code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json',
'Salesforce/blip-vqa-capfit-large': (
'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json'
),
'Salesforce/blip-image-captioning-base': (
'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json'
),
'Salesforce/blip-image-captioning-large': (
'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json'
),
'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json',
'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json',
'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json',
'Salesforce/blip-itm-large-flikr': (
'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json'
),
}
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
snake_case__ = "blip_text_model"
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=30_524 , SCREAMING_SNAKE_CASE__ : Optional[int]=768 , SCREAMING_SNAKE_CASE__ : Any=768 , SCREAMING_SNAKE_CASE__ : Any=3_072 , SCREAMING_SNAKE_CASE__ : Dict=768 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=512 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : Dict=1e-1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=30_522 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=102 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : int=True , **SCREAMING_SNAKE_CASE__ : int , ) -> Dict:
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , sep_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = encoder_hidden_size
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = projection_dim
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = is_decoder
lowerCAmelCase__ = use_cache
@classmethod
def a ( cls : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Any ) -> "PretrainedConfig":
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
# get the text config dict if we are loading from BlipConfig
if config_dict.get("model_type" ) == "blip":
lowerCAmelCase__ = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
snake_case__ = "blip_vision_model"
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Dict=768 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_072 , SCREAMING_SNAKE_CASE__ : Optional[int]=512 , SCREAMING_SNAKE_CASE__ : Optional[int]=12 , SCREAMING_SNAKE_CASE__ : Any=12 , SCREAMING_SNAKE_CASE__ : str=384 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=16 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=1e-5 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-1_0 , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> int:
super().__init__(**SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = projection_dim
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = patch_size
lowerCAmelCase__ = image_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = attention_dropout
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = hidden_act
@classmethod
def a ( cls : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : str ) -> "PretrainedConfig":
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
# get the vision config dict if we are loading from BlipConfig
if config_dict.get("model_type" ) == "blip":
lowerCAmelCase__ = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
snake_case__ = "blip"
snake_case__ = True
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Any=512 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2.6_592 , SCREAMING_SNAKE_CASE__ : Tuple=256 , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> List[str]:
super().__init__(**SCREAMING_SNAKE_CASE__ )
if text_config is None:
lowerCAmelCase__ = {}
logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." )
if vision_config is None:
lowerCAmelCase__ = {}
logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." )
lowerCAmelCase__ = BlipTextConfig(**SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = BlipVisionConfig(**SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = self.vision_config.hidden_size
lowerCAmelCase__ = projection_dim
lowerCAmelCase__ = logit_scale_init_value
lowerCAmelCase__ = 1.0
lowerCAmelCase__ = 0.02
lowerCAmelCase__ = image_text_hidden_size
@classmethod
def a ( cls : Union[str, Any] , SCREAMING_SNAKE_CASE__ : BlipTextConfig , SCREAMING_SNAKE_CASE__ : BlipVisionConfig , **SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE__ )
def a ( self : Tuple ) -> Optional[int]:
lowerCAmelCase__ = copy.deepcopy(self.__dict__ )
lowerCAmelCase__ = self.text_config.to_dict()
lowerCAmelCase__ = self.vision_config.to_dict()
lowerCAmelCase__ = self.__class__.model_type
return output
| 61 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block
@dataclass
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = 42
class SCREAMING_SNAKE_CASE (a__ , a__ ):
@register_to_config
def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ):
'''simple docstring'''
super().__init__()
__A : Dict = sample_size
# time
if time_embedding_type == "fourier":
__A : int = GaussianFourierProjection(
embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase)
__A : Any = 2 * block_out_channels[0]
elif time_embedding_type == "positional":
__A : List[str] = Timesteps(
block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase)
__A : List[str] = block_out_channels[0]
if use_timestep_embedding:
__A : Optional[Any] = block_out_channels[0] * 4
__A : Optional[int] = TimestepEmbedding(
in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , )
__A : Dict = nn.ModuleList([])
__A : Dict = None
__A : Tuple = nn.ModuleList([])
__A : Tuple = None
# down
__A : Any = in_channels
for i, down_block_type in enumerate(_UpperCAmelCase):
__A : Tuple = output_channel
__A : Optional[Any] = block_out_channels[i]
if i == 0:
input_channel += extra_in_channels
__A : List[str] = i == len(_UpperCAmelCase) - 1
__A : int = get_down_block(
_UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , )
self.down_blocks.append(_UpperCAmelCase)
# mid
__A : str = get_mid_block(
_UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , )
# up
__A : Optional[int] = list(reversed(_UpperCAmelCase))
__A : Optional[int] = reversed_block_out_channels[0]
if out_block_type is None:
__A : str = out_channels
else:
__A : List[Any] = block_out_channels[0]
for i, up_block_type in enumerate(_UpperCAmelCase):
__A : Optional[Any] = output_channel
__A : Optional[Any] = (
reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels
)
__A : Dict = i == len(_UpperCAmelCase) - 1
__A : str = get_up_block(
_UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , )
self.up_blocks.append(_UpperCAmelCase)
__A : Optional[int] = output_channel
# out
__A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32)
__A : Optional[Any] = get_out_block(
out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , )
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ):
'''simple docstring'''
__A : Any = timestep
if not torch.is_tensor(_UpperCAmelCase):
__A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device)
elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0:
__A : Any = timesteps[None].to(sample.device)
__A : List[Any] = self.time_proj(_UpperCAmelCase)
if self.config.use_timestep_embedding:
__A : Dict = self.time_mlp(_UpperCAmelCase)
else:
__A : Dict = timestep_embed[..., None]
__A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype)
__A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]))
# 2. down
__A : int = ()
for downsample_block in self.down_blocks:
__A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase)
down_block_res_samples += res_samples
# 3. mid
if self.mid_block:
__A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase)
# 4. up
for i, upsample_block in enumerate(self.up_blocks):
__A : Any = down_block_res_samples[-1:]
__A : Optional[int] = down_block_res_samples[:-1]
__A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase)
# 5. post-process
if self.out_block:
__A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase)
if not return_dict:
return (sample,)
return UNetaDOutput(sample=_UpperCAmelCase) | 8 | 0 |
snake_case = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []}
snake_case = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]}
def lowerCamelCase__ ( lowercase , lowercase , lowercase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = True
SCREAMING_SNAKE_CASE : Any = []
for neighbour in graph[vert]:
if not visited[neighbour]:
order += topology_sort(lowercase , lowercase , lowercase )
order.append(lowercase )
return order
def lowerCamelCase__ ( lowercase , lowercase , lowercase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = True
SCREAMING_SNAKE_CASE : List[Any] = [vert]
for neighbour in reversed_graph[vert]:
if not visited[neighbour]:
component += find_components(lowercase , lowercase , lowercase )
return component
def lowerCamelCase__ ( lowercase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase ) * [False]
SCREAMING_SNAKE_CASE : dict[int, list[int]] = {vert: [] for vert in range(len(lowercase ) )}
for vert, neighbours in graph.items():
for neighbour in neighbours:
reversed_graph[neighbour].append(lowercase )
SCREAMING_SNAKE_CASE : Optional[Any] = []
for i, was_visited in enumerate(lowercase ):
if not was_visited:
order += topology_sort(lowercase , lowercase , lowercase )
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : List[str] = len(lowercase ) * [False]
for i in range(len(lowercase ) ):
SCREAMING_SNAKE_CASE : str = order[len(lowercase ) - i - 1]
if not visited[vert]:
SCREAMING_SNAKE_CASE : int = find_components(lowercase , lowercase , lowercase )
components_list.append(lowercase )
return components_list
| 62 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int:
if len(__snake_case ) != len(__snake_case ):
raise ValueError('String lengths must match!' )
__A : Optional[Any] = 0
for chara, chara in zip(__snake_case , __snake_case ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ):
# Initialise PyTorch model
__UpperCAmelCase : List[str] = AlbertConfig.from_json_file(__lowerCamelCase )
print(f"""Building PyTorch model from configuration: {config}""" )
__UpperCAmelCase : Any = AlbertForPreTraining(__lowerCamelCase )
# Load weights from tf checkpoint
load_tf_weights_in_albert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , __lowerCamelCase )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--albert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained ALBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
a : Union[str, Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 63 |
'''simple docstring'''
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Tuple = logging.get_logger(__name__)
def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]:
__A : int = RobertaPreLayerNormConfig.from_pretrained(
__snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] )
# convert state_dict
__A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) )
__A : str = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith('roberta.' ):
__A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ):
continue
__A : str = tensor_value
__A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case )
model.save_pretrained(__snake_case )
# convert tokenizer
__A : List[Any] = AutoTokenizer.from_pretrained(__snake_case )
tokenizer.save_pretrained(__snake_case )
if __name__ == "__main__":
lowercase__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint-repo''',
default=None,
type=str,
required=True,
help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path) | 8 | 0 |
import argparse
import json
import os
import time
import zipfile
from get_ci_error_statistics import download_artifact, get_artifacts_links
from transformers import logging
lowercase_ : int = logging.get_logger(__name__)
def A__ ( snake_case_ : Any , snake_case_ : List[str] ):
SCREAMING_SNAKE_CASE__: List[str]= set()
SCREAMING_SNAKE_CASE__: int= []
def parse_line(snake_case_ : List[str] ):
for line in fp:
if isinstance(snake_case_ , snake_case_ ):
SCREAMING_SNAKE_CASE__: Dict= line.decode('''UTF-8''' )
if "warnings summary (final)" in line:
continue
# This means we are outside the body of a warning
elif not line.startswith(''' ''' ):
# process a single warning and move it to `selected_warnings`.
if len(snake_case_ ) > 0:
SCREAMING_SNAKE_CASE__: List[str]= '''\n'''.join(snake_case_ )
# Only keep the warnings specified in `targets`
if any(F': {x}: ' in warning for x in targets ):
selected_warnings.add(snake_case_ )
buffer.clear()
continue
else:
SCREAMING_SNAKE_CASE__: int= line.strip()
buffer.append(snake_case_ )
if from_gh:
for filename in os.listdir(snake_case_ ):
SCREAMING_SNAKE_CASE__: Optional[Any]= os.path.join(snake_case_ , snake_case_ )
if not os.path.isdir(snake_case_ ):
# read the file
if filename != "warnings.txt":
continue
with open(snake_case_ ) as fp:
parse_line(snake_case_ )
else:
try:
with zipfile.ZipFile(snake_case_ ) as z:
for filename in z.namelist():
if not os.path.isdir(snake_case_ ):
# read the file
if filename != "warnings.txt":
continue
with z.open(snake_case_ ) as fp:
parse_line(snake_case_ )
except Exception:
logger.warning(
F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' )
return selected_warnings
def A__ ( snake_case_ : Dict , snake_case_ : Any ):
SCREAMING_SNAKE_CASE__: List[str]= set()
SCREAMING_SNAKE_CASE__: Tuple= [os.path.join(snake_case_ , snake_case_ ) for p in os.listdir(snake_case_ ) if (p.endswith('''.zip''' ) or from_gh)]
for p in paths:
selected_warnings.update(extract_warnings_from_single_artifact(snake_case_ , snake_case_ ) )
return selected_warnings
if __name__ == "__main__":
def A__ ( snake_case_ : int ):
return values.split(''',''' )
lowercase_ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='Where to store the downloaded artifacts and other result files.',
)
parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.')
