase = (image_processor.size['''height'''], image_processor.size['''width''']) __lowercase = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) __lowercase = Compose( [ RandomResizedCrop(lowerCAmelCase__ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) __lowercase = Compose( [ Resize(lowerCAmelCase__ ), CenterCrop(lowerCAmelCase__ ), ToTensor(), normalize, ] ) def train_transforms(snake_case ): __lowercase = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(snake_case ): __lowercase = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: __lowercase = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowerCAmelCase__ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: __lowercase = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowerCAmelCase__ ) # Initalize our trainer __lowercase = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=dataset['train'] if training_args.do_train else None , eval_dataset=dataset['validation'] if training_args.do_eval else None , compute_metrics=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: __lowercase = None if training_args.resume_from_checkpoint is not None: __lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowercase = last_checkpoint __lowercase = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowercase = trainer.evaluate() trainer.log_metrics('eval' , lowerCAmelCase__ ) trainer.save_metrics('eval' , lowerCAmelCase__ ) # Write model card and (optionally) push to hub __lowercase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) if __name__ == "__main__": main()
375
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name __SCREAMING_SNAKE_CASE = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : str=8 ): a__ : Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 a__ : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Dict , A__ : UNetaDConditionModel , A__ : DDPMScheduler , A__ : VQModel , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( unet=A__ , scheduler=A__ , movq=A__ , ) a__ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self : Optional[Any] , A__ : List[Any] , A__ : List[str] , A__ : Optional[Any] , A__ : Dict , A__ : Dict , A__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if latents is None: a__ : List[str] = randn_tensor(A__ , generator=A__ , device=A__ , dtype=A__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) a__ : int = latents.to(A__ ) a__ : Tuple = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self : Union[str, Any] , A__ : int=0 ) -> str: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) a__ : Union[str, Any] = torch.device(F'cuda:{gpu_id}' ) a__ : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A__ , A__ ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple=0 ) -> Dict: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) a__ : int = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=A__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a__ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: a__ , a__ : List[str] = cpu_offload_with_hook(A__ , A__ , prev_module_hook=A__ ) # We'll offload the last model manually. a__ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(A__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A__ ) def __call__( self : Any , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : torch.FloatTensor , A__ : int = 5_1_2 , A__ : int = 5_1_2 , A__ : int = 1_0_0 , A__ : float = 4.0 , A__ : int = 1 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[torch.FloatTensor] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> str: '''simple docstring''' a__ : Optional[Any] = self._execution_device a__ : List[str] = guidance_scale > 1.0 if isinstance(A__ , A__ ): a__ : int = torch.cat(A__ , dim=0 ) if isinstance(A__ , A__ ): a__ : Optional[int] = torch.cat(A__ , dim=0 ) if isinstance(A__ , A__ ): a__ : int = torch.cat(A__ , dim=0 ) a__ : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: a__ : Tuple = image_embeds.repeat_interleave(A__ , dim=0 ) a__ : Optional[int] = negative_image_embeds.repeat_interleave(A__ , dim=0 ) a__ : Optional[int] = hint.repeat_interleave(A__ , dim=0 ) a__ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A__ ) a__ : Tuple = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A__ ) self.scheduler.set_timesteps(A__ , device=A__ ) a__ : int = self.scheduler.timesteps a__ : str = self.movq.config.latent_channels a__ , a__ : Optional[int] = downscale_height_and_width(A__ , A__ , self.movq_scale_factor ) # create initial latent a__ : List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A__ , A__ , A__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A__ ) ): # expand the latents if we are doing classifier free guidance a__ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a__ : List[str] = {'''image_embeds''': image_embeds, '''hint''': hint} a__ : Union[str, Any] = self.unet( sample=A__ , timestep=A__ , encoder_hidden_states=A__ , added_cond_kwargs=A__ , return_dict=A__ , )[0] if do_classifier_free_guidance: a__ , a__ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) a__ , a__ : Dict = noise_pred.chunk(2 ) a__ , a__ : Optional[Any] = variance_pred.chunk(2 ) a__ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a__ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a__ , a__ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a__ : Union[str, Any] = self.scheduler.step( A__ , A__ , A__ , generator=A__ , )[0] # post-processing a__ : Tuple = self.movq.decode(A__ , force_not_quantize=A__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: a__ : Union[str, Any] = image * 0.5 + 0.5 a__ : str = image.clamp(0 , 1 ) a__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a__ : int = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __magic_name__: Optional[Any] = logging.get_logger(__name__) def UpperCamelCase ( _A, _A=False ): """simple docstring""" __magic_name__ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __magic_name__ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def UpperCamelCase ( _A, _A, _A=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: __magic_name__ : Optional[int] = '''''' else: __magic_name__ : Optional[int] = '''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __magic_name__ : Union[str, Any] = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) __magic_name__ : Optional[int] = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : Optional[int] = in_proj_weight[ : config.hidden_size, : ] __magic_name__ : List[Any] = in_proj_bias[: config.hidden_size] __magic_name__ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __magic_name__ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __magic_name__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] __magic_name__ : str = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Optional[int] = dct.pop(lowerCAmelCase__ ) __magic_name__ : Tuple = val def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __magic_name__ : Dict = Image.open(requests.get(lowerCAmelCase__, stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Any = DeiTConfig() # all deit models have fine-tuned heads __magic_name__ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __magic_name__ : Dict = 1000 __magic_name__ : Union[str, Any] = '''huggingface/label-files''' __magic_name__ : Optional[Any] = '''imagenet-1k-id2label.json''' __magic_name__ : Tuple = json.load(open(hf_hub_download(lowerCAmelCase__, lowerCAmelCase__, repo_type="""dataset""" ), """r""" ) ) __magic_name__ : List[Any] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} __magic_name__ : int = idalabel __magic_name__ : List[str] = {v: k for k, v in idalabel.items()} __magic_name__ : List[Any] = int(deit_name[-6:-4] ) __magic_name__ : List[str] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): __magic_name__ : Optional[int] = 192 __magic_name__ : Any = 768 __magic_name__ : Tuple = 12 __magic_name__ : Dict = 3 elif deit_name[9:].startswith("""small""" ): __magic_name__ : List[Any] = 384 __magic_name__ : List[str] = 1536 __magic_name__ : int = 12 __magic_name__ : List[str] = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): __magic_name__ : Union[str, Any] = 1024 __magic_name__ : List[str] = 4096 __magic_name__ : Any = 24 __magic_name__ : List[str] = 16 # load original model from timm __magic_name__ : List[str] = timm.create_model(lowerCAmelCase__, pretrained=lowerCAmelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __magic_name__ : str = timm_model.state_dict() __magic_name__ : Optional[Any] = create_rename_keys(lowerCAmelCase__, lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) # load HuggingFace model __magic_name__ : Any = DeiTForImageClassificationWithTeacher(lowerCAmelCase__ ).eval() model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor __magic_name__ : Dict = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __magic_name__ : List[str] = DeiTImageProcessor(size=lowerCAmelCase__, crop_size=config.image_size ) __magic_name__ : Optional[Any] = image_processor(images=prepare_img(), return_tensors="""pt""" ) __magic_name__ : List[str] = encoding['''pixel_values'''] __magic_name__ : Tuple = model(lowerCAmelCase__ ) __magic_name__ : Tuple = timm_model(lowerCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase__, outputs.logits, atol=1e-3 ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __magic_name__: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __magic_name__: Any = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
324
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } __SCREAMING_SNAKE_CASE = { 'facebook/esm2_t6_8M_UR50D': 1_0_2_4, 'facebook/esm2_t12_35M_UR50D': 1_0_2_4, } def __a ( lowerCAmelCase__ : Union[str, Any] ): with open(lowerCAmelCase__ , '''r''' ) as f: a__ : Optional[int] = f.read().splitlines() return [l.strip() for l in lines] class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self : List[str] , A__ : int , A__ : Union[str, Any]="<unk>" , A__ : Tuple="<cls>" , A__ : List[Any]="<pad>" , A__ : Optional[int]="<mask>" , A__ : List[Any]="<eos>" , **A__ : Optional[Any] , ) -> Optional[int]: '''simple docstring''' super().__init__(**A__ ) a__ : Union[str, Any] = load_vocab_file(A__ ) a__ : int = dict(enumerate(self.all_tokens ) ) a__ : str = {tok: ind for ind, tok in enumerate(self.all_tokens )} a__ : List[Any] = unk_token a__ : Any = cls_token a__ : Any = pad_token a__ : Any = mask_token a__ : Any = eos_token a__ : int = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __lowerCAmelCase ( self : Any , A__ : int ) -> str: '''simple docstring''' return self._id_to_token.get(A__ , self.unk_token ) def __lowerCAmelCase ( self : Optional[Any] , A__ : str ) -> int: '''simple docstring''' return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple , **A__ : str ) -> List[Any]: '''simple docstring''' return text.split() def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int]=False ) -> Tuple: '''simple docstring''' return len(self._id_to_token ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def __lowerCAmelCase ( self : Any , A__ : str ) -> int: '''simple docstring''' return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) ) def __lowerCAmelCase ( self : List[Any] , A__ : int ) -> str: '''simple docstring''' return self._id_to_token.get(A__ , self.unk_token ) def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Tuple = [self.cls_token_id] a__ : Union[str, Any] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __lowerCAmelCase ( self : Tuple , A__ : List , A__ : Optional[List] = None , A__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] a__ : Any = [1] + ([0] * len(A__ )) + [1] if token_ids_a is not None: mask += [0] * len(A__ ) + [1] return mask def __lowerCAmelCase ( self : Any , A__ : Dict , A__ : Dict ) -> List[Any]: '''simple docstring''' a__ : Union[str, Any] = os.path.join(A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __lowerCAmelCase ( self : Any ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=A__ ) def __lowerCAmelCase ( self : List[str] , A__ : Union[List[str], List[AddedToken]] , A__ : bool = False ) -> int: '''simple docstring''' return super()._add_tokens(A__ , special_tokens=A__ )
688
0
from math import isqrt, loga def lowerCamelCase_(lowerCamelCase_ ) -> int: UpperCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase = False return [i for i in range(2 , lowerCAmelCase__ ) if is_prime[i]] def lowerCamelCase_(lowerCamelCase_ = 800_800 , lowerCamelCase_ = 800_800 ) -> Optional[Any]: UpperCAmelCase = degree * loga(lowerCAmelCase__ ) UpperCAmelCase = int(lowerCAmelCase__ ) UpperCAmelCase = calculate_prime_numbers(lowerCAmelCase__ ) UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = len(lowerCAmelCase__ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'''{solution() = }''')
323
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class lowerCAmelCase__ : """simple docstring""" def __init__( self : str ) -> Dict: '''simple docstring''' a__ : List[str] = False def __lowerCAmelCase ( self : Tuple , A__ : Optional[int] , A__ : Optional[Any] , A__ : List[str] , A__ : Tuple ) -> Optional[int]: '''simple docstring''' if not self.initialized: a__ : Optional[Any] = RagRetriever( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) a__ : Union[str, Any] = True def __lowerCAmelCase ( self : Tuple ) -> Tuple: '''simple docstring''' self.retriever.index.init_index() def __lowerCAmelCase ( self : List[Any] , A__ : List[Any] , A__ : Optional[int] ) -> List[Any]: '''simple docstring''' a__ , a__ : Optional[Any] = self.retriever._main_retrieve(A__ , A__ ) return doc_ids, retrieved_doc_embeds class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : str , A__ : Optional[int] , A__ : List[Any] , A__ : List[Any] , A__ : str , A__ : Any=None ) -> Optional[Any]: '''simple docstring''' if index is not None and index.is_initialized() and len(A__ ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) a__ : List[str] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A__ , A__ , A__ , A__ ) for worker in self.retrieval_workers ] ) def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCAmelCase ( self : Optional[int] , A__ : Optional[int] , A__ : int ) -> Dict: '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. a__ : List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] a__ , a__ : Tuple = ray.get(random_worker.retrieve.remote(A__ , A__ ) ) else: a__ , a__ : int = self._main_retrieve(A__ , A__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A__ ) @classmethod def __lowerCAmelCase ( cls : int , A__ : Optional[Any] , A__ : Any=None , **A__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return super(A__ , cls ).get_tokenizers(A__ , A__ , **A__ ) @classmethod def __lowerCAmelCase ( cls : int , A__ : Optional[int] , A__ : Union[str, Any] , A__ : Union[str, Any]=None , **A__ : Dict ) -> List[Any]: '''simple docstring''' a__ : Dict = kwargs.pop('''config''' , A__ ) or RagConfig.from_pretrained(A__ , **A__ ) a__ : Dict = RagTokenizer.from_pretrained(A__ , config=A__ ) a__ : str = rag_tokenizer.question_encoder a__ : List[str] = rag_tokenizer.generator if indexed_dataset is not None: a__ : List[Any] = '''custom''' a__ : List[Any] = CustomHFIndex(config.retrieval_vector_size , A__ ) else: a__ : Optional[Any] = cls._build_index(A__ ) return cls( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , retrieval_workers=A__ , index=A__ , )
688
0
import os from pathlib import Path def __lowerCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ) -> Any: __lowerCAmelCase ={ '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowerCAmelCase ={ '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } __lowerCAmelCase =f"""{src_lang}-{tgt_lang}""" __lowerCAmelCase =f"""\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n""" os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) __lowerCAmelCase =os.path.join(lowerCAmelCase__ , """README.md""" ) print(f"""Generating {path}""" ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(lowerCAmelCase__ ) # make sure we are under the root of the project lowercase_ = Path(__file__).resolve().parent.parent.parent lowercase_ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowercase_ , lowercase_ , lowercase_ = model_name.split('''-''') lowercase_ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
354
'''simple docstring''' def __a ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): a__ : List[str] = len(lowerCAmelCase__ ) a__ : int = [[0] * n for i in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): a__ : Dict = y_points[i] for i in range(2 , lowerCAmelCase__ ): for j in range(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Any = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
688
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase ( unittest.TestCase ): @slow def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=A__ ).to(A__ ) _SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained("google/mt5-small" ) _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer("Hello there" , return_tensors="pt" ).input_ids _SCREAMING_SNAKE_CASE : Optional[int] = tokenizer("Hi I am" , return_tensors="pt" ).input_ids _SCREAMING_SNAKE_CASE : Any = model(input_ids.to(A__ ) , labels=labels.to(A__ ) ).loss _SCREAMING_SNAKE_CASE : str = -(labels.shape[-1] * loss.item()) _SCREAMING_SNAKE_CASE : Dict = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
572
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "swin2sr" __UpperCamelCase = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , A__ : int=6_4 , A__ : List[Any]=1 , A__ : List[Any]=3 , A__ : Any=1_8_0 , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Dict=8 , A__ : Any=2.0 , A__ : Optional[int]=True , A__ : Union[str, Any]=0.0 , A__ : Union[str, Any]=0.0 , A__ : List[str]=0.1 , A__ : Any="gelu" , A__ : Tuple=False , A__ : Optional[int]=0.02 , A__ : List[Any]=1E-5 , A__ : Any=2 , A__ : Union[str, Any]=1.0 , A__ : Dict="1conv" , A__ : Optional[Any]="pixelshuffle" , **A__ : Optional[Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(**A__ ) a__ : List[str] = image_size a__ : Optional[Any] = patch_size a__ : Dict = num_channels a__ : Optional[int] = embed_dim a__ : int = depths a__ : Optional[int] = len(A__ ) a__ : Dict = num_heads a__ : List[Any] = window_size a__ : Optional[int] = mlp_ratio a__ : Optional[int] = qkv_bias a__ : Union[str, Any] = hidden_dropout_prob a__ : Dict = attention_probs_dropout_prob a__ : Union[str, Any] = drop_path_rate a__ : int = hidden_act a__ : int = use_absolute_embeddings a__ : Dict = layer_norm_eps a__ : List[str] = initializer_range a__ : List[Any] = upscale a__ : List[Any] = img_range a__ : Optional[int] = resi_connection a__ : int = upsampler
688
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor a__ : Any = logging.get_logger(__name__) class __snake_case ( lowerCAmelCase_ ): def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> None: warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , A__ , ) super().__init__(*A__ , **A__ )
368
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' a__ : int = 0 def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' a__ : Optional[int] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : List[Any] = Path(A__ ) / '''preprocessor_config.json''' a__ : List[Any] = Path(A__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Any = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : int = Path(A__ ) / '''preprocessor_config.json''' a__ : Optional[Any] = Path(A__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Tuple = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type a__ : int = Path(A__ ) / '''preprocessor_config.json''' a__ : Optional[int] = Path(A__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally a__ : List[Any] = AutoImageProcessor.from_pretrained(A__ ).to_dict() config_dict.pop('''image_processor_type''' ) a__ : Union[str, Any] = CLIPImageProcessor(**A__ ) # save in new folder model_config.save_pretrained(A__ ) config.save_pretrained(A__ ) a__ : Union[str, Any] = AutoImageProcessor.from_pretrained(A__ ) # make sure private variable is not incorrectly saved a__ : Optional[Any] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) a__ : Any = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( A__ , '''clip-base is not a local folder and is not a valid model identifier''' ): a__ : str = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowerCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' with self.assertRaisesRegex( A__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): a__ : Tuple = AutoImageProcessor.from_pretrained(A__ , revision='''aaaaaa''' ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( A__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): a__ : Union[str, Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' with self.assertRaises(A__ ): a__ : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(A__ ): a__ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) a__ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A__ ) a__ : str = AutoImageProcessor.from_pretrained(A__ , trust_remote_code=A__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , A__ ) AutoImageProcessor.register(A__ , A__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A__ ): AutoImageProcessor.register(A__ , A__ ) with tempfile.TemporaryDirectory() as tmpdirname: a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json''' a__ : List[str] = Path(A__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Tuple = CustomImageProcessor.from_pretrained(A__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A__ ) a__ : Tuple = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self : List[Any] ) -> List[str]: '''simple docstring''' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = True try: AutoConfig.register('''custom''' , A__ ) AutoImageProcessor.register(A__ , A__ ) # If remote code is not set, the default is to use local a__ : Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. a__ : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub a__ : Optional[int] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(A__ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
688
0
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated a_ = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ a_ = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Union[str, Any] = numpy.dtype(numpy.uintaa).newbyteorder(">") return numpy.frombuffer(bytestream.read(4) , dtype=lowerCAmelCase__)[0] @deprecated(lowerCAmelCase__ , "Please use tf.data to implement this functionality.") def lowerCamelCase__ ( _a): print("Extracting" , f.name) with gzip.GzipFile(fileobj=lowerCAmelCase__) as bytestream: SCREAMING_SNAKE_CASE : Dict = _readaa(lowerCAmelCase__) if magic != 2051: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name)) SCREAMING_SNAKE_CASE : Any = _readaa(lowerCAmelCase__) SCREAMING_SNAKE_CASE : Optional[int] = _readaa(lowerCAmelCase__) SCREAMING_SNAKE_CASE : Tuple = _readaa(lowerCAmelCase__) SCREAMING_SNAKE_CASE : Any = bytestream.read(rows * cols * num_images) SCREAMING_SNAKE_CASE : Union[str, Any] = numpy.frombuffer(lowerCAmelCase__ , dtype=numpy.uinta) SCREAMING_SNAKE_CASE : str = data.reshape(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , 1) return data @deprecated(lowerCAmelCase__ , "Please use tf.one_hot on tensors.") def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[Any] = labels_dense.shape[0] SCREAMING_SNAKE_CASE : Tuple = numpy.arange(lowerCAmelCase__) * num_classes SCREAMING_SNAKE_CASE : Tuple = numpy.zeros((num_labels, num_classes)) SCREAMING_SNAKE_CASE : List[Any] = 1 return labels_one_hot @deprecated(lowerCAmelCase__ , "Please use tf.data to implement this functionality.") def lowerCamelCase__ ( _a , _a=False , _a=10): print("Extracting" , f.name) with gzip.GzipFile(fileobj=lowerCAmelCase__) as bytestream: SCREAMING_SNAKE_CASE : Optional[int] = _readaa(lowerCAmelCase__) if magic != 2049: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name)) SCREAMING_SNAKE_CASE : Dict = _readaa(lowerCAmelCase__) SCREAMING_SNAKE_CASE : List[str] = bytestream.read(lowerCAmelCase__) SCREAMING_SNAKE_CASE : List[Any] = numpy.frombuffer(lowerCAmelCase__ , dtype=numpy.uinta) if one_hot: return _dense_to_one_hot(lowerCAmelCase__ , lowerCAmelCase__) return labels class _UpperCamelCase : '''simple docstring''' @deprecated( A__ , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self : Optional[Any] , a : Union[str, Any] , a : Union[str, Any] , a : List[Any]=False , a : str=False , a : Dict=dtypes.floataa , a : Tuple=True , a : str=None , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = random_seed.get_seed(A__ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) SCREAMING_SNAKE_CASE : Any = dtypes.as_dtype(A__ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: SCREAMING_SNAKE_CASE : Tuple = 1_0000 SCREAMING_SNAKE_CASE : Any = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F"images.shape: {images.shape} labels.shape: {labels.shape}" SCREAMING_SNAKE_CASE : List[str] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 SCREAMING_SNAKE_CASE : Optional[Any] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. SCREAMING_SNAKE_CASE : Union[str, Any] = images.astype(numpy.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = numpy.multiply(A__ , 1.0 / 255.0 ) SCREAMING_SNAKE_CASE : Dict = images SCREAMING_SNAKE_CASE : List[Any] = labels SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[Any] = 0 @property def __UpperCamelCase ( self : int ) -> int: """simple docstring""" return self._images @property def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return self._labels @property def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return self._num_examples @property def __UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" return self._epochs_completed def __UpperCamelCase ( self : List[Any] , a : int , a : Tuple=False , a : Optional[Any]=True ) -> Any: """simple docstring""" if fake_data: SCREAMING_SNAKE_CASE : str = [1] * 784 SCREAMING_SNAKE_CASE : List[Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(A__ )], [fake_label for _ in range(A__ )], ) SCREAMING_SNAKE_CASE : int = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: SCREAMING_SNAKE_CASE : Dict = numpy.arange(self._num_examples ) numpy.random.shuffle(A__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.images[perma] SCREAMING_SNAKE_CASE : str = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch SCREAMING_SNAKE_CASE : Optional[Any] = self._num_examples - start SCREAMING_SNAKE_CASE : List[Any] = self._images[start : self._num_examples] SCREAMING_SNAKE_CASE : List[Any] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: SCREAMING_SNAKE_CASE : Optional[Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(A__ ) SCREAMING_SNAKE_CASE : Any = self.images[perm] SCREAMING_SNAKE_CASE : int = self.labels[perm] # Start next epoch SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : int = batch_size - rest_num_examples SCREAMING_SNAKE_CASE : List[str] = self._index_in_epoch SCREAMING_SNAKE_CASE : Union[str, Any] = self._images[start:end] SCREAMING_SNAKE_CASE : Union[str, Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size SCREAMING_SNAKE_CASE : List[str] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(lowerCAmelCase__ , "Please write your own downloading logic.") def lowerCamelCase__ ( _a , _a , _a): if not gfile.Exists(lowerCAmelCase__): gfile.MakeDirs(lowerCAmelCase__) SCREAMING_SNAKE_CASE : List[Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__) if not gfile.Exists(lowerCAmelCase__): urllib.request.urlretrieve(lowerCAmelCase__ , lowerCAmelCase__) # noqa: S310 with gfile.GFile(lowerCAmelCase__) as f: SCREAMING_SNAKE_CASE : str = f.size() print("Successfully downloaded" , lowerCAmelCase__ , lowerCAmelCase__ , "bytes.") return filepath @deprecated( lowerCAmelCase__ , "Please use alternatives such as:" " tensorflow_datasets.load(\'mnist\')") def lowerCamelCase__ ( _a , _a=False , _a=False , _a=dtypes.floataa , _a=True , _a=5000 , _a=None , _a=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=lowerCAmelCase__ , one_hot=lowerCAmelCase__ , dtype=lowerCAmelCase__ , seed=lowerCAmelCase__) SCREAMING_SNAKE_CASE : Optional[Any] = fake() SCREAMING_SNAKE_CASE : List[str] = fake() SCREAMING_SNAKE_CASE : int = fake() return _Datasets(train=lowerCAmelCase__ , validation=lowerCAmelCase__ , test=lowerCAmelCase__) if not source_url: # empty string check SCREAMING_SNAKE_CASE : Optional[Any] = DEFAULT_SOURCE_URL SCREAMING_SNAKE_CASE : Optional[int] = '''train-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE : int = '''train-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE : Dict = '''t10k-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE : Tuple = '''t10k-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE : List[str] = _maybe_download( lowerCAmelCase__ , lowerCAmelCase__ , source_url + train_images_file) with gfile.Open(lowerCAmelCase__ , "rb") as f: SCREAMING_SNAKE_CASE : Dict = _extract_images(lowerCAmelCase__) SCREAMING_SNAKE_CASE : Dict = _maybe_download( lowerCAmelCase__ , lowerCAmelCase__ , source_url + train_labels_file) with gfile.Open(lowerCAmelCase__ , "rb") as f: SCREAMING_SNAKE_CASE : Optional[Any] = _extract_labels(lowerCAmelCase__ , one_hot=lowerCAmelCase__) SCREAMING_SNAKE_CASE : Any = _maybe_download( lowerCAmelCase__ , lowerCAmelCase__ , source_url + test_images_file) with gfile.Open(lowerCAmelCase__ , "rb") as f: SCREAMING_SNAKE_CASE : Dict = _extract_images(lowerCAmelCase__) SCREAMING_SNAKE_CASE : Optional[int] = _maybe_download( lowerCAmelCase__ , lowerCAmelCase__ , source_url + test_labels_file) with gfile.Open(lowerCAmelCase__ , "rb") as f: SCREAMING_SNAKE_CASE : List[Any] = _extract_labels(lowerCAmelCase__ , one_hot=lowerCAmelCase__) if not 0 <= validation_size <= len(lowerCAmelCase__): SCREAMING_SNAKE_CASE : Any = ( '''Validation size should be between 0 and ''' f"{len(lowerCAmelCase__)}. Received: {validation_size}." ) raise ValueError(lowerCAmelCase__) SCREAMING_SNAKE_CASE : Any = train_images[:validation_size] SCREAMING_SNAKE_CASE : List[Any] = train_labels[:validation_size] SCREAMING_SNAKE_CASE : Dict = train_images[validation_size:] SCREAMING_SNAKE_CASE : Optional[int] = train_labels[validation_size:] SCREAMING_SNAKE_CASE : List[Any] = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} SCREAMING_SNAKE_CASE : Any = _DataSet(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE : Tuple = _DataSet(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE : Optional[int] = _DataSet(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) return _Datasets(train=lowerCAmelCase__ , validation=lowerCAmelCase__ , test=lowerCAmelCase__)
25
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version __SCREAMING_SNAKE_CASE = get_logger(__name__) class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = "dummy_data" __UpperCamelCase = "datasets" __UpperCamelCase = False def __init__( self : Any , A__ : str , A__ : str , A__ : Union[Version, str] , A__ : Optional[str] = None , A__ : bool = False , A__ : bool = True , A__ : Optional[List[Callable]] = None , ) -> int: '''simple docstring''' a__ : Tuple = 0 a__ : Any = dataset_name a__ : int = cache_dir a__ : str = use_local_dummy_data a__ : List[str] = config # download_callbacks take a single url as input a__ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root a__ : str = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general a__ : Optional[Any] = str(A__ ) # to be downloaded a__ : Tuple = None a__ : Tuple = None @property def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' if self._dummy_file is None: a__ : Dict = self.download_dummy_data() return self._dummy_file @property def __lowerCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' a__ : int = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) a__ : str = cached_path( A__ , cache_dir=self.cache_dir , extract_compressed_file=A__ , force_extract=A__ ) return os.path.join(A__ , self.dummy_file_name ) @property def __lowerCAmelCase ( self : int ) -> Optional[int]: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' if self._bucket_url is None: a__ : int = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __lowerCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int] , *A__ : int ) -> Union[str, Any]: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested a__ : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned a__ : Union[str, Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(A__ , A__ ): return self.create_dummy_data_dict(A__ , A__ ) elif isinstance(A__ , (list, tuple) ): return self.create_dummy_data_list(A__ , A__ ) else: return self.create_dummy_data_single(A__ , A__ ) def __lowerCAmelCase ( self : List[str] , A__ : Any , *A__ : int ) -> Any: '''simple docstring''' return self.download_and_extract(A__ ) def __lowerCAmelCase ( self : Any , A__ : Optional[int] , A__ : Optional[Any] ) -> int: '''simple docstring''' return self.download_and_extract(A__ ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : int , *A__ : List[Any] , **A__ : str ) -> Optional[Any]: '''simple docstring''' return path def __lowerCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' return {} def __lowerCAmelCase ( self : int , A__ : Union[str, Any] , A__ : List[str] ) -> Any: '''simple docstring''' a__ : int = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(A__ , A__ ): for single_url in single_urls: download_callback(A__ ) else: a__ : Dict = single_urls download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(A__ , A__ ): a__ : Optional[int] = [os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) ) for x in single_urls] else: a__ : Optional[Any] = single_urls a__ : Tuple = os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) ) a__ : List[str] = value # make sure that values are unique if all(isinstance(A__ , A__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique a__ : Optional[int] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __lowerCAmelCase ( self : Dict , A__ : str , A__ : Optional[int] ) -> Optional[int]: '''simple docstring''' a__ : str = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one a__ : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , A__ ) ) for url in data_url ) a__ : Optional[Any] = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): a__ : Dict = [data_url[0]] * len(A__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a__ : Optional[int] = os.path.join(A__ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(A__ ) return dummy_data_list def __lowerCAmelCase ( self : Dict , A__ : Dict , A__ : str ) -> Optional[int]: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a__ : Union[str, Any] = os.path.join(A__ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(A__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __lowerCAmelCase ( self : int ) -> str: '''simple docstring''' pass def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: '''simple docstring''' pass def __lowerCAmelCase ( self : Any , A__ : Tuple ) -> Any: '''simple docstring''' def _iter_archive_members(A__ : str ): # this preserves the order of the members inside the ZIP archive a__ : Dict = Path(self.dummy_file ).parent a__ : Tuple = path.relative_to(A__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: a__ : Optional[Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(A__ ) a__ : str = Path(A__ ) a__ : Optional[Any] = _iter_archive_members(A__ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(A__ ).as_posix(), file_path.open('''rb''' ) def __lowerCAmelCase ( self : Tuple , A__ : Tuple ) -> Tuple: '''simple docstring''' if not isinstance(A__ , A__ ): a__ : int = [paths] for path in paths: if os.path.isfile(A__ ): if os.path.basename(A__ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(A__ ): if os.path.basename(A__ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(A__ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(A__ , A__ )
688
0
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): return int((input_a, input_a).count(1 ) != 0 ) def __UpperCAmelCase ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
76
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = LxmertTokenizer __UpperCamelCase = LxmertTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def __lowerCAmelCase ( self : str ) -> str: '''simple docstring''' super().setUp() a__ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self : int , A__ : int ) -> int: '''simple docstring''' a__ : List[Any] = '''UNwant\u00E9d,running''' a__ : Optional[int] = '''unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self : int ) -> Dict: '''simple docstring''' a__ : Optional[int] = self.tokenizer_class(self.vocab_file ) a__ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [7, 4, 5, 1_0, 8, 9] ) def __lowerCAmelCase ( self : Any ) -> Dict: '''simple docstring''' if not self.test_rust_tokenizer: return a__ : Union[str, Any] = self.get_tokenizer() a__ : Union[str, Any] = self.get_rust_tokenizer() a__ : str = '''I was born in 92000, and this is falsé.''' a__ : Tuple = tokenizer.tokenize(A__ ) a__ : Tuple = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) a__ : Optional[int] = tokenizer.encode(A__ , add_special_tokens=A__ ) a__ : Optional[Any] = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) a__ : List[str] = self.get_rust_tokenizer() a__ : str = tokenizer.encode(A__ ) a__ : int = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ )
688
0
'''simple docstring''' import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Optional[Any] = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } a : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = """mask2former""" __SCREAMING_SNAKE_CASE = ["""swin"""] __SCREAMING_SNAKE_CASE = {"""hidden_size""": """hidden_dim"""} def __init__( self : Tuple , a_ : Optional[Dict] = None , a_ : int = 256 , a_ : int = 256 , a_ : int = 256 , a_ : int = 1_024 , a_ : str = "relu" , a_ : int = 6 , a_ : int = 10 , a_ : int = 8 , a_ : float = 0.0 , a_ : int = 2_048 , a_ : bool = False , a_ : bool = False , a_ : int = 4 , a_ : int = 255 , a_ : int = 100 , a_ : float = 0.1 , a_ : float = 2.0 , a_ : float = 5.0 , a_ : float = 5.0 , a_ : int = 12_544 , a_ : float = 3.0 , a_ : float = 0.75 , a_ : float = 0.02 , a_ : float = 1.0 , a_ : bool = True , a_ : List[int] = [4, 8, 16, 32] , a_ : bool = None , **a_ : Any , ): """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) __snake_case = CONFIG_MAPPING['''swin''']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=A__ , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(A__ , A__ ): __snake_case = backbone_config.pop("model_type" ) __snake_case = CONFIG_MAPPING[backbone_model_type] __snake_case = config_class.from_dict(A__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' f'''Supported model types: {",".join(self.backbones_supported )}''' ) __snake_case = backbone_config __snake_case = feature_size __snake_case = mask_feature_size __snake_case = hidden_dim __snake_case = encoder_feedforward_dim __snake_case = activation_function __snake_case = encoder_layers __snake_case = decoder_layers __snake_case = num_attention_heads __snake_case = dropout __snake_case = dim_feedforward __snake_case = pre_norm __snake_case = enforce_input_projection __snake_case = common_stride __snake_case = ignore_value __snake_case = num_queries __snake_case = no_object_weight __snake_case = class_weight __snake_case = mask_weight __snake_case = dice_weight __snake_case = train_num_points __snake_case = oversample_ratio __snake_case = importance_sample_ratio __snake_case = init_std __snake_case = init_xavier_std __snake_case = use_auxiliary_loss __snake_case = feature_strides __snake_case = output_auxiliary_logits __snake_case = decoder_layers super().__init__(**A__ ) @classmethod def A ( cls : Dict , a_ : PretrainedConfig , **a_ : str ): """simple docstring""" return cls( backbone_config=A__ , **A__ , ) def A ( self : List[Any] ): """simple docstring""" __snake_case = copy.deepcopy(self.__dict__ ) __snake_case = self.backbone_config.to_dict() __snake_case = self.__class__.model_type return output
69