# optional parameters
parser.add_argument(
'--targets',
default='DeprecationWarning,UserWarning,FutureWarning',
type=list_str,
help='Comma-separated list of target warning(s) which we want to extract.',
)
parser.add_argument(
'--from_gh',
action='store_true',
help='If running from a GitHub action workflow and collecting warnings from its artifacts.',
)
lowercase_ : Tuple = parser.parse_args()
lowercase_ : List[Any] = args.from_gh
if from_gh:
# The artifacts have to be downloaded using `actions/download-artifact@v3`
pass
else:
os.makedirs(args.output_dir, exist_ok=True)
# get download links
lowercase_ : Union[str, Any] = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
# download artifacts
for idx, (name, url) in enumerate(artifacts.items()):
print(name)
print(url)
print('=' * 8_0)
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
# extract warnings from artifacts
lowercase_ : Optional[Any] = extract_warnings(args.output_dir, args.targets)
lowercase_ : Any = sorted(selected_warnings)
with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp:
json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
| 64 |
'''simple docstring'''
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
lowercase__ : Dict = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} )
lowerCAmelCase = field(
default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
lowerCAmelCase = field(
default=a__ , metadata={
'''help''': (
'''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `max_length` value of the model configuration.'''
)
} , )
lowerCAmelCase = field(
default=a__ , metadata={
'''help''': (
'''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `num_beams` value of the model configuration.'''
)
} , )
lowerCAmelCase = field(
default=a__ , metadata={
'''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'''
} , )
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[Any] = super().to_dict()
for k, v in d.items():
if isinstance(_UpperCAmelCase , _UpperCAmelCase):
__A : List[Any] = v.to_dict()
return d | 8 | 0 |
"""simple docstring"""
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
__UpperCAmelCase = pd.read_csv('sample_data.csv', header=None)
__UpperCAmelCase = df.shape[:1][0]
# If you're using some other dataset input the target column
__UpperCAmelCase = df.iloc[:, 1:2]
__UpperCAmelCase = actual_data.values.reshape(len_data, 1)
__UpperCAmelCase = MinMaxScaler().fit_transform(actual_data)
__UpperCAmelCase = 10
__UpperCAmelCase = 5
__UpperCAmelCase = 20
__UpperCAmelCase = len_data - periods * look_back
__UpperCAmelCase = actual_data[:division]
__UpperCAmelCase = actual_data[division - look_back :]
__UpperCAmelCase, __UpperCAmelCase = [], []
__UpperCAmelCase, __UpperCAmelCase = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
__UpperCAmelCase = np.array(train_x)
__UpperCAmelCase = np.array(test_x)
__UpperCAmelCase = np.array([list(i.ravel()) for i in train_y])
__UpperCAmelCase = np.array([list(i.ravel()) for i in test_y])
__UpperCAmelCase = Sequential()
model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(128, 1)))
model.add(Dense(forward_days))
model.compile(loss='mean_squared_error', optimizer='adam')
__UpperCAmelCase = model.fit(
x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4
)
__UpperCAmelCase = model.predict(x_test)
| 65 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : List[Any] = logging.get_logger(__name__)
lowercase__ : Optional[int] = {
'''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''',
}
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = '''lxmert'''
lowerCAmelCase = {}
def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ):
'''simple docstring'''
__A : Tuple = vocab_size
__A : int = hidden_size
__A : str = num_attention_heads
__A : Tuple = hidden_act
__A : int = intermediate_size
__A : str = hidden_dropout_prob
__A : Optional[int] = attention_probs_dropout_prob
__A : Optional[Any] = max_position_embeddings
__A : Tuple = type_vocab_size
__A : Optional[int] = initializer_range
__A : Any = layer_norm_eps
__A : Optional[Any] = num_qa_labels
__A : Optional[int] = num_object_labels
__A : Any = num_attr_labels
__A : Union[str, Any] = l_layers
__A : Optional[int] = x_layers
__A : List[Any] = r_layers
__A : Tuple = visual_feat_dim
__A : Tuple = visual_pos_dim
__A : Optional[int] = visual_loss_normalizer
__A : int = task_matched
__A : List[Any] = task_mask_lm
__A : Optional[Any] = task_obj_predict
__A : str = task_qa
__A : List[Any] = visual_obj_loss
__A : Optional[Any] = visual_attr_loss
__A : Union[str, Any] = visual_feat_loss
__A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers}
super().__init__(**_UpperCAmelCase) | 8 | 0 |
import webbrowser
from sys import argv
from urllib.parse import parse_qs, quote
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
UpperCamelCase = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: ")))
print("Googling.....")
UpperCamelCase = f'''https://www.google.com/search?q={query}&num=100'''
UpperCamelCase = requests.get(
url,
headers={"User-Agent": str(UserAgent().random)},
)
try:
UpperCamelCase = (
BeautifulSoup(res.text, "html.parser")
.find("div", attrs={"class": "yuRUbf"})
.find("a")
.get("href")
)
except AttributeError:
UpperCamelCase = parse_qs(
BeautifulSoup(res.text, "html.parser")
.find("div", attrs={"class": "kCrYT"})
.find("a")
.get("href")
)["url"][0]
webbrowser.open(link)
| 66 |
'''simple docstring'''
import math
import sys
def _lowerCAmelCase ( __snake_case : int ) -> int:
if number != int(__snake_case ):
raise ValueError('the value of input must be a natural number' )
if number < 0:
raise ValueError('the value of input must not be a negative number' )
if number == 0:
return 1
__A : str = [-1] * (number + 1)
__A : Dict = 0
for i in range(1 , number + 1 ):
__A : int = sys.maxsize
__A : int = int(math.sqrt(__snake_case ) )
for j in range(1 , root + 1 ):
__A : str = 1 + answers[i - (j**2)]
__A : Dict = min(__snake_case , __snake_case )
__A : Union[str, Any] = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
snake_case = {
"""configuration_albert""": ["""ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AlbertConfig""", """AlbertOnnxConfig"""],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case = ["""AlbertTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case = ["""AlbertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case = [
"""ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AlbertForMaskedLM""",
"""AlbertForMultipleChoice""",
"""AlbertForPreTraining""",
"""AlbertForQuestionAnswering""",
"""AlbertForSequenceClassification""",
"""AlbertForTokenClassification""",
"""AlbertModel""",
"""AlbertPreTrainedModel""",
"""load_tf_weights_in_albert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case = [
"""TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFAlbertForMaskedLM""",
"""TFAlbertForMultipleChoice""",
"""TFAlbertForPreTraining""",
"""TFAlbertForQuestionAnswering""",
"""TFAlbertForSequenceClassification""",
"""TFAlbertForTokenClassification""",
"""TFAlbertMainLayer""",
"""TFAlbertModel""",
"""TFAlbertPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case = [
"""FlaxAlbertForMaskedLM""",
"""FlaxAlbertForMultipleChoice""",
"""FlaxAlbertForPreTraining""",
"""FlaxAlbertForQuestionAnswering""",
"""FlaxAlbertForSequenceClassification""",
"""FlaxAlbertForTokenClassification""",
"""FlaxAlbertModel""",
"""FlaxAlbertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_albert import AlbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_albert_fast import AlbertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_albert import (
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
AlbertPreTrainedModel,
load_tf_weights_in_albert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_albert import (
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAlbertForMaskedLM,
TFAlbertForMultipleChoice,
TFAlbertForPreTraining,
TFAlbertForQuestionAnswering,
TFAlbertForSequenceClassification,
TFAlbertForTokenClassification,
TFAlbertMainLayer,
TFAlbertModel,
TFAlbertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
FlaxAlbertPreTrainedModel,
)
else:
import sys
snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 67 |
'''simple docstring'''
from __future__ import annotations
def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]:
__A : int = list(range(len(__snake_case ) ) )
__A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )]
index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case )
__A : float = 0
__A : list[float] = [0] * len(__snake_case )
for i in index:
if weight[i] <= capacity:
__A : Optional[int] = 1
max_value += value[i]
capacity -= weight[i]
else:
__A : List[Any] = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
import gzip
import hashlib
import json
import multiprocessing
import os
import re
import shutil
import time
from pathlib import Path
import numpy as np
from arguments import PreprocessingArguments
from datasets import load_dataset
from minhash_deduplication import deduplicate_dataset
from transformers import AutoTokenizer, HfArgumentParser
__A = re.compile(r"\s+")
def lowercase__ ( A_: int ) -> Any:
"""simple docstring"""
return {"hash": hashlib.mda(re.sub(A_ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()}
def lowercase__ ( A_: int ) -> Optional[int]:
"""simple docstring"""
__UpperCAmelCase =[len(A_ ) for line in example["""content"""].splitlines()]
return {"line_mean": np.mean(A_ ), "line_max": max(A_ )}
def lowercase__ ( A_: Any ) -> int:
"""simple docstring"""
__UpperCAmelCase =np.mean([c.isalnum() for c in example["""content"""]] )
return {"alpha_frac": alpha_frac}
def lowercase__ ( A_: List[Any] , A_: Tuple ) -> str:
"""simple docstring"""
if example["hash"] in uniques:
uniques.remove(example["""hash"""] )
return True
else:
return False
def lowercase__ ( A_: List[str] , A_: Dict=5 ) -> Optional[Any]:
"""simple docstring"""
__UpperCAmelCase =["""auto-generated""", """autogenerated""", """automatically generated"""]
__UpperCAmelCase =example["""content"""].splitlines()
for _, line in zip(range(A_ ) , A_ ):
for keyword in keywords:
if keyword in line.lower():
return {"autogenerated": True}
else:
return {"autogenerated": False}
def lowercase__ ( A_: str , A_: List[Any]=5 , A_: List[Any]=0.0_5 ) -> List[str]:
"""simple docstring"""
__UpperCAmelCase =["""unit tests""", """test file""", """configuration file"""]
__UpperCAmelCase =example["""content"""].splitlines()
__UpperCAmelCase =0
__UpperCAmelCase =0
# first test
for _, line in zip(range(A_ ) , A_ ):
for keyword in keywords:
if keyword in line.lower():
return {"config_or_test": True}
# second test
__UpperCAmelCase =example["""content"""].count("""\n""" )
__UpperCAmelCase =int(coeff * nlines )
for line in lines:
count_config += line.lower().count("""config""" )
count_test += line.lower().count("""test""" )
if count_config > threshold or count_test > threshold:
return {"config_or_test": True}
return {"config_or_test": False}
def lowercase__ ( A_: Any ) -> Union[str, Any]:
"""simple docstring"""
__UpperCAmelCase =["""def """, """class """, """for """, """while """]
__UpperCAmelCase =example["""content"""].splitlines()
for line in lines:
for keyword in keywords:
if keyword in line.lower():
return {"has_no_keywords": False}
return {"has_no_keywords": True}
def lowercase__ ( A_: Optional[int] , A_: List[Any]=4 ) -> Any:
"""simple docstring"""
__UpperCAmelCase =example["""content"""].splitlines()
__UpperCAmelCase =0
for line in lines:
counter += line.lower().count("""=""" )
if counter > minimum:
return {"has_few_assignments": False}
return {"has_few_assignments": True}
def lowercase__ ( A_: List[Any] ) -> Union[str, Any]:
"""simple docstring"""
__UpperCAmelCase =tokenizer(example["""content"""] , truncation=A_ )["""input_ids"""]
__UpperCAmelCase =len(example["""content"""] ) / len(A_ )
return {"ratio": ratio}
def lowercase__ ( A_: int ) -> str:
"""simple docstring"""
__UpperCAmelCase ={}
results.update(get_hash(A_ ) )
results.update(line_stats(A_ ) )
results.update(alpha_stats(A_ ) )
results.update(char_token_ratio(A_ ) )
results.update(is_autogenerated(A_ ) )
results.update(is_config_or_test(A_ ) )
results.update(has_no_keywords(A_ ) )
results.update(has_few_assignments(A_ ) )
return results
def lowercase__ ( A_: Dict , A_: Any , A_: List[str] ) -> str:
"""simple docstring"""
if not check_uniques(A_ , A_ ):
return False
elif example["autogenerated"]:
return False
elif example["line_max"] > args.line_max:
return False
elif example["line_mean"] > args.line_mean:
return False
elif example["alpha_frac"] < args.alpha_frac:
return False
elif example["ratio"] < args.min_token_ratio:
return False
elif example["config_or_test"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_few_assignments"]:
return False
else:
return True
def lowercase__ ( A_: List[Any] ) -> Tuple:
"""simple docstring"""
with open(A_ , """rb""" ) as f_in:
with gzip.open(str(A_ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out:
shutil.copyfileobj(A_ , A_ )
os.unlink(A_ )
# Settings
__A = HfArgumentParser(PreprocessingArguments)
__A = parser.parse_args()
if args.num_workers is None:
__A = multiprocessing.cpu_count()
__A = AutoTokenizer.from_pretrained(args.tokenizer_dir)
# Load dataset
__A = time.time()
__A = load_dataset(args.dataset_name, split="train")
print(F"""Time to load dataset: {time.time()-t_start:.2f}""")
# Run preprocessing
__A = time.time()
__A = ds.map(preprocess, num_proc=args.num_workers)
print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""")
# Deduplicate hashes
__A = set(ds.unique("hash"))
__A = len(uniques) / len(ds)
print(F"""Fraction of duplicates: {1-frac:.2%}""")
# Deduplicate data and apply heuristics
__A = time.time()
__A = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args})
print(F"""Time to filter dataset: {time.time()-t_start:.2f}""")
print(F"""Size of filtered dataset: {len(ds_filter)}""")
# Deduplicate with minhash and jaccard similarity
if args.near_deduplication:
__A = time.time()
__A , __A = deduplicate_dataset(ds_filter, args.jaccard_threshold)
print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""")
print(F"""Size of deduplicate dataset: {len(ds_filter)}""")
# Save data in batches of samples_per_file
__A = Path(args.output_dir)
output_dir.mkdir(exist_ok=True)
# save duplicate_clusters in the output_dir as artifacts
# not sure it is the right place the save it
if args.near_deduplication:
with open(output_dir / "duplicate_clusters.json", "w") as f:
json.dump(duplicate_clusters, f)
__A = output_dir / "data"
data_dir.mkdir(exist_ok=True)
__A = time.time()
for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)):
__A = str(data_dir / F"""file-{file_number+1:012}.json""")
__A = min(len(ds_filter), index + args.samples_per_file)
ds_filter.select(list(range(index, end_index))).to_json(file_path)
compress_file(file_path)
print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
| 68 |
'''simple docstring'''
from __future__ import annotations
import math
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase):
'''simple docstring'''
__A : int = size
# approximate the overall size of segment tree with given value
__A : Optional[Any] = [0 for i in range(0 , 4 * size)]
# create array to store lazy update
__A : Optional[Any] = [0 for i in range(0 , 4 * size)]
__A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
return idx * 2
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
return idx * 2 + 1
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
if left_element == right_element:
__A : List[Any] = a[left_element - 1]
else:
__A : List[str] = (left_element + right_element) // 2
self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase)
__A : Any = max(
self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)])
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
if self.flag[idx] is True:
__A : Optional[Any] = self.lazy[idx]
__A : Optional[Any] = False
if left_element != right_element:
__A : List[Any] = self.lazy[idx]
__A : Dict = self.lazy[idx]
__A : Tuple = True
__A : Union[str, Any] = True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
__A : Optional[int] = val
if left_element != right_element:
__A : Tuple = val
__A : Any = val
__A : Tuple = True
__A : Union[str, Any] = True
return True
__A : str = (left_element + right_element) // 2
self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
__A : int = max(
self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)])
return True
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
if self.flag[idx] is True:
__A : Union[str, Any] = self.lazy[idx]
__A : List[str] = False
if left_element != right_element:
__A : Union[str, Any] = self.lazy[idx]
__A : Optional[int] = self.lazy[idx]
__A : str = True
__A : Union[str, Any] = True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
__A : Any = (left_element + right_element) // 2
__A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
__A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
return max(_UpperCAmelCase , _UpperCAmelCase)
def __str__( self):
'''simple docstring'''
return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)])
if __name__ == "__main__":
lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
lowercase__ : str = 15
lowercase__ : List[Any] = SegmentTree(size)
segt.build(1, 1, size, A)
print(segt.query(1, 1, size, 4, 6))
print(segt.query(1, 1, size, 7, 11))
print(segt.query(1, 1, size, 7, 12))
segt.update(1, 1, size, 1, 3, 1_11)
print(segt.query(1, 1, size, 1, 15))
segt.update(1, 1, size, 7, 8, 2_35)
print(segt) | 8 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( _UpperCAmelCase : int ) -> Tuple:
__snake_case = 1
__snake_case = 2
while i * i <= n:
__snake_case = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def __UpperCAmelCase ( ) -> Tuple:
__snake_case = 1
__snake_case = 1
while True:
i += 1
t_num += i
if count_divisors(_UpperCAmelCase ) > 5_00:
break
return t_num
if __name__ == "__main__":
print(solution())
| 69 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float:
__A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
# formula for sum of series
return total
def _lowerCAmelCase ( ) -> Union[str, Any]:
print(sum_of_series(1 , 1 , 10 ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
from collections import Counter
from timeit import timeit
def _SCREAMING_SNAKE_CASE ( lowercase : str = "" , ):
'''simple docstring'''
return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2
def _SCREAMING_SNAKE_CASE ( lowercase : str = "" ):
'''simple docstring'''
if len(lowercase ) == 0:
return True
lowerCamelCase_ = input_str.replace(' ' , '' ).lower()
# character_freq_dict: Stores the frequency of every character in the input string
lowerCamelCase_ = {}
for character in lower_case_input_str:
lowerCamelCase_ = character_freq_dict.get(lowercase , 0 ) + 1
lowerCamelCase_ = 0
for character_count in character_freq_dict.values():
if character_count % 2:
odd_char += 1
if odd_char > 1:
return False
return True
def _SCREAMING_SNAKE_CASE ( lowercase : str = "" ):
'''simple docstring'''
print('\nFor string = ' , lowercase , ':' )
print(
'> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(lowercase ) , '\ttime =' , timeit(
'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , )
print(
'> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(lowercase ) , '\ttime =' , timeit(
'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , )
if __name__ == "__main__":
lowerCamelCase : Optional[Any] = input(
"Enter string to determine if it can be rearranged as a palindrome or not: "
).strip()
benchmark(check_str)
lowerCamelCase : int = can_string_be_rearranged_as_palindrome_counter(check_str)
print(F"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
| 70 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ):
'''simple docstring'''
__A : Optional[int] = parent
__A : str = 13
__A : List[Any] = 7
__A : List[str] = True
__A : str = True
__A : Optional[Any] = True
__A : int = True
__A : Dict = 99
__A : Dict = 384
__A : Any = 2
__A : int = 4
__A : Optional[Any] = 37
__A : Optional[int] = 'gelu'
__A : Dict = 0.1
__A : Optional[int] = 0.1
__A : Any = 512
__A : int = 16
__A : List[str] = 2
__A : str = 0.02
__A : Any = 3
__A : str = 4
__A : Union[str, Any] = 128
__A : int = 2
__A : List[Any] = 9
__A : List[Any] = 1
__A : List[Any] = None
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__A : str = None
if self.use_input_mask:
__A : List[Any] = random_attention_mask([self.batch_size, self.seq_length])
__A : Optional[Any] = None
if self.use_token_type_ids:
__A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
__A : Optional[int] = None
__A : List[str] = None
__A : Dict = None
if self.use_labels:
__A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__A : str = ids_tensor([self.batch_size] , self.num_choices)
__A : List[Any] = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : int = TFConvBertModel(config=_UpperCAmelCase)
__A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__A : Tuple = [input_ids, input_mask]
__A : Any = model(_UpperCAmelCase)
__A : Dict = model(_UpperCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase)
__A : str = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : str = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Optional[int] = self.num_labels
__A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase)
__A : Optional[Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : Dict = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Tuple = self.num_choices
__A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase)
__A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1))
__A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1))
__A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1))
__A : int = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__A : Optional[Any] = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : List[Any] = self.num_labels
__A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase)
__A : str = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : int = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase)
__A : Any = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : Union[str, Any] = model(_UpperCAmelCase)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Optional[int] = self.prepare_config_and_inputs()
(
(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,
) : Union[str, Any] = config_and_inputs
__A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ):
lowerCAmelCase = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase = (
{
'''feature-extraction''': TFConvBertModel,
'''fill-mask''': TFConvBertForMaskedLM,
'''question-answering''': TFConvBertForQuestionAnswering,
'''text-classification''': TFConvBertForSequenceClassification,
'''token-classification''': TFConvBertForTokenClassification,
'''zero-shot''': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = TFConvBertModelTester(self)
__A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase)
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__A : List[str] = True
__A : List[str] = True
if hasattr(_UpperCAmelCase , 'use_cache'):
__A : List[Any] = True
__A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length)
__A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase)
for model_class in self.all_model_classes:
__A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)
__A : Optional[int] = model_class(_UpperCAmelCase)
__A : Optional[Any] = len(model(_UpperCAmelCase))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase)
__A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1')
__A : Tuple = tf.keras.models.load_model(_UpperCAmelCase)
__A : str = model(_UpperCAmelCase)
if self.is_encoder_decoder:
__A : Optional[int] = outputs['encoder_hidden_states']
__A : str = outputs['encoder_attentions']
else:
__A : List[Any] = outputs['hidden_states']
__A : Optional[Any] = outputs['attentions']
self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase)