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file a__ : Dict = TapasConfig.from_json_file(lowerCAmelCase__ ) # set absolute/relative position embeddings parameter a__ : List[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": a__ : Optional[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "WTQ": # run_task_main.py hparams a__ : List[str] = 4 a__ : Optional[int] = True # hparam_utils.py hparams a__ : List[Any] = 0.664694 a__ : List[Any] = 0.207951 a__ : Union[str, Any] = 0.121194 a__ : Optional[Any] = True a__ : Optional[int] = True a__ : List[str] = False a__ : Union[str, Any] = 0.0352513 a__ : Any = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams a__ : Tuple = 4 a__ : Dict = False # hparam_utils.py hparams a__ : str = 36.4519 a__ : str = 0.903421 a__ : Optional[Any] = 222.088 a__ : Dict = True a__ : Dict = True a__ : Dict = True a__ : str = 0.763141 a__ : List[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "TABFACT": a__ : List[str] = TapasForSequenceClassification(config=lowerCAmelCase__ ) elif task == "MLM": a__ : Tuple = TapasForMaskedLM(config=lowerCAmelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": a__ : List[str] = TapasModel(config=lowerCAmelCase__ ) else: raise ValueError(F'Task {task} not supported.' ) print(F'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model (weights and configuration) print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowerCAmelCase__ ) # Save tokenizer files print(F'Save tokenizer files to {pytorch_dump_path}' ) a__ : Optional[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 ) tokenizer.save_pretrained(lowerCAmelCase__ ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
0
from __future__ import annotations import math def __UpperCAmelCase ( UpperCAmelCase )-> Optional[int]: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(lowerCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True A_ = [num for num in range(3, 100001, 2) if not is_prime(num)] def __UpperCAmelCase ( UpperCAmelCase )-> List[Any]: """simple docstring""" if not isinstance(lowerCAmelCase__, lowerCAmelCase__ ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) lowercase = [] for num in range(len(lowerCAmelCase__ ) ): lowercase = 0 while 2 * i * i <= odd_composites[num]: lowercase = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase__ ) == n: return list_nums return [] def __UpperCAmelCase ( )-> Any: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
604
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } __SCREAMING_SNAKE_CASE = { 'google/fnet-base': 5_1_2, 'google/fnet-large': 5_1_2, } __SCREAMING_SNAKE_CASE = '▁' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "token_type_ids"] __UpperCamelCase = FNetTokenizer def __init__( self : Any , A__ : Any=None , A__ : int=None , A__ : List[str]=False , A__ : int=True , A__ : str=True , A__ : List[Any]="<unk>" , A__ : Dict="[SEP]" , A__ : List[str]="<pad>" , A__ : Union[str, Any]="[CLS]" , A__ : Dict="[MASK]" , **A__ : Tuple , ) -> List[str]: '''simple docstring''' a__ : Optional[int] = ( AddedToken(A__ , lstrip=A__ , rstrip=A__ , normalized=A__ ) if isinstance(A__ , A__ ) else mask_token ) super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , remove_space=A__ , keep_accents=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , **A__ , ) a__ : Optional[Any] = do_lower_case a__ : Dict = remove_space a__ : List[Any] = keep_accents a__ : Optional[Any] = vocab_file a__ : Any = False if not self.vocab_file else True def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Optional[int] = [self.sep_token_id] a__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self : List[Any] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Dict = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Tuple , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ : Union[str, Any] = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ): copyfile(self.vocab_file , A__ ) return (out_vocab_file,)
688
0
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ = 0 ) -> int: __lowerCamelCase : List[Any] = length or len(lowerCAmelCase__ ) __lowerCamelCase : Optional[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __lowerCamelCase : Optional[Any] = list_data[i + 1], list_data[i] __lowerCamelCase : int = True return list_data if not swapped else bubble_sort(lowerCAmelCase__ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
652
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } __SCREAMING_SNAKE_CASE = { 'distilbert-base-uncased': 5_1_2, 'distilbert-base-uncased-distilled-squad': 5_1_2, 'distilbert-base-cased': 5_1_2, 'distilbert-base-cased-distilled-squad': 5_1_2, 'distilbert-base-german-cased': 5_1_2, 'distilbert-base-multilingual-cased': 5_1_2, } __SCREAMING_SNAKE_CASE = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = ["input_ids", "attention_mask"] __UpperCamelCase = DistilBertTokenizer def __init__( self : str , A__ : Optional[Any]=None , A__ : Any=None , A__ : Tuple=True , A__ : List[Any]="[UNK]" , A__ : List[str]="[SEP]" , A__ : Tuple="[PAD]" , A__ : Optional[int]="[CLS]" , A__ : Union[str, Any]="[MASK]" , A__ : List[str]=True , A__ : Any=None , **A__ : int , ) -> str: '''simple docstring''' super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , ) a__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , A__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , A__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , A__ ) != tokenize_chinese_chars ): a__ : int = getattr(A__ , normalizer_state.pop('''type''' ) ) a__ : List[Any] = do_lower_case a__ : str = strip_accents a__ : List[str] = tokenize_chinese_chars a__ : Dict = normalizer_class(**A__ ) a__ : List[Any] = do_lower_case def __lowerCAmelCase ( self : Tuple , A__ : List[str] , A__ : Dict=None ) -> List[str]: '''simple docstring''' a__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : int , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : List[str] = [self.sep_token_id] a__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : str , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' a__ : int = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ )
688
0
from collections.abc import Callable def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Any: __lowercase = a __lowercase = b if function(lowerCAmelCase__ ) == 0: # one of the a or b is a root for the function return a elif function(lowerCAmelCase__ ) == 0: return b elif ( function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: __lowercase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowerCAmelCase__ ) == 0: return mid elif function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) < 0: __lowercase = mid else: __lowercase = mid __lowercase = start + (end - start) / 2.0 return mid def SCREAMING_SNAKE_CASE ( snake_case ) -> Dict: return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
375
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __SCREAMING_SNAKE_CASE = tuple[int, int] class lowerCAmelCase__ : """simple docstring""" def __init__( self : str , A__ : int , A__ : int , A__ : int , A__ : int , A__ : int , A__ : Node | None , ) -> None: '''simple docstring''' a__ : Optional[int] = pos_x a__ : str = pos_y a__ : Optional[int] = (pos_y, pos_x) a__ : List[str] = goal_x a__ : Any = goal_y a__ : Any = g_cost a__ : Optional[int] = parent a__ : Union[str, Any] = self.calculate_heuristic() a__ : List[Any] = self.g_cost + self.h_cost def __lowerCAmelCase ( self : Union[str, Any] ) -> float: '''simple docstring''' a__ : List[str] = self.pos_x - self.goal_x a__ : List[str] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A__ ) + abs(A__ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : List[Any] , A__ : Node ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , A__ : TPosition , A__ : TPosition ) -> Optional[Any]: '''simple docstring''' a__ : int = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A__ ) a__ : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , A__ ) a__ : Dict = [self.start] a__ : list[Node] = [] a__ : str = False def __lowerCAmelCase ( self : List[str] ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() a__ : Dict = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A__ ) self.closed_nodes.append(A__ ) a__ : List[Any] = self.get_successors(A__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A__ ) else: # retrieve the best current path a__ : Optional[int] = self.open_nodes.pop(self.open_nodes.index(A__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A__ ) else: self.open_nodes.append(A__ ) return [self.start.pos] def __lowerCAmelCase ( self : Optional[Any] , A__ : Node ) -> list[Node]: '''simple docstring''' a__ : Optional[int] = [] for action in delta: a__ : List[Any] = parent.pos_x + action[1] a__ : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A__ , A__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A__ , ) ) return successors def __lowerCAmelCase ( self : List[Any] , A__ : Node | None ) -> list[TPosition]: '''simple docstring''' a__ : Union[str, Any] = node a__ : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) a__ : Any = current_node.parent path.reverse() return path class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , A__ : TPosition , A__ : TPosition ) -> None: '''simple docstring''' a__ : str = AStar(A__ , A__ ) a__ : Optional[int] = AStar(A__ , A__ ) a__ : List[str] = False def __lowerCAmelCase ( self : Tuple ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() a__ : int = self.fwd_astar.open_nodes.pop(0 ) a__ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A__ , A__ ) self.fwd_astar.closed_nodes.append(A__ ) self.bwd_astar.closed_nodes.append(A__ ) a__ : Tuple = current_bwd_node a__ : Optional[int] = current_fwd_node a__ : Optional[int] = { self.fwd_astar: self.fwd_astar.get_successors(A__ ), self.bwd_astar: self.bwd_astar.get_successors(A__ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A__ ) else: # retrieve the best current path a__ : Optional[Any] = astar.open_nodes.pop( astar.open_nodes.index(A__ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A__ ) else: astar.open_nodes.append(A__ ) return [self.fwd_astar.start.pos] def __lowerCAmelCase ( self : List[str] , A__ : Node , A__ : Node ) -> list[TPosition]: '''simple docstring''' a__ : str = self.fwd_astar.retrace_path(A__ ) a__ : List[str] = self.bwd_astar.retrace_path(A__ ) bwd_path.pop() bwd_path.reverse() a__ : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __SCREAMING_SNAKE_CASE = (0, 0) __SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __SCREAMING_SNAKE_CASE = time.time() __SCREAMING_SNAKE_CASE = AStar(init, goal) __SCREAMING_SNAKE_CASE = a_star.search() __SCREAMING_SNAKE_CASE = time.time() - start_time print(f'AStar execution time = {end_time:f} seconds') __SCREAMING_SNAKE_CASE = time.time() __SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) __SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
688
0
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __magic_name__: List[str] = False __magic_name__: Dict = True __magic_name__: str = False if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") __magic_name__: List[Any] = parser.parse_args() __magic_name__: Union[str, Any] = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } __magic_name__: Optional[Any] = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } __magic_name__: List[str] = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: __magic_name__: List[str] = reader.read() __magic_name__: str = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): __magic_name__: Optional[int] = UNetaDModel(**config) else: __magic_name__: Optional[Any] = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel __magic_name__: List[str] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __magic_name__: int = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __magic_name__: List[Any] = config[key] del config[key] __magic_name__: Union[str, Any] = [k.replace("UNetRes", "") for k in config["down_block_types"]] __magic_name__: Dict = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: __magic_name__: Tuple = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) __magic_name__: Union[str, Any] = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue __magic_name__: int = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: __magic_name__: str = param_value __magic_name__: List[str] = True if not has_changed: __magic_name__: List[str] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
324
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ): # Construct model if gpta_config_file == "": a__ : Union[str, Any] = GPTaConfig() else: a__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase__ ) a__ : Optional[int] = GPTaModel(lowerCAmelCase__ ) # Load weights from numpy load_tf_weights_in_gpta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model a__ : int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME a__ : Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowerCAmelCase__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
688
0
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False ) -> Dict: if radian_mode: return [magnitude * cos(lowerCAmelCase__ ), magnitude * sin(lowerCAmelCase__ )] return [magnitude * cos(radians(lowerCAmelCase__ ) ), magnitude * sin(radians(lowerCAmelCase__ ) )] def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 10**-1 ) -> List[Any]: UpperCAmelCase = cross(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = sum(lowerCAmelCase__ ) return abs(lowerCAmelCase__ ) < eps if __name__ == "__main__": # Test to check if it works __lowerCamelCase : int = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) __lowerCamelCase : Union[str, Any] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg __lowerCamelCase : List[str] = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) __lowerCamelCase : List[str] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg __lowerCamelCase : Optional[Any] = array([[0, -2_000], [0, -1_200], [0, 15_600], [0, -12_400]]) __lowerCamelCase : int = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
323
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } __SCREAMING_SNAKE_CASE = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } __SCREAMING_SNAKE_CASE = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: __SCREAMING_SNAKE_CASE = reader.read() __SCREAMING_SNAKE_CASE = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): __SCREAMING_SNAKE_CASE = UNetaDModel(**config) else: __SCREAMING_SNAKE_CASE = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel __SCREAMING_SNAKE_CASE = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __SCREAMING_SNAKE_CASE = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __SCREAMING_SNAKE_CASE = config[key] del config[key] __SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['down_block_types']] __SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: __SCREAMING_SNAKE_CASE = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) __SCREAMING_SNAKE_CASE = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue __SCREAMING_SNAKE_CASE = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: __SCREAMING_SNAKE_CASE = param_value __SCREAMING_SNAKE_CASE = True if not has_changed: __SCREAMING_SNAKE_CASE = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
688
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE = "BlipImageProcessor" SCREAMING_SNAKE_CASE = "AutoTokenizer" def __init__( self : Dict , snake_case_ : Tuple , snake_case_ : str)-> str: __lowerCAmelCase =False super().__init__(A__ , A__) __lowerCAmelCase =self.image_processor def __call__( self : Optional[int] , snake_case_ : ImageInput = None , snake_case_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , snake_case_ : bool = True , snake_case_ : Union[bool, str, PaddingStrategy] = False , snake_case_ : Union[bool, str, TruncationStrategy] = None , snake_case_ : Optional[int] = None , snake_case_ : int = 0 , snake_case_ : Optional[int] = None , snake_case_ : Optional[bool] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = True , snake_case_ : Optional[Union[str, TensorType]] = None , **snake_case_ : List[Any] , )-> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""") # Get only text if images is None: __lowerCAmelCase =self.tokenizer __lowerCAmelCase =self.tokenizer( text=A__ , add_special_tokens=A__ , padding=A__ , truncation=A__ , max_length=A__ , stride=A__ , pad_to_multiple_of=A__ , return_attention_mask=A__ , return_overflowing_tokens=A__ , return_special_tokens_mask=A__ , return_offsets_mapping=A__ , return_token_type_ids=A__ , return_length=A__ , verbose=A__ , return_tensors=A__ , **A__ , ) return text_encoding # add pixel_values __lowerCAmelCase =self.image_processor(A__ , return_tensors=A__) if text is not None: __lowerCAmelCase =self.tokenizer( text=A__ , add_special_tokens=A__ , padding=A__ , truncation=A__ , max_length=A__ , stride=A__ , pad_to_multiple_of=A__ , return_attention_mask=A__ , return_overflowing_tokens=A__ , return_special_tokens_mask=A__ , return_offsets_mapping=A__ , return_token_type_ids=A__ , return_length=A__ , verbose=A__ , return_tensors=A__ , **A__ , ) else: __lowerCAmelCase =None if text_encoding is not None: encoding_image_processor.update(A__) return encoding_image_processor def UpperCamelCase ( self : int , *snake_case_ : Optional[Any] , **snake_case_ : Union[str, Any])-> List[Any]: return self.tokenizer.batch_decode(*A__ , **A__) def UpperCamelCase ( self : List[str] , *snake_case_ : List[Any] , **snake_case_ : Union[str, Any])-> Any: return self.tokenizer.decode(*A__ , **A__) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase ( self : int)-> Optional[Any]: __lowerCAmelCase =self.tokenizer.model_input_names __lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
354
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = (KDPMaDiscreteScheduler,) __UpperCamelCase = 10 def __lowerCAmelCase ( self : Optional[Any] , **A__ : Optional[int] ) -> int: '''simple docstring''' a__ : Optional[int] = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**A__ ) return config def __lowerCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=A__ ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=A__ , beta_end=A__ ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A__ ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A__ ) def __lowerCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' a__ : Any = self.scheduler_classes[0] a__ : str = self.get_scheduler_config(prediction_type='''v_prediction''' ) a__ : Dict = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps ) a__ : Tuple = self.dummy_model() a__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma a__ : Dict = sample.to(A__ ) for i, t in enumerate(scheduler.timesteps ): a__ : Optional[Any] = scheduler.scale_model_input(A__ , A__ ) a__ : Union[str, Any] = model(A__ , A__ ) a__ : List[str] = scheduler.step(A__ , A__ , A__ ) a__ : Optional[Any] = output.prev_sample a__ : Tuple = torch.sum(torch.abs(A__ ) ) a__ : Optional[int] = torch.mean(torch.abs(A__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_002 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' if torch_device == "mps": return a__ : List[Any] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : Tuple = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps ) a__ : List[Any] = self.dummy_model() a__ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma a__ : Any = sample.to(A__ ) for i, t in enumerate(scheduler.timesteps ): a__ : str = scheduler.scale_model_input(A__ , A__ ) a__ : List[str] = model(A__ , A__ ) a__ : str = scheduler.step(A__ , A__ , A__ ) a__ : List[Any] = output.prev_sample a__ : Dict = torch.sum(torch.abs(A__ ) ) a__ : Optional[Any] = torch.mean(torch.abs(A__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> int: '''simple docstring''' if torch_device == "mps": return a__ : Optional[int] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : List[Any] = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps , device=A__ ) a__ : Union[str, Any] = self.dummy_model() a__ : List[Any] = self.dummy_sample_deter.to(A__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: a__ : Optional[int] = scheduler.scale_model_input(A__ , A__ ) a__ : List[Any] = model(A__ , A__ ) a__ : Any = scheduler.step(A__ , A__ , A__ ) a__ : List[str] = output.prev_sample a__ : Any = torch.sum(torch.abs(A__ ) ) a__ : Union[str, Any] = torch.mean(torch.abs(A__ ) ) if str(A__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3
688
0
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests lowercase_ : Optional[Any] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowercase_ : List[str] = BASE_URL + '''/user''' # https://github.com/settings/tokens lowercase_ : Any = os.environ.get('''USER_TOKEN''', '''''') def _lowerCAmelCase ( lowerCamelCase__ : str ) -> Tuple: _SCREAMING_SNAKE_CASE : List[Any] = { '''Authorization''': f'''token {auth_token}''', '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(lowerCAmelCase__, headers=lowerCAmelCase__ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'{key}: {value}') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
572
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' a__ : str = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None a__ , a__ : List[Any] = get_aligned_output_features_output_indices(A__ , A__ , A__ ) self.assertEqual(A__ , ['''c'''] ) self.assertEqual(A__ , [2] ) # Out indices set to match out features a__ , a__ : Optional[int] = get_aligned_output_features_output_indices(['''a''', '''c'''] , A__ , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [0, 2] ) # Out features set to match out indices a__ , a__ : int = get_aligned_output_features_output_indices(A__ , [0, 2] , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [0, 2] ) # Out features selected from negative indices a__ , a__ : List[str] = get_aligned_output_features_output_indices(A__ , [-3, -1] , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [-3, -1] ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , A__ ) # Out features must be a list with self.assertRaises(A__ ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(A__ ): verify_out_features_out_indices(A__ , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(A__ ): verify_out_features_out_indices(A__ , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(A__ ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def __lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' a__ : Optional[Any] = BackboneMixin() a__ : int = ['''a''', '''b''', '''c'''] a__ : List[Any] = ['''a''', '''c'''] a__ : Tuple = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly a__ : Dict = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) a__ : int = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
688
0
'''simple docstring''' from math import pi def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Tuple: return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
368
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __a ( lowerCAmelCase__ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any ): a__ : Dict = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue a__ : Any = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) a__ : int = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) a__ : Optional[Any] = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) a__ : Dict = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) a__ : List[str] = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) a__ : List[Any] = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) a__ : str = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) a__ : List[Any] = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) a__ : List[Any] = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) a__ : str = key.replace('''image_encoder.module''' , '''flava.image_model''' ) a__ : Dict = key.replace('''text_encoder.module''' , '''flava.text_model''' ) a__ : List[Any] = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) a__ : List[str] = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) a__ : List[str] = key.replace('''text_projection''' , '''flava.text_projection''' ) a__ : Any = key.replace('''image_projection''' , '''flava.image_projection''' ) a__ : Any = value.float() for key, value in codebook_state_dict.items(): a__ : List[str] = value return upgrade @torch.no_grad() def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict=None ): if config_path is not None: a__ : Tuple = FlavaConfig.from_pretrained(lowerCAmelCase__ ) else: a__ : Optional[int] = FlavaConfig() a__ : List[Any] = FlavaForPreTraining(lowerCAmelCase__ ).eval() a__ : Optional[int] = convert_dalle_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , save_checkpoint=lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): a__ : List[str] = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) else: a__ : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' ) a__ : List[Any] = upgrade_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) a__ : Any = hf_model.state_dict() a__ : Optional[Any] = count_parameters(lowerCAmelCase__ ) a__ : int = count_parameters(lowerCAmelCase__ ) + count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) hf_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __SCREAMING_SNAKE_CASE = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
688
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available a_ = { 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 3 class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" pass def __a ( lowerCAmelCase__ : List[str] ): for shard in shards: for i in range(lowerCAmelCase__ ): yield {"i": i, "shard": shard} def __a ( ): a__ : str = int(os.environ['''RANK'''] ) a__ : int = int(os.environ['''WORLD_SIZE'''] ) a__ : str = ArgumentParser() parser.add_argument('''--streaming''' , type=lowerCAmelCase__ ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase__ ) parser.add_argument('''--num_workers''' , type=lowerCAmelCase__ , default=0 ) a__ : int = parser.parse_args() a__ : List[str] = args.streaming a__ : Dict = args.num_workers a__ : Dict = {'''shards''': [F'shard_{shard_idx}' for shard_idx in range(lowerCAmelCase__ )]} a__ : Tuple = IterableDataset.from_generator(lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ ) if not streaming: a__ : str = Dataset.from_list(list(lowerCAmelCase__ ) ) a__ : Optional[int] = split_dataset_by_node(lowerCAmelCase__ , rank=lowerCAmelCase__ , world_size=lowerCAmelCase__ ) a__ : Dict = torch.utils.data.DataLoader(lowerCAmelCase__ , num_workers=lowerCAmelCase__ ) a__ : str = NUM_SHARDS * NUM_ITEMS_PER_SHARD a__ : Dict = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) a__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
688
0
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( lowerCAmelCase_ , unittest.TestCase ): UpperCamelCase =LayoutLMTokenizer UpperCamelCase =LayoutLMTokenizerFast UpperCamelCase =True UpperCamelCase =True def _lowerCamelCase ( self ) -> Any: super().setUp() __lowercase : Optional[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __lowercase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _lowerCamelCase ( self , **UpperCamelCase_ ) -> Tuple: return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A__ ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> str: __lowercase : List[str] = '''UNwant\u00E9d,running''' __lowercase : str = '''unwanted, running''' return input_text, output_text def _lowerCamelCase ( self ) -> Any: __lowercase : Tuple = self.tokenizer_class(self.vocab_file ) __lowercase : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [7, 4, 5, 10, 8, 9] ) def _lowerCamelCase ( self ) -> Union[str, Any]: pass
76
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __SCREAMING_SNAKE_CASE = open # noqa: we just need to have a builtin inside this module to test it properly
688
0
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel a : Optional[Any] = logging.getLogger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]: # save results if os.path.exists(lowerCAmelCase__ ): if os.path.exists(os.path.join(lowerCAmelCase__ , "config.json" ) ) and os.path.isfile( os.path.join(lowerCAmelCase__ , "config.json" ) ): os.remove(os.path.join(lowerCAmelCase__ , "config.json" ) ) if os.path.exists(os.path.join(lowerCAmelCase__ , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(lowerCAmelCase__ , "pytorch_model.bin" ) ): os.remove(os.path.join(lowerCAmelCase__ , "pytorch_model.bin" ) ) else: os.makedirs(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : Any=False ) -> Optional[Any]: __snake_case = 2 if unlogit: __snake_case = torch.pow(lowerCAmelCase__ , lowerCAmelCase__ ) __snake_case = p * torch.log(lowerCAmelCase__ ) __snake_case = 0 return -plogp.sum(dim=-1 ) def __UpperCAmelCase ( _UpperCAmelCase : str ) -> Optional[Any]: logger.info("lv, h >\t" + "\t".join(F'''{x + 1}''' for x in range(len(lowerCAmelCase__ ) ) ) ) for row in range(len(lowerCAmelCase__ ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + "\t".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + "\t".join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=None , _UpperCAmelCase : Any=False ) -> List[str]: __snake_case = model.config.num_hidden_layers, model.config.num_attention_heads __snake_case = torch.zeros(lowerCAmelCase__ , lowerCAmelCase__ ).to(args.device ) __snake_case = torch.zeros(lowerCAmelCase__ , lowerCAmelCase__ ).to(args.device ) if head_mask is None: __snake_case = torch.ones(lowerCAmelCase__ , lowerCAmelCase__ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCAmelCase__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __snake_case = None __snake_case = 0.0 __snake_case = 0.0 for step, inputs in enumerate(tqdm(lowerCAmelCase__ , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): __snake_case = tuple(t.to(args.device ) for t in inputs ) (__snake_case ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __snake_case = model(lowerCAmelCase__ , labels=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __snake_case = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCAmelCase__ ): __snake_case = entropy(attn.detach() , lowerCAmelCase__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCAmelCase__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __snake_case = 2 __snake_case = torch.pow(torch.pow(lowerCAmelCase__ , lowerCAmelCase__ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-2_0 if not args.dont_normalize_global_importance: __snake_case = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(lowerCAmelCase__ ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(lowerCAmelCase__ ) logger.info("Head ranked by importance scores" ) __snake_case = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __snake_case = torch.arange( head_importance.numel() , device=args.device ) __snake_case = head_ranks.view_as(lowerCAmelCase__ ) print_ad_tensor(lowerCAmelCase__ ) return attn_entropy, head_importance, total_loss def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]: __snake_case = compute_heads_importance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , compute_entropy=lowerCAmelCase__ ) __snake_case = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , lowerCAmelCase__ , original_score * args.masking_threshold ) __snake_case = torch.ones_like(lowerCAmelCase__ ) __snake_case = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __snake_case = original_score while current_score >= original_score * args.masking_threshold: __snake_case = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __snake_case = float("Inf" ) __snake_case = head_importance.view(-1 ).sort()[1] if len(lowerCAmelCase__ ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads __snake_case = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) __snake_case = new_head_mask.view(-1 ) __snake_case = 0.0 __snake_case = new_head_mask.view_as(lowerCAmelCase__ ) __snake_case = new_head_mask.clone().detach() print_ad_tensor(lowerCAmelCase__ ) # Compute metric and head importance again __snake_case = compute_heads_importance( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , compute_entropy=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) __snake_case = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , lowerCAmelCase__ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info("Final head mask" ) print_ad_tensor(lowerCAmelCase__ ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] ) -> Tuple: __snake_case = datetime.now() __snake_case = compute_heads_importance( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , compute_entropy=lowerCAmelCase__ , compute_importance=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) __snake_case = 1 / loss __snake_case = datetime.now() - before_time __snake_case = sum(p.numel() for p in model.parameters() ) __snake_case = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase__ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __snake_case = [ v, ] assert sum(len(lowerCAmelCase__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCAmelCase__ ) __snake_case = sum(p.numel() for p in model.parameters() ) __snake_case = datetime.now() __snake_case = compute_heads_importance( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , compute_entropy=lowerCAmelCase__ , compute_importance=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , actually_pruned=lowerCAmelCase__ , ) __snake_case = 1 / loss __snake_case = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , lowerCAmelCase__ , lowerCAmelCase__ , pruned_num_params / original_num_params * 1_00 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , lowerCAmelCase__ , lowerCAmelCase__ ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 1_00 ) save_model(lowerCAmelCase__ , args.output_dir ) def __UpperCAmelCase ( ) -> Dict: __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=lowerCAmelCase__ , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=lowerCAmelCase__ , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=lowerCAmelCase__ , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don\'t normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don\'t normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=lowerCAmelCase__ , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=lowerCAmelCase__ , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=lowerCAmelCase__ , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowerCAmelCase__ , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=lowerCAmelCase__ , help="Batch size." ) parser.add_argument("--seed" , type=lowerCAmelCase__ , default=42 ) parser.add_argument("--local_rank" , type=lowerCAmelCase__ , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=lowerCAmelCase__ , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=lowerCAmelCase__ , default="" , help="Can be used for distant debugging." ) __snake_case = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __snake_case = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) __snake_case = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __snake_case = torch.device("cuda" , args.local_rank ) __snake_case = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __snake_case = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __snake_case = nn.parallel.DistributedDataParallel( lowerCAmelCase__ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase__ ) elif args.n_gpu > 1: __snake_case = nn.DataParallel(lowerCAmelCase__ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCAmelCase__ ) torch.save(lowerCAmelCase__ , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , lowerCAmelCase__ ) # Prepare dataset __snake_case = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __snake_case = (torch.from_numpy(lowerCAmelCase__ ),) __snake_case = TensorDataset(*lowerCAmelCase__ ) __snake_case = RandomSampler(lowerCAmelCase__ ) __snake_case = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __snake_case = mask_heads(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) prune_heads(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
69
'''simple docstring''' import enum import shutil import sys __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = shutil.get_terminal_size() __SCREAMING_SNAKE_CASE = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class lowerCAmelCase__ ( enum.Enum ): """simple docstring""" __UpperCamelCase = 0 __UpperCamelCase = 1 def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict="" ): sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int="" ): forceWrite(F'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def __a ( ): forceWrite('''\r''' ) def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : str ): forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def __a ( ): forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def __a ( ): reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
688
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase_ ): lowercase = ['pixel_values'] def __init__( self : Dict , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 2_55 , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = True , **__lowerCamelCase : Union[str, Any] , ) -> None: '''simple docstring''' super().__init__(**A__ ) lowercase = size if size is not None else {'''height''': 3_84, '''width''': 3_84} lowercase = get_size_dict(A__ , default_to_square=A__ ) lowercase = do_resize lowercase = size lowercase = resample lowercase = do_rescale lowercase = rescale_factor lowercase = do_normalize lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase = image_std if image_std is not None else OPENAI_CLIP_STD lowercase = do_convert_rgb def __a ( self : int , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : List[Any] , ) -> np.ndarray: '''simple docstring''' lowercase = get_size_dict(A__ , default_to_square=A__ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) lowercase = (size['''height'''], size['''width''']) return resize(A__ , size=A__ , resample=A__ , data_format=A__ , **A__ ) def __a ( self : Tuple , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[int, float] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Any , ) -> Any: '''simple docstring''' return rescale(A__ , scale=A__ , data_format=A__ , **A__ ) def __a ( self : Optional[Any] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(A__ , mean=A__ , std=A__ , data_format=A__ , **A__ ) def __a ( self : List[Any] , __lowerCamelCase : ImageInput , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[Dict[str, int]] = None , __lowerCamelCase : PILImageResampling = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[float] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : bool = None , __lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCamelCase : int , ) -> PIL.Image.Image: '''simple docstring''' lowercase = do_resize if do_resize is not None else self.do_resize lowercase = resample if resample is not None else self.resample lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase = size if size is not None else self.size lowercase = get_size_dict(A__ , default_to_square=A__ ) lowercase = make_list_of_images(A__ ) if not valid_images(A__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase = [convert_to_rgb(A__ ) for image in images] # All transformations expect numpy arrays. lowercase = [to_numpy_array(A__ ) for image in images] if do_resize: lowercase = [self.resize(image=A__ , size=A__ , resample=A__ ) for image in images] if do_rescale: lowercase = [self.rescale(image=A__ , scale=A__ ) for image in images] if do_normalize: lowercase = [self.normalize(image=A__ , mean=A__ , std=A__ ) for image in images] lowercase = [to_channel_dimension_format(A__ , A__ ) for image in images] lowercase = BatchFeature(data={'''pixel_values''': images} , tensor_type=A__ ) return encoded_outputs
604
'''simple docstring''' import inspect import unittest class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def __lowerCAmelCase ( self : int ) -> str: '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps a__ : Optional[int] = inspect.getmembers(A__ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": a__ : int = '''k-diffusion''' elif backend == "invisible_watermark": a__ : int = '''invisible-watermark''' assert backend in deps, F'{backend} is not in the deps table!'