__A : str = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase)
self.assertListEqual(
list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base')
self.assertIsNotNone(_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__A : Any = True
__A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length)
__A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length)
__A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase)
__A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase)
def check_decoder_attentions_output(_UpperCAmelCase):
__A : List[str] = len(_UpperCAmelCase)
self.assertEqual(out_len % 2 , 0)
__A : Any = outputs.decoder_attentions
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_UpperCAmelCase):
__A : str = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__A : Dict = True
__A : Any = False
__A : str = model_class(_UpperCAmelCase)
__A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : List[str] = len(_UpperCAmelCase)
self.assertEqual(config.output_hidden_states , _UpperCAmelCase)
check_encoder_attentions_output(_UpperCAmelCase)
if self.is_encoder_decoder:
__A : Union[str, Any] = model_class(_UpperCAmelCase)
__A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
self.assertEqual(config.output_hidden_states , _UpperCAmelCase)
check_decoder_attentions_output(_UpperCAmelCase)
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__A : int = True
__A : Tuple = model_class(_UpperCAmelCase)
__A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
self.assertEqual(config.output_hidden_states , _UpperCAmelCase)
check_encoder_attentions_output(_UpperCAmelCase)
# Check attention is always last and order is fine
__A : Any = True
__A : str = True
__A : Union[str, Any] = model_class(_UpperCAmelCase)
__A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase))
self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase)
check_encoder_attentions_output(_UpperCAmelCase)
@require_tf
class SCREAMING_SNAKE_CASE (unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base')
__A : str = tf.constant([[0, 1, 2, 3, 4, 5]])
__A : Optional[int] = model(_UpperCAmelCase)[0]
__A : List[Any] = [1, 6, 768]
self.assertEqual(output.shape , _UpperCAmelCase)
__A : Tuple = tf.constant(
[
[
[-0.03475493, -0.4686034, -0.30638832],
[0.22637248, -0.26988646, -0.7423424],
[0.10324868, -0.45013508, -0.58280784],
]
])
tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4) | 8 | 0 |
'''simple docstring'''
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
_lowerCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
_lowerCamelCase = """ \"\"\"
Output class for the scheduler's step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"\"\"
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
"""
class _snake_case (unittest.TestCase):
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir ,"schedulers/" ) )
UpperCAmelCase_ : Tuple = self.diffusers_dir
shutil.copy(
os.path.join(_snake_case ,"src/diffusers/schedulers/scheduling_ddpm.py" ) ,os.path.join(self.diffusers_dir ,"schedulers/scheduling_ddpm.py" ) ,)
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : List[Any] = "src/diffusers"
shutil.rmtree(self.diffusers_dir )
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case=None ):
UpperCAmelCase_ : Any = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
UpperCAmelCase_ : List[str] = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
UpperCAmelCase_ : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=1_19 )
UpperCAmelCase_ : Union[str, Any] = black.format_str(_snake_case ,mode=_snake_case )
UpperCAmelCase_ : Any = os.path.join(self.diffusers_dir ,"new_code.py" )
with open(_snake_case ,"w" ,newline="\n" ) as f:
f.write(_snake_case )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(_snake_case ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name ,overwrite=_snake_case )
with open(_snake_case ,"r" ) as f:
self.assertTrue(f.read() ,_snake_case )
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Dict = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" )
self.assertEqual(_snake_case ,_snake_case )
def UpperCamelCase__ ( self ):
# Base copy consistency
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" ,"DDPMSchedulerOutput" ,REFERENCE_CODE + "\n" ,)
# With no empty line at the end
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" ,"DDPMSchedulerOutput" ,_snake_case ,)
# Copy consistency with rename
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" ,"TestSchedulerOutput" ,re.sub("DDPM" ,"Test" ,_snake_case ) ,)
# Copy consistency with a really long name
UpperCAmelCase_ : str = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"
self.check_copy_consistency(
f'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' ,f'''{long_class_name}SchedulerOutput''' ,re.sub("Bert" ,_snake_case ,_snake_case ) ,)
# Copy consistency with overwrite
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" ,"TestSchedulerOutput" ,_snake_case ,overwrite_result=re.sub("DDPM" ,"Test" ,_snake_case ) ,)
| 71 |
'''simple docstring'''
import argparse
import os
import re
lowercase__ : Optional[int] = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
lowercase__ : Dict = re.compile(r'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowercase__ : str = re.compile(r'''\[([^\]]+)\]''')
def _lowerCAmelCase ( __snake_case : str ) -> Tuple:
__A : List[Any] = _re_indent.search(__snake_case )
return "" if search is None else search.groups()[0]
def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]:
__A : Tuple = 0
__A : Optional[int] = code.split('\n' )
if start_prompt is not None:
while not lines[index].startswith(__snake_case ):
index += 1
__A : Optional[int] = ['\n'.join(lines[:index] )]
else:
__A : Any = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
__A : Tuple = [lines[index]]
index += 1
while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ):
current_block.append(lines[index] )
blocks.append('\n'.join(__snake_case ) )
if index < len(__snake_case ) - 1:
__A : Union[str, Any] = [lines[index + 1]]
index += 1
else:
__A : Union[str, Any] = []
else:
blocks.append('\n'.join(__snake_case ) )
__A : Optional[Any] = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(__snake_case ) > 0:
blocks.append('\n'.join(__snake_case ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(__snake_case ):
blocks.append('\n'.join(lines[index:] ) )
return blocks
def _lowerCAmelCase ( __snake_case : List[Any] ) -> int:
def _inner(__snake_case : List[Any] ):
return key(__snake_case ).lower().replace('_' , '' )
return _inner
def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]:
# If no key is provided, we use a noop.
def noop(__snake_case : List[Any] ):
return x
if key is None:
__A : Optional[Any] = noop
# Constants are all uppercase, they go first.
__A : str = [obj for obj in objects if key(__snake_case ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
__A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()]
# Functions begin with a lowercase, they go last.
__A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()]
__A : Tuple = ignore_underscore(__snake_case )
return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case )
def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple:
# This inner function sort imports between [ ].
def _replace(__snake_case : Tuple ):
__A : List[str] = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
__A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__A : Dict = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]"
__A : List[Any] = import_statement.split('\n' )
if len(__snake_case ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
__A : Optional[int] = 2 if lines[1].strip() == '[' else 1
__A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
__A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] )
__A : Any = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(__snake_case ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
__A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] )
else:
__A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__A : Tuple = keys[:-1]
__A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] )
return "\n".join(__snake_case )
else:
# Finally we have to deal with imports fitting on one line
__A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case )
return import_statement
def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]:
with open(__snake_case , 'r' ) as f:
__A : Dict = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
__A : str = split_code_in_indented_blocks(
__snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(__snake_case ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
__A : Tuple = main_blocks[block_idx]
__A : int = block.split('\n' )
# Get to the start of the imports.
__A : Tuple = 0
while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
__A : Optional[int] = len(__snake_case )
else:
line_idx += 1
if line_idx >= len(__snake_case ):
continue
# Ignore beginning and last line: they don't contain anything.
__A : Dict = '\n'.join(block_lines[line_idx:-1] )
__A : int = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
__A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case )
# We have two categories of import key: list or _import_structure[key].append/extend
__A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
__A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
__A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None]
__A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
__A : str = 0
__A : Any = []
for i in range(len(__snake_case ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
__A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(__snake_case )
count += 1
# And we put our main block back together with its first and last line.
__A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(__snake_case ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(__snake_case , 'w' ) as f:
f.write('\n'.join(__snake_case ) )
def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]:
__A : Tuple = []
for root, _, files in os.walk(__snake_case ):
if "__init__.py" in files:
__A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case )
if result:
__A : Dict = [os.path.join(__snake_case , '__init__.py' )]
if len(__snake_case ) > 0:
raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' )
if __name__ == "__main__":
lowercase__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
lowercase__ : Union[str, Any] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only) | 8 | 0 |
'''simple docstring'''
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class __magic_name__ ( __SCREAMING_SNAKE_CASE ):
@staticmethod
@abstractmethod
def _A( snake_case_ ):
raise NotImplementedError()
@abstractmethod
def _A( self ):
raise NotImplementedError()
| 72 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : int ) -> bool:
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print('''Program to check whether a number is a Perfect number or not...''')
lowercase__ : int = int(input('''Enter number: ''').strip())
print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""") | 8 | 0 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
a_ : Optional[Any] = logging.get_logger(__name__)
a_ : Tuple = {
'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json',
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class _snake_case ( A__ ):
_lowercase : Optional[int] = '''dpt'''
def __init__( self , a=768 , a=12 , a=12 , a=3072 , a="gelu" , a=0.0 , a=0.0 , a=0.02 , a=1E-12 , a=384 , a=16 , a=3 , a=False , a=True , a=[2, 5, 8, 11] , a="project" , a=[4, 2, 1, 0.5] , a=[96, 192, 384, 768] , a=256 , a=-1 , a=False , a=True , a=0.4 , a=255 , a=0.1 , a=[1, 1024, 24, 24] , a=[0, 1] , a=None , **a , ) -> List[str]:
super().__init__(**a)
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info('Initializing the config with a `BiT` backbone.')