688
0
import numpy as np a =[ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class A_ : def __init__( self : Dict): __lowerCamelCase : int = np.array(A__) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : Optional[Any] = np.where(letter == self.SQUARE) __lowerCamelCase : List[str] = np.concatenate([indexa + 1, indexa + 1]) return indexes def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : int = self.SQUARE[indexa - 1, indexa - 1] return letter def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : Optional[Any] = message.lower() __lowerCamelCase : Tuple = message.replace(' ' ,'') __lowerCamelCase : Optional[int] = message.replace('j' ,'i') __lowerCamelCase : Any = np.empty((2, len(A__))) for letter_index in range(len(A__)): __lowerCamelCase : Any = self.letter_to_numbers(message[letter_index]) __lowerCamelCase : Any = numbers[0] __lowerCamelCase : int = numbers[1] __lowerCamelCase : Union[str, Any] = first_step.reshape(2 * len(A__)) __lowerCamelCase : str = '''''' for numbers_index in range(len(A__)): __lowerCamelCase : Tuple = int(second_step[numbers_index * 2]) __lowerCamelCase : Tuple = int(second_step[(numbers_index * 2) + 1]) __lowerCamelCase : Union[str, Any] = self.numbers_to_letter(A__ ,A__) __lowerCamelCase : Union[str, Any] = encoded_message + letter return encoded_message def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : Tuple = message.lower() message.replace(' ' ,'') __lowerCamelCase : int = np.empty(2 * len(A__)) for letter_index in range(len(A__)): __lowerCamelCase : Optional[int] = self.letter_to_numbers(message[letter_index]) __lowerCamelCase : Tuple = numbers[0] __lowerCamelCase : List[Any] = numbers[1] __lowerCamelCase : Optional[Any] = first_step.reshape((2, len(A__))) __lowerCamelCase : Any = '''''' for numbers_index in range(len(A__)): __lowerCamelCase : Union[str, Any] = int(second_step[0, numbers_index]) __lowerCamelCase : Union[str, Any] = int(second_step[1, numbers_index]) __lowerCamelCase : Dict = self.numbers_to_letter(A__ ,A__) __lowerCamelCase : List[str] = decoded_message + letter return decoded_message
652
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __a ( lowerCAmelCase__ : Dict ): a__ , a__ : int = image.size a__ , a__ : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a__ : Tuple = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) a__ : List[Any] = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0 a__ : Any = image[None].transpose(0 , 3 , 1 , 2 ) a__ : Dict = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , A__ : VQModel , A__ : UNetaDModel , A__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> str: '''simple docstring''' super().__init__() self.register_modules(vqvae=A__ , unet=A__ , scheduler=A__ ) @torch.no_grad() def __call__( self : List[str] , A__ : Union[torch.Tensor, PIL.Image.Image] = None , A__ : Optional[int] = 1 , A__ : Optional[int] = 1_0_0 , A__ : Optional[float] = 0.0 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(A__ , PIL.Image.Image ): a__ : List[Any] = 1 elif isinstance(A__ , torch.Tensor ): a__ : List[str] = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A__ )}' ) if isinstance(A__ , PIL.Image.Image ): a__ : Union[str, Any] = preprocess(A__ ) a__ , a__ : Dict = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image a__ : Optional[int] = (batch_size, self.unet.config.in_channels // 2, height, width) a__ : Optional[int] = next(self.unet.parameters() ).dtype a__ : List[str] = randn_tensor(A__ , generator=A__ , device=self.device , dtype=A__ ) a__ : Any = image.to(device=self.device , dtype=A__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(A__ , device=self.device ) a__ : int = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler a__ : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a__ : Union[str, Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a__ : str = {} if accepts_eta: a__ : Dict = eta for t in self.progress_bar(A__ ): # concat latents and low resolution image in the channel dimension. a__ : str = torch.cat([latents, image] , dim=1 ) a__ : Optional[Any] = self.scheduler.scale_model_input(A__ , A__ ) # predict the noise residual a__ : Union[str, Any] = self.unet(A__ , A__ ).sample # compute the previous noisy sample x_t -> x_t-1 a__ : Union[str, Any] = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample # decode the image latents with the VQVAE a__ : List[Any] = self.vqvae.decode(A__ ).sample a__ : List[Any] = torch.clamp(A__ , -1.0 , 1.0 ) a__ : Optional[Any] = image / 2 + 0.5 a__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a__ : Union[str, Any] = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case_ ( lowerCAmelCase_ ): '''simple docstring''' __UpperCamelCase = ['''image_processor''', '''tokenizer'''] __UpperCamelCase = '''LayoutLMv2ImageProcessor''' __UpperCamelCase = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : Union[str, Any] , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : Any ) -> Any: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , A__ , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A__ , A__ ) def __call__( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __lowerCamelCase : Union[List[List[int]], List[List[List[int]]]] = None , __lowerCamelCase : Optional[Union[List[int], List[List[int]]]] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[bool, str, PaddingStrategy] = False , __lowerCamelCase : Union[bool, str, TruncationStrategy] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[str, TensorType]] = None , **__lowerCamelCase : List[Any] , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowercase = self.image_processor(images=A__ , return_tensors=A__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(A__ , A__ ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features['''words'''] __lowercase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=A__ , add_special_tokens=A__ , padding=A__ , truncation=A__ , max_length=A__ , stride=A__ , pad_to_multiple_of=A__ , return_token_type_ids=A__ , return_attention_mask=A__ , return_overflowing_tokens=A__ , return_special_tokens_mask=A__ , return_offsets_mapping=A__ , return_length=A__ , verbose=A__ , return_tensors=A__ , **A__ , ) # add pixel values __lowercase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(A__ , encoded_inputs['overflow_to_sample_mapping'] ) __lowercase = images return encoded_inputs def UpperCAmelCase ( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple ) -> Tuple: '''simple docstring''' __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(A__ ) != len(A__ ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F" {len(A__ )} and {len(A__ )}" ) return images_with_overflow def UpperCAmelCase ( self : Optional[Any] , *__lowerCamelCase : Tuple , **__lowerCamelCase : str ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*A__ , **A__ ) def UpperCAmelCase ( self : List[Any] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Dict ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*A__ , **A__ ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , A__ , ) return self.image_processor_class @property def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , A__ , ) return self.image_processor
375
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name __SCREAMING_SNAKE_CASE = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : str=8 ): a__ : Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 a__ : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Dict , A__ : UNetaDConditionModel , A__ : DDPMScheduler , A__ : VQModel , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( unet=A__ , scheduler=A__ , movq=A__ , ) a__ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self : Optional[Any] , A__ : List[Any] , A__ : List[str] , A__ : Optional[Any] , A__ : Dict , A__ : Dict , A__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if latents is None: a__ : List[str] = randn_tensor(A__ , generator=A__ , device=A__ , dtype=A__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) a__ : int = latents.to(A__ ) a__ : Tuple = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self : Union[str, Any] , A__ : int=0 ) -> str: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) a__ : Union[str, Any] = torch.device(F'cuda:{gpu_id}' ) a__ : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A__ , A__ ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple=0 ) -> Dict: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) a__ : int = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=A__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a__ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: a__ , a__ : List[str] = cpu_offload_with_hook(A__ , A__ , prev_module_hook=A__ ) # We'll offload the last model manually. a__ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(A__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A__ ) def __call__( self : Any , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : torch.FloatTensor , A__ : int = 5_1_2 , A__ : int = 5_1_2 , A__ : int = 1_0_0 , A__ : float = 4.0 , A__ : int = 1 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[torch.FloatTensor] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> str: '''simple docstring''' a__ : Optional[Any] = self._execution_device a__ : List[str] = guidance_scale > 1.0 if isinstance(A__ , A__ ): a__ : int = torch.cat(A__ , dim=0 ) if isinstance(A__ , A__ ): a__ : Optional[int] = torch.cat(A__ , dim=0 ) if isinstance(A__ , A__ ): a__ : int = torch.cat(A__ , dim=0 ) a__ : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: a__ : Tuple = image_embeds.repeat_interleave(A__ , dim=0 ) a__ : Optional[int] = negative_image_embeds.repeat_interleave(A__ , dim=0 ) a__ : Optional[int] = hint.repeat_interleave(A__ , dim=0 ) a__ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A__ ) a__ : Tuple = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A__ ) self.scheduler.set_timesteps(A__ , device=A__ ) a__ : int = self.scheduler.timesteps a__ : str = self.movq.config.latent_channels a__ , a__ : Optional[int] = downscale_height_and_width(A__ , A__ , self.movq_scale_factor ) # create initial latent a__ : List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A__ , A__ , A__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A__ ) ): # expand the latents if we are doing classifier free guidance a__ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a__ : List[str] = {'''image_embeds''': image_embeds, '''hint''': hint} a__ : Union[str, Any] = self.unet( sample=A__ , timestep=A__ , encoder_hidden_states=A__ , added_cond_kwargs=A__ , return_dict=A__ , )[0] if do_classifier_free_guidance: a__ , a__ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) a__ , a__ : Dict = noise_pred.chunk(2 ) a__ , a__ : Optional[Any] = variance_pred.chunk(2 ) a__ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a__ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a__ , a__ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a__ : Union[str, Any] = self.scheduler.step( A__ , A__ , A__ , generator=A__ , )[0] # post-processing a__ : Tuple = self.movq.decode(A__ , force_not_quantize=A__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: a__ : Union[str, Any] = image * 0.5 + 0.5 a__ : str = image.clamp(0 , 1 ) a__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a__ : int = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __magic_name__: Optional[Any] = logging.get_logger(__name__) __magic_name__: List[Any] = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ ): lowercase__ : Tuple = '''dinat''' lowercase__ : Optional[int] = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowerCAmelCase__=4 , lowerCAmelCase__=3 , lowerCAmelCase__=64 , lowerCAmelCase__=[3, 4, 6, 5] , lowerCAmelCase__=[2, 4, 8, 16] , lowerCAmelCase__=7 , lowerCAmelCase__=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowerCAmelCase__=3.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=0.0 , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> List[Any]: super().__init__(**A__ ) __magic_name__ : Any = patch_size __magic_name__ : Any = num_channels __magic_name__ : Dict = embed_dim __magic_name__ : Optional[int] = depths __magic_name__ : List[Any] = len(A__ ) __magic_name__ : int = num_heads __magic_name__ : Tuple = kernel_size __magic_name__ : Dict = dilations __magic_name__ : Any = mlp_ratio __magic_name__ : List[Any] = qkv_bias __magic_name__ : Tuple = hidden_dropout_prob __magic_name__ : Optional[int] = attention_probs_dropout_prob __magic_name__ : List[str] = drop_path_rate __magic_name__ : Optional[int] = hidden_act __magic_name__ : Dict = layer_norm_eps __magic_name__ : List[str] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __magic_name__ : str = int(embed_dim * 2 ** (len(A__ ) - 1) ) __magic_name__ : Tuple = layer_scale_init_value __magic_name__ : Union[str, Any] = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(A__ ) + 1 )] __magic_name__ : List[str] = get_aligned_output_features_output_indices( out_features=A__ , out_indices=A__ , stage_names=self.stage_names )
324
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } __SCREAMING_SNAKE_CASE = { 'facebook/esm2_t6_8M_UR50D': 1_0_2_4, 'facebook/esm2_t12_35M_UR50D': 1_0_2_4, } def __a ( lowerCAmelCase__ : Union[str, Any] ): with open(lowerCAmelCase__ , '''r''' ) as f: a__ : Optional[int] = f.read().splitlines() return [l.strip() for l in lines] class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self : List[str] , A__ : int , A__ : Union[str, Any]="<unk>" , A__ : Tuple="<cls>" , A__ : List[Any]="<pad>" , A__ : Optional[int]="<mask>" , A__ : List[Any]="<eos>" , **A__ : Optional[Any] , ) -> Optional[int]: '''simple docstring''' super().__init__(**A__ ) a__ : Union[str, Any] = load_vocab_file(A__ ) a__ : int = dict(enumerate(self.all_tokens ) ) a__ : str = {tok: ind for ind, tok in enumerate(self.all_tokens )} a__ : List[Any] = unk_token a__ : Any = cls_token a__ : Any = pad_token a__ : Any = mask_token a__ : Any = eos_token a__ : int = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __lowerCAmelCase ( self : Any , A__ : int ) -> str: '''simple docstring''' return self._id_to_token.get(A__ , self.unk_token ) def __lowerCAmelCase ( self : Optional[Any] , A__ : str ) -> int: '''simple docstring''' return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple , **A__ : str ) -> List[Any]: '''simple docstring''' return text.split() def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int]=False ) -> Tuple: '''simple docstring''' return len(self._id_to_token ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def __lowerCAmelCase ( self : Any , A__ : str ) -> int: '''simple docstring''' return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) ) def __lowerCAmelCase ( self : List[Any] , A__ : int ) -> str: '''simple docstring''' return self._id_to_token.get(A__ , self.unk_token ) def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Tuple = [self.cls_token_id] a__ : Union[str, Any] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __lowerCAmelCase ( self : Tuple , A__ : List , A__ : Optional[List] = None , A__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] a__ : Any = [1] + ([0] * len(A__ )) + [1] if token_ids_a is not None: mask += [0] * len(A__ ) + [1] return mask def __lowerCAmelCase ( self : Any , A__ : Dict , A__ : Dict ) -> List[Any]: '''simple docstring''' a__ : Union[str, Any] = os.path.join(A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __lowerCAmelCase ( self : Any ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=A__ ) def __lowerCAmelCase ( self : List[str] , A__ : Union[List[str], List[AddedToken]] , A__ : bool = False ) -> int: '''simple docstring''' return super()._add_tokens(A__ , special_tokens=A__ )
688
0
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __lowerCamelCase : Dict = logging.get_logger(__name__) def lowerCamelCase_() -> Optional[int]: # Get the sagemaker specific mp parameters from smp_options variable. UpperCAmelCase = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCAmelCase = json.loads(lowerCAmelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCAmelCase = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCAmelCase = json.loads(lowerCAmelCase__ ) if not mpi_options.get("sagemaker_mpi_enabled" , lowerCAmelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class __magic_name__ ( lowerCAmelCase_ ): lowercase : str =field( default='''''', metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''}, ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Union[str, Any]: '''simple docstring''' super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , A__ , ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : str ) -> "torch.device": '''simple docstring''' logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: UpperCAmelCase = torch.device("cpu" ) UpperCAmelCase = 0 elif is_sagemaker_model_parallel_available(): UpperCAmelCase = smp.local_rank() UpperCAmelCase = torch.device("cuda" , A__ ) UpperCAmelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) UpperCAmelCase = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) UpperCAmelCase = torch.device("cuda" , self.local_rank ) UpperCAmelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCAmelCase = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCAmelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) UpperCAmelCase = torch.device("cuda" , self.local_rank ) UpperCAmelCase = 1 if device.type == "cuda": torch.cuda.set_device(A__ ) return device @property def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str: '''simple docstring''' if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def SCREAMING_SNAKE_CASE_ ( self : Any ) -> int: '''simple docstring''' return not is_sagemaker_model_parallel_available() @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return False
323
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class lowerCAmelCase__ : """simple docstring""" def __init__( self : str ) -> Dict: '''simple docstring''' a__ : List[str] = False def __lowerCAmelCase ( self : Tuple , A__ : Optional[int] , A__ : Optional[Any] , A__ : List[str] , A__ : Tuple ) -> Optional[int]: '''simple docstring''' if not self.initialized: a__ : Optional[Any] = RagRetriever( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) a__ : Union[str, Any] = True def __lowerCAmelCase ( self : Tuple ) -> Tuple: '''simple docstring''' self.retriever.index.init_index() def __lowerCAmelCase ( self : List[Any] , A__ : List[Any] , A__ : Optional[int] ) -> List[Any]: '''simple docstring''' a__ , a__ : Optional[Any] = self.retriever._main_retrieve(A__ , A__ ) return doc_ids, retrieved_doc_embeds class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : str , A__ : Optional[int] , A__ : List[Any] , A__ : List[Any] , A__ : str , A__ : Any=None ) -> Optional[Any]: '''simple docstring''' if index is not None and index.is_initialized() and len(A__ ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) a__ : List[str] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A__ , A__ , A__ , A__ ) for worker in self.retrieval_workers ] ) def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCAmelCase ( self : Optional[int] , A__ : Optional[int] , A__ : int ) -> Dict: '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. a__ : List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] a__ , a__ : Tuple = ray.get(random_worker.retrieve.remote(A__ , A__ ) ) else: a__ , a__ : int = self._main_retrieve(A__ , A__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A__ ) @classmethod def __lowerCAmelCase ( cls : int , A__ : Optional[Any] , A__ : Any=None , **A__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return super(A__ , cls ).get_tokenizers(A__ , A__ , **A__ ) @classmethod def __lowerCAmelCase ( cls : int , A__ : Optional[int] , A__ : Union[str, Any] , A__ : Union[str, Any]=None , **A__ : Dict ) -> List[Any]: '''simple docstring''' a__ : Dict = kwargs.pop('''config''' , A__ ) or RagConfig.from_pretrained(A__ , **A__ ) a__ : Dict = RagTokenizer.from_pretrained(A__ , config=A__ ) a__ : str = rag_tokenizer.question_encoder a__ : List[str] = rag_tokenizer.generator if indexed_dataset is not None: a__ : List[Any] = '''custom''' a__ : List[Any] = CustomHFIndex(config.retrieval_vector_size , A__ ) else: a__ : Optional[Any] = cls._build_index(A__ ) return cls( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , retrieval_workers=A__ , index=A__ , )
688
0
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __lowerCAmelCase ( __lowerCamelCase : Any ) -> Dict: __lowerCAmelCase =torch.exp(lowerCAmelCase__ ) __lowerCAmelCase =torch.sum(lowerCAmelCase__ , dim=1 ) # sum of exp(x_i) __lowerCAmelCase =torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(lowerCAmelCase__ ) - B / A class __a ( nn.Module ): def __init__( self : Any , snake_case_ : Union[str, Any])-> Union[str, Any]: super().__init__() __lowerCAmelCase =config.output_attentions __lowerCAmelCase =config.output_hidden_states __lowerCAmelCase =nn.ModuleList([BertLayer(A__) for _ in range(config.num_hidden_layers)]) __lowerCAmelCase =nn.ModuleList([BertHighway(A__) for _ in range(config.num_hidden_layers)]) __lowerCAmelCase =[-1 for _ in range(config.num_hidden_layers)] def UpperCamelCase ( self : List[str] , snake_case_ : Any)-> Optional[Any]: if (type(A__) is float) or (type(A__) is int): for i in range(len(self.early_exit_entropy)): __lowerCAmelCase =x else: __lowerCAmelCase =x def UpperCamelCase ( self : Dict , snake_case_ : Dict)-> Optional[Any]: __lowerCAmelCase =pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name]) def UpperCamelCase ( self : Dict , snake_case_ : Optional[int] , snake_case_ : Union[str, Any]=None , snake_case_ : Any=None , snake_case_ : Union[str, Any]=None , snake_case_ : Optional[Any]=None , )-> Optional[Any]: __lowerCAmelCase =() __lowerCAmelCase =() __lowerCAmelCase =() for i, layer_module in enumerate(self.layer): if self.output_hidden_states: __lowerCAmelCase =all_hidden_states + (hidden_states,) __lowerCAmelCase =layer_module( A__ , A__ , head_mask[i] , A__ , A__) __lowerCAmelCase =layer_outputs[0] if self.output_attentions: __lowerCAmelCase =all_attentions + (layer_outputs[1],) __lowerCAmelCase =(hidden_states,) if self.output_hidden_states: __lowerCAmelCase =current_outputs + (all_hidden_states,) if self.output_attentions: __lowerCAmelCase =current_outputs + (all_attentions,) __lowerCAmelCase =self.highway[i](A__) # logits, pooled_output if not self.training: __lowerCAmelCase =highway_exit[0] __lowerCAmelCase =entropy(A__) __lowerCAmelCase =highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __lowerCAmelCase =all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __lowerCAmelCase =(highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(A__ , i + 1) else: __lowerCAmelCase =all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __lowerCAmelCase =all_hidden_states + (hidden_states,) __lowerCAmelCase =(hidden_states,) if self.output_hidden_states: __lowerCAmelCase =outputs + (all_hidden_states,) if self.output_attentions: __lowerCAmelCase =outputs + (all_attentions,) __lowerCAmelCase =outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , lowerCAmelCase_ , ) class __a ( lowerCAmelCase_ ): def __init__( self : str , snake_case_ : Any)-> List[str]: super().__init__(A__) __lowerCAmelCase =config __lowerCAmelCase =BertEmbeddings(A__) __lowerCAmelCase =DeeBertEncoder(A__) __lowerCAmelCase =BertPooler(A__) self.init_weights() def UpperCamelCase ( self : List[Any])-> int: self.encoder.init_highway_pooler(self.pooler) def UpperCamelCase ( self : str)-> int: return self.embeddings.word_embeddings def UpperCamelCase ( self : List[Any] , snake_case_ : Tuple)-> Any: __lowerCAmelCase =value def UpperCamelCase ( self : Optional[int] , snake_case_ : Optional[Any])-> Optional[int]: for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(A__) @add_start_docstrings_to_model_forward(A__) def UpperCamelCase ( self : Union[str, Any] , snake_case_ : Optional[int]=None , snake_case_ : Optional[Any]=None , snake_case_ : Any=None , snake_case_ : str=None , snake_case_ : Optional[int]=None , snake_case_ : Union[str, Any]=None , snake_case_ : List[str]=None , snake_case_ : str=None , )-> Any: if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""") elif input_ids is not None: __lowerCAmelCase =input_ids.size() elif inputs_embeds is not None: __lowerCAmelCase =inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""") __lowerCAmelCase =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __lowerCAmelCase =torch.ones(A__ , device=A__) if encoder_attention_mask is None: __lowerCAmelCase =torch.ones(A__ , device=A__) if token_type_ids is None: __lowerCAmelCase =torch.zeros(A__ , dtype=torch.long , device=A__) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __lowerCAmelCase =self.get_extended_attention_mask(A__ , A__ , A__) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __lowerCAmelCase =encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __lowerCAmelCase =encoder_attention_mask[:, None, None, :] __lowerCAmelCase =encoder_extended_attention_mask.to( dtype=next(self.parameters()).dtype) # fp16 compatibility __lowerCAmelCase =(1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __lowerCAmelCase =self.get_head_mask(A__ , self.config.num_hidden_layers) __lowerCAmelCase =self.embeddings( input_ids=A__ , position_ids=A__ , token_type_ids=A__ , inputs_embeds=A__) __lowerCAmelCase =self.encoder( A__ , attention_mask=A__ , head_mask=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , ) __lowerCAmelCase =encoder_outputs[0] __lowerCAmelCase =self.pooler(A__) __lowerCAmelCase =( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __a ( lowerCAmelCase_ ): def __init__( self : str , snake_case_ : List[Any] , snake_case_ : Dict)-> Tuple: __lowerCAmelCase =message __lowerCAmelCase =exit_layer # start from 1! class __a ( nn.Module ): def __init__( self : Optional[int] , snake_case_ : List[Any])-> Optional[int]: super().__init__() __lowerCAmelCase =BertPooler(A__) __lowerCAmelCase =nn.Dropout(config.hidden_dropout_prob) __lowerCAmelCase =nn.Linear(config.hidden_size , config.num_labels) def UpperCamelCase ( self : List[Any] , snake_case_ : Optional[Any])-> str: __lowerCAmelCase =encoder_outputs[0] __lowerCAmelCase =self.pooler(A__) # "return" pooler_output # BertModel __lowerCAmelCase =(pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __lowerCAmelCase =bmodel_output[1] __lowerCAmelCase =self.dropout(A__) __lowerCAmelCase =self.classifier(A__) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , lowerCAmelCase_ , ) class __a ( lowerCAmelCase_ ): def __init__( self : Union[str, Any] , snake_case_ : Optional[Any])-> Dict: super().__init__(A__) __lowerCAmelCase =config.num_labels __lowerCAmelCase =config.num_hidden_layers __lowerCAmelCase =DeeBertModel(A__) __lowerCAmelCase =nn.Dropout(config.hidden_dropout_prob) __lowerCAmelCase =nn.Linear(config.hidden_size , self.config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(A__) def UpperCamelCase ( self : Any , snake_case_ : Optional[Any]=None , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Tuple=None , snake_case_ : Optional[int]=None , snake_case_ : Tuple=None , snake_case_ : Any=None , snake_case_ : List[str]=-1 , snake_case_ : List[str]=False , )-> List[Any]: __lowerCAmelCase =self.num_layers try: __lowerCAmelCase =self.bert( A__ , attention_mask=A__ , token_type_ids=A__ , position_ids=A__ , head_mask=A__ , inputs_embeds=A__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __lowerCAmelCase =outputs[1] __lowerCAmelCase =self.dropout(A__) __lowerCAmelCase =self.classifier(A__) __lowerCAmelCase =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __lowerCAmelCase =e.message __lowerCAmelCase =e.exit_layer __lowerCAmelCase =outputs[0] if not self.training: __lowerCAmelCase =entropy(A__) __lowerCAmelCase =[] __lowerCAmelCase =[] if labels is not None: if self.num_labels == 1: # We are doing regression __lowerCAmelCase =MSELoss() __lowerCAmelCase =loss_fct(logits.view(-1) , labels.view(-1)) else: __lowerCAmelCase =CrossEntropyLoss() __lowerCAmelCase =loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) # work with highway exits __lowerCAmelCase =[] for highway_exit in outputs[-1]: __lowerCAmelCase =highway_exit[0] if not self.training: highway_logits_all.append(A__) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression __lowerCAmelCase =MSELoss() __lowerCAmelCase =loss_fct(highway_logits.view(-1) , labels.view(-1)) else: __lowerCAmelCase =CrossEntropyLoss() __lowerCAmelCase =loss_fct(highway_logits.view(-1 , self.num_labels) , labels.view(-1)) highway_losses.append(A__) if train_highway: __lowerCAmelCase =(sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: __lowerCAmelCase =(loss,) + outputs if not self.training: __lowerCAmelCase =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __lowerCAmelCase =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
354
'''simple docstring''' def __a ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): a__ : List[str] = len(lowerCAmelCase__ ) a__ : int = [[0] * n for i in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): a__ : Dict = y_points[i] for i in range(2 , lowerCAmelCase__ ): for j in range(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Any = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