SCREAMING_SNAKE_CASE = {
'global_padding': 'same',
'layer_type': 'bottleneck',
'depths': [3, 4, 9],
'out_features': ['stage1', 'stage2', 'stage3'],
'embedding_dynamic_padding': True,
}
SCREAMING_SNAKE_CASE = BitConfig(**a)
elif isinstance(a , a):
logger.info('Initializing the config with a `BiT` backbone.')
SCREAMING_SNAKE_CASE = BitConfig(**a)
elif isinstance(a , a):
SCREAMING_SNAKE_CASE = backbone_config
else:
raise ValueError(
f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''')
SCREAMING_SNAKE_CASE = backbone_featmap_shape
SCREAMING_SNAKE_CASE = neck_ignore_stages
if readout_type != "project":
raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.')
else:
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = qkv_bias
SCREAMING_SNAKE_CASE = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']')
SCREAMING_SNAKE_CASE = readout_type
SCREAMING_SNAKE_CASE = reassemble_factors
SCREAMING_SNAKE_CASE = neck_hidden_sizes
SCREAMING_SNAKE_CASE = fusion_hidden_size
SCREAMING_SNAKE_CASE = head_in_index
SCREAMING_SNAKE_CASE = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
SCREAMING_SNAKE_CASE = use_auxiliary_head
SCREAMING_SNAKE_CASE = auxiliary_loss_weight
SCREAMING_SNAKE_CASE = semantic_loss_ignore_index
SCREAMING_SNAKE_CASE = semantic_classifier_dropout
def SCREAMING_SNAKE_CASE__ ( self) -> str:
SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__)
if output["backbone_config"] is not None:
SCREAMING_SNAKE_CASE = self.backbone_config.to_dict()
SCREAMING_SNAKE_CASE = self.__class__.model_type
return output
| 73 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Tuple = logging.get_logger(__name__)
lowercase__ : str = [
['''attention''', '''attn'''],
['''encoder_attention''', '''encoder_attn'''],
['''q_lin''', '''q_proj'''],
['''k_lin''', '''k_proj'''],
['''v_lin''', '''v_proj'''],
['''out_lin''', '''out_proj'''],
['''norm_embeddings''', '''layernorm_embedding'''],
['''position_embeddings''', '''embed_positions'''],
['''embeddings''', '''embed_tokens'''],
['''ffn.lin''', '''fc'''],
]
def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple:
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
__A : Optional[Any] = k.replace(__snake_case , __snake_case )
if k.startswith('encoder' ):
__A : Any = k.replace('.attn' , '.self_attn' )
__A : Any = k.replace('norm1' , 'self_attn_layer_norm' )
__A : str = k.replace('norm2' , 'final_layer_norm' )
elif k.startswith('decoder' ):
__A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' )
__A : str = k.replace('norm2' , 'encoder_attn_layer_norm' )
__A : int = k.replace('norm3' , 'final_layer_norm' )
return k
def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict:
__A : Optional[int] = [
'model.encoder.layernorm_embedding.weight',
'model.encoder.layernorm_embedding.bias',
'model.decoder.layernorm_embedding.weight',
'model.decoder.layernorm_embedding.bias',
]
for k in keys:
__A : Tuple = sd.pop(__snake_case )
__A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' )
assert new_k not in sd
__A : str = v
lowercase__ : Tuple = ['''START''']
@torch.no_grad()
def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int:
__A : List[str] = torch.load(__snake_case , map_location='cpu' )
__A : Tuple = model['model']
__A : str = BlenderbotConfig.from_json_file(__snake_case )
__A : int = BlenderbotForConditionalGeneration(__snake_case )
__A : List[Any] = m.model.state_dict().keys()
__A : Optional[int] = []
__A : Optional[int] = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
__A : Union[str, Any] = rename_state_dict_key(__snake_case )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
__A : Optional[Any] = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(__snake_case )
m.model.load_state_dict(__snake_case , strict=__snake_case )
m.half()
m.save_pretrained(__snake_case )
if __name__ == "__main__":
lowercase__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''')
parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''')
parser.add_argument(
'''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use'''
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json) | 8 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"""uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""",
}
class __UpperCamelCase ( lowerCAmelCase__ ):
"""simple docstring"""
lowerCAmelCase_ = '''mra'''
def __init__( self : List[Any] , _A : Any=5_0265 , _A : Tuple=768 , _A : Any=12 , _A : Union[str, Any]=12 , _A : str=3072 , _A : int="gelu" , _A : Optional[int]=0.1 , _A : Optional[int]=0.1 , _A : List[str]=512 , _A : Tuple=1 , _A : Union[str, Any]=0.02 , _A : List[str]=1e-5 , _A : Optional[int]="absolute" , _A : List[str]=4 , _A : int="full" , _A : Optional[Any]=0 , _A : int=0 , _A : int=1 , _A : Union[str, Any]=0 , _A : int=2 , **_A : Optional[Any] , ):
"""simple docstring"""
super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A )
__SCREAMING_SNAKE_CASE : Tuple = vocab_size
__SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings
__SCREAMING_SNAKE_CASE : int = hidden_size
__SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers
__SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads
__SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size
__SCREAMING_SNAKE_CASE : int = hidden_act
__SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob
__SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE : Optional[int] = initializer_range
__SCREAMING_SNAKE_CASE : Optional[Any] = type_vocab_size
__SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps
__SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type
__SCREAMING_SNAKE_CASE : Optional[Any] = block_per_row
__SCREAMING_SNAKE_CASE : Union[str, Any] = approx_mode
__SCREAMING_SNAKE_CASE : str = initial_prior_first_n_blocks
__SCREAMING_SNAKE_CASE : Tuple = initial_prior_diagonal_n_blocks
| 74 |
'''simple docstring'''
import mpmath # for roots of unity
import numpy as np
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None):
'''simple docstring'''
__A : List[Any] = list(poly_a or [0])[:]
__A : Optional[int] = list(poly_b or [0])[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
__A : Union[str, Any] = len(self.polyA)
while self.polyB[-1] == 0:
self.polyB.pop()
__A : Optional[int] = len(self.polyB)
# Add 0 to make lengths equal a power of 2
__A : Optional[Any] = int(
2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1)))
while len(self.polyA) < self.c_max_length:
self.polyA.append(0)
while len(self.polyB) < self.c_max_length:
self.polyB.append(0)
# A complex root used for the fourier transform
__A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1))
# The product
__A : Tuple = self.__multiply()
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
__A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB]
# Corner case
if len(_UpperCAmelCase) <= 1:
return dft[0]
#
__A : Dict = self.c_max_length // 2
while next_ncol > 0:
__A : Optional[Any] = [[] for i in range(_UpperCAmelCase)]
__A : Tuple = self.root**next_ncol
# First half of next step
__A : Optional[Any] = 1
for j in range(self.c_max_length // (next_ncol * 2)):
for i in range(_UpperCAmelCase):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j])
current_root *= root
# Second half of next step
__A : List[str] = 1
for j in range(self.c_max_length // (next_ncol * 2)):
for i in range(_UpperCAmelCase):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j])
current_root *= root
# Update
__A : Optional[int] = new_dft
__A : Tuple = next_ncol // 2
return dft[0]
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = self.__dft('A')
__A : Optional[Any] = self.__dft('B')
__A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0]) <= 1:
return inverce_c[0]
# Inverse DFT
__A : Dict = 2
while next_ncol <= self.c_max_length:
__A : Optional[int] = [[] for i in range(_UpperCAmelCase)]
__A : Any = self.root ** (next_ncol // 2)
__A : Tuple = 1
# First half of next step
for j in range(self.c_max_length // next_ncol):
for i in range(next_ncol // 2):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2)
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root))
current_root *= root
# Update
__A : int = new_inverse_c
next_ncol *= 2
# Unpack
__A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self):
'''simple docstring'''
__A : int = 'A = ' + ' + '.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A]))
__A : Optional[Any] = 'B = ' + ' + '.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B]))
__A : str = 'A*B = ' + ' + '.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.product))
return F'{a}\n{b}\n{c}'
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
'''simple docstring'''
def a__ ( lowerCAmelCase__ = 1_00_00_00 ) -> int:
UpperCAmelCase__ : str = 1
UpperCAmelCase__ : int = 1
UpperCAmelCase__ : int = {1: 1}
for inputa in range(2 , lowerCAmelCase__ ):
UpperCAmelCase__ : List[Any] = 0
UpperCAmelCase__ : Dict = inputa
while True:
if number in counters:
counter += counters[number]
break
if number % 2 == 0:
number //= 2
counter += 1
else:
UpperCAmelCase__ : Any = (3 * number) + 1
counter += 1
if inputa not in counters:
UpperCAmelCase__ : List[Any] = counter
if counter > pre_counter:
UpperCAmelCase__ : List[Any] = inputa
UpperCAmelCase__ : Any = counter
return largest_number
if __name__ == "__main__":
print(solution(int(input().strip())))
| 75 |
'''simple docstring'''
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ):
'''simple docstring'''
__A : Union[str, Any] = parent
__A : Tuple = batch_size
__A : List[str] = image_size
__A : Dict = patch_size
__A : Optional[Any] = num_channels
__A : Tuple = is_training
__A : Dict = use_labels
__A : List[Any] = hidden_size
__A : Tuple = num_hidden_layers
__A : int = num_attention_heads
__A : Optional[int] = intermediate_size
__A : Tuple = hidden_act
__A : Any = hidden_dropout_prob
__A : Optional[Any] = attention_probs_dropout_prob
__A : List[Any] = type_sequence_label_size
__A : List[Any] = initializer_range
__A : Optional[int] = num_labels
__A : List[Any] = scope
__A : Any = n_targets
__A : Union[str, Any] = num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
__A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size)
__A : int = num_patches + 1 + self.num_detection_tokens
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]])
__A : Tuple = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
__A : List[Any] = []
for i in range(self.batch_size):
__A : Optional[int] = {}
__A : Union[str, Any] = torch.randint(
high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase)
__A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase)
labels.append(_UpperCAmelCase)
__A : Any = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
return YolosConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , )
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Any = YolosModel(config=_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
__A : Dict = model(_UpperCAmelCase)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Any = YolosForObjectDetection(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
__A : str = model(pixel_values=_UpperCAmelCase)
__A : List[str] = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1))
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4))
__A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase)
self.parent.assertEqual(result.loss.shape , ())
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1))
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Any = self.prepare_config_and_inputs()
__A ,__A ,__A : Tuple = config_and_inputs
__A : Tuple = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ):
lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
lowerCAmelCase = (
{'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {}
)
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False):
'''simple docstring'''
__A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase)
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
__A : Any = []
for i in range(self.model_tester.batch_size):
__A : Tuple = {}
__A : Tuple = torch.ones(
size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long)
__A : Optional[Any] = torch.ones(
self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float)
labels.append(_UpperCAmelCase)
__A : str = labels
return inputs_dict
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = YolosModelTester(self)
__A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A : Tuple = model_class(_UpperCAmelCase)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
__A : Any = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A : List[Any] = model_class(_UpperCAmelCase)
__A : str = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A : int = [*signature.parameters.keys()]
__A : List[str] = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__A : Optional[int] = True
# in YOLOS, the seq_len is different
__A : Dict = self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
__A : Dict = True
__A : Dict = False
__A : Union[str, Any] = True
__A : Tuple = model_class(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
with torch.no_grad():
__A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : Union[str, Any] = outputs.attentions
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__A : List[Any] = True
__A : List[str] = model_class(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
with torch.no_grad():
__A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : Optional[Any] = outputs.attentions
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
__A : str = len(_UpperCAmelCase)
# Check attention is always last and order is fine
__A : Dict = True
__A : Dict = True
__A : Dict = model_class(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
with torch.no_grad():
__A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : Union[str, Any] = 1
self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase))
__A : Optional[Any] = outputs.attentions
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
__A : Tuple = model_class(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
with torch.no_grad():
__A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : Optional[Any] = outputs.hidden_states
__A : List[str] = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase)
# YOLOS has a different seq_length
__A : Dict = self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , )
__A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A : List[str] = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A : Optional[int] = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase)
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase)
self.assertIsNotNone(_UpperCAmelCase)
def _lowerCAmelCase ( ) -> int:
__A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE (unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase)
__A : Any = self.default_image_processor
__A : str = prepare_img()
__A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase)
# forward pass
with torch.no_grad():
__A : str = model(inputs.pixel_values)
# verify outputs
__A : Tuple = torch.Size((1, 100, 92))
self.assertEqual(outputs.logits.shape , _UpperCAmelCase)
__A : Dict = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , )
__A : int = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4))
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4))
# verify postprocessing
__A : List[str] = image_processor.post_process_object_detection(
_UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0]
__A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase)
__A : Union[str, Any] = [75, 75, 17, 63, 17]
__A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase)
self.assertEqual(len(results['scores']) , 5)
self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4))
self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase)
self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase)) | 8 | 0 |
"""simple docstring"""
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
a_ = '3'
print('Python version:', sys.version)
print('OS platform:', platform.platform())
print('OS architecture:', platform.machine())
try:
import torch
print('Torch version:', torch.__version__)
print('Cuda available:', torch.cuda.is_available())
print('Cuda version:', torch.version.cuda)
print('CuDNN version:', torch.backends.cudnn.version())
print('Number of GPUs available:', torch.cuda.device_count())
except ImportError:
print('Torch version:', None)
try:
import transformers
print('transformers version:', transformers.__version__)
except ImportError:
print('transformers version:', None)
| 76 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
lowercase__ : Optional[int] = None
lowercase__ : List[str] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
lowercase__ : List[str] = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
},
'''tokenizer_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''',
},
}
lowercase__ : Dict = {
'''camembert-base''': 5_12,
}
lowercase__ : str = '''▁'''
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = VOCAB_FILES_NAMES
lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase = ['''input_ids''', '''attention_mask''']
lowerCAmelCase = CamembertTokenizer
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ):
'''simple docstring'''
__A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token
super().__init__(
_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
__A : List[str] = vocab_file
__A : Optional[int] = False if not self.vocab_file else True
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__A : Optional[Any] = [self.cls_token_id]
__A : Optional[int] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None):
'''simple docstring'''
__A : Optional[int] = [self.sep_token_id]
__A : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.')
if not os.path.isdir(_UpperCAmelCase):
logger.error(F'Vocabulary path ({save_directory}) should be a directory')
return
__A : List[Any] = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase):
copyfile(self.vocab_file , _UpperCAmelCase)
return (out_vocab_file,) | 8 | 0 |
"""simple docstring"""
import argparse
import glob
import logging
import os
import time
from argparse import Namespace
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from torch.utils.data import DataLoader, TensorDataset
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes, glue_tasks_num_labels
from transformers import glue_processors as processors
A = logging.getLogger(__name__)
class a__ ( __magic_name__ ):
lowercase_ = "sequence-classification"
def __init__( self : Optional[Any] , UpperCamelCase_ : int):
"""simple docstring"""
if type(UpperCamelCase_) == dict:
__UpperCAmelCase : Optional[int] = Namespace(**UpperCamelCase_)
__UpperCAmelCase : Union[str, Any] = glue_output_modes[hparams.task]
__UpperCAmelCase : Optional[Any] = glue_tasks_num_labels[hparams.task]
super().__init__(UpperCamelCase_ , UpperCamelCase_ , self.mode)
def a_ ( self : Optional[Any] , **UpperCamelCase_ : Optional[int]):
"""simple docstring"""
return self.model(**UpperCamelCase_)
def a_ ( self : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
__UpperCAmelCase : str = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None
__UpperCAmelCase : Optional[Any] = self(**UpperCamelCase_)
__UpperCAmelCase : int = outputs[0]
__UpperCAmelCase : str = self.trainer.lr_schedulers[0]["scheduler"]
__UpperCAmelCase : Optional[int] = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]}
return {"loss": loss, "log": tensorboard_logs}
def a_ ( self : Any):
"""simple docstring"""
__UpperCAmelCase : Any = self.hparams
__UpperCAmelCase : List[Any] = processors[args.task]()
__UpperCAmelCase : Dict = processor.get_labels()
for mode in ["train", "dev"]:
__UpperCAmelCase : str = self._feature_file(UpperCamelCase_)
if os.path.exists(UpperCamelCase_) and not args.overwrite_cache:
logger.info("Loading features from cached file %s" , UpperCamelCase_)
else:
logger.info("Creating features from dataset file at %s" , args.data_dir)
__UpperCAmelCase : Optional[int] = (
processor.get_dev_examples(args.data_dir)
if mode == "dev"
else processor.get_train_examples(args.data_dir)
)
__UpperCAmelCase : List[Any] = convert_examples_to_features(
UpperCamelCase_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , )
logger.info("Saving features into cached file %s" , UpperCamelCase_)
torch.save(UpperCamelCase_ , UpperCamelCase_)
def a_ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : bool = False):
"""simple docstring"""
__UpperCAmelCase : Dict = "dev" if mode == "test" else mode
__UpperCAmelCase : Dict = self._feature_file(UpperCamelCase_)
logger.info("Loading features from cached file %s" , UpperCamelCase_)
__UpperCAmelCase : Dict = torch.load(UpperCamelCase_)
__UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long)
__UpperCAmelCase : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long)
__UpperCAmelCase : Optional[Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long)
if self.hparams.glue_output_mode == "classification":
__UpperCAmelCase : int = torch.tensor([f.label for f in features] , dtype=torch.long)
elif self.hparams.glue_output_mode == "regression":
__UpperCAmelCase : Optional[Any] = torch.tensor([f.label for f in features] , dtype=torch.float)
return DataLoader(
TensorDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) , batch_size=UpperCamelCase_ , shuffle=UpperCamelCase_ , )
def a_ ( self : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any]):
"""simple docstring"""
__UpperCAmelCase : List[str] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
__UpperCAmelCase : List[Any] = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None
__UpperCAmelCase : Any = self(**UpperCamelCase_)
__UpperCAmelCase , __UpperCAmelCase : Tuple = outputs[:2]
__UpperCAmelCase : List[Any] = logits.detach().cpu().numpy()
__UpperCAmelCase : List[Any] = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def a_ ( self : List[Any] , UpperCamelCase_ : List[Any]):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = torch.stack([x["val_loss"] for x in outputs]).mean().detach().cpu().item()
__UpperCAmelCase : int = np.concatenate([x["pred"] for x in outputs] , axis=0)
if self.hparams.glue_output_mode == "classification":
__UpperCAmelCase : str = np.argmax(UpperCamelCase_ , axis=1)
elif self.hparams.glue_output_mode == "regression":
__UpperCAmelCase : Union[str, Any] = np.squeeze(UpperCamelCase_)
__UpperCAmelCase : List[str] = np.concatenate([x["target"] for x in outputs] , axis=0)
__UpperCAmelCase : Optional[Any] = [[] for _ in range(out_label_ids.shape[0])]
__UpperCAmelCase : Any = [[] for _ in range(out_label_ids.shape[0])]
__UpperCAmelCase : Union[str, Any] = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , UpperCamelCase_ , UpperCamelCase_)}
__UpperCAmelCase : Optional[int] = dict(results.items())
__UpperCAmelCase : str = results
return ret, preds_list, out_label_list
def a_ ( self : Union[str, Any] , UpperCamelCase_ : list):
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = self._eval_end(UpperCamelCase_)
__UpperCAmelCase : List[Any] = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def a_ ( self : List[str] , UpperCamelCase_ : str):
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self._eval_end(UpperCamelCase_)
__UpperCAmelCase : Any = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def a_ ( UpperCamelCase_ : Any , UpperCamelCase_ : List[Any]):
"""simple docstring"""
BaseTransformer.add_model_specific_args(UpperCamelCase_ , UpperCamelCase_)
parser.add_argument(
"--max_seq_length" , default=128 , type=UpperCamelCase_ , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--task" , default="" , type=UpperCamelCase_ , required=UpperCamelCase_ , help="The GLUE task to run" , )
parser.add_argument(
"--gpus" , default=0 , type=UpperCamelCase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , )
parser.add_argument(
"--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets")
return parser
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
__UpperCAmelCase : str = argparse.ArgumentParser()
add_generic_args(UpperCamelCase , os.getcwd() )
__UpperCAmelCase : int = GLUETransformer.add_model_specific_args(UpperCamelCase , os.getcwd() )
__UpperCAmelCase : List[str] = parser.parse_args()
# If output_dir not provided, a folder will be generated in pwd
if args.output_dir is None:
__UpperCAmelCase : Union[str, Any] = os.path.join(
"./results" , f"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , )
os.makedirs(args.output_dir )
__UpperCAmelCase : Tuple = GLUETransformer(UpperCamelCase )
__UpperCAmelCase : int = generic_train(UpperCamelCase , UpperCamelCase )
# Optionally, predict on dev set and write to output_dir
if args.do_predict:
__UpperCAmelCase : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=UpperCamelCase ) )
__UpperCAmelCase : Tuple = model.load_from_checkpoint(checkpoints[-1] )
return trainer.test(UpperCamelCase )
if __name__ == "__main__":
main()
| 77 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
lowercase__ : Any = '''hf-internal-testing/tiny-random-bert'''
lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''')
lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6'''
class SCREAMING_SNAKE_CASE (unittest.TestCase ):
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase)
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(_UpperCAmelCase))
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase)))
with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f:
__A : Any = f.read()
self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase))
self.assertTrue(os.path.isfile(_UpperCAmelCase))