688
0
"""simple docstring""" def _lowerCAmelCase ( lowerCamelCase__ : int ) -> Union[str, Any]: if num < 0: return False _SCREAMING_SNAKE_CASE : int = num _SCREAMING_SNAKE_CASE : int = 0 while num > 0: _SCREAMING_SNAKE_CASE : List[str] = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
572
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "swin2sr" __UpperCamelCase = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , A__ : int=6_4 , A__ : List[Any]=1 , A__ : List[Any]=3 , A__ : Any=1_8_0 , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Dict=8 , A__ : Any=2.0 , A__ : Optional[int]=True , A__ : Union[str, Any]=0.0 , A__ : Union[str, Any]=0.0 , A__ : List[str]=0.1 , A__ : Any="gelu" , A__ : Tuple=False , A__ : Optional[int]=0.02 , A__ : List[Any]=1E-5 , A__ : Any=2 , A__ : Union[str, Any]=1.0 , A__ : Dict="1conv" , A__ : Optional[Any]="pixelshuffle" , **A__ : Optional[Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(**A__ ) a__ : List[str] = image_size a__ : Optional[Any] = patch_size a__ : Dict = num_channels a__ : Optional[int] = embed_dim a__ : int = depths a__ : Optional[int] = len(A__ ) a__ : Dict = num_heads a__ : List[Any] = window_size a__ : Optional[int] = mlp_ratio a__ : Optional[int] = qkv_bias a__ : Union[str, Any] = hidden_dropout_prob a__ : Dict = attention_probs_dropout_prob a__ : Union[str, Any] = drop_path_rate a__ : int = hidden_act a__ : int = use_absolute_embeddings a__ : Dict = layer_norm_eps a__ : List[str] = initializer_range a__ : List[Any] = upscale a__ : List[Any] = img_range a__ : Optional[int] = resi_connection a__ : int = upsampler
688
0
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule a__ : Tuple = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys a__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
368
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' a__ : int = 0 def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' a__ : Optional[int] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : List[Any] = Path(A__ ) / '''preprocessor_config.json''' a__ : List[Any] = Path(A__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Any = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : int = Path(A__ ) / '''preprocessor_config.json''' a__ : Optional[Any] = Path(A__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Tuple = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type a__ : int = Path(A__ ) / '''preprocessor_config.json''' a__ : Optional[int] = Path(A__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally a__ : List[Any] = AutoImageProcessor.from_pretrained(A__ ).to_dict() config_dict.pop('''image_processor_type''' ) a__ : Union[str, Any] = CLIPImageProcessor(**A__ ) # save in new folder model_config.save_pretrained(A__ ) config.save_pretrained(A__ ) a__ : Union[str, Any] = AutoImageProcessor.from_pretrained(A__ ) # make sure private variable is not incorrectly saved a__ : Optional[Any] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) a__ : Any = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( A__ , '''clip-base is not a local folder and is not a valid model identifier''' ): a__ : str = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowerCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' with self.assertRaisesRegex( A__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): a__ : Tuple = AutoImageProcessor.from_pretrained(A__ , revision='''aaaaaa''' ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( A__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): a__ : Union[str, Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' with self.assertRaises(A__ ): a__ : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(A__ ): a__ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) a__ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A__ ) a__ : str = AutoImageProcessor.from_pretrained(A__ , trust_remote_code=A__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , A__ ) AutoImageProcessor.register(A__ , A__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A__ ): AutoImageProcessor.register(A__ , A__ ) with tempfile.TemporaryDirectory() as tmpdirname: a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json''' a__ : List[str] = Path(A__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Tuple = CustomImageProcessor.from_pretrained(A__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A__ ) a__ : Tuple = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self : List[Any] ) -> List[str]: '''simple docstring''' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = True try: AutoConfig.register('''custom''' , A__ ) AutoImageProcessor.register(A__ , A__ ) # If remote code is not set, the default is to use local a__ : Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. a__ : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub a__ : Optional[int] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(A__ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
688
0
from math import asin, atan, cos, radians, sin, sqrt, tan a_ = 637_8137.0 a_ = 635_6752.31_4245 a_ = 637_8137 def lowerCamelCase__ ( _a , _a , _a , _a): SCREAMING_SNAKE_CASE : List[str] = (AXIS_A - AXIS_B) / AXIS_A SCREAMING_SNAKE_CASE : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase__))) SCREAMING_SNAKE_CASE : int = atan((1 - flattening) * tan(radians(lowerCAmelCase__))) SCREAMING_SNAKE_CASE : Optional[int] = radians(lowerCAmelCase__) SCREAMING_SNAKE_CASE : Optional[int] = radians(lowerCAmelCase__) # Equation SCREAMING_SNAKE_CASE : Optional[int] = sin((phi_a - phi_a) / 2) SCREAMING_SNAKE_CASE : List[Any] = sin((lambda_a - lambda_a) / 2) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda SCREAMING_SNAKE_CASE : Any = sqrt(sin_sq_phi + (cos(lowerCAmelCase__) * cos(lowerCAmelCase__) * sin_sq_lambda)) return 2 * RADIUS * asin(lowerCAmelCase__) if __name__ == "__main__": import doctest doctest.testmod()
25
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version __SCREAMING_SNAKE_CASE = get_logger(__name__) class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = "dummy_data" __UpperCamelCase = "datasets" __UpperCamelCase = False def __init__( self : Any , A__ : str , A__ : str , A__ : Union[Version, str] , A__ : Optional[str] = None , A__ : bool = False , A__ : bool = True , A__ : Optional[List[Callable]] = None , ) -> int: '''simple docstring''' a__ : Tuple = 0 a__ : Any = dataset_name a__ : int = cache_dir a__ : str = use_local_dummy_data a__ : List[str] = config # download_callbacks take a single url as input a__ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root a__ : str = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general a__ : Optional[Any] = str(A__ ) # to be downloaded a__ : Tuple = None a__ : Tuple = None @property def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' if self._dummy_file is None: a__ : Dict = self.download_dummy_data() return self._dummy_file @property def __lowerCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' a__ : int = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) a__ : str = cached_path( A__ , cache_dir=self.cache_dir , extract_compressed_file=A__ , force_extract=A__ ) return os.path.join(A__ , self.dummy_file_name ) @property def __lowerCAmelCase ( self : int ) -> Optional[int]: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' if self._bucket_url is None: a__ : int = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __lowerCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int] , *A__ : int ) -> Union[str, Any]: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested a__ : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned a__ : Union[str, Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(A__ , A__ ): return self.create_dummy_data_dict(A__ , A__ ) elif isinstance(A__ , (list, tuple) ): return self.create_dummy_data_list(A__ , A__ ) else: return self.create_dummy_data_single(A__ , A__ ) def __lowerCAmelCase ( self : List[str] , A__ : Any , *A__ : int ) -> Any: '''simple docstring''' return self.download_and_extract(A__ ) def __lowerCAmelCase ( self : Any , A__ : Optional[int] , A__ : Optional[Any] ) -> int: '''simple docstring''' return self.download_and_extract(A__ ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : int , *A__ : List[Any] , **A__ : str ) -> Optional[Any]: '''simple docstring''' return path def __lowerCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' return {} def __lowerCAmelCase ( self : int , A__ : Union[str, Any] , A__ : List[str] ) -> Any: '''simple docstring''' a__ : int = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(A__ , A__ ): for single_url in single_urls: download_callback(A__ ) else: a__ : Dict = single_urls download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(A__ , A__ ): a__ : Optional[int] = [os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) ) for x in single_urls] else: a__ : Optional[Any] = single_urls a__ : Tuple = os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) ) a__ : List[str] = value # make sure that values are unique if all(isinstance(A__ , A__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique a__ : Optional[int] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __lowerCAmelCase ( self : Dict , A__ : str , A__ : Optional[int] ) -> Optional[int]: '''simple docstring''' a__ : str = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one a__ : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , A__ ) ) for url in data_url ) a__ : Optional[Any] = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): a__ : Dict = [data_url[0]] * len(A__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a__ : Optional[int] = os.path.join(A__ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(A__ ) return dummy_data_list def __lowerCAmelCase ( self : Dict , A__ : Dict , A__ : str ) -> Optional[int]: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a__ : Union[str, Any] = os.path.join(A__ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(A__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __lowerCAmelCase ( self : int ) -> str: '''simple docstring''' pass def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: '''simple docstring''' pass def __lowerCAmelCase ( self : Any , A__ : Tuple ) -> Any: '''simple docstring''' def _iter_archive_members(A__ : str ): # this preserves the order of the members inside the ZIP archive a__ : Dict = Path(self.dummy_file ).parent a__ : Tuple = path.relative_to(A__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: a__ : Optional[Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(A__ ) a__ : str = Path(A__ ) a__ : Optional[Any] = _iter_archive_members(A__ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(A__ ).as_posix(), file_path.open('''rb''' ) def __lowerCAmelCase ( self : Tuple , A__ : Tuple ) -> Tuple: '''simple docstring''' if not isinstance(A__ , A__ ): a__ : int = [paths] for path in paths: if os.path.isfile(A__ ): if os.path.basename(A__ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(A__ ): if os.path.basename(A__ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(A__ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(A__ , A__ )
688
0
"""simple docstring""" import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy a_ = logging.get_logger(__name__) a_ = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } a_ = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } a_ = { 'jukebox': 5_1_2, } class UpperCAmelCase_ ( lowerCAmelCase_ ): UpperCamelCase =VOCAB_FILES_NAMES UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase =PRETRAINED_LYRIC_TOKENS_SIZES UpperCamelCase =["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=["v3", "v2", "v2"] , UpperCamelCase_=5_12 , UpperCamelCase_=5 , UpperCamelCase_="<|endoftext|>" , **UpperCamelCase_ , ) -> Tuple: __lowercase : Union[str, Any] = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else unk_token super().__init__( unk_token=A__ , n_genres=A__ , version=A__ , max_n_lyric_tokens=A__ , **A__ , ) __lowercase : List[str] = version __lowercase : Optional[Any] = max_n_lyric_tokens __lowercase : Tuple = n_genres with open(A__ , encoding='''utf-8''' ) as vocab_handle: __lowercase : List[Any] = json.load(A__ ) with open(A__ , encoding='''utf-8''' ) as vocab_handle: __lowercase : Any = json.load(A__ ) with open(A__ , encoding='''utf-8''' ) as vocab_handle: __lowercase : Dict = json.load(A__ ) __lowercase : Tuple = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase : str = oov.replace(R'''\-\'''' , R'''\-+\'''' ) __lowercase : List[str] = regex.compile(A__ ) __lowercase : List[str] = {v: k for k, v in self.artists_encoder.items()} __lowercase : Optional[Any] = {v: k for k, v in self.genres_encoder.items()} __lowercase : Union[str, Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def _lowerCamelCase ( self ) -> Tuple: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def _lowerCamelCase ( self ) -> Optional[int]: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Any: __lowercase : Union[str, Any] = [self.artists_encoder.get(A__ , 0 ) for artist in list_artists] for genres in range(len(A__ ) ): __lowercase : Dict = [self.genres_encoder.get(A__ , 0 ) for genre in list_genres[genres]] __lowercase : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase : Dict = [[self.lyrics_encoder.get(A__ , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def _lowerCamelCase ( self , UpperCamelCase_ ) -> Optional[Any]: return list(A__ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> Any: __lowercase : Optional[int] = self.prepare_for_tokenization(A__ , A__ , A__ ) __lowercase : Any = self._tokenize(A__ ) return artist, genre, lyrics def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase : Optional[Any] = artists[idx].lower() __lowercase : Union[str, Any] = [genres[idx].lower()] else: __lowercase : str = self._normalize(artists[idx] ) + '''.v2''' __lowercase : Union[str, Any] = [ self._normalize(A__ ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase : Any = regex.compile(R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) __lowercase : str = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' __lowercase : List[Any] = {vocab[index]: index + 1 for index in range(len(A__ ) )} __lowercase : int = 0 __lowercase : List[str] = len(A__ ) + 1 __lowercase : Any = self.vocab __lowercase : List[str] = {v: k for k, v in self.vocab.items()} __lowercase : Any = '''''' else: __lowercase : Any = regex.compile(R'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) __lowercase : Any = self._run_strip_accents(A__ ) __lowercase : Dict = lyrics.replace('''\\''' , '''\n''' ) __lowercase : Union[str, Any] = self.out_of_vocab.sub('''''' , A__ ), [], [] return artists, genres, lyrics def _lowerCamelCase ( self , UpperCamelCase_ ) -> str: __lowercase : Union[str, Any] = unicodedata.normalize('''NFD''' , A__ ) __lowercase : int = [] for char in text: __lowercase : Union[str, Any] = unicodedata.category(A__ ) if cat == "Mn": continue output.append(A__ ) return "".join(A__ ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> str: __lowercase : List[Any] = ( [chr(A__ ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(A__ ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(A__ ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) __lowercase : Dict = frozenset(A__ ) __lowercase : Tuple = re.compile(R'''_+''' ) __lowercase : Optional[int] = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) __lowercase : Any = pattern.sub('''_''' , A__ ).strip('''_''' ) return text def _lowerCamelCase ( self , UpperCamelCase_ ) -> str: return " ".join(A__ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ) -> int: if not isinstance(A__ , A__ ): __lowercase : Optional[Any] = TensorType(A__ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf __lowercase : Dict = tf.constant __lowercase : Optional[Any] = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch __lowercase : Optional[Any] = torch.tensor __lowercase : int = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 __lowercase : str = jnp.array __lowercase : str = _is_jax else: __lowercase : int = np.asarray __lowercase : List[str] = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase : int = [inputs] if not is_tensor(A__ ): __lowercase : str = as_tensor(A__ ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="" , UpperCamelCase_="pt" ) -> BatchEncoding: __lowercase : Dict = [0, 0, 0] __lowercase : str = [artist] * len(self.version ) __lowercase : Optional[int] = [genres] * len(self.version ) __lowercase : Union[str, Any] = self.tokenize(A__ , A__ , A__ ) __lowercase : Any = self._convert_token_to_id(A__ , A__ , A__ ) __lowercase : str = [-INFINITY] * len(full_tokens[-1] ) __lowercase : Optional[Any] = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A__ ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> Tuple[str]: if not os.path.isdir(A__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase : Optional[Any] = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(A__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A__ ) ) __lowercase : List[Any] = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(A__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A__ ) ) __lowercase : Optional[Any] = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(A__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A__ ) ) return (artists_file, genres_file, lyrics_file) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: __lowercase : Tuple = self.artists_decoder.get(A__ ) __lowercase : Any = [self.genres_decoder.get(A__ ) for genre in genres_index] __lowercase : Any = [self.lyrics_decoder.get(A__ ) for character in lyric_index] return artist, genres, lyrics
76
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = LxmertTokenizer __UpperCamelCase = LxmertTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def __lowerCAmelCase ( self : str ) -> str: '''simple docstring''' super().setUp() a__ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self : int , A__ : int ) -> int: '''simple docstring''' a__ : List[Any] = '''UNwant\u00E9d,running''' a__ : Optional[int] = '''unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self : int ) -> Dict: '''simple docstring''' a__ : Optional[int] = self.tokenizer_class(self.vocab_file ) a__ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [7, 4, 5, 1_0, 8, 9] ) def __lowerCAmelCase ( self : Any ) -> Dict: '''simple docstring''' if not self.test_rust_tokenizer: return a__ : Union[str, Any] = self.get_tokenizer() a__ : Union[str, Any] = self.get_rust_tokenizer() a__ : str = '''I was born in 92000, and this is falsé.''' a__ : Tuple = tokenizer.tokenize(A__ ) a__ : Tuple = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) a__ : Optional[int] = tokenizer.encode(A__ , add_special_tokens=A__ ) a__ : Optional[Any] = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) a__ : List[str] = self.get_rust_tokenizer() a__ : str = tokenizer.encode(A__ ) a__ : int = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ )
688
0
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel a : str = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 48_000, '''sample_size''': 65_536, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 48_000, '''sample_size''': 65_536, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 48_000, '''sample_size''': 131_072, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 16_000, '''sample_size''': 65_536, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 16_000, '''sample_size''': 65_536, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 16_000, '''sample_size''': 65_536, }, } def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> Optional[Any]: return torch.atana(lowerCAmelCase__ , lowerCAmelCase__ ) / math.pi * 2 def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] ) -> List[Any]: __snake_case = torch.sin(t * math.pi / 2 ) ** 2 __snake_case = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowerCAmelCase__ , lowerCAmelCase__ ) class SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ ): pass class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Union[str, Any] , a_ : Union[str, Any] ): """simple docstring""" super().__init__() __snake_case = DiffusionAttnUnetaD(A__ , n_attn_layers=4 ) __snake_case = deepcopy(self.diffusion ) __snake_case = torch.quasirandom.SobolEngine(1 , scramble=A__ ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: __snake_case = MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' a : str = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } a : Tuple = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } a : Optional[Any] = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } a : Optional[int] = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } a : Any = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } a : Any = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __UpperCAmelCase ( _UpperCAmelCase : List[Any] ) -> Dict: if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: for key, value in ATTN_MAP.items(): if name.startswith(lowerCAmelCase__ ) and not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return name.replace(lowerCAmelCase__ , lowerCAmelCase__ ) elif name.startswith(lowerCAmelCase__ ): return [name.replace(lowerCAmelCase__ , lowerCAmelCase__ ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : str=13 ) -> Any: __snake_case = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) __snake_case = 0 if string.startswith("net.3." ): depth += 1 __snake_case = string[6:] elif string.startswith("net." ): __snake_case = string[4:] while string.startswith("main.7." ): depth += 1 __snake_case = string[7:] if string.startswith("main." ): __snake_case = string[5:] # mid block if string[:2].isdigit(): __snake_case = string[:2] __snake_case = string[2:] else: __snake_case = string[0] __snake_case = string[1:] if depth == max_depth: __snake_case = MID_NUM_TO_LAYER[layer_num] __snake_case = '''mid_block''' elif depth > 0 and int(lowerCAmelCase__ ) < 7: __snake_case = DOWN_NUM_TO_LAYER[layer_num] __snake_case = F'''down_blocks.{depth}''' elif depth > 0 and int(lowerCAmelCase__ ) > 7: __snake_case = UP_NUM_TO_LAYER[layer_num] __snake_case = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: __snake_case = DEPTH_0_TO_LAYER[layer_num] __snake_case = F'''up_blocks.{max_depth - 1}''' if int(lowerCAmelCase__ ) > 3 else '''down_blocks.0''' if not string_left.startswith("." ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) __snake_case = string_left[1:] if "resnets" in new_layer: __snake_case = convert_resconv_naming(lowerCAmelCase__ ) elif "attentions" in new_layer: __snake_case = convert_attn_naming(lowerCAmelCase__ ) __snake_case = new_string_left if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __snake_case = prefix + '''.''' + new_layer + '''.''' + string_left else: __snake_case = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] ) -> Any: __snake_case = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue __snake_case = rename(lowerCAmelCase__ ) # check if we need to transform from Conv => Linear for attention if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __snake_case = transform_conv_attns(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: __snake_case = v return new_state_dict def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict ) -> Optional[Any]: if len(lowerCAmelCase__ ) == 1: if len(v.shape ) == 3: # weight __snake_case = v[:, :, 0] else: # bias __snake_case = v else: # qkv matrices __snake_case = v.shape[0] __snake_case = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: __snake_case = v[i * single_shape : (i + 1) * single_shape, :, 0] else: __snake_case = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __UpperCAmelCase ( _UpperCAmelCase : Tuple ) -> Optional[int]: __snake_case = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) __snake_case = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' __snake_case = download(lowerCAmelCase__ ) __snake_case = MODELS_MAP[model_name]['''sample_rate'''] __snake_case = MODELS_MAP[model_name]['''sample_size'''] __snake_case = Object() __snake_case = sample_size __snake_case = sample_rate __snake_case = 0 __snake_case = UNetaDModel(sample_size=lowerCAmelCase__ , sample_rate=lowerCAmelCase__ ) __snake_case = diffusers_model.state_dict() __snake_case = DiffusionUncond(lowerCAmelCase__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=lowerCAmelCase__ )["state_dict"] ) __snake_case = orig_model.diffusion_ema.eval() __snake_case = orig_model.state_dict() __snake_case = rename_orig_weights(lowerCAmelCase__ ) __snake_case = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) __snake_case = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowerCAmelCase__ ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith("kernel" ) for k in list(lowerCAmelCase__ ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": __snake_case = value.squeeze() __snake_case = value diffusers_model.load_state_dict(lowerCAmelCase__ ) __snake_case = 1_00 __snake_case = 33 __snake_case = IPNDMScheduler(num_train_timesteps=lowerCAmelCase__ ) __snake_case = torch.manual_seed(lowerCAmelCase__ ) __snake_case = torch.randn([1, 2, config.sample_size] , generator=lowerCAmelCase__ ).to(lowerCAmelCase__ ) __snake_case = torch.linspace(1 , 0 , steps + 1 , device=lowerCAmelCase__ )[:-1] __snake_case = get_crash_schedule(lowerCAmelCase__ ) __snake_case = DanceDiffusionPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) __snake_case = torch.manual_seed(33 ) __snake_case = pipe(num_inference_steps=lowerCAmelCase__ , generator=lowerCAmelCase__ ).audios __snake_case = sampling.iplms_sample(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {} ) __snake_case = generated.clamp(-1 , 1 ) __snake_case = (generated - audio).abs().sum() __snake_case = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , lowerCAmelCase__ ) print("Diff max" , lowerCAmelCase__ ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') a : Dict = parser.parse_args() main(args)
69
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file a__ : Dict = TapasConfig.from_json_file(lowerCAmelCase__ ) # set absolute/relative position embeddings parameter a__ : List[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": a__ : Optional[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "WTQ": # run_task_main.py hparams a__ : List[str] = 4 a__ : Optional[int] = True # hparam_utils.py hparams a__ : List[Any] = 0.664694 a__ : List[Any] = 0.207951 a__ : Union[str, Any] = 0.121194 a__ : Optional[Any] = True a__ : Optional[int] = True a__ : List[str] = False a__ : Union[str, Any] = 0.0352513 a__ : Any = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams a__ : Tuple = 4 a__ : Dict = False # hparam_utils.py hparams a__ : str = 36.4519 a__ : str = 0.903421 a__ : Optional[Any] = 222.088 a__ : Dict = True a__ : Dict = True a__ : Dict = True a__ : str = 0.763141 a__ : List[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "TABFACT": a__ : List[str] = TapasForSequenceClassification(config=lowerCAmelCase__ ) elif task == "MLM": a__ : Tuple = TapasForMaskedLM(config=lowerCAmelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": a__ : List[str] = TapasModel(config=lowerCAmelCase__ ) else: raise ValueError(F'Task {task} not supported.' ) print(F'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model (weights and configuration) print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowerCAmelCase__ ) # Save tokenizer files print(F'Save tokenizer files to {pytorch_dump_path}' ) a__ : Optional[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 ) tokenizer.save_pretrained(lowerCAmelCase__ ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
0
def __UpperCAmelCase ( UpperCAmelCase )-> Optional[int]: """simple docstring""" if not isinstance(lowerCAmelCase__, lowerCAmelCase__ ): lowercase = f'Input value of [number={number}] must be an integer' raise TypeError(lowerCAmelCase__ ) if number < 1: lowercase = f'Input value of [number={number}] must be > 0' raise ValueError(lowerCAmelCase__ ) lowercase = 1 for i in range(1, lowerCAmelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
604
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } __SCREAMING_SNAKE_CASE = { 'google/fnet-base': 5_1_2, 'google/fnet-large': 5_1_2, } __SCREAMING_SNAKE_CASE = '▁' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "token_type_ids"] __UpperCamelCase = FNetTokenizer def __init__( self : Any , A__ : Any=None , A__ : int=None , A__ : List[str]=False , A__ : int=True , A__ : str=True , A__ : List[Any]="<unk>" , A__ : Dict="[SEP]" , A__ : List[str]="<pad>" , A__ : Union[str, Any]="[CLS]" , A__ : Dict="[MASK]" , **A__ : Tuple , ) -> List[str]: '''simple docstring''' a__ : Optional[int] = ( AddedToken(A__ , lstrip=A__ , rstrip=A__ , normalized=A__ ) if isinstance(A__ , A__ ) else mask_token ) super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , remove_space=A__ , keep_accents=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , **A__ , ) a__ : Optional[Any] = do_lower_case a__ : Dict = remove_space a__ : List[Any] = keep_accents a__ : Optional[Any] = vocab_file a__ : Any = False if not self.vocab_file else True def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Optional[int] = [self.sep_token_id] a__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self : List[Any] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Dict = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Tuple , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ : Union[str, Any] = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ): copyfile(self.vocab_file , A__ ) return (out_vocab_file,)
688
0
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = 1_0**9 ) -> Optional[Any]: __lowerCamelCase : Optional[Any] = 1 __lowerCamelCase : str = 2 __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : Tuple = 0 __lowerCamelCase : int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __lowerCamelCase : int = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
652
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } __SCREAMING_SNAKE_CASE = { 'distilbert-base-uncased': 5_1_2, 'distilbert-base-uncased-distilled-squad': 5_1_2, 'distilbert-base-cased': 5_1_2, 'distilbert-base-cased-distilled-squad': 5_1_2, 'distilbert-base-german-cased': 5_1_2, 'distilbert-base-multilingual-cased': 5_1_2, } __SCREAMING_SNAKE_CASE = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = ["input_ids", "attention_mask"] __UpperCamelCase = DistilBertTokenizer def __init__( self : str , A__ : Optional[Any]=None , A__ : Any=None , A__ : Tuple=True , A__ : List[Any]="[UNK]" , A__ : List[str]="[SEP]" , A__ : Tuple="[PAD]" , A__ : Optional[int]="[CLS]" , A__ : Union[str, Any]="[MASK]" , A__ : List[str]=True , A__ : Any=None , **A__ : int , ) -> str: '''simple docstring''' super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , ) a__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , A__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , A__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , A__ ) != tokenize_chinese_chars ): a__ : int = getattr(A__ , normalizer_state.pop('''type''' ) ) a__ : List[Any] = do_lower_case a__ : str = strip_accents a__ : List[str] = tokenize_chinese_chars a__ : Dict = normalizer_class(**A__ ) a__ : List[Any] = do_lower_case def __lowerCAmelCase ( self : Tuple , A__ : List[str] , A__ : Dict=None ) -> List[str]: '''simple docstring''' a__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : int , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : List[str] = [self.sep_token_id] a__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : str , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' a__ : int = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ )
688
0
SCREAMING_SNAKE_CASE_ : Optional[Any] = 256 # Modulus to hash a string SCREAMING_SNAKE_CASE_ : Tuple = 100_0003 def SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> int: __lowercase = len(lowerCAmelCase__ ) __lowercase = len(lowerCAmelCase__ ) if p_len > t_len: return False __lowercase = 0 __lowercase = 0 __lowercase = 1 # Calculating the hash of pattern and substring of text for i in range(lowerCAmelCase__ ): __lowercase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __lowercase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __lowercase = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __lowercase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: __lowercase = '''abc1abc12''' __lowercase = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __lowercase = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) and not rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) # Test 2) __lowercase = '''ABABX''' __lowercase = '''ABABZABABYABABX''' assert rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) # Test 3) __lowercase = '''AAAB''' __lowercase = '''ABAAAAAB''' assert rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) # Test 4) __lowercase = '''abcdabcy''' __lowercase = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) # Test 5) __lowercase = '''Lü''' __lowercase = '''Lüsai''' assert rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = '''Lue''' assert not rabin_karp(lowerCAmelCase__ , lowerCAmelCase__ ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
375
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __SCREAMING_SNAKE_CASE = tuple[int, int] class lowerCAmelCase__ : """simple docstring""" def __init__( self : str , A__ : int , A__ : int , A__ : int , A__ : int , A__ : int , A__ : Node | None , ) -> None: '''simple docstring''' a__ : Optional[int] = pos_x a__ : str = pos_y a__ : Optional[int] = (pos_y, pos_x) a__ : List[str] = goal_x a__ : Any = goal_y a__ : Any = g_cost a__ : Optional[int] = parent a__ : Union[str, Any] = self.calculate_heuristic() a__ : List[Any] = self.g_cost + self.h_cost def __lowerCAmelCase ( self : Union[str, Any] ) -> float: '''simple docstring''' a__ : List[str] = self.pos_x - self.goal_x a__ : List[str] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A__ ) + abs(A__ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : List[Any] , A__ : Node ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , A__ : TPosition , A__ : TPosition ) -> Optional[Any]: '''simple docstring''' a__ : int = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A__ ) a__ : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , A__ ) a__ : Dict = [self.start] a__ : list[Node] = [] a__ : str = False def __lowerCAmelCase ( self : List[str] ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() a__ : Dict = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A__ ) self.closed_nodes.append(A__ ) a__ : List[Any] = self.get_successors(A__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A__ ) else: # retrieve the best current path a__ : Optional[int] = self.open_nodes.pop(self.open_nodes.index(A__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A__ ) else: self.open_nodes.append(A__ ) return [self.start.pos] def __lowerCAmelCase ( self : Optional[Any] , A__ : Node ) -> list[Node]: '''simple docstring''' a__ : Optional[int] = [] for action in delta: a__ : List[Any] = parent.pos_x + action[1] a__ : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A__ , A__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A__ , ) ) return successors def __lowerCAmelCase ( self : List[Any] , A__ : Node | None ) -> list[TPosition]: '''simple docstring''' a__ : Union[str, Any] = node a__ : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) a__ : Any = current_node.parent path.reverse() return path class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , A__ : TPosition , A__ : TPosition ) -> None: '''simple docstring''' a__ : str = AStar(A__ , A__ ) a__ : Optional[int] = AStar(A__ , A__ ) a__ : List[str] = False def __lowerCAmelCase ( self : Tuple ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() a__ : int = self.fwd_astar.open_nodes.pop(0 ) a__ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A__ , A__ ) self.fwd_astar.closed_nodes.append(A__ ) self.bwd_astar.closed_nodes.append(A__ ) a__ : Tuple = current_bwd_node a__ : Optional[int] = current_fwd_node a__ : Optional[int] = { self.fwd_astar: self.fwd_astar.get_successors(A__ ), self.bwd_astar: self.bwd_astar.get_successors(A__ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A__ ) else: # retrieve the best current path a__ : Optional[Any] = astar.open_nodes.pop( astar.open_nodes.index(A__ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A__ ) else: astar.open_nodes.append(A__ ) return [self.fwd_astar.start.pos] def __lowerCAmelCase ( self : List[str] , A__ : Node , A__ : Node ) -> list[TPosition]: '''simple docstring''' a__ : str = self.fwd_astar.retrace_path(A__ ) a__ : List[str] = self.bwd_astar.retrace_path(A__ ) bwd_path.pop() bwd_path.reverse() a__ : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __SCREAMING_SNAKE_CASE = (0, 0) __SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __SCREAMING_SNAKE_CASE = time.time() __SCREAMING_SNAKE_CASE = AStar(init, goal) __SCREAMING_SNAKE_CASE = a_star.search() __SCREAMING_SNAKE_CASE = time.time() - start_time print(f'AStar execution time = {end_time:f} seconds') __SCREAMING_SNAKE_CASE = time.time() __SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) __SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
688
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class snake_case__ : lowercase__ : List[str] = MBartConfig lowercase__ : Optional[Any] = {} lowercase__ : Tuple = '''gelu''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=20 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , ) -> Dict: __magic_name__ : Dict = parent __magic_name__ : Any = batch_size __magic_name__ : Any = seq_length __magic_name__ : Any = is_training __magic_name__ : Optional[int] = use_labels __magic_name__ : Dict = vocab_size __magic_name__ : Optional[int] = hidden_size __magic_name__ : Any = num_hidden_layers __magic_name__ : Optional[int] = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Optional[Any] = hidden_dropout_prob __magic_name__ : List[Any] = attention_probs_dropout_prob __magic_name__ : Union[str, Any] = max_position_embeddings __magic_name__ : Any = eos_token_id __magic_name__ : str = pad_token_id __magic_name__ : List[str] = bos_token_id def __magic_name__ ( self ) -> str: __magic_name__ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __magic_name__ : Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __magic_name__ : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) __magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __magic_name__ : str = prepare_mbart_inputs_dict(A__ , A__ , A__ ) return config, inputs_dict def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: __magic_name__ : str = TFMBartModel(config=A__ ).get_decoder() __magic_name__ : Dict = inputs_dict['''input_ids'''] __magic_name__ : List[str] = input_ids[:1, :] __magic_name__ : Dict = inputs_dict['''attention_mask'''][:1, :] __magic_name__ : Any = inputs_dict['''head_mask'''] __magic_name__ : List[str] = 1 # first forward pass __magic_name__ : Optional[Any] = model(A__ , attention_mask=A__ , head_mask=A__ , use_cache=A__ ) __magic_name__ : str = outputs.to_tuple() __magic_name__ : Optional[int] = past_key_values[1] def UpperCamelCase ( _A, _A, _A, _A=None, _A=None, _A=None, _A=None, _A=None, ): """simple docstring""" if attention_mask is None: __magic_name__ : Optional[Any] = tf.cast(tf.math.not_equal(lowerCAmelCase__, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: __magic_name__ : Any = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: __magic_name__ : Optional[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __magic_name__ : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __magic_name__ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): lowercase__ : Tuple = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase__ : Any = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase__ : Optional[int] = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase__ : Any = True lowercase__ : List[Any] = False lowercase__ : List[Any] = False def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __magic_name__ ( self ) -> int: __magic_name__ : Union[str, Any] = TFMBartModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=A__ ) def __magic_name__ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A__ ) @require_sentencepiece @require_tokenizers @require_tf class snake_case__ ( unittest.TestCase ): lowercase__ : int = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] lowercase__ : Tuple = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] lowercase__ : int = '''facebook/mbart-large-en-ro''' @cached_property def __magic_name__ ( self ) -> List[Any]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__ ( self ) -> str: __magic_name__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__ ( self , **lowerCAmelCase__ ) -> Tuple: __magic_name__ : Dict = self.translate_src_text(**A__ ) self.assertListEqual(self.expected_text , A__ ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : Optional[int] = self.tokenizer(self.src_text , **A__ , return_tensors="""tf""" ) __magic_name__ : List[Any] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __magic_name__ : List[str] = self.tokenizer.batch_decode(A__ , skip_special_tokens=A__ ) return generated_words @slow def __magic_name__ ( self ) -> List[str]: self._assert_generated_batch_equal_expected()
324
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ): # Construct model if gpta_config_file == "": a__ : Union[str, Any] = GPTaConfig() else: a__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase__ ) a__ : Optional[int] = GPTaModel(lowerCAmelCase__ ) # Load weights from numpy load_tf_weights_in_gpta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model a__ : int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME a__ : Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowerCAmelCase__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
688
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __magic_name__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : int ) -> str: '''simple docstring''' UpperCAmelCase = inspect.getfile(accelerate.test_utils ) UpperCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) UpperCAmelCase = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[Any]: '''simple docstring''' UpperCAmelCase = F'\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n '.split() UpperCAmelCase = [sys.executable] + distributed_args execute_subprocess_async(A__ , env=os.environ.copy() )
323
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } __SCREAMING_SNAKE_CASE = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } __SCREAMING_SNAKE_CASE = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: __SCREAMING_SNAKE_CASE = reader.read() __SCREAMING_SNAKE_CASE = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): __SCREAMING_SNAKE_CASE = UNetaDModel(**config) else: __SCREAMING_SNAKE_CASE = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel __SCREAMING_SNAKE_CASE = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __SCREAMING_SNAKE_CASE = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __SCREAMING_SNAKE_CASE = config[key] del config[key] __SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['down_block_types']] __SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: __SCREAMING_SNAKE_CASE = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) __SCREAMING_SNAKE_CASE = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue __SCREAMING_SNAKE_CASE = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: __SCREAMING_SNAKE_CASE = param_value __SCREAMING_SNAKE_CASE = True if not has_changed: __SCREAMING_SNAKE_CASE = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
688
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase_ = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } lowercase_ = { '''distilbert-base-uncased''': 5_12, '''distilbert-base-uncased-distilled-squad''': 5_12, '''distilbert-base-cased''': 5_12, '''distilbert-base-cased-distilled-squad''': 5_12, '''distilbert-base-german-cased''': 5_12, '''distilbert-base-multilingual-cased''': 5_12, } lowercase_ = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class __a ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE = DistilBertTokenizer def __init__( self : str , snake_case_ : Optional[Any]=None , snake_case_ : Any=None , snake_case_ : Tuple=True , snake_case_ : List[Any]="[UNK]" , snake_case_ : List[str]="[SEP]" , snake_case_ : Tuple="[PAD]" , snake_case_ : Optional[int]="[CLS]" , snake_case_ : Union[str, Any]="[MASK]" , snake_case_ : List[str]=True , snake_case_ : Any=None , **snake_case_ : int , )-> str: super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , ) __lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("""lowercase""" , A__) != do_lower_case or normalizer_state.get("""strip_accents""" , A__) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , A__) != tokenize_chinese_chars ): __lowerCAmelCase =getattr(A__ , normalizer_state.pop("""type""")) __lowerCAmelCase =do_lower_case __lowerCAmelCase =strip_accents __lowerCAmelCase =tokenize_chinese_chars __lowerCAmelCase =normalizer_class(**A__) __lowerCAmelCase =do_lower_case def UpperCamelCase ( self : Tuple , snake_case_ : List[str] , snake_case_ : Dict=None)-> List[str]: __lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self : int , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None)-> List[int]: __lowerCAmelCase =[self.sep_token_id] __lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCamelCase ( self : str , snake_case_ : str , snake_case_ : Optional[str] = None)-> Tuple[str]: __lowerCAmelCase =self._tokenizer.model.save(A__ , name=A__) return tuple(A__)
354
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = (KDPMaDiscreteScheduler,) __UpperCamelCase = 10 def __lowerCAmelCase ( self : Optional[Any] , **A__ : Optional[int] ) -> int: '''simple docstring''' a__ : Optional[int] = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**A__ ) return config def __lowerCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=A__ ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=A__ , beta_end=A__ ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A__ ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A__ ) def __lowerCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' a__ : Any = self.scheduler_classes[0] a__ : str = self.get_scheduler_config(prediction_type='''v_prediction''' ) a__ : Dict = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps ) a__ : Tuple = self.dummy_model() a__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma a__ : Dict = sample.to(A__ ) for i, t in enumerate(scheduler.timesteps ): a__ : Optional[Any] = scheduler.scale_model_input(A__ , A__ ) a__ : Union[str, Any] = model(A__ , A__ ) a__ : List[str] = scheduler.step(A__ , A__ , A__ ) a__ : Optional[Any] = output.prev_sample a__ : Tuple = torch.sum(torch.abs(A__ ) ) a__ : Optional[int] = torch.mean(torch.abs(A__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_002 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' if torch_device == "mps": return a__ : List[Any] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : Tuple = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps ) a__ : List[Any] = self.dummy_model() a__ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma a__ : Any = sample.to(A__ ) for i, t in enumerate(scheduler.timesteps ): a__ : str = scheduler.scale_model_input(A__ , A__ ) a__ : List[str] = model(A__ , A__ ) a__ : str = scheduler.step(A__ , A__ , A__ ) a__ : List[Any] = output.prev_sample a__ : Dict = torch.sum(torch.abs(A__ ) ) a__ : Optional[Any] = torch.mean(torch.abs(A__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> int: '''simple docstring''' if torch_device == "mps": return a__ : Optional[int] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : List[Any] = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps , device=A__ ) a__ : Union[str, Any] = self.dummy_model() a__ : List[Any] = self.dummy_sample_deter.to(A__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: a__ : Optional[int] = scheduler.scale_model_input(A__ , A__ ) a__ : List[Any] = model(A__ , A__ ) a__ : Any = scheduler.step(A__ , A__ , A__ ) a__ : List[str] = output.prev_sample a__ : Any = torch.sum(torch.abs(A__ ) ) a__ : Union[str, Any] = torch.mean(torch.abs(A__ ) ) if str(A__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3
688
0
"""simple docstring""" def _lowerCAmelCase ( lowerCamelCase__ : float, lowerCamelCase__ : int ) -> Union[str, Any]: if digit_amount > 0: return round(number - int(lowerCAmelCase__ ), lowerCAmelCase__ ) return number - int(lowerCAmelCase__ ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
572
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' a__ : str = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None a__ , a__ : List[Any] = get_aligned_output_features_output_indices(A__ , A__ , A__ ) self.assertEqual(A__ , ['''c'''] ) self.assertEqual(A__ , [2] ) # Out indices set to match out features a__ , a__ : Optional[int] = get_aligned_output_features_output_indices(['''a''', '''c'''] , A__ , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [0, 2] ) # Out features set to match out indices a__ , a__ : int = get_aligned_output_features_output_indices(A__ , [0, 2] , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [0, 2] ) # Out features selected from negative indices a__ , a__ : List[str] = get_aligned_output_features_output_indices(A__ , [-3, -1] , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [-3, -1] ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , A__ ) # Out features must be a list with self.assertRaises(A__ ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(A__ ): verify_out_features_out_indices(A__ , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(A__ ): verify_out_features_out_indices(A__ , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(A__ ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def __lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' a__ : Optional[Any] = BackboneMixin() a__ : int = ['''a''', '''b''', '''c'''] a__ : List[Any] = ['''a''', '''c'''] a__ : Tuple = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly a__ : Dict = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) a__ : int = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
688
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class __snake_case ( lowerCAmelCase_ ): __lowerCAmelCase = '''mgp-str''' def __init__( self , UpperCamelCase_=[32, 128] , UpperCamelCase_=4 , UpperCamelCase_=3 , UpperCamelCase_=27 , UpperCamelCase_=38 , UpperCamelCase_=5_0257 , UpperCamelCase_=3_0522 , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=4.0 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=1E-5 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=False , UpperCamelCase_=0.0_2 , **UpperCamelCase_ , ) -> int: super().__init__(**A__ ) snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = max_token_length snake_case__ = num_character_labels snake_case__ = num_bpe_labels snake_case__ = num_wordpiece_labels snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = mlp_ratio snake_case__ = distilled snake_case__ = layer_norm_eps snake_case__ = drop_rate snake_case__ = qkv_bias snake_case__ = attn_drop_rate snake_case__ = drop_path_rate snake_case__ = output_aa_attentions snake_case__ = initializer_range
368
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __a ( lowerCAmelCase__ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any ): a__ : Dict = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue a__ : Any = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) a__ : int = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) a__ : Optional[Any] = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) a__ : Dict = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) a__ : List[str] = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) a__ : List[Any] = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) a__ : str = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) a__ : List[Any] = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) a__ : List[Any] = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) a__ : str = key.replace('''image_encoder.module''' , '''flava.image_model''' ) a__ : Dict = key.replace('''text_encoder.module''' , '''flava.text_model''' ) a__ : List[Any] = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) a__ : List[str] = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) a__ : List[str] = key.replace('''text_projection''' , '''flava.text_projection''' ) a__ : Any = key.replace('''image_projection''' , '''flava.image_projection''' ) a__ : Any = value.float() for key, value in codebook_state_dict.items(): a__ : List[str] = value return upgrade @torch.no_grad() def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict=None ): if config_path is not None: a__ : Tuple = FlavaConfig.from_pretrained(lowerCAmelCase__ ) else: a__ : Optional[int] = FlavaConfig() a__ : List[Any] = FlavaForPreTraining(lowerCAmelCase__ ).eval() a__ : Optional[int] = convert_dalle_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , save_checkpoint=lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): a__ : List[str] = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) else: a__ : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' ) a__ : List[Any] = upgrade_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) a__ : Any = hf_model.state_dict() a__ : Optional[Any] = count_parameters(lowerCAmelCase__ ) a__ : int = count_parameters(lowerCAmelCase__ ) + count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) hf_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __SCREAMING_SNAKE_CASE = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
688
0
import inspect import unittest class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" try: import diffusers # noqa: F401 except ImportError: assert False def __UpperCamelCase ( self : int ) -> str: """simple docstring""" import diffusers from diffusers.dependency_versions_table import deps SCREAMING_SNAKE_CASE : Optional[int] = inspect.getmembers(A__ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": SCREAMING_SNAKE_CASE : int = '''k-diffusion''' elif backend == "invisible_watermark": SCREAMING_SNAKE_CASE : int = '''invisible-watermark''' assert backend in deps, F"{backend} is not in the deps table!"
25
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 3 class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" pass def __a ( lowerCAmelCase__ : List[str] ): for shard in shards: for i in range(lowerCAmelCase__ ): yield {"i": i, "shard": shard} def __a ( ): a__ : str = int(os.environ['''RANK'''] ) a__ : int = int(os.environ['''WORLD_SIZE'''] ) a__ : str = ArgumentParser() parser.add_argument('''--streaming''' , type=lowerCAmelCase__ ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase__ ) parser.add_argument('''--num_workers''' , type=lowerCAmelCase__ , default=0 ) a__ : int = parser.parse_args() a__ : List[str] = args.streaming a__ : Dict = args.num_workers a__ : Dict = {'''shards''': [F'shard_{shard_idx}' for shard_idx in range(lowerCAmelCase__ )]} a__ : Tuple = IterableDataset.from_generator(lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ ) if not streaming: a__ : str = Dataset.from_list(list(lowerCAmelCase__ ) ) a__ : Optional[int] = split_dataset_by_node(lowerCAmelCase__ , rank=lowerCAmelCase__ , world_size=lowerCAmelCase__ ) a__ : Dict = torch.utils.data.DataLoader(lowerCAmelCase__ , num_workers=lowerCAmelCase__ ) a__ : str = NUM_SHARDS * NUM_ITEMS_PER_SHARD a__ : Dict = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) a__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
688
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
76
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __SCREAMING_SNAKE_CASE = open # noqa: we just need to have a builtin inside this module to test it properly
688
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging a : Union[str, Any] = logging.get_logger(__name__) # TODO: upload to AWS a : List[str] = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = """retribert""" def __init__( self : List[str] , a_ : Dict=30_522 , a_ : Any=768 , a_ : Union[str, Any]=8 , a_ : Dict=12 , a_ : Union[str, Any]=3_072 , a_ : str="gelu" , a_ : List[Any]=0.1 , a_ : Union[str, Any]=0.1 , a_ : Tuple=512 , a_ : Tuple=2 , a_ : Optional[Any]=0.02 , a_ : int=1e-12 , a_ : Dict=True , a_ : List[str]=128 , a_ : Tuple=0 , **a_ : Union[str, Any] , ): """simple docstring""" super().__init__(pad_token_id=A__ , **A__ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = share_encoders __snake_case = projection_dim
69
'''simple docstring''' import enum import shutil import sys __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = shutil.get_terminal_size() __SCREAMING_SNAKE_CASE = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class lowerCAmelCase__ ( enum.Enum ): """simple docstring""" __UpperCamelCase = 0 __UpperCamelCase = 1 def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict="" ): sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int="" ): forceWrite(F'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def __a ( ): forceWrite('''\r''' ) def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : str ): forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def __a ( ): forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def __a ( ): reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
688
0
def __UpperCAmelCase ( UpperCAmelCase )-> int: """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) lowercase = len(bin(lowerCAmelCase__ )[3:] ) lowercase = bin(abs(lowerCAmelCase__ ) - (1 << binary_number_length) )[3:] lowercase = ( ( '''1''' + '''0''' * (binary_number_length - len(lowerCAmelCase__ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
604
'''simple docstring''' import inspect import unittest class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def __lowerCAmelCase ( self : int ) -> str: '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps a__ : Optional[int] = inspect.getmembers(A__ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": a__ : int = '''k-diffusion''' elif backend == "invisible_watermark": a__ : int = '''invisible-watermark''' assert backend in deps, F'{backend} is not in the deps table!'