# File is cached at the same place the second time.
__A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase)
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase)
# Using a specific revision to test the full commit hash.
__A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223')
self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'):
__A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase)
with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'):
__A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa')
with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'):
__A : int = cached_file(_UpperCAmelCase , 'conf')
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'):
__A : Any = cached_file(_UpperCAmelCase , 'conf')
with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f:
__A : Dict = f.read()
self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf')))
__A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase)
self.assertIsNone(_UpperCAmelCase)
__A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase)
self.assertIsNone(_UpperCAmelCase)
__A : List[str] = mock.Mock()
__A : Dict = 500
__A : List[str] = {}
__A : List[Any] = HTTPError
__A : Optional[Any] = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head:
__A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase)
self.assertIsNone(_UpperCAmelCase)
# This check we did call the fake head request
mock_head.assert_called()
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase))
self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase))
self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt'))
# The function raises if the repository does not exist.
with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'):
get_file_from_repo('bert-base-case' , _UpperCAmelCase)
# The function raises if the revision does not exist.
with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'):
get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha')
__A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase)
# The name is the cached name which is not very easy to test, so instead we load the content.
__A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read())
self.assertEqual(config['hidden_size'] , 768)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
__A : Tuple = Path(_UpperCAmelCase) / 'a.txt'
filename.touch()
self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase))
self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt')) | 8 | 0 |
'''simple docstring'''
def lowerCAmelCase_ ( snake_case_ : int = 10_00 ) -> int:
'''simple docstring'''
return sum(e for e in range(3 , snake_case_ ) if e % 3 == 0 or e % 5 == 0 )
if __name__ == "__main__":
print(f"{solution() = }")
| 78 |
'''simple docstring'''
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any:
__A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case )
__A : int = AutoModelForSeqaSeqLM.from_config(__snake_case )
model.save_pretrained(__snake_case )
AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version) | 8 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
SCREAMING_SNAKE_CASE__ : List[Any] = None
SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
SCREAMING_SNAKE_CASE__ : str = {
"""vocab_file""": {
"""google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""",
"""google/bigbird-roberta-large""": (
"""https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model"""
),
"""google/bigbird-base-trivia-itc""": (
"""https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model"""
),
},
"""tokenizer_file""": {
"""google/bigbird-roberta-base""": (
"""https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json"""
),
"""google/bigbird-roberta-large""": (
"""https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json"""
),
"""google/bigbird-base-trivia-itc""": (
"""https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json"""
),
},
}
SCREAMING_SNAKE_CASE__ : List[Any] = {
"""google/bigbird-roberta-base""": 40_96,
"""google/bigbird-roberta-large""": 40_96,
"""google/bigbird-base-trivia-itc""": 40_96,
}
SCREAMING_SNAKE_CASE__ : str = """▁"""
class UpperCAmelCase_ ( __lowerCamelCase ):
__lowerCamelCase = VOCAB_FILES_NAMES
__lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
__lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCamelCase = BigBirdTokenizer
__lowerCamelCase = ['input_ids', 'attention_mask']
__lowerCamelCase = []
def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase="[CLS]" , **_lowerCAmelCase , ):
UpperCAmelCase__ : int = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else bos_token
UpperCAmelCase__ : Any = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else eos_token
UpperCAmelCase__ : str = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else unk_token
UpperCAmelCase__ : List[Any] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else pad_token
UpperCAmelCase__ : Dict = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else cls_token
UpperCAmelCase__ : Union[str, Any] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase__ : List[Any] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , )
UpperCAmelCase__ : List[str] = vocab_file
UpperCAmelCase__ : Union[str, Any] = False if not self.vocab_file else True
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
UpperCAmelCase__ : List[str] = [self.sep_token_id]
UpperCAmelCase__ : str = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is None:
return [1] + ([0] * len(_lowerCAmelCase )) + [1]
return [1] + ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1]
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
UpperCAmelCase__ : Any = [self.sep_token_id]
UpperCAmelCase__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_lowerCAmelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
UpperCAmelCase__ : Optional[int] = os.path.join(
_lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ):
copyfile(self.vocab_file , _lowerCAmelCase )
return (out_vocab_file,)
| 79 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
lowercase__ : Any = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = '''tapas'''
def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ):
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase)
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
__A : Dict = vocab_size
__A : Tuple = hidden_size
__A : Any = num_hidden_layers
__A : int = num_attention_heads
__A : Tuple = hidden_act
__A : Tuple = intermediate_size
__A : List[Any] = hidden_dropout_prob
__A : int = attention_probs_dropout_prob
__A : List[str] = max_position_embeddings
__A : Optional[int] = type_vocab_sizes
__A : str = initializer_range
__A : List[str] = layer_norm_eps
# Fine-tuning task hyperparameters
__A : List[str] = positive_label_weight
__A : List[Any] = num_aggregation_labels
__A : Optional[Any] = aggregation_loss_weight
__A : Tuple = use_answer_as_supervision
__A : List[str] = answer_loss_importance
__A : Any = use_normalized_answer_loss
__A : Any = huber_loss_delta
__A : Union[str, Any] = temperature
__A : Tuple = aggregation_temperature
__A : Optional[Any] = use_gumbel_for_cells
__A : List[str] = use_gumbel_for_aggregation
__A : Tuple = average_approximation_function
__A : List[str] = cell_selection_preference
__A : Dict = answer_loss_cutoff
__A : Union[str, Any] = max_num_rows
__A : Optional[Any] = max_num_columns
__A : int = average_logits_per_cell
__A : Optional[Any] = select_one_column
__A : int = allow_empty_column_selection
__A : List[Any] = init_cell_selection_weights_to_zero
__A : int = reset_position_index_per_cell
__A : Union[str, Any] = disable_per_token_loss
# Aggregation hyperparameters
__A : Optional[Any] = aggregation_labels
__A : List[str] = no_aggregation_label_index
if isinstance(self.aggregation_labels , _UpperCAmelCase):
__A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()} | 8 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
__UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
__UpperCamelCase : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
__UpperCamelCase : int = {
"""vocab_file""": {
"""squeezebert/squeezebert-uncased""": (
"""https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt"""
),
"""squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""",
"""squeezebert/squeezebert-mnli-headless""": (
"""https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""squeezebert/squeezebert-uncased""": (
"""https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json"""
),
"""squeezebert/squeezebert-mnli""": (
"""https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json"""
),
"""squeezebert/squeezebert-mnli-headless""": (
"""https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json"""
),
},
}
__UpperCamelCase : Tuple = {
"""squeezebert/squeezebert-uncased""": 512,
"""squeezebert/squeezebert-mnli""": 512,
"""squeezebert/squeezebert-mnli-headless""": 512,
}
__UpperCamelCase : Optional[Any] = {
"""squeezebert/squeezebert-uncased""": {"""do_lower_case""": True},
"""squeezebert/squeezebert-mnli""": {"""do_lower_case""": True},
"""squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True},
}
class __UpperCamelCase ( _lowerCAmelCase ):
__snake_case :Tuple = VOCAB_FILES_NAMES
__snake_case :Any = PRETRAINED_VOCAB_FILES_MAP
__snake_case :Optional[int] = PRETRAINED_INIT_CONFIGURATION
__snake_case :Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case :Union[str, Any] = SqueezeBertTokenizer
def __init__( self : Optional[Any] , _lowerCAmelCase : str=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Tuple="[UNK]" , _lowerCAmelCase : int="[SEP]" , _lowerCAmelCase : str="[PAD]" , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : Optional[int]="[MASK]" , _lowerCAmelCase : Any=True , _lowerCAmelCase : str=None , **_lowerCAmelCase : Optional[Any] , ) -> str:
"""simple docstring"""
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
__lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , _lowerCAmelCase ) != tokenize_chinese_chars
):
__lowercase = getattr(_lowerCAmelCase , normalizer_state.pop("""type""" ) )
__lowercase = do_lower_case
__lowercase = strip_accents
__lowercase = tokenize_chinese_chars
__lowercase = normalizer_class(**_lowerCAmelCase )
__lowercase = do_lower_case
def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=None ) -> Tuple:
"""simple docstring"""
__lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _a ( self : List[Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _a ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
__lowercase = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 80 |
'''simple docstring'''
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize):
'''simple docstring'''
__A : Union[str, Any] = 'bilinear'
__A : int = max_size
__A : Optional[Any] = short_edge_length
def __call__( self , _UpperCAmelCase):
'''simple docstring'''
__A : int = []
for img in imgs:
__A ,__A : Dict = img.shape[:2]
# later: provide list and randomly choose index for resize
__A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1)
if size == 0:
return img
__A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase)
if h < w:
__A ,__A : Optional[Any] = size, scale * w
else:
__A ,__A : Optional[Any] = scale * h, size
if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size:
__A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase)
__A : Tuple = newh * scale
__A : Dict = neww * scale
__A : Dict = int(neww + 0.5)
__A : Optional[int] = int(newh + 0.5)
if img.dtype == np.uinta:
__A : int = Image.fromarray(_UpperCAmelCase)
__A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR)
__A : Dict = np.asarray(_UpperCAmelCase)
else:
__A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw
__A : Dict = nn.functional.interpolate(
_UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0)
img_augs.append(_UpperCAmelCase)
return img_augs
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase):
'''simple docstring'''
__A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST)
__A : List[Any] = cfg.INPUT.FORMAT
__A : Dict = cfg.SIZE_DIVISIBILITY
__A : str = cfg.PAD_VALUE
__A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST
__A : int = cfg.MODEL.DEVICE
__A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1)
__A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1)
__A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
__A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images]))
__A : Dict = [im.shape[-2:] for im in images]
__A : Optional[int] = [
nn.functional.pad(
_UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(_UpperCAmelCase , _UpperCAmelCase)
]
return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase)
def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False):
'''simple docstring'''
with torch.no_grad():
if not isinstance(_UpperCAmelCase , _UpperCAmelCase):
__A : int = [images]
if single_image:
assert len(_UpperCAmelCase) == 1
for i in range(len(_UpperCAmelCase)):
if isinstance(images[i] , torch.Tensor):
images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float())
elif not isinstance(images[i] , torch.Tensor):
images.insert(
_UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format))
.to(self.device)
.float() , )
# resize smallest edge
__A : str = torch.tensor([im.shape[:2] for im in images])
__A : List[str] = self.aug(_UpperCAmelCase)
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
__A : Any = [self.normalizer(_UpperCAmelCase) for x in images]
# now pad them to do the following operations
__A ,__A : Any = self.pad(_UpperCAmelCase)
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
__A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase)
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict:
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int:
assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!"