688
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''pytorch''', '''script''': '''run_ddp.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf_dist.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.6, '''eval_loss''': 0.7}, }, ] ) class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : List[str]): if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() ,encoding='utf-8' ,check=A__ ,) assert hasattr(self ,'env') def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : int = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings __lowerCamelCase : str = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=A__ ,instance_count=A__ ,instance_type=self.instance_type ,debugger_hook_config=A__ ,hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,distribution=A__ ,py_version='py36' ,) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[Any]): TrainingJobAnalytics(A__).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(2,)]) def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Dict): __lowerCamelCase : Optional[Any] = self.create_estimator(A__) # run training estimator.fit() # result dataframe __lowerCamelCase : List[Any] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis __lowerCamelCase : str = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value']) __lowerCamelCase : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value']) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowerCamelCase : List[str] = ( Session().describe_training_job(estimator.latest_training_job.name).get('TrainingTimeInSeconds' ,9_9_9_9_9_9) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy) assert all(t <= self.results['eval_loss'] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" ,'w') as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} ,A__)
652
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __a ( lowerCAmelCase__ : Dict ): a__ , a__ : int = image.size a__ , a__ : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a__ : Tuple = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) a__ : List[Any] = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0 a__ : Any = image[None].transpose(0 , 3 , 1 , 2 ) a__ : Dict = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , A__ : VQModel , A__ : UNetaDModel , A__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> str: '''simple docstring''' super().__init__() self.register_modules(vqvae=A__ , unet=A__ , scheduler=A__ ) @torch.no_grad() def __call__( self : List[str] , A__ : Union[torch.Tensor, PIL.Image.Image] = None , A__ : Optional[int] = 1 , A__ : Optional[int] = 1_0_0 , A__ : Optional[float] = 0.0 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(A__ , PIL.Image.Image ): a__ : List[Any] = 1 elif isinstance(A__ , torch.Tensor ): a__ : List[str] = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A__ )}' ) if isinstance(A__ , PIL.Image.Image ): a__ : Union[str, Any] = preprocess(A__ ) a__ , a__ : Dict = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image a__ : Optional[int] = (batch_size, self.unet.config.in_channels // 2, height, width) a__ : Optional[int] = next(self.unet.parameters() ).dtype a__ : List[str] = randn_tensor(A__ , generator=A__ , device=self.device , dtype=A__ ) a__ : Any = image.to(device=self.device , dtype=A__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(A__ , device=self.device ) a__ : int = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler a__ : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a__ : Union[str, Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a__ : str = {} if accepts_eta: a__ : Dict = eta for t in self.progress_bar(A__ ): # concat latents and low resolution image in the channel dimension. a__ : str = torch.cat([latents, image] , dim=1 ) a__ : Optional[Any] = self.scheduler.scale_model_input(A__ , A__ ) # predict the noise residual a__ : Union[str, Any] = self.unet(A__ , A__ ).sample # compute the previous noisy sample x_t -> x_t-1 a__ : Union[str, Any] = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample # decode the image latents with the VQVAE a__ : List[Any] = self.vqvae.decode(A__ ).sample a__ : List[Any] = torch.clamp(A__ , -1.0 , 1.0 ) a__ : Optional[Any] = image / 2 + 0.5 a__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a__ : Union[str, Any] = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : List[str] = '''▁''' SCREAMING_SNAKE_CASE_ : str = {'''vocab_file''': '''sentencepiece.bpe.model'''} SCREAMING_SNAKE_CASE_ : Optional[Any] = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), } } SCREAMING_SNAKE_CASE_ : Optional[Any] = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off SCREAMING_SNAKE_CASE_ : Optional[Any] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class snake_case_ ( lowerCAmelCase_ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = [] __UpperCamelCase = [] def __init__( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : Optional[int]="</s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Any="<unk>" , __lowerCamelCase : Dict="<pad>" , __lowerCamelCase : Optional[int]="<mask>" , __lowerCamelCase : int=None , __lowerCamelCase : str=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[Dict[str, Any]] = None , __lowerCamelCase : Any=None , **__lowerCamelCase : Dict , ) -> List[str]: '''simple docstring''' __lowercase = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else mask_token __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A__ , eos_token=A__ , unk_token=A__ , sep_token=A__ , cls_token=A__ , pad_token=A__ , mask_token=A__ , tokenizer_file=A__ , src_lang=A__ , tgt_lang=A__ , additional_special_tokens=A__ , sp_model_kwargs=self.sp_model_kwargs , **A__ , ) __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A__ ) ) __lowercase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowercase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowercase = 1 __lowercase = len(self.sp_model ) __lowercase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A__ ) } __lowercase = {v: k for k, v in self.lang_code_to_id.items()} __lowercase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __lowercase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __lowercase = src_lang if src_lang is not None else '''en_XX''' __lowercase = self.lang_code_to_id[self._src_lang] __lowercase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ) -> Tuple: '''simple docstring''' __lowercase = self.__dict__.copy() __lowercase = None __lowercase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Any , __lowerCamelCase : Optional[Any] ) -> Any: '''simple docstring''' __lowercase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCAmelCase ( self : List[str] ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def UpperCAmelCase ( self : Tuple , __lowerCamelCase : str ) -> None: '''simple docstring''' __lowercase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) __lowercase = [1] * len(self.prefix_tokens ) __lowercase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A__ )) + suffix_ones return prefix_ones + ([0] * len(A__ )) + ([0] * len(A__ )) + suffix_ones def UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : Optional[str] , __lowerCamelCase : Optional[str] , **__lowerCamelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __lowercase = src_lang __lowercase = self(A__ , add_special_tokens=A__ , return_tensors=A__ , **A__ ) __lowercase = self.convert_tokens_to_ids(A__ ) __lowercase = tgt_lang_id return inputs def UpperCAmelCase ( self : int ) -> str: '''simple docstring''' __lowercase = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : Any , __lowerCamelCase : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(A__ , out_type=A__ ) def UpperCAmelCase ( self : List[Any] , __lowerCamelCase : List[str] ) -> Tuple: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowercase = self.sp_model.PieceToId(A__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple ) -> List[Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : List[str] ) -> Dict: '''simple docstring''' __lowercase = ''''''.join(A__ ).replace(A__ , ' ' ).strip() return out_string def UpperCAmelCase ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( A__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , 'wb' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,) def UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str = "en_XX" , __lowerCamelCase : Optional[List[str]] = None , __lowerCamelCase : str = "ro_RO" , **__lowerCamelCase : Optional[Any] , ) -> BatchEncoding: '''simple docstring''' __lowercase = src_lang __lowercase = tgt_lang return super().prepare_seqaseq_batch(A__ , A__ , **A__ ) def UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase ( self : Any ) -> List[Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase ( self : str , __lowerCamelCase : Tuple ) -> None: '''simple docstring''' __lowercase = self.lang_code_to_id[src_lang] __lowercase = [] __lowercase = [self.eos_token_id, self.cur_lang_code] def UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : str ) -> None: '''simple docstring''' __lowercase = self.lang_code_to_id[lang] __lowercase = [] __lowercase = [self.eos_token_id, self.cur_lang_code]
375
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name __SCREAMING_SNAKE_CASE = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : str=8 ): a__ : Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 a__ : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Dict , A__ : UNetaDConditionModel , A__ : DDPMScheduler , A__ : VQModel , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( unet=A__ , scheduler=A__ , movq=A__ , ) a__ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self : Optional[Any] , A__ : List[Any] , A__ : List[str] , A__ : Optional[Any] , A__ : Dict , A__ : Dict , A__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if latents is None: a__ : List[str] = randn_tensor(A__ , generator=A__ , device=A__ , dtype=A__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) a__ : int = latents.to(A__ ) a__ : Tuple = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self : Union[str, Any] , A__ : int=0 ) -> str: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) a__ : Union[str, Any] = torch.device(F'cuda:{gpu_id}' ) a__ : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A__ , A__ ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple=0 ) -> Dict: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) a__ : int = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=A__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a__ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: a__ , a__ : List[str] = cpu_offload_with_hook(A__ , A__ , prev_module_hook=A__ ) # We'll offload the last model manually. a__ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(A__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A__ ) def __call__( self : Any , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : torch.FloatTensor , A__ : int = 5_1_2 , A__ : int = 5_1_2 , A__ : int = 1_0_0 , A__ : float = 4.0 , A__ : int = 1 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[torch.FloatTensor] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> str: '''simple docstring''' a__ : Optional[Any] = self._execution_device a__ : List[str] = guidance_scale > 1.0 if isinstance(A__ , A__ ): a__ : int = torch.cat(A__ , dim=0 ) if isinstance(A__ , A__ ): a__ : Optional[int] = torch.cat(A__ , dim=0 ) if isinstance(A__ , A__ ): a__ : int = torch.cat(A__ , dim=0 ) a__ : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: a__ : Tuple = image_embeds.repeat_interleave(A__ , dim=0 ) a__ : Optional[int] = negative_image_embeds.repeat_interleave(A__ , dim=0 ) a__ : Optional[int] = hint.repeat_interleave(A__ , dim=0 ) a__ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A__ ) a__ : Tuple = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A__ ) self.scheduler.set_timesteps(A__ , device=A__ ) a__ : int = self.scheduler.timesteps a__ : str = self.movq.config.latent_channels a__ , a__ : Optional[int] = downscale_height_and_width(A__ , A__ , self.movq_scale_factor ) # create initial latent a__ : List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A__ , A__ , A__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A__ ) ): # expand the latents if we are doing classifier free guidance a__ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a__ : List[str] = {'''image_embeds''': image_embeds, '''hint''': hint} a__ : Union[str, Any] = self.unet( sample=A__ , timestep=A__ , encoder_hidden_states=A__ , added_cond_kwargs=A__ , return_dict=A__ , )[0] if do_classifier_free_guidance: a__ , a__ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) a__ , a__ : Dict = noise_pred.chunk(2 ) a__ , a__ : Optional[Any] = variance_pred.chunk(2 ) a__ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a__ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a__ , a__ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a__ : Union[str, Any] = self.scheduler.step( A__ , A__ , A__ , generator=A__ , )[0] # post-processing a__ : Tuple = self.movq.decode(A__ , force_not_quantize=A__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: a__ : Union[str, Any] = image * 0.5 + 0.5 a__ : str = image.clamp(0 , 1 ) a__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a__ : int = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
0
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __magic_name__: Any = 0 __magic_name__: List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __magic_name__: Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __magic_name__: int = tuple[int, int] class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> None: __magic_name__ : Optional[int] = pos_x __magic_name__ : str = pos_y __magic_name__ : Optional[int] = (pos_y, pos_x) __magic_name__ : List[str] = goal_x __magic_name__ : Any = goal_y __magic_name__ : Any = g_cost __magic_name__ : Optional[int] = parent __magic_name__ : Union[str, Any] = self.calculate_heuristic() __magic_name__ : List[Any] = self.g_cost + self.h_cost def __magic_name__ ( self ) -> float: __magic_name__ : List[str] = self.pos_x - self.goal_x __magic_name__ : List[str] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A__ ) + abs(A__ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , lowerCAmelCase__ ) -> bool: return self.f_cost < other.f_cost class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : int = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A__ ) __magic_name__ : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , A__ ) __magic_name__ : Dict = [self.start] __magic_name__ : list[Node] = [] __magic_name__ : str = False def __magic_name__ ( self ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __magic_name__ : Dict = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A__ ) self.closed_nodes.append(A__ ) __magic_name__ : List[Any] = self.get_successors(A__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A__ ) else: # retrieve the best current path __magic_name__ : Optional[int] = self.open_nodes.pop(self.open_nodes.index(A__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A__ ) else: self.open_nodes.append(A__ ) return [self.start.pos] def __magic_name__ ( self , lowerCAmelCase__ ) -> list[Node]: __magic_name__ : Optional[int] = [] for action in delta: __magic_name__ : List[Any] = parent.pos_x + action[1] __magic_name__ : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A__ , A__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A__ , ) ) return successors def __magic_name__ ( self , lowerCAmelCase__ ) -> list[TPosition]: __magic_name__ : Union[str, Any] = node __magic_name__ : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __magic_name__ : Any = current_node.parent path.reverse() return path class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : str = AStar(A__ , A__ ) __magic_name__ : Optional[int] = AStar(A__ , A__ ) __magic_name__ : List[str] = False def __magic_name__ ( self ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __magic_name__ : int = self.fwd_astar.open_nodes.pop(0 ) __magic_name__ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A__ , A__ ) self.fwd_astar.closed_nodes.append(A__ ) self.bwd_astar.closed_nodes.append(A__ ) __magic_name__ : Tuple = current_bwd_node __magic_name__ : Optional[int] = current_fwd_node __magic_name__ : Optional[int] = { self.fwd_astar: self.fwd_astar.get_successors(A__ ), self.bwd_astar: self.bwd_astar.get_successors(A__ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A__ ) else: # retrieve the best current path __magic_name__ : Optional[Any] = astar.open_nodes.pop( astar.open_nodes.index(A__ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A__ ) else: astar.open_nodes.append(A__ ) return [self.fwd_astar.start.pos] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> list[TPosition]: __magic_name__ : str = self.fwd_astar.retrace_path(A__ ) __magic_name__ : List[str] = self.bwd_astar.retrace_path(A__ ) bwd_path.pop() bwd_path.reverse() __magic_name__ : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __magic_name__: Dict = (0, 0) __magic_name__: int = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __magic_name__: str = time.time() __magic_name__: Optional[int] = AStar(init, goal) __magic_name__: Dict = a_star.search() __magic_name__: Union[str, Any] = time.time() - start_time print(F"""AStar execution time = {end_time:f} seconds""") __magic_name__: Optional[int] = time.time() __magic_name__: Optional[int] = BidirectionalAStar(init, goal) __magic_name__: Optional[Any] = time.time() - bd_start_time print(F"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
324
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } __SCREAMING_SNAKE_CASE = { 'facebook/esm2_t6_8M_UR50D': 1_0_2_4, 'facebook/esm2_t12_35M_UR50D': 1_0_2_4, } def __a ( lowerCAmelCase__ : Union[str, Any] ): with open(lowerCAmelCase__ , '''r''' ) as f: a__ : Optional[int] = f.read().splitlines() return [l.strip() for l in lines] class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self : List[str] , A__ : int , A__ : Union[str, Any]="<unk>" , A__ : Tuple="<cls>" , A__ : List[Any]="<pad>" , A__ : Optional[int]="<mask>" , A__ : List[Any]="<eos>" , **A__ : Optional[Any] , ) -> Optional[int]: '''simple docstring''' super().__init__(**A__ ) a__ : Union[str, Any] = load_vocab_file(A__ ) a__ : int = dict(enumerate(self.all_tokens ) ) a__ : str = {tok: ind for ind, tok in enumerate(self.all_tokens )} a__ : List[Any] = unk_token a__ : Any = cls_token a__ : Any = pad_token a__ : Any = mask_token a__ : Any = eos_token a__ : int = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __lowerCAmelCase ( self : Any , A__ : int ) -> str: '''simple docstring''' return self._id_to_token.get(A__ , self.unk_token ) def __lowerCAmelCase ( self : Optional[Any] , A__ : str ) -> int: '''simple docstring''' return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple , **A__ : str ) -> List[Any]: '''simple docstring''' return text.split() def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int]=False ) -> Tuple: '''simple docstring''' return len(self._id_to_token ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def __lowerCAmelCase ( self : Any , A__ : str ) -> int: '''simple docstring''' return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) ) def __lowerCAmelCase ( self : List[Any] , A__ : int ) -> str: '''simple docstring''' return self._id_to_token.get(A__ , self.unk_token ) def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Tuple = [self.cls_token_id] a__ : Union[str, Any] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __lowerCAmelCase ( self : Tuple , A__ : List , A__ : Optional[List] = None , A__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] a__ : Any = [1] + ([0] * len(A__ )) + [1] if token_ids_a is not None: mask += [0] * len(A__ ) + [1] return mask def __lowerCAmelCase ( self : Any , A__ : Dict , A__ : Dict ) -> List[Any]: '''simple docstring''' a__ : Union[str, Any] = os.path.join(A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __lowerCAmelCase ( self : Any ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=A__ ) def __lowerCAmelCase ( self : List[str] , A__ : Union[List[str], List[AddedToken]] , A__ : bool = False ) -> int: '''simple docstring''' return super()._add_tokens(A__ , special_tokens=A__ )
688
0
def lowerCamelCase_(lowerCamelCase_ ) -> Tuple: try: UpperCAmelCase = float(lowerCAmelCase__ ) except ValueError: raise ValueError("Please enter a valid number" ) UpperCAmelCase = decimal - int(lowerCAmelCase__ ) if fractional_part == 0: return int(lowerCAmelCase__ ), 1 else: UpperCAmelCase = len(str(lowerCAmelCase__ ).split("." )[1] ) UpperCAmelCase = int(decimal * (10**number_of_frac_digits) ) UpperCAmelCase = 10**number_of_frac_digits UpperCAmelCase = denominator, numerator while True: UpperCAmelCase = dividend % divisor if remainder == 0: break UpperCAmelCase = divisor, remainder UpperCAmelCase = numerator / divisor, denominator / divisor return int(lowerCAmelCase__ ), int(lowerCAmelCase__ ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
323
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class lowerCAmelCase__ : """simple docstring""" def __init__( self : str ) -> Dict: '''simple docstring''' a__ : List[str] = False def __lowerCAmelCase ( self : Tuple , A__ : Optional[int] , A__ : Optional[Any] , A__ : List[str] , A__ : Tuple ) -> Optional[int]: '''simple docstring''' if not self.initialized: a__ : Optional[Any] = RagRetriever( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) a__ : Union[str, Any] = True def __lowerCAmelCase ( self : Tuple ) -> Tuple: '''simple docstring''' self.retriever.index.init_index() def __lowerCAmelCase ( self : List[Any] , A__ : List[Any] , A__ : Optional[int] ) -> List[Any]: '''simple docstring''' a__ , a__ : Optional[Any] = self.retriever._main_retrieve(A__ , A__ ) return doc_ids, retrieved_doc_embeds class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : str , A__ : Optional[int] , A__ : List[Any] , A__ : List[Any] , A__ : str , A__ : Any=None ) -> Optional[Any]: '''simple docstring''' if index is not None and index.is_initialized() and len(A__ ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) a__ : List[str] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A__ , A__ , A__ , A__ ) for worker in self.retrieval_workers ] ) def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCAmelCase ( self : Optional[int] , A__ : Optional[int] , A__ : int ) -> Dict: '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. a__ : List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] a__ , a__ : Tuple = ray.get(random_worker.retrieve.remote(A__ , A__ ) ) else: a__ , a__ : int = self._main_retrieve(A__ , A__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A__ ) @classmethod def __lowerCAmelCase ( cls : int , A__ : Optional[Any] , A__ : Any=None , **A__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return super(A__ , cls ).get_tokenizers(A__ , A__ , **A__ ) @classmethod def __lowerCAmelCase ( cls : int , A__ : Optional[int] , A__ : Union[str, Any] , A__ : Union[str, Any]=None , **A__ : Dict ) -> List[Any]: '''simple docstring''' a__ : Dict = kwargs.pop('''config''' , A__ ) or RagConfig.from_pretrained(A__ , **A__ ) a__ : Dict = RagTokenizer.from_pretrained(A__ , config=A__ ) a__ : str = rag_tokenizer.question_encoder a__ : List[str] = rag_tokenizer.generator if indexed_dataset is not None: a__ : List[Any] = '''custom''' a__ : List[Any] = CustomHFIndex(config.retrieval_vector_size , A__ ) else: a__ : Optional[Any] = cls._build_index(A__ ) return cls( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , retrieval_workers=A__ , index=A__ , )
688
0
'''simple docstring''' import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _a : List[str] = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. _a : Any = direct_transformers_import(PATH_TO_TRANSFORMERS) _a : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING _a : Optional[Any] = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Tuple: __lowerCAmelCase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'config.{attribute}' in modeling_source or f'getattr(config, "{attribute}"' in modeling_source or f'getattr(self.config, "{attribute}"' in modeling_source ): __lowerCAmelCase = True # Deal with multi-line cases elif ( re.search( Rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , lowercase , ) is not None ): __lowerCAmelCase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: __lowerCAmelCase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files __lowerCAmelCase = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] __lowerCAmelCase = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed __lowerCAmelCase = True if not attribute_used: __lowerCAmelCase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: __lowerCAmelCase = True elif attribute in ["tie_word_embeddings"] and default_value is False: __lowerCAmelCase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: __lowerCAmelCase = True elif attribute.endswith("""_token_id""" ): __lowerCAmelCase = True # configuration class specific cases if not case_allowed: __lowerCAmelCase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) __lowerCAmelCase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def _lowerCAmelCase ( lowercase ) -> Optional[int]: __lowerCAmelCase = dict(inspect.signature(config_class.__init__ ).parameters ) __lowerCAmelCase = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] __lowerCAmelCase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass __lowerCAmelCase = {} if len(config_class.attribute_map ) > 0: __lowerCAmelCase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files __lowerCAmelCase = inspect.getsourcefile(lowercase ) __lowerCAmelCase = os.path.dirname(lowercase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. __lowerCAmelCase = [os.path.join(lowercase , lowercase ) for fn in os.listdir(lowercase ) if fn.startswith("""modeling_""" )] # Get the source code strings __lowerCAmelCase = [] for path in modeling_paths: if os.path.isfile(lowercase ): with open(lowercase ) as fp: modeling_sources.append(fp.read() ) __lowerCAmelCase = [] for config_param, default_value in zip(lowercase , lowercase ): # `attributes` here is all the variant names for `config_param` __lowerCAmelCase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowercase , lowercase , lowercase , lowercase ): unused_attributes.append(attributes[0] ) return sorted(lowercase ) def _lowerCAmelCase ( ) -> int: __lowerCAmelCase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) __lowerCAmelCase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowercase : inspect.isclass(lowercase ) and issubclass(lowercase , lowercase ) and inspect.getmodule(lowercase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: __lowerCAmelCase = check_config_attributes_being_used(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = unused_attributes if len(lowercase ) > 0: __lowerCAmelCase = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += f'{name}: {attributes}\n' raise ValueError(lowercase ) if __name__ == "__main__": check_config_attributes()
689
'''simple docstring''' from scipy.stats import spearmanr import datasets _a : str = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _a : Dict = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _a : List[str] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
689
1
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
689
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""onnx"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] )
689
1
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : Optional[int] = logging.get_logger(__name__) _a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a : int =field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : int =field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a : int =field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a : int =field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a : float =field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""train""" a : Optional[int] ="""dev""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : SquadDataTrainingArguments a : List[SquadFeatures] a : Split a : bool def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",): '''simple docstring''' __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["""features"""] __lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float ) __lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
689
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
1
'''simple docstring''' import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _a : Optional[int] = logging.get_logger(__name__) def _lowerCAmelCase ( lowercase , lowercase ) -> str: __lowerCAmelCase = set() __lowerCAmelCase = [] def parse_line(lowercase ): for line in fp: if isinstance(lowercase , lowercase ): __lowerCAmelCase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowercase ) > 0: __lowerCAmelCase = """\n""".join(lowercase ) # Only keep the warnings specified in `targets` if any(f': {x}: ' in warning for x in targets ): selected_warnings.add(lowercase ) buffer.clear() continue else: __lowerCAmelCase = line.strip() buffer.append(lowercase ) if from_gh: for filename in os.listdir(lowercase ): __lowerCAmelCase = os.path.join(lowercase , lowercase ) if not os.path.isdir(lowercase ): # read the file if filename != "warnings.txt": continue with open(lowercase ) as fp: parse_line(lowercase ) else: try: with zipfile.ZipFile(lowercase ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase ): # read the file if filename != "warnings.txt": continue with z.open(lowercase ) as fp: parse_line(lowercase ) except Exception: logger.warning( f'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def _lowerCAmelCase ( lowercase , lowercase ) -> Any: __lowerCAmelCase = set() __lowerCAmelCase = [os.path.join(lowercase , lowercase ) for p in os.listdir(lowercase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowercase , lowercase ) ) return selected_warnings if __name__ == "__main__": def _lowerCAmelCase ( lowercase ) -> Optional[Any]: return values.split(""",""" ) _a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) _a : str = parser.parse_args() _a : List[str] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _a : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _a : List[str] = extract_warnings(args.output_dir, args.targets) _a : List[str] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
689
'''simple docstring''' def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = int((limit - 24) ** (1 / 2) ) __lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) ) for primea in primes: __lowerCAmelCase = primea * primea for primea in primes: __lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCAmelCase = primea * primea * primea * primea __lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
1
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _a : int = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex _a : Optional[int] = 1_0 _a : Optional[int] = 2_5_6 def _lowerCAmelCase ( lowercase ) -> Optional[MinHash]: if len(lowercase ) < MIN_NUM_TOKENS: return None __lowerCAmelCase = MinHash(num_perm=lowercase ) for token in set(lowercase ): min_hash.update(token.encode() ) return min_hash def _lowerCAmelCase ( lowercase ) -> Set[str]: return {t for t in NON_ALPHA.split(lowercase ) if len(t.strip() ) > 0} class _UpperCAmelCase : def __init__( self,*, __SCREAMING_SNAKE_CASE = 0.85,): '''simple docstring''' __lowerCAmelCase = duplication_jaccard_threshold __lowerCAmelCase = NUM_PERM __lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold,num_perm=self._num_perm ) __lowerCAmelCase = defaultdict(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self._index.query(__SCREAMING_SNAKE_CASE ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__SCREAMING_SNAKE_CASE ) break else: self._duplicate_clusters[close_duplicates[0]].add(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): __lowerCAmelCase = [base] + list(__SCREAMING_SNAKE_CASE ) # reformat the cluster to be a list of dict __lowerCAmelCase = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__SCREAMING_SNAKE_CASE ) return duplicate_clusters def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.get_duplicate_clusters() with open(__SCREAMING_SNAKE_CASE,"""w""" ) as f: json.dump(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( lowercase ) -> str: __lowerCAmelCase , __lowerCAmelCase = element __lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _lowerCAmelCase ( lowercase ) -> List[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowercase , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def _lowerCAmelCase ( lowercase , lowercase ) -> int: __lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=lowercase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowercase ) ) , max_queue_size=100 ) ): di.add(lowercase , lowercase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _lowerCAmelCase ( lowercase , lowercase ) -> float: __lowerCAmelCase = get_tokens(lowercase ) __lowerCAmelCase = get_tokens(lowercase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _a : List[str] = None def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple: __lowerCAmelCase = [] for elementa in cluster: __lowerCAmelCase = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __lowerCAmelCase = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowercase , lowercase ) >= jaccard_threshold: elementa["copies"] += 1 break else: __lowerCAmelCase = 1 extremes.append(lowercase ) return extremes def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Dict: global _shared_dataset __lowerCAmelCase = dataset __lowerCAmelCase = [] __lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=lowercase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowercase , lowercase , ) , total=len(lowercase ) , ): extremes_list.append(lowercase ) return extremes_list def _lowerCAmelCase ( lowercase , lowercase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: __lowerCAmelCase = make_duplicate_clusters(lowercase , lowercase ) __lowerCAmelCase = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __lowerCAmelCase = {} __lowerCAmelCase = find_extremes(lowercase , lowercase , lowercase ) for extremes in extremes_clusters: for element in extremes: __lowerCAmelCase = element __lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() ) __lowerCAmelCase = dataset.filter(lambda lowercase , lowercase : idx not in remove_indices , with_indices=lowercase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __lowerCAmelCase = element["""base_index"""] in extreme_dict if element["is_extreme"]: __lowerCAmelCase = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(lowercase )}' ) print(f'Number of duplicate clusters: {len(lowercase )}' ) print(f'Files in duplicate cluster: {len(lowercase )}' ) print(f'Unique files in duplicate cluster: {len(lowercase )}' ) print(f'Filtered dataset size: {len(lowercase )}' ) return ds_filter, duplicate_clusters
689
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
1
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _a : Union[str, Any] = get_logger(__name__) class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = ( os.path.join(__SCREAMING_SNAKE_CASE,config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __lowerCAmelCase = Extractor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __lowerCAmelCase = os.path.abspath(__SCREAMING_SNAKE_CASE ) return os.path.join(self.extract_dir,hash_url_to_filename(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return force_extract or ( not os.path.isfile(__SCREAMING_SNAKE_CASE ) and not (os.path.isdir(__SCREAMING_SNAKE_CASE ) and os.listdir(__SCREAMING_SNAKE_CASE )) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' __lowerCAmelCase = self.extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE ) if not extractor_format: return input_path __lowerCAmelCase = self._get_output_path(__SCREAMING_SNAKE_CASE ) if self._do_extract(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): self.extractor.extract(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) return output_path class _UpperCAmelCase ( lowerCAmelCase_ ): @classmethod @abstractmethod def lowerCamelCase__ ( cls,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' ... @staticmethod @abstractmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' ... class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): a : List[bytes] =[] @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(__SCREAMING_SNAKE_CASE,"""rb""" ) as f: return f.read(__SCREAMING_SNAKE_CASE ) @classmethod def lowerCamelCase__ ( cls,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = b"" ): '''simple docstring''' if not magic_number: __lowerCAmelCase = max(len(__SCREAMING_SNAKE_CASE ) for cls_magic_number in cls.magic_numbers ) try: __lowerCAmelCase = cls.read_magic_number(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) except OSError: return False return any(magic_number.startswith(__SCREAMING_SNAKE_CASE ) for cls_magic_number in cls.magic_numbers ) class _UpperCAmelCase ( lowerCAmelCase_ ): @classmethod def lowerCamelCase__ ( cls,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return tarfile.is_tarfile(__SCREAMING_SNAKE_CASE ) @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' def resolved(__SCREAMING_SNAKE_CASE ) -> str: return os.path.realpath(os.path.abspath(__SCREAMING_SNAKE_CASE ) ) def badpath(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ).startswith(__SCREAMING_SNAKE_CASE ) def badlink(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) -> bool: # Links are interpreted relative to the directory containing the link __lowerCAmelCase = resolved(os.path.join(__SCREAMING_SNAKE_CASE,os.path.dirname(info.name ) ) ) return badpath(info.linkname,base=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = resolved(__SCREAMING_SNAKE_CASE ) for finfo in members: if badpath(finfo.name,__SCREAMING_SNAKE_CASE ): logger.error(f'Extraction of {finfo.name} is blocked (illegal path)' ) elif finfo.issym() and badlink(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): logger.error(f'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}' ) elif finfo.islnk() and badlink(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): logger.error(f'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}' ) else: yield finfo @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' os.makedirs(__SCREAMING_SNAKE_CASE,exist_ok=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tarfile.open(__SCREAMING_SNAKE_CASE ) tar_file.extractall(__SCREAMING_SNAKE_CASE,members=TarExtractor.safemembers(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) tar_file.close() class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] =[b"""\x1F\x8B"""] @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' with gzip.open(__SCREAMING_SNAKE_CASE,"""rb""" ) as gzip_file: with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as extracted_file: shutil.copyfileobj(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[Any] =[ b"""PK\x03\x04""", b"""PK\x05\x06""", # empty archive b"""PK\x07\x08""", # spanned archive ] @classmethod def lowerCamelCase__ ( cls,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = b"" ): '''simple docstring''' if super().is_extractable(__SCREAMING_SNAKE_CASE,magic_number=__SCREAMING_SNAKE_CASE ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__SCREAMING_SNAKE_CASE,"""rb""" ) as fp: __lowerCAmelCase = _EndRecData(__SCREAMING_SNAKE_CASE ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __lowerCAmelCase = fp.read(__SCREAMING_SNAKE_CASE ) # CD is where we expect it to be if len(__SCREAMING_SNAKE_CASE ) == sizeCentralDir: __lowerCAmelCase = struct.unpack(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' os.makedirs(__SCREAMING_SNAKE_CASE,exist_ok=__SCREAMING_SNAKE_CASE ) with zipfile.ZipFile(__SCREAMING_SNAKE_CASE,"""r""" ) as zip_file: zip_file.extractall(__SCREAMING_SNAKE_CASE ) zip_file.close() class _UpperCAmelCase ( lowerCAmelCase_ ): a : Any =[b"""\xFD\x37\x7A\x58\x5A\x00"""] @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' with lzma.open(__SCREAMING_SNAKE_CASE ) as compressed_file: with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as extracted_file: shutil.copyfileobj(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] =[b"""Rar!\x1a\x07\x00""", b"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(__SCREAMING_SNAKE_CASE,exist_ok=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = rarfile.RarFile(__SCREAMING_SNAKE_CASE ) rf.extractall(__SCREAMING_SNAKE_CASE ) rf.close() class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] =[b"""\x28\xb5\x2F\xFD"""] @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd __lowerCAmelCase = zstd.ZstdDecompressor() with open(__SCREAMING_SNAKE_CASE,"""rb""" ) as ifh, open(__SCREAMING_SNAKE_CASE,"""wb""" ) as ofh: dctx.copy_stream(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : int =[b"""\x42\x5A\x68"""] @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' with bza.open(__SCREAMING_SNAKE_CASE,"""rb""" ) as compressed_file: with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as extracted_file: shutil.copyfileobj(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Tuple =[b"""\x37\x7A\xBC\xAF\x27\x1C"""] @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(__SCREAMING_SNAKE_CASE,exist_ok=__SCREAMING_SNAKE_CASE ) with pyazr.SevenZipFile(__SCREAMING_SNAKE_CASE,"""r""" ) as archive: archive.extractall(__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Any =[b"""\x04\x22\x4D\x18"""] @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(__SCREAMING_SNAKE_CASE,"""rb""" ) as compressed_file: with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as extracted_file: shutil.copyfileobj(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) a : Dict[str, Type[BaseExtractor]] ={ "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowerCamelCase__ ( cls ): '''simple docstring''' return max( len(__SCREAMING_SNAKE_CASE ) for extractor in cls.extractors.values() if issubclass(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(__SCREAMING_SNAKE_CASE,magic_number_length=__SCREAMING_SNAKE_CASE ) except OSError: return b"" @classmethod def lowerCamelCase__ ( cls,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""",category=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = cls.infer_extractor_format(__SCREAMING_SNAKE_CASE ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowerCamelCase__ ( cls,__SCREAMING_SNAKE_CASE ): # <Added version="2.4.0"/> '''simple docstring''' __lowerCAmelCase = cls._get_magic_number_max_length() __lowerCAmelCase = cls._read_magic_number(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__SCREAMING_SNAKE_CASE,magic_number=__SCREAMING_SNAKE_CASE ): return extractor_format @classmethod def lowerCamelCase__ ( cls,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "deprecated",): '''simple docstring''' os.makedirs(os.path.dirname(__SCREAMING_SNAKE_CASE ),exist_ok=__SCREAMING_SNAKE_CASE ) # Prevent parallel extractions __lowerCAmelCase = str(Path(__SCREAMING_SNAKE_CASE ).with_suffix(""".lock""" ) ) with FileLock(__SCREAMING_SNAKE_CASE ): shutil.rmtree(__SCREAMING_SNAKE_CASE,ignore_errors=__SCREAMING_SNAKE_CASE ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""",category=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = extractor if extractor != """deprecated""" else extractor_format else: __lowerCAmelCase = cls.extractors[extractor_format] return extractor.extract(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""",category=__SCREAMING_SNAKE_CASE,) for extractor in cls.extractors.values(): if extractor.is_extractable(__SCREAMING_SNAKE_CASE ): return extractor.extract(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( lowercase ) -> Optional[int]: if not is_accelerate_available(): return method __lowerCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *lowercase , **lowercase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
689
1
'''simple docstring''' _a : List[Any] = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ _a : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _a : List[str] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
689
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: # load base model __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __lowerCAmelCase = load_file(lowercase ) __lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.text_encoder else: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.unet # find the target layer __lowerCAmelCase = layer_infos.pop(0 ) while len(lowercase ) > -1: try: __lowerCAmelCase = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __lowerCAmelCase = layer_infos.pop(0 ) __lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: __lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _a : Optional[int] = parser.parse_args() _a : Dict = args.base_model_path _a : Optional[Any] = args.checkpoint_path _a : Union[str, Any] = args.dump_path _a : Optional[int] = args.lora_prefix_unet _a : int = args.lora_prefix_text_encoder _a : str = args.alpha _a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = botoa.client("""iam""" ) __lowerCAmelCase = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=lowercase , AssumeRolePolicyDocument=json.dumps(lowercase , indent=2 ) ) __lowerCAmelCase = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=lowercase , PolicyName=f'{role_name}_policy_permission' , PolicyDocument=json.dumps(lowercase , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f'role {role_name} already exists. Using existing one' ) def _lowerCAmelCase ( lowercase ) -> Any: __lowerCAmelCase = botoa.client("""iam""" ) return iam_client.get_role(RoleName=lowercase )["Role"]["Arn"] def _lowerCAmelCase ( ) -> Dict: __lowerCAmelCase = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , lowercase , ) __lowerCAmelCase = None if credentials_configuration == 0: __lowerCAmelCase = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) __lowerCAmelCase = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) __lowerCAmelCase = _ask_field("""AWS Access Key ID: """ ) __lowerCAmelCase = aws_access_key_id __lowerCAmelCase = _ask_field("""AWS Secret Access Key: """ ) __lowerCAmelCase = aws_secret_access_key __lowerCAmelCase = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) __lowerCAmelCase = aws_region __lowerCAmelCase = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , lowercase , ) if role_management == 0: __lowerCAmelCase = _ask_field("""Enter your IAM role name: """ ) else: __lowerCAmelCase = """accelerate_sagemaker_execution_role""" print(f'Accelerate will create an iam role "{iam_role_name}" using the provided credentials' ) _create_iam_role_for_sagemaker(lowercase ) __lowerCAmelCase = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase , error_message="""Please enter yes or no.""" , ) __lowerCAmelCase = None if is_custom_docker_image: __lowerCAmelCase = _ask_field("""Enter your Docker image: """ , lambda lowercase : str(lowercase ).lower() ) __lowerCAmelCase = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase , error_message="""Please enter yes or no.""" , ) __lowerCAmelCase = None if is_sagemaker_inputs_enabled: __lowerCAmelCase = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda lowercase : str(lowercase ).lower() , ) __lowerCAmelCase = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase , error_message="""Please enter yes or no.""" , ) __lowerCAmelCase = None if is_sagemaker_metrics_enabled: __lowerCAmelCase = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda lowercase : str(lowercase ).lower() , ) __lowerCAmelCase = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) __lowerCAmelCase = {} __lowerCAmelCase = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=lowercase , error_message="""Please enter yes or no.""" , ) if use_dynamo: __lowerCAmelCase = """dynamo_""" __lowerCAmelCase = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __lowerCAmelCase = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase , error_message="""Please enter yes or no.""" , ) if use_custom_options: __lowerCAmelCase = _ask_options( """Which mode do you want to use?""" , lowercase , lambda lowercase : TORCH_DYNAMO_MODES[int(lowercase )] , default="""default""" , ) __lowerCAmelCase = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase , error_message="""Please enter yes or no.""" , ) __lowerCAmelCase = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowercase , error_message="""Please enter yes or no.""" , ) __lowerCAmelCase = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: __lowerCAmelCase = _ask_options( lowercase , lowercase , lambda lowercase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowercase )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __lowerCAmelCase = _ask_field(lowercase , lambda lowercase : str(lowercase ).lower() , default="""ml.p3.2xlarge""" ) __lowerCAmelCase = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __lowerCAmelCase = _ask_field( """How many machines do you want use? [1]: """ , lowercase , default=1 , ) __lowerCAmelCase = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=lowercase , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=lowercase , use_cpu=lowercase , dynamo_config=lowercase , eca_instance_type=lowercase , profile=lowercase , region=lowercase , iam_role_name=lowercase , mixed_precision=lowercase , num_machines=lowercase , sagemaker_inputs_file=lowercase , sagemaker_metrics_file=lowercase , )
689
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> Union[str, Any]: __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _lowerCAmelCase ( ) -> Any: __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowercase ) > 500: break return t_num if __name__ == "__main__": print(solution())
689
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = VideoMAEConfig() set_architecture_configs(lowercase , lowercase ) if "finetuned" not in model_name: __lowerCAmelCase = False if "finetuned" in model_name: __lowerCAmelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCAmelCase = 400 __lowerCAmelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCAmelCase = 174 __lowerCAmelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowercase , lowercase ) -> Any: if "small" in model_name: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = 192 __lowerCAmelCase = 768 elif "large" in model_name: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 512 __lowerCAmelCase = 2048 elif "huge" in model_name: __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 640 __lowerCAmelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _lowerCAmelCase ( lowercase ) -> List[str]: if "encoder." in name: __lowerCAmelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCAmelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if key.startswith("""encoder.""" ): __lowerCAmelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCAmelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCAmelCase = np.load(lowercase ) return list(lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = get_videomae_config(lowercase ) if "finetuned" in model_name: __lowerCAmelCase = VideoMAEForVideoClassification(lowercase ) else: __lowerCAmelCase = VideoMAEForPreTraining(lowercase ) # download original checkpoint, hosted on Google Drive __lowerCAmelCase = """pytorch_model.bin""" gdown.cached_download(lowercase , lowercase , quiet=lowercase ) __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" ) if "model" in files: __lowerCAmelCase = files["""model"""] else: __lowerCAmelCase = files["""module"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() # verify model on basic input __lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCAmelCase = torch.load(lowercase ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCAmelCase = outputs.loss assert torch.allclose(lowercase , lowercase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _a : str = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["""MobileViTFeatureExtractor"""] _a : str = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a : Tuple = """\ """ _a : Tuple = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _a : Optional[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = """cuda""" else: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encodings["""input_ids"""] __lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
689
1
'''simple docstring''' import heapq import sys import numpy as np _a : List[str] = tuple[int, int] class _UpperCAmelCase : def __init__( self ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = set() def lowerCamelCase__ ( self ): '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def lowerCamelCase__ ( self ): '''simple docstring''' return len(self.elements ) == 0 def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if item not in self.set: heapq.heappush(self.elements,(priority, item) ) self.set.add(__SCREAMING_SNAKE_CASE ) else: # update # print("update", item) __lowerCAmelCase = [] ((__lowerCAmelCase) , (__lowerCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements,(pro, xxx) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if item in self.set: self.set.remove(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [] ((__lowerCAmelCase) , (__lowerCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements,(prito, yyy) ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.elements[0][1] def lowerCamelCase__ ( self ): '''simple docstring''' ((__lowerCAmelCase) , (__lowerCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__SCREAMING_SNAKE_CASE ) return (priority, item) def _lowerCAmelCase ( lowercase , lowercase ) -> str: # euclidean distance __lowerCAmelCase = np.array(lowercase ) __lowerCAmelCase = np.array(lowercase ) return np.linalg.norm(a - b ) def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: # integer division by time variable return consistent_heuristic(lowercase , lowercase ) // t def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Union[str, Any]: __lowerCAmelCase = g_function[start] + Wa * heuristics[i](lowercase , lowercase ) return ans def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = np.chararray((n, n) ) for i in range(lowercase ): for j in range(lowercase ): __lowerCAmelCase = """*""" for i in range(lowercase ): for j in range(lowercase ): if (j, (n - 1) - i) in blocks: __lowerCAmelCase = """#""" __lowerCAmelCase = """-""" __lowerCAmelCase = back_pointer[goal] while x != start: ((__lowerCAmelCase) , (__lowerCAmelCase)) = x # print(x) __lowerCAmelCase = """-""" __lowerCAmelCase = back_pointer[x] __lowerCAmelCase = """-""" for i in range(lowercase ): for j in range(lowercase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowerCAmelCase = back_pointer[goal] while x != start: print(lowercase , end=""" """ ) __lowerCAmelCase = back_pointer[x] print(lowercase ) sys.exit() def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Union[str, Any]: for itera in range(lowercase ): open_list[itera].remove_element(lowercase ) # print("s", s) # print("j", j) ((__lowerCAmelCase) , (__lowerCAmelCase)) = s __lowerCAmelCase = (x - 1, y) __lowerCAmelCase = (x + 1, y) __lowerCAmelCase = (x, y + 1) __lowerCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowercase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowercase ) __lowerCAmelCase = -1 __lowerCAmelCase = float("""inf""" ) if valid(lowercase ) and g_function[neighbours] > g_function[s] + 1: __lowerCAmelCase = g_function[s] + 1 __lowerCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(lowercase , key(lowercase , 0 , lowercase , lowercase ) ) if neighbours not in close_list_inad: for var in range(1 , lowercase ): if key(lowercase , lowercase , lowercase , lowercase ) <= Wa * key( lowercase , 0 , lowercase , lowercase ): open_list[j].put( lowercase , key(lowercase , lowercase , lowercase , lowercase ) ) def _lowerCAmelCase ( ) -> int: __lowerCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list _a : int = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} _a : Optional[int] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (1_0, 1), (1_1, 1), (1_2, 1), (1_3, 1), (1_4, 1), (1_5, 1), (1_6, 1), (1_7, 1), (1_8, 1), (1_9, 1), ] _a : List[str] = make_common_ground() _a : int = blocks_blk # hyper parameters _a : int = 1 _a : str = 1 _a : Optional[Any] = 2_0 _a : Union[str, Any] = 3 # one consistent and two other inconsistent # start and end destination _a : Optional[Any] = (0, 0) _a : Tuple = (n - 1, n - 1) _a : List[Any] = 1 def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Union[str, Any]: __lowerCAmelCase = {start: 0, goal: float("""inf""" )} __lowerCAmelCase = {start: -1, goal: -1} __lowerCAmelCase = [] __lowerCAmelCase = set() for i in range(lowercase ): open_list.append(PriorityQueue() ) open_list[i].put(lowercase , key(lowercase , lowercase , lowercase , lowercase ) ) __lowerCAmelCase = [] __lowerCAmelCase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowercase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowercase , lowercase , lowercase ) else: __lowerCAmelCase , __lowerCAmelCase = open_list[i].top_show() visited.add(lowercase ) expand_state( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) close_list_inad.append(lowercase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowercase , lowercase , lowercase ) else: __lowerCAmelCase = open_list[0].top_show() visited.add(lowercase ) expand_state( lowercase , 0 , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) close_list_anchor.append(lowercase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowercase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
689
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =["""image_processor"""] a : Dict ="""SamImageProcessor""" def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -10 __lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self._normalize_and_convert( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",): '''simple docstring''' if input_points is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_labels is not None: __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE ) for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,2,2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,4 ) return coords def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _a : int = 4 _a : Dict = 3 class _UpperCAmelCase ( lowerCAmelCase_ ): pass def _lowerCAmelCase ( lowercase ) -> List[Any]: for shard in shards: for i in range(lowercase ): yield {"i": i, "shard": shard} def _lowerCAmelCase ( ) -> Optional[Any]: __lowerCAmelCase = int(os.environ["""RANK"""] ) __lowerCAmelCase = int(os.environ["""WORLD_SIZE"""] ) __lowerCAmelCase = ArgumentParser() parser.add_argument("""--streaming""" , type=lowercase ) parser.add_argument("""--local_rank""" , type=lowercase ) parser.add_argument("""--num_workers""" , type=lowercase , default=0 ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = args.streaming __lowerCAmelCase = args.num_workers __lowerCAmelCase = {"""shards""": [f'shard_{shard_idx}' for shard_idx in range(lowercase )]} __lowerCAmelCase = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase ) if not streaming: __lowerCAmelCase = Dataset.from_list(list(lowercase ) ) __lowerCAmelCase = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase ) __lowerCAmelCase = torch.utils.data.DataLoader(lowercase , num_workers=lowercase ) __lowerCAmelCase = NUM_SHARDS * NUM_ITEMS_PER_SHARD __lowerCAmelCase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __lowerCAmelCase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
689
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _a : int = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) a : int =field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowerCamelCase__ ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowerCAmelCase = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowerCAmelCase = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _lowerCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowerCAmelCase = data_args.train_file.split(""".""" )[-1] __lowerCAmelCase = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowerCAmelCase = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names __lowerCAmelCase = len(lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowerCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , ) __lowerCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1} __lowerCAmelCase = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowercase ): # Tokenize the texts def _convert_table_text_to_pandas(lowercase ): __lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowerCAmelCase = examples["""statement"""] __lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase ) __lowerCAmelCase = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowerCAmelCase = raw_datasets.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowerCAmelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowerCAmelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowerCAmelCase = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): __lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase = default_data_collator elif training_args.fpaa: __lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: __lowerCAmelCase = None # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase ) __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowercase ) trainer.save_metrics("""train""" , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase ) __lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.log_metrics("""eval""" , lowercase ) trainer.save_metrics("""eval""" , lowercase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowerCAmelCase = predict_dataset.remove_columns("""label""" ) __lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) __lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowercase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowercase ): __lowerCAmelCase = label_list[item] writer.write(f'{index}\t{item}\n' ) __lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def _lowerCAmelCase ( lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
689
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule _a : List[Any] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys _a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
'''simple docstring''' import os import sys import unittest _a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = find_backend(""" if not is_torch_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCAmelCase = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""",objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" ) __lowerCAmelCase = create_dummy_object("""function""","""'torch'""" ) self.assertEqual( __SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ __lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ __lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a : Tuple = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[int] = [ """UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""", """UniSpeechForCTC""", """UniSpeechForPreTraining""", """UniSpeechForSequenceClassification""", """UniSpeechModel""", """UniSpeechPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> tuple[int, int]: try: __lowerCAmelCase = float(lowercase ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowerCAmelCase = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: __lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] ) __lowerCAmelCase = int(decimal * (10**number_of_frac_digits) ) __lowerCAmelCase = 10**number_of_frac_digits __lowerCAmelCase , __lowerCAmelCase = denominator, numerator while True: __lowerCAmelCase = dividend % divisor if remainder == 0: break __lowerCAmelCase , __lowerCAmelCase = divisor, remainder __lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
689
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Union[str, Any] = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : Dict = _symbol_database.Default() _a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _a : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : str = None _a : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : Optional[int] = 4_5 _a : List[Any] = 1_5_8_1 _a : str = 1_5_1_7 _a : Optional[Any] = 1_5_7_0 _a : List[str] = 1_5_8_4 _a : List[Any] = 1_7_9_3 _a : Union[str, Any] = 1_7_9_5 _a : Tuple = 1_9_1_6 _a : List[Any] = 1_8_6_4 _a : Any = 1_9_0_5 _a : Optional[Any] = 1_9_1_9 _a : Optional[int] = 2_4_2_9 _a : Tuple = 2_2_0_8 _a : Optional[Any] = 2_4_1_8 _a : List[Any] = 2_3_2_3 _a : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
689
1
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _lowerCAmelCase ( lowercase ) -> Optional[int]: __lowerCAmelCase = FileLock(str(tmpdir / """foo.lock""" ) ) __lowerCAmelCase = FileLock(str(tmpdir / """foo.lock""" ) ) __lowerCAmelCase = 0.01 with locka.acquire(): with pytest.raises(lowercase ): __lowerCAmelCase = time.time() locka.acquire(lowercase ) assert time.time() - _start > timeout def _lowerCAmelCase ( lowercase ) -> Optional[int]: __lowerCAmelCase = """a""" * 1000 + """.lock""" __lowerCAmelCase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(lowercase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowerCAmelCase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowercase ): locka.acquire(0 )
689
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : torch.FloatTensor class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = torch.nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) # down __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # out __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = 2 * out_channels if double_z else out_channels __lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""","""1.11.0""" ): for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: __lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # up __lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output_channel # out if norm_type == "spatial": __lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = z __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""","""1.11.0""" ): # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' super().__init__() __lowerCAmelCase = n_e __lowerCAmelCase = vq_embed_dim __lowerCAmelCase = beta __lowerCAmelCase = legacy __lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e ) __lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase = self.used.shape[0] __lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase = self.re_embed __lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __lowerCAmelCase = n_e __lowerCAmelCase = sane_index_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase = match.argmax(-1 ) __lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase = 0 # simply set to zero __lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = z.permute(0,2,3,1 ).contiguous() __lowerCAmelCase = z.view(-1,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 ) __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) __lowerCAmelCase = None __lowerCAmelCase = None # compute loss for embedding if not self.legacy: __lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() if self.remap is not None: __lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis __lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten if self.sane_index_shape: __lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.remap is not None: __lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis __lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: __lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() return z_q class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = parameters __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 ) __lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 ) __lowerCAmelCase = deterministic __lowerCAmelCase = torch.exp(0.5 * self.logvar ) __lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase = __lowerCAmelCase = torch.zeros_like( self.mean,device=self.parameters.device,dtype=self.parameters.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = randn_tensor( self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype ) __lowerCAmelCase = self.mean + self.std * sample return x def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,dim=[1, 2, 3],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.mean
689
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : Union[str, Any] = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : Optional[int] = logging.get_logger(__name__) _a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a : int =field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : int =field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a : int =field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a : int =field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a : float =field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""train""" a : Optional[int] ="""dev""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : SquadDataTrainingArguments a : List[SquadFeatures] a : Split a : bool def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",): '''simple docstring''' __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["""features"""] __lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float ) __lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
689
1
'''simple docstring''' from __future__ import annotations _a : Tuple = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase , ) -> tuple[list[list[int]], list[list[int]]]: __lowerCAmelCase = [ [0 for col in range(len(grid[0] ) )] for row in range(len(lowercase ) ) ] # the reference grid __lowerCAmelCase = 1 __lowerCAmelCase = [ [0 for col in range(len(grid[0] ) )] for row in range(len(lowercase ) ) ] # the action grid __lowerCAmelCase = init[0] __lowerCAmelCase = init[1] __lowerCAmelCase = 0 __lowerCAmelCase = g + heuristic[x][y] # cost from starting cell to destination cell __lowerCAmelCase = [[f, g, x, y]] __lowerCAmelCase = False # flag that is set when search is complete __lowerCAmelCase = False # flag set if we can't find expand while not found and not resign: if len(lowercase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __lowerCAmelCase = cell.pop() __lowerCAmelCase = next_cell[2] __lowerCAmelCase = next_cell[3] __lowerCAmelCase = next_cell[1] if x == goal[0] and y == goal[1]: __lowerCAmelCase = True else: for i in range(len(lowercase ) ): # to try out different valid actions __lowerCAmelCase = x + DIRECTIONS[i][0] __lowerCAmelCase = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(lowercase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __lowerCAmelCase = g + cost __lowerCAmelCase = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __lowerCAmelCase = 1 __lowerCAmelCase = i __lowerCAmelCase = [] __lowerCAmelCase = goal[0] __lowerCAmelCase = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __lowerCAmelCase = x - DIRECTIONS[action[x][y]][0] __lowerCAmelCase = y - DIRECTIONS[action[x][y]][1] __lowerCAmelCase = xa __lowerCAmelCase = ya invpath.append([x, y] ) __lowerCAmelCase = [] for i in range(len(lowercase ) ): path.append(invpath[len(lowercase ) - 1 - i] ) return path, action if __name__ == "__main__": _a : List[str] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _a : Optional[int] = [0, 0] # all coordinates are given in format [y,x] _a : List[Any] = [len(grid) - 1, len(grid[0]) - 1] _a : List[str] = 1 # the cost map which pushes the path closer to the goal _a : Union[str, Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _a : Any = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _a : Tuple = 9_9 _a ,_a : List[Any] = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
689
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a : Optional[int] = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _a : int = parser.parse_args() if args.model_type == "bert": _a : str = BertForMaskedLM.from_pretrained(args.model_name) _a : List[str] = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _a : Tuple = model.state_dict() _a : Tuple = {} for w in ["word_embeddings", "position_embeddings"]: _a : Optional[Any] = state_dict[f'{prefix}.embeddings.{w}.weight'] for w in ["weight", "bias"]: _a : Any = state_dict[f'{prefix}.embeddings.LayerNorm.{w}'] _a : Dict = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: _a : List[str] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}' ] _a : Optional[int] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}' ] _a : List[Any] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}' ] _a : Optional[Any] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}' ] _a : List[str] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}' ] _a : List[str] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}' ] _a : Union[str, Any] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}' ] _a : Any = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}' ] std_idx += 1 _a : Optional[int] = state_dict["""cls.predictions.decoder.weight"""] _a : List[str] = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _a : Tuple = state_dict[f'cls.predictions.transform.dense.{w}'] _a : List[Any] = state_dict[f'cls.predictions.transform.LayerNorm.{w}'] print(f'N layers selected for distillation: {std_idx}') print(f'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(f'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
689
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = ["""model.decoder.embed_positions.weights"""] def _lowerCAmelCase ( lowercase ) -> Optional[Any]: if "emb" in name: __lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]: __lowerCAmelCase = list(state_dict.keys() ) __lowerCAmelCase = {} for key in keys: __lowerCAmelCase = state_dict.pop(lowercase ) __lowerCAmelCase = rename_keys(lowercase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCAmelCase = val[:hidden_size, :] __lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] __lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCAmelCase = val else: __lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCAmelCase = 1024 __lowerCAmelCase = 24 __lowerCAmelCase = 16 elif checkpoint == "medium": __lowerCAmelCase = 1536 __lowerCAmelCase = 48 __lowerCAmelCase = 24 elif checkpoint == "large": __lowerCAmelCase = 2048 __lowerCAmelCase = 48 __lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowerCAmelCase = MusicgenDecoderConfig( hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , ) return config @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]: __lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase ) __lowerCAmelCase = decoder_config_from_checkpoint(lowercase ) __lowerCAmelCase = fairseq_model.lm.state_dict() __lowerCAmelCase , __lowerCAmelCase = rename_state_dict( lowercase , hidden_size=decoder_config.hidden_size ) __lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase ) if len(lowercase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(lowercase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase ) # check we can do a forward pass __lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase ) # set the appropriate bos/pad token ids __lowerCAmelCase = 2048 __lowerCAmelCase = 2048 # set other default generation config params __lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCAmelCase = True __lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(lowercase ) processor.push_to_hub(lowercase ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _a : List[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _a : int = None _a : List[str] = logging.get_logger(__name__) _a : Dict = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _a : Optional[int] = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } _a : Optional[Any] = { """albert-base-v1""": 5_1_2, """albert-large-v1""": 5_1_2, """albert-xlarge-v1""": 5_1_2, """albert-xxlarge-v1""": 5_1_2, """albert-base-v2""": 5_1_2, """albert-large-v2""": 5_1_2, """albert-xlarge-v2""": 5_1_2, """albert-xxlarge-v2""": 5_1_2, } _a : Dict = """▁""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =VOCAB_FILES_NAMES a : Any =PRETRAINED_VOCAB_FILES_MAP a : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : str =AlbertTokenizer def __init__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE="[CLS]",__SCREAMING_SNAKE_CASE="[SEP]",__SCREAMING_SNAKE_CASE="<unk>",__SCREAMING_SNAKE_CASE="[SEP]",__SCREAMING_SNAKE_CASE="<pad>",__SCREAMING_SNAKE_CASE="[CLS]",__SCREAMING_SNAKE_CASE="[MASK]",**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = ( AddedToken(__SCREAMING_SNAKE_CASE,lstrip=__SCREAMING_SNAKE_CASE,rstrip=__SCREAMING_SNAKE_CASE,normalized=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else mask_token ) super().__init__( __SCREAMING_SNAKE_CASE,tokenizer_file=__SCREAMING_SNAKE_CASE,do_lower_case=__SCREAMING_SNAKE_CASE,remove_space=__SCREAMING_SNAKE_CASE,keep_accents=__SCREAMING_SNAKE_CASE,bos_token=__SCREAMING_SNAKE_CASE,eos_token=__SCREAMING_SNAKE_CASE,unk_token=__SCREAMING_SNAKE_CASE,sep_token=__SCREAMING_SNAKE_CASE,pad_token=__SCREAMING_SNAKE_CASE,cls_token=__SCREAMING_SNAKE_CASE,mask_token=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = do_lower_case __lowerCAmelCase = remove_space __lowerCAmelCase = keep_accents __lowerCAmelCase = vocab_file __lowerCAmelCase = False if not self.vocab_file else True def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file,__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
689
'''simple docstring''' from collections import deque def _lowerCAmelCase ( lowercase ) -> Dict: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = deque() __lowerCAmelCase = [False for _ in range(lowercase )] __lowerCAmelCase = [-1 for _ in range(lowercase )] __lowerCAmelCase = index_of[:] def strong_connect(lowercase , lowercase , lowercase ): __lowerCAmelCase = index # the number when this node is seen __lowerCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(lowercase ) __lowerCAmelCase = True for w in g[v]: if index_of[w] == -1: __lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase ) __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowerCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowerCAmelCase = [] __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) while w != v: __lowerCAmelCase = stack.pop() __lowerCAmelCase = False component.append(lowercase ) components.append(lowercase ) return index __lowerCAmelCase = [] for v in range(lowercase ): if index_of[v] == -1: strong_connect(lowercase , 0 , lowercase ) return components def _lowerCAmelCase ( lowercase , lowercase ) -> str: __lowerCAmelCase = [[] for _ in range(lowercase )] for u, v in edges: g[u].append(lowercase ) return g if __name__ == "__main__": # Test _a : Any = 7 _a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] _a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] _a : Optional[Any] = [(u, v) for u, v in zip(source, target)] _a : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
689
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64),layers_per_block=2,sample_size=32,in_channels=3,out_channels=3,down_block_types=("""DownBlock2D""", """AttnDownBlock2D"""),up_block_types=("""AttnUpBlock2D""", """UpBlock2D"""),) return model def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.dummy_uncond_unet __lowerCAmelCase = ScoreSdeVeScheduler() __lowerCAmelCase = ScoreSdeVePipeline(unet=__SCREAMING_SNAKE_CASE,scheduler=__SCREAMING_SNAKE_CASE ) sde_ve.to(__SCREAMING_SNAKE_CASE ) sde_ve.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sde_ve(num_inference_steps=2,output_type="""numpy""",generator=__SCREAMING_SNAKE_CASE ).images __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sde_ve(num_inference_steps=2,output_type="""numpy""",generator=__SCREAMING_SNAKE_CASE,return_dict=__SCREAMING_SNAKE_CASE )[ 0 ] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """google/ncsnpp-church-256""" __lowerCAmelCase = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = ScoreSdeVeScheduler.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = ScoreSdeVePipeline(unet=__SCREAMING_SNAKE_CASE,scheduler=__SCREAMING_SNAKE_CASE ) sde_ve.to(__SCREAMING_SNAKE_CASE ) sde_ve.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sde_ve(num_inference_steps=10,output_type="""numpy""",generator=__SCREAMING_SNAKE_CASE ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __lowerCAmelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
689
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase , lowercase ) -> int: __lowerCAmelCase = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __lowerCAmelCase = n - k # Calculate C(n,k) for i in range(lowercase ): result *= n - i result //= i + 1 return result def _lowerCAmelCase ( lowercase ) -> int: return binomial_coefficient(2 * node_count , lowercase ) // (node_count + 1) def _lowerCAmelCase ( lowercase ) -> int: if n < 0: raise ValueError("""factorial() not defined for negative values""" ) __lowerCAmelCase = 1 for i in range(1 , n + 1 ): result *= i return result def _lowerCAmelCase ( lowercase ) -> int: return catalan_number(lowercase ) * factorial(lowercase ) if __name__ == "__main__": _a : List[Any] = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( f'Given {node_count} nodes, there are {binary_tree_count(node_count)} ' f'binary trees and {catalan_number(node_count)} binary search trees.' )
689
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } _a : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(lowercase , lowercase ) if weight_type is not None: __lowerCAmelCase = getattr(lowercase , lowercase ).shape else: __lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "bias" in name: __lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase = """weight""" else: __lowerCAmelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase = name.split(""".""" ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict: if config_path is not None: __lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase ) else: __lowerCAmelCase = UniSpeechSatConfig() __lowerCAmelCase = """""" if is_finetuned: __lowerCAmelCase = UniSpeechSatForCTC(lowercase ) else: __lowerCAmelCase = UniSpeechSatForPreTraining(lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __lowerCAmelCase = model[0].eval() recursively_load_weights(lowercase , lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _a : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
689
1
'''simple docstring''' _a : List[Any] = 6_5_5_2_1 def _lowerCAmelCase ( lowercase ) -> int: __lowerCAmelCase = 1 __lowerCAmelCase = 0 for plain_chr in plain_text: __lowerCAmelCase = (a + ord(lowercase )) % MOD_ADLER __lowerCAmelCase = (b + a) % MOD_ADLER return (b << 16) | a
689
'''simple docstring''' from scipy.stats import spearmanr import datasets _a : str = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _a : Dict = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _a : List[str] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
689
1
'''simple docstring''' from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def _lowerCAmelCase ( lowercase = True , *lowercase , **lowercase ) -> List[str]: if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __lowerCAmelCase = False if main_process_only: __lowerCAmelCase = PartialState().local_process_index == 0 return _tqdm(*lowercase , **lowercase , disable=lowercase )
689
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ): a : List[str] =["""onnx"""] def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls,["""onnx"""] )
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> list: if n_term == "": return [] __lowerCAmelCase = [] for temp in range(int(lowercase ) ): series.append(f'1/{temp + 1}' if series else """1""" ) return series if __name__ == "__main__": _a : List[str] = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
689
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
1
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : Tuple = logging.get_logger(__name__) _a : List[Any] = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } _a : List[str] = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } _a : int = { """vinai/phobert-base""": 2_5_6, """vinai/phobert-large""": 2_5_6, } def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = set() __lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCAmelCase = char __lowerCAmelCase = set(lowercase ) return pairs class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[int] =VOCAB_FILES_NAMES a : Optional[int] =PRETRAINED_VOCAB_FILES_MAP a : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="<unk>",__SCREAMING_SNAKE_CASE="<pad>",__SCREAMING_SNAKE_CASE="<mask>",**__SCREAMING_SNAKE_CASE,): '''simple docstring''' super().__init__( bos_token=__SCREAMING_SNAKE_CASE,eos_token=__SCREAMING_SNAKE_CASE,unk_token=__SCREAMING_SNAKE_CASE,sep_token=__SCREAMING_SNAKE_CASE,cls_token=__SCREAMING_SNAKE_CASE,pad_token=__SCREAMING_SNAKE_CASE,mask_token=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = vocab_file __lowerCAmelCase = merges_file __lowerCAmelCase = {} __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 2 __lowerCAmelCase = 3 self.add_from_file(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {v: k for k, v in self.encoder.items()} with open(__SCREAMING_SNAKE_CASE,encoding="""utf-8""" ) as merges_handle: __lowerCAmelCase = merges_handle.read().split("""\n""" )[:-1] __lowerCAmelCase = [tuple(merge.split()[:-1] ) for merge in merges] __lowerCAmelCase = dict(zip(__SCREAMING_SNAKE_CASE,range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase = {} def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE,token_ids_a=__SCREAMING_SNAKE_CASE,already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ ( self ): '''simple docstring''' return len(self.encoder ) def lowerCamelCase__ ( self ): '''simple docstring''' return dict(self.encoder,**self.added_tokens_encoder ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowerCAmelCase = tuple(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) __lowerCAmelCase = get_pairs(__SCREAMING_SNAKE_CASE ) if not pairs: return token while True: __lowerCAmelCase = min(__SCREAMING_SNAKE_CASE,key=lambda __SCREAMING_SNAKE_CASE : self.bpe_ranks.get(__SCREAMING_SNAKE_CASE,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __lowerCAmelCase , __lowerCAmelCase = bigram __lowerCAmelCase = [] __lowerCAmelCase = 0 while i < len(__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = word.index(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCAmelCase = j if word[i] == first and i < len(__SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCAmelCase = tuple(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = new_word if len(__SCREAMING_SNAKE_CASE ) == 1: break else: __lowerCAmelCase = get_pairs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """@@ """.join(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = word[:-4] __lowerCAmelCase = word return word def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = re.findall(R"""\S+\n?""",__SCREAMING_SNAKE_CASE ) for token in words: split_tokens.extend(list(self.bpe(__SCREAMING_SNAKE_CASE ).split(""" """ ) ) ) return split_tokens def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.encoder.get(__SCREAMING_SNAKE_CASE,self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.decoder.get(__SCREAMING_SNAKE_CASE,self.unk_token ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = """ """.join(__SCREAMING_SNAKE_CASE ).replace("""@@ ""","""""" ).strip() return out_string def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file,__SCREAMING_SNAKE_CASE ) if os.path.abspath(self.merges_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.merges_file,__SCREAMING_SNAKE_CASE ) return out_vocab_file, out_merge_file def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: with open(__SCREAMING_SNAKE_CASE,"""r""",encoding="""utf-8""" ) as fd: self.add_from_file(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' ) return __lowerCAmelCase = f.readlines() for lineTmp in lines: __lowerCAmelCase = lineTmp.strip() __lowerCAmelCase = line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) __lowerCAmelCase = line[:idx] __lowerCAmelCase = len(self.encoder )
689
'''simple docstring''' def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int: __lowerCAmelCase = set() __lowerCAmelCase = int((limit - 24) ** (1 / 2) ) __lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) ) for primea in primes: __lowerCAmelCase = primea * primea for primea in primes: __lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCAmelCase = primea * primea * primea * primea __lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Optional[int] = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[int] = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
1
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowercase ) -> int: if not nums: return 0 __lowerCAmelCase = nums[0] __lowerCAmelCase = 0 for num in nums[1:]: __lowerCAmelCase , __lowerCAmelCase = ( max_excluding + num, max(lowercase , lowercase ), ) return max(lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
689
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( lowercase ) -> Optional[int]: if not is_accelerate_available(): return method __lowerCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *lowercase , **lowercase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
689
1
'''simple docstring''' from math import ceil def _lowerCAmelCase ( lowercase = 1001 ) -> int: __lowerCAmelCase = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __lowerCAmelCase = 2 * i + 1 __lowerCAmelCase = 2 * i __lowerCAmelCase = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _a : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
689
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: # load base model __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __lowerCAmelCase = load_file(lowercase ) __lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.text_encoder else: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.unet # find the target layer __lowerCAmelCase = layer_infos.pop(0 ) while len(lowercase ) > -1: try: __lowerCAmelCase = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __lowerCAmelCase = layer_infos.pop(0 ) __lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: __lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _a : Optional[int] = parser.parse_args() _a : Dict = args.base_model_path _a : Optional[Any] = args.checkpoint_path _a : Union[str, Any] = args.dump_path _a : Optional[int] = args.lora_prefix_unet _a : int = args.lora_prefix_text_encoder _a : str = args.alpha _a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase = 6008_5147_5143 ) -> int: try: __lowerCAmelCase = int(lowercase ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) __lowerCAmelCase = 2 __lowerCAmelCase = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __lowerCAmelCase = i while n % i == 0: __lowerCAmelCase = n // i i += 1 return int(lowercase ) if __name__ == "__main__": print(f'{solution() = }')
689
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
1
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = VideoMAEConfig() set_architecture_configs(lowercase , lowercase ) if "finetuned" not in model_name: __lowerCAmelCase = False if "finetuned" in model_name: __lowerCAmelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCAmelCase = 400 __lowerCAmelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCAmelCase = 174 __lowerCAmelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowercase , lowercase ) -> Any: if "small" in model_name: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = 192 __lowerCAmelCase = 768 elif "large" in model_name: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 512 __lowerCAmelCase = 2048 elif "huge" in model_name: __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 640 __lowerCAmelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _lowerCAmelCase ( lowercase ) -> List[str]: if "encoder." in name: __lowerCAmelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCAmelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if key.startswith("""encoder.""" ): __lowerCAmelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCAmelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCAmelCase = np.load(lowercase ) return list(lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = get_videomae_config(lowercase ) if "finetuned" in model_name: __lowerCAmelCase = VideoMAEForVideoClassification(lowercase ) else: __lowerCAmelCase = VideoMAEForPreTraining(lowercase ) # download original checkpoint, hosted on Google Drive __lowerCAmelCase = """pytorch_model.bin""" gdown.cached_download(lowercase , lowercase , quiet=lowercase ) __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" ) if "model" in files: __lowerCAmelCase = files["""model"""] else: __lowerCAmelCase = files["""module"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() # verify model on basic input __lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCAmelCase = torch.load(lowercase ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCAmelCase = outputs.loss assert torch.allclose(lowercase , lowercase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( lowercase ) -> List[Any]: __lowerCAmelCase = VideoMAEConfig() set_architecture_configs(lowercase , lowercase ) if "finetuned" not in model_name: __lowerCAmelCase = False if "finetuned" in model_name: __lowerCAmelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCAmelCase = 400 __lowerCAmelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCAmelCase = 174 __lowerCAmelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowercase , lowercase ) -> Any: if "small" in model_name: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = 192 __lowerCAmelCase = 768 elif "large" in model_name: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 512 __lowerCAmelCase = 2048 elif "huge" in model_name: __lowerCAmelCase = 1280 __lowerCAmelCase = 5120 __lowerCAmelCase = 32 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 640 __lowerCAmelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _lowerCAmelCase ( lowercase ) -> List[str]: if "encoder." in name: __lowerCAmelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCAmelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if key.startswith("""encoder.""" ): __lowerCAmelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCAmelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCAmelCase = np.load(lowercase ) return list(lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __lowerCAmelCase = get_videomae_config(lowercase ) if "finetuned" in model_name: __lowerCAmelCase = VideoMAEForVideoClassification(lowercase ) else: __lowerCAmelCase = VideoMAEForPreTraining(lowercase ) # download original checkpoint, hosted on Google Drive __lowerCAmelCase = """pytorch_model.bin""" gdown.cached_download(lowercase , lowercase , quiet=lowercase ) __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" ) if "model" in files: __lowerCAmelCase = files["""model"""] else: __lowerCAmelCase = files["""module"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() # verify model on basic input __lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCAmelCase = torch.load(lowercase ) __lowerCAmelCase = model(**lowercase ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 400] ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __lowerCAmelCase = torch.Size([1, 1408, 1536] ) __lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 174] ) __lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCAmelCase = outputs.loss assert torch.allclose(lowercase , lowercase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Optional[int] = logging.get_logger(__name__) _a : Optional[Any] = { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class _UpperCAmelCase ( lowerCAmelCase_ ): a : Any ="""speech_to_text""" a : Any =["""past_key_values"""] a : str ={"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self,__SCREAMING_SNAKE_CASE=1_00_00,__SCREAMING_SNAKE_CASE=12,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=6,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE="relu",__SCREAMING_SNAKE_CASE=2_56,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=0,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=60_00,__SCREAMING_SNAKE_CASE=10_24,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=(5, 5),__SCREAMING_SNAKE_CASE=10_24,__SCREAMING_SNAKE_CASE=80,__SCREAMING_SNAKE_CASE=1,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = use_cache __lowerCAmelCase = encoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase = max_source_positions __lowerCAmelCase = max_target_positions __lowerCAmelCase = num_conv_layers __lowerCAmelCase = list(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = conv_channels __lowerCAmelCase = input_feat_per_channel __lowerCAmelCase = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` """ f'but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ' f'`config.num_conv_layers = {self.num_conv_layers}`.' ) super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE,bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,is_encoder_decoder=__SCREAMING_SNAKE_CASE,decoder_start_token_id=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,)
689
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a : Tuple = """\ """ _a : Tuple = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _a : Optional[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = """cuda""" else: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( __SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = encodings["""input_ids"""] __lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
689
1
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("""At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training""") # TF training parameters _a : Tuple = False _a : Any = False def _lowerCAmelCase ( lowercase ) -> Dict: return TrainCommand(lowercase ) class _UpperCAmelCase ( lowerCAmelCase_ ): @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = parser.add_parser("""train""",help="""CLI tool to train a model on a task.""" ) train_parser.add_argument( """--train_data""",type=__SCREAMING_SNAKE_CASE,required=__SCREAMING_SNAKE_CASE,help="""path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.""",) train_parser.add_argument( """--column_label""",type=__SCREAMING_SNAKE_CASE,default=0,help="""Column of the dataset csv file with example labels.""" ) train_parser.add_argument( """--column_text""",type=__SCREAMING_SNAKE_CASE,default=1,help="""Column of the dataset csv file with example texts.""" ) train_parser.add_argument( """--column_id""",type=__SCREAMING_SNAKE_CASE,default=2,help="""Column of the dataset csv file with example ids.""" ) train_parser.add_argument( """--skip_first_row""",action="""store_true""",help="""Skip the first row of the csv file (headers).""" ) train_parser.add_argument("""--validation_data""",type=__SCREAMING_SNAKE_CASE,default="""""",help="""path to validation dataset.""" ) train_parser.add_argument( """--validation_split""",type=__SCREAMING_SNAKE_CASE,default=0.1,help="""if validation dataset is not provided, fraction of train dataset to use as validation dataset.""",) train_parser.add_argument("""--output""",type=__SCREAMING_SNAKE_CASE,default="""./""",help="""path to saved the trained model.""" ) train_parser.add_argument( """--task""",type=__SCREAMING_SNAKE_CASE,default="""text_classification""",help="""Task to train the model on.""" ) train_parser.add_argument( """--model""",type=__SCREAMING_SNAKE_CASE,default="""bert-base-uncased""",help="""Model's name or path to stored model.""" ) train_parser.add_argument("""--train_batch_size""",type=__SCREAMING_SNAKE_CASE,default=32,help="""Batch size for training.""" ) train_parser.add_argument("""--valid_batch_size""",type=__SCREAMING_SNAKE_CASE,default=64,help="""Batch size for validation.""" ) train_parser.add_argument("""--learning_rate""",type=__SCREAMING_SNAKE_CASE,default=3e-5,help="""Learning rate.""" ) train_parser.add_argument("""--adam_epsilon""",type=__SCREAMING_SNAKE_CASE,default=1e-08,help="""Epsilon for Adam optimizer.""" ) train_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = logging.get_logger("""transformers-cli/training""" ) __lowerCAmelCase = """tf""" if is_tf_available() else """torch""" os.makedirs(args.output,exist_ok=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = args.output __lowerCAmelCase = args.column_label __lowerCAmelCase = args.column_text __lowerCAmelCase = args.column_id self.logger.info(f'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": __lowerCAmelCase = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'Loading dataset from {args.train_data}' ) __lowerCAmelCase = Processor.create_from_csv( args.train_data,column_label=args.column_label,column_text=args.column_text,column_id=args.column_id,skip_first_row=args.skip_first_row,) __lowerCAmelCase = None if args.validation_data: self.logger.info(f'Loading validation dataset from {args.validation_data}' ) __lowerCAmelCase = Processor.create_from_csv( args.validation_data,column_label=args.column_label,column_text=args.column_text,column_id=args.column_id,skip_first_row=args.skip_first_row,) __lowerCAmelCase = args.validation_split __lowerCAmelCase = args.train_batch_size __lowerCAmelCase = args.valid_batch_size __lowerCAmelCase = args.learning_rate __lowerCAmelCase = args.adam_epsilon def lowerCamelCase__ ( self ): '''simple docstring''' if self.framework == "tf": return self.run_tf() return self.run_torch() def lowerCamelCase__ ( self ): '''simple docstring''' raise NotImplementedError def lowerCamelCase__ ( self ): '''simple docstring''' self.pipeline.fit( self.train_dataset,validation_data=self.valid_dataset,validation_split=self.validation_split,learning_rate=self.learning_rate,adam_epsilon=self.adam_epsilon,train_batch_size=self.train_batch_size,valid_batch_size=self.valid_batch_size,) # Save trained pipeline self.pipeline.save_pretrained(self.output )
689
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =["""image_processor"""] a : Dict ="""SamImageProcessor""" def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -10 __lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self._normalize_and_convert( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",): '''simple docstring''' if input_points is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_labels is not None: __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE ) for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,2,2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,4 ) return coords def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _a : List[str] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__() __lowerCAmelCase = torchvision.models.resnetaaa(pretrained=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = list(model.children() )[:-2] __lowerCAmelCase = nn.Sequential(*__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.pool(self.model(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = torch.flatten(__SCREAMING_SNAKE_CASE,start_dim=2 ) __lowerCAmelCase = out.transpose(1,2 ).contiguous() return out # BxNx2048 class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [json.loads(__SCREAMING_SNAKE_CASE ) for l in open(__SCREAMING_SNAKE_CASE )] __lowerCAmelCase = os.path.dirname(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer __lowerCAmelCase = labels __lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = max_seq_length __lowerCAmelCase = transforms def __len__( self ): '''simple docstring''' return len(self.data ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""],add_special_tokens=__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = sentence[0], sentence[1:-1], sentence[-1] __lowerCAmelCase = sentence[: self.max_seq_length] __lowerCAmelCase = torch.zeros(self.n_classes ) __lowerCAmelCase = 1 __lowerCAmelCase = Image.open(os.path.join(self.data_dir,self.data[index]["""img"""] ) ).convert("""RGB""" ) __lowerCAmelCase = self.transforms(__SCREAMING_SNAKE_CASE ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def _lowerCAmelCase ( lowercase ) -> str: __lowerCAmelCase = [len(row["""sentence"""] ) for row in batch] __lowerCAmelCase , __lowerCAmelCase = len(lowercase ), max(lowercase ) __lowerCAmelCase = torch.zeros(lowercase , lowercase , dtype=torch.long ) __lowerCAmelCase = torch.zeros(lowercase , lowercase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(lowercase , lowercase ) ): __lowerCAmelCase = input_row["""sentence"""] __lowerCAmelCase = 1 __lowerCAmelCase = torch.stack([row["""image"""] for row in batch] ) __lowerCAmelCase = torch.stack([row["""label"""] for row in batch] ) __lowerCAmelCase = torch.stack([row["""image_start_token"""] for row in batch] ) __lowerCAmelCase = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _lowerCAmelCase ( ) -> Tuple: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _lowerCAmelCase ( ) -> Union[str, Any]: return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
689
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _a : int = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) a : int =field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowerCamelCase__ ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __lowerCAmelCase = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowerCAmelCase = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a : bool =field( default=lowerCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _lowerCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowerCAmelCase = data_args.train_file.split(""".""" )[-1] __lowerCAmelCase = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowerCAmelCase = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names __lowerCAmelCase = len(lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowerCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , ) __lowerCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1} __lowerCAmelCase = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowercase ): # Tokenize the texts def _convert_table_text_to_pandas(lowercase ): __lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowerCAmelCase = examples["""statement"""] __lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase ) __lowerCAmelCase = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __lowerCAmelCase = raw_datasets.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __lowerCAmelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __lowerCAmelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __lowerCAmelCase = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): __lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase = default_data_collator elif training_args.fpaa: __lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: __lowerCAmelCase = None # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase ) __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowercase ) trainer.save_metrics("""train""" , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase ) __lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) __lowerCAmelCase = min(lowercase , len(lowercase ) ) trainer.log_metrics("""eval""" , lowercase ) trainer.save_metrics("""eval""" , lowercase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowerCAmelCase = predict_dataset.remove_columns("""label""" ) __lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions __lowerCAmelCase = np.argmax(lowercase , axis=1 ) __lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowercase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowercase ): __lowerCAmelCase = label_list[item] writer.write(f'{index}\t{item}\n' ) __lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def _lowerCAmelCase ( lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
689
1
'''simple docstring''' def _lowerCAmelCase ( lowercase , lowercase ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def _lowerCAmelCase ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
689
'''simple docstring''' import os import sys import unittest _a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = find_backend(""" if not is_torch_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCAmelCase = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""",objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" ) __lowerCAmelCase = create_dummy_object("""function""","""'torch'""" ) self.assertEqual( __SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ __lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ __lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
689
1
'''simple docstring''' import random class _UpperCAmelCase : @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [ord(__SCREAMING_SNAKE_CASE ) for i in text] __lowerCAmelCase = [] __lowerCAmelCase = [] for i in plain: __lowerCAmelCase = random.randint(1,3_00 ) __lowerCAmelCase = (i + k) * k cipher.append(__SCREAMING_SNAKE_CASE ) key.append(__SCREAMING_SNAKE_CASE ) return cipher, key @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(__SCREAMING_SNAKE_CASE ) ) return "".join(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _a ,_a : Optional[int] = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
689
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> tuple[int, int]: try: __lowerCAmelCase = float(lowercase ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowerCAmelCase = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: __lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] ) __lowerCAmelCase = int(decimal * (10**number_of_frac_digits) ) __lowerCAmelCase = 10**number_of_frac_digits __lowerCAmelCase , __lowerCAmelCase = denominator, numerator while True: __lowerCAmelCase = dividend % divisor if remainder == 0: break __lowerCAmelCase , __lowerCAmelCase = divisor, remainder __lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
689
1
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _lowerCAmelCase ( ) -> int: __lowerCAmelCase = ArgumentParser("""Transformers CLI tool""" , usage="""transformers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""transformers-cli command helpers""" ) # Register commands ConvertCommand.register_subcommand(lowercase ) DownloadCommand.register_subcommand(lowercase ) EnvironmentCommand.register_subcommand(lowercase ) RunCommand.register_subcommand(lowercase ) ServeCommand.register_subcommand(lowercase ) UserCommands.register_subcommand(lowercase ) AddNewModelCommand.register_subcommand(lowercase ) AddNewModelLikeCommand.register_subcommand(lowercase ) LfsCommands.register_subcommand(lowercase ) PTtoTFCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : Dict = _symbol_database.Default() _a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _a : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : str = None _a : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : Optional[int] = 4_5 _a : List[Any] = 1_5_8_1 _a : str = 1_5_1_7 _a : Optional[Any] = 1_5_7_0 _a : List[str] = 1_5_8_4 _a : List[Any] = 1_7_9_3 _a : Union[str, Any] = 1_7_9_5 _a : Tuple = 1_9_1_6 _a : List[Any] = 1_8_6_4 _a : Any = 1_9_0_5 _a : Optional[Any] = 1_9_1_9 _a : Optional[int] = 2_4_2_9 _a : Tuple = 2_2_0_8 _a : Optional[Any] = 2_4_1_8 _a : List[Any] = 2_3_2_3 _a : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
689
1
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 _a : Tuple = get_tests_dir("""fixtures/dummy-config.json""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = 0 def lowerCamelCase__ ( self ): '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __lowerCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE,"""fake-roberta""" ) os.makedirs(__SCREAMING_SNAKE_CASE,exist_ok=__SCREAMING_SNAKE_CASE ) with open(os.path.join(__SCREAMING_SNAKE_CASE,"""config.json""" ),"""w""" ) as f: f.write(json.dumps({} ) ) __lowerCAmelCase = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertEqual(type(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' try: AutoConfig.register("""custom""",__SCREAMING_SNAKE_CASE ) # Wrong model type will raise an error with self.assertRaises(__SCREAMING_SNAKE_CASE ): AutoConfig.register("""model""",__SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__SCREAMING_SNAKE_CASE ): AutoConfig.register("""bert""",__SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCAmelCase = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowerCamelCase__ ( self ): '''simple docstring''' with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE,"""bert-base is not a local folder and is not a valid model identifier""" ): __lowerCAmelCase = AutoConfig.from_pretrained("""bert-base""" ) def lowerCamelCase__ ( self ): '''simple docstring''' with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE,R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowerCAmelCase = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE,revision="""aaaaaa""" ) def lowerCamelCase__ ( self ): '''simple docstring''' with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE,"""hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""",): __lowerCAmelCase = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def lowerCamelCase__ ( self ): '''simple docstring''' with self.assertRaises(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""",trust_remote_code=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""",trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__,"""NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE,trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_config.__class__.__name__,"""NewModelConfig""" ) def lowerCamelCase__ ( self ): '''simple docstring''' class _UpperCAmelCase ( lowerCAmelCase_ ): a : Any ="""new-model""" try: AutoConfig.register("""new-model""",__SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local __lowerCAmelCase = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__,"""NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. __lowerCAmelCase = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""",trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__,"""NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub __lowerCAmelCase = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""",trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__,"""NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
689
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : torch.FloatTensor class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = torch.nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) # down __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # out __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = 2 * out_channels if double_z else out_channels __lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""","""1.11.0""" ): for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: __lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # up __lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output_channel # out if norm_type == "spatial": __lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = z __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""","""1.11.0""" ): # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' super().__init__() __lowerCAmelCase = n_e __lowerCAmelCase = vq_embed_dim __lowerCAmelCase = beta __lowerCAmelCase = legacy __lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e ) __lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase = self.used.shape[0] __lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase = self.re_embed __lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __lowerCAmelCase = n_e __lowerCAmelCase = sane_index_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase = match.argmax(-1 ) __lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase = 0 # simply set to zero __lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = z.permute(0,2,3,1 ).contiguous() __lowerCAmelCase = z.view(-1,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 ) __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) __lowerCAmelCase = None __lowerCAmelCase = None # compute loss for embedding if not self.legacy: __lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() if self.remap is not None: __lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis __lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten if self.sane_index_shape: __lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.remap is not None: __lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis __lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: __lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() return z_q class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = parameters __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 ) __lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 ) __lowerCAmelCase = deterministic __lowerCAmelCase = torch.exp(0.5 * self.logvar ) __lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase = __lowerCAmelCase = torch.zeros_like( self.mean,device=self.parameters.device,dtype=self.parameters.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = randn_tensor( self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype ) __lowerCAmelCase = self.mean + self.std * sample return x def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,dim=[1, 2, 3],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.mean
689
1
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class _UpperCAmelCase ( lowerCAmelCase_ ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE,"""hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE,"""num_attention_heads""" ) ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE,"""num_encoder_blocks""" ) ) class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=13,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=[2, 2, 2, 2],__SCREAMING_SNAKE_CASE=[8, 4, 2, 1],__SCREAMING_SNAKE_CASE=[16, 32, 64, 1_28],__SCREAMING_SNAKE_CASE=[1, 4, 8, 16],__SCREAMING_SNAKE_CASE=[1, 2, 4, 8],__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE="gelu",__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_encoder_blocks __lowerCAmelCase = sr_ratios __lowerCAmelCase = depths __lowerCAmelCase = hidden_sizes __lowerCAmelCase = downsampling_rates __lowerCAmelCase = num_attention_heads __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = scope def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size],self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self ): '''simple docstring''' return SegformerConfig( image_size=self.image_size,num_channels=self.num_channels,num_encoder_blocks=self.num_encoder_blocks,depths=self.depths,hidden_sizes=self.hidden_sizes,num_attention_heads=self.num_attention_heads,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,initializer_range=self.initializer_range,) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = SegformerModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = __lowerCAmelCase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape,(self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.num_labels __lowerCAmelCase = SegformerForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss,0.0 ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = 1 __lowerCAmelCase = SegformerForSemanticSegmentation(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = torch.randint(0,1,(self.batch_size, self.image_size, self.image_size) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertGreater(result.loss,0.0 ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): a : Optional[Any] =( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) a : Tuple =( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) a : Dict =True a : Any =False a : str =False a : List[str] =False def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SegformerModelTester(self ) __lowerCAmelCase = SegformerConfigTester(self,config_class=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__SCREAMING_SNAKE_CASE ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1],__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = outputs.attentions __lowerCAmelCase = sum(self.model_tester.depths ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # verify the first attentions (first block, first layer) __lowerCAmelCase = (self.model_tester.image_size // 4) ** 2 __lowerCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len],) # verify the last attentions (last block, last layer) __lowerCAmelCase = (self.model_tester.image_size // 32) ** 2 __lowerCAmelCase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ),[self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len],) __lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + 1,len(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # verify the first attentions (first block, first layer) __lowerCAmelCase = (self.model_tester.image_size // 4) ** 2 __lowerCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len],) def lowerCamelCase__ ( self ): '''simple docstring''' def check_hidden_states_output(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = self.model_tester.num_encoder_blocks self.assertEqual(len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ),[ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ],) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' if not self.model_tester.is_training: return __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(__SCREAMING_SNAKE_CASE ): continue __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() __lowerCAmelCase = self._prepare_for_class(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,return_labels=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @slow def lowerCamelCase__ ( self ): '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = SegformerModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( ) -> List[str]: __lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class _UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12),keep_ratio=__SCREAMING_SNAKE_CASE,align=__SCREAMING_SNAKE_CASE,do_random_crop=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( __SCREAMING_SNAKE_CASE ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) __lowerCAmelCase = encoded_inputs.pixel_values.to(__SCREAMING_SNAKE_CASE ) with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3],__SCREAMING_SNAKE_CASE,atol=1e-4 ) ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12),keep_ratio=__SCREAMING_SNAKE_CASE,align=__SCREAMING_SNAKE_CASE,do_random_crop=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) __lowerCAmelCase = encoded_inputs.pixel_values.to(__SCREAMING_SNAKE_CASE ) with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3],__SCREAMING_SNAKE_CASE,atol=1e-1 ) ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12),keep_ratio=__SCREAMING_SNAKE_CASE,align=__SCREAMING_SNAKE_CASE,do_random_crop=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( __SCREAMING_SNAKE_CASE ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) __lowerCAmelCase = encoded_inputs.pixel_values.to(__SCREAMING_SNAKE_CASE ) with torch.no_grad(): __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = outputs.logits.detach().cpu() __lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__SCREAMING_SNAKE_CASE,target_sizes=[(5_00, 3_00)] ) __lowerCAmelCase = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape,__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : Optional[int] = logging.get_logger(__name__) _a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} ) a : str =field( default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a : int =field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : int =field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a : int =field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a : int =field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a : bool =field( default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a : float =field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a : int =field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] ="""train""" a : Optional[int] ="""dev""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : SquadDataTrainingArguments a : List[SquadFeatures] a : Split a : bool def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",): '''simple docstring''' __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["""features"""] __lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float ) __lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
689
1
'''simple docstring''' import numpy as np class _UpperCAmelCase : def __init__( self ): '''simple docstring''' __lowerCAmelCase = (0, 0) __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 def __eq__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.position == cell.position def lowerCamelCase__ ( self ): '''simple docstring''' print(self.position ) class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE=(5, 5) ): '''simple docstring''' __lowerCAmelCase = np.zeros(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = world_size[0] __lowerCAmelCase = world_size[1] def lowerCamelCase__ ( self ): '''simple docstring''' print(self.w ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] __lowerCAmelCase = cell.position[0] __lowerCAmelCase = cell.position[1] __lowerCAmelCase = [] for n in neughbour_cord: __lowerCAmelCase = current_x + n[0] __lowerCAmelCase = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: __lowerCAmelCase = Cell() __lowerCAmelCase = (x, y) __lowerCAmelCase = cell neighbours.append(__SCREAMING_SNAKE_CASE ) return neighbours def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> str: __lowerCAmelCase = [] __lowerCAmelCase = [] _open.append(lowercase ) while _open: __lowerCAmelCase = np.argmin([n.f for n in _open] ) __lowerCAmelCase = _open[min_f] _closed.append(_open.pop(lowercase ) ) if current == goal: break for n in world.get_neigbours(lowercase ): for c in _closed: if c == n: continue __lowerCAmelCase = current.g + 1 __lowerCAmelCase , __lowerCAmelCase = n.position __lowerCAmelCase , __lowerCAmelCase = goal.position __lowerCAmelCase = (ya - ya) ** 2 + (xa - xa) ** 2 __lowerCAmelCase = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowercase ) __lowerCAmelCase = [] while current.parent is not None: path.append(current.position ) __lowerCAmelCase = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": _a : int = Gridworld() # Start position and goal _a : Optional[int] = Cell() _a : int = (0, 0) _a : Dict = Cell() _a : Optional[int] = (4, 4) print(f'path from {start.position} to {goal.position}') _a : Dict = astar(world, start, goal) # Just for visual reasons. for i in s: _a : Tuple = 1 print(world.w)
689
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1