__A ,__A : int = box_size
tensor[:, 0].clamp_(min=0 , max=__snake_case )
tensor[:, 1].clamp_(min=0 , max=__snake_case )
tensor[:, 2].clamp_(min=0 , max=__snake_case )
tensor[:, 3].clamp_(min=0 , max=__snake_case ) | 8 | 0 |
import warnings
from ...utils import logging
from .image_processing_perceiver import PerceiverImageProcessor
_snake_case : Optional[int] = logging.get_logger(__name__)
class a (_lowerCAmelCase ):
"""simple docstring"""
def __init__( self : Any , *lowerCamelCase : int , **lowerCamelCase : int ) -> None:
warnings.warn(
"The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use PerceiverImageProcessor instead." , lowerCamelCase , )
super().__init__(*lowerCamelCase , **lowerCamelCase )
| 81 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741
__A : Tuple = len(__snake_case )
__A : Optional[int] = 0
__A : str = [0] * n
__A : int = [False] * n
__A : Tuple = [False] * n
def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ):
if parent == root:
out_edge_count += 1
__A : str = True
__A : Tuple = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
__A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case )
__A : int = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
__A : Tuple = True
# AP found via cycle
if at == low[to]:
__A : Optional[Any] = True
else:
__A : Any = min(low[at] , __snake_case )
return out_edge_count
for i in range(__snake_case ):
if not visited[i]:
__A : Tuple = 0
__A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case )
__A : Union[str, Any] = out_edge_count > 1
for x in range(len(__snake_case ) ):
if is_art[x] is True:
print(__snake_case )
# Adjacency list of graph
lowercase__ : Tuple = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data) | 8 | 0 |
"""simple docstring"""
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowercase__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" )
UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" )
UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="np" ).input_ids
UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="np" ).input_ids
UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
UpperCAmelCase_ = model(_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ).logits
UpperCAmelCase_ = optax.softmax_cross_entropy(_UpperCAmelCase , onehot(_UpperCAmelCase , logits.shape[-1] ) ).mean()
UpperCAmelCase_ = -(labels.shape[-1] * loss.item())
UpperCAmelCase_ = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 82 |
'''simple docstring'''
import argparse
import torch
# Step 1. clone https://github.com/microsoft/unilm
# Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd
# Step 3. cd unilm
# Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink
# import classes
from unilm.wavlm.WavLM import WavLM as WavLMOrig
from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig
from transformers import WavLMConfig, WavLMModel, logging
logging.set_verbosity_info()
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
lowercase__ : int = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''',
'''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''',
'''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''ctc_proj''',
'''mask_emb''': '''masked_spec_embed''',
}
lowercase__ : Dict = [
'''ctc_proj''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]:
for attribute in key.split('.' ):
__A : int = getattr(__snake_case , __snake_case )
if weight_type is not None:
__A : Optional[int] = getattr(__snake_case , __snake_case ).shape
else:
__A : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}'
)
if weight_type == "weight":
__A : Tuple = value
elif weight_type == "weight_g":
__A : Union[str, Any] = value
elif weight_type == "weight_v":
__A : Optional[Any] = value
elif weight_type == "bias":
__A : Optional[int] = value
else:
__A : Optional[int] = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]:
__A : Optional[Any] = []
__A : Any = fairseq_model.state_dict()
__A : Union[str, Any] = hf_model.feature_extractor
for name, value in fairseq_dict.items():
__A : Union[str, Any] = False
if "conv_layers" in name:
load_conv_layer(
__snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , )
__A : Optional[Any] = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__A : int = True
if "*" in mapped_key:
__A : Any = name.split(__snake_case )[0].split('.' )[-2]
__A : List[Any] = mapped_key.replace('*' , __snake_case )
if "weight_g" in name:
__A : Optional[Any] = 'weight_g'
elif "weight_v" in name:
__A : Union[str, Any] = 'weight_v'
elif "bias" in name and "relative_attention_bias" not in name:
__A : Optional[Any] = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__A : Tuple = 'weight'
else:
__A : Dict = None
set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
continue
if not is_used:
unused_weights.append(__snake_case )
logger.warning(f'Unused weights: {unused_weights}' )
def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int:
__A : int = full_name.split('conv_layers.' )[-1]
__A : List[str] = name.split('.' )
__A : Optional[int] = int(items[0] )
__A : str = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'
)
__A : Optional[int] = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'
)
__A : Union[str, Any] = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'
" found."
)
__A : Dict = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'
)
__A : Any = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(__snake_case )
@torch.no_grad()
def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any:
# load the pre-trained checkpoints
__A : List[str] = torch.load(__snake_case )
__A : Dict = WavLMConfigOrig(checkpoint['cfg'] )
__A : Optional[int] = WavLMOrig(__snake_case )
model.load_state_dict(checkpoint['model'] )
model.eval()
if config_path is not None:
__A : List[Any] = WavLMConfig.from_pretrained(__snake_case )
else:
__A : Dict = WavLMConfig()
__A : Optional[Any] = WavLMModel(__snake_case )
recursively_load_weights(__snake_case , __snake_case )
hf_wavlm.save_pretrained(__snake_case )
if __name__ == "__main__":
lowercase__ : Tuple = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
lowercase__ : Any = parser.parse_args()
convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path) | 8 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase__ = {
'''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig''']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ResNetForImageClassification''',
'''ResNetModel''',
'''ResNetPreTrainedModel''',
'''ResNetBackbone''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFResNetForImageClassification''',
'''TFResNetModel''',
'''TFResNetPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''FlaxResNetForImageClassification''',
'''FlaxResNetModel''',
'''FlaxResNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 83 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block
@dataclass
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = 42
class SCREAMING_SNAKE_CASE (a__ , a__ ):
@register_to_config
def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ):
'''simple docstring'''
super().__init__()
__A : Dict = sample_size
# time
if time_embedding_type == "fourier":
__A : int = GaussianFourierProjection(
embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase)
__A : Any = 2 * block_out_channels[0]
elif time_embedding_type == "positional":
__A : List[str] = Timesteps(
block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase)
__A : List[str] = block_out_channels[0]
if use_timestep_embedding:
__A : Optional[Any] = block_out_channels[0] * 4
__A : Optional[int] = TimestepEmbedding(
in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , )
__A : Dict = nn.ModuleList([])
__A : Dict = None
__A : Tuple = nn.ModuleList([])
__A : Tuple = None
# down
__A : Any = in_channels
for i, down_block_type in enumerate(_UpperCAmelCase):
__A : Tuple = output_channel
__A : Optional[Any] = block_out_channels[i]
if i == 0:
input_channel += extra_in_channels
__A : List[str] = i == len(_UpperCAmelCase) - 1
__A : int = get_down_block(
_UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , )
self.down_blocks.append(_UpperCAmelCase)
# mid
__A : str = get_mid_block(
_UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , )
# up
__A : Optional[int] = list(reversed(_UpperCAmelCase))
__A : Optional[int] = reversed_block_out_channels[0]
if out_block_type is None:
__A : str = out_channels
else:
__A : List[Any] = block_out_channels[0]
for i, up_block_type in enumerate(_UpperCAmelCase):
__A : Optional[Any] = output_channel
__A : Optional[Any] = (
reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels
)
__A : Dict = i == len(_UpperCAmelCase) - 1
__A : str = get_up_block(
_UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , )
self.up_blocks.append(_UpperCAmelCase)
__A : Optional[int] = output_channel
# out
__A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32)
__A : Optional[Any] = get_out_block(
out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , )
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ):
'''simple docstring'''
__A : Any = timestep
if not torch.is_tensor(_UpperCAmelCase):
__A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device)
elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0:
__A : Any = timesteps[None].to(sample.device)
__A : List[Any] = self.time_proj(_UpperCAmelCase)
if self.config.use_timestep_embedding:
__A : Dict = self.time_mlp(_UpperCAmelCase)
else:
__A : Dict = timestep_embed[..., None]
__A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype)
__A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]))
# 2. down
__A : int = ()
for downsample_block in self.down_blocks:
__A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase)
down_block_res_samples += res_samples
# 3. mid
if self.mid_block:
__A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase)
# 4. up
for i, upsample_block in enumerate(self.up_blocks):
__A : Any = down_block_res_samples[-1:]
__A : Optional[int] = down_block_res_samples[:-1]
__A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase)
# 5. post-process
if self.out_block:
__A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase)
if not return_dict:
return (sample,)
return UNetaDOutput(sample=_UpperCAmelCase) | 8 | 0 |
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
UpperCAmelCase = logging.get_logger(__name__)
UpperCAmelCase = {
'''microsoft/conditional-detr-resnet-50''': (
'''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json'''
),
}
class A_ ( __lowerCamelCase ):
'''simple docstring'''
_UpperCamelCase : List[Any] = """conditional_detr"""
_UpperCamelCase : Any = ["""past_key_values"""]
_UpperCamelCase : Optional[Any] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self , snake_case=True , snake_case=None , snake_case=3 , snake_case=300 , snake_case=6 , snake_case=2048 , snake_case=8 , snake_case=6 , snake_case=2048 , snake_case=8 , snake_case=0.0 , snake_case=0.0 , snake_case=True , snake_case="relu" , snake_case=256 , snake_case=0.1 , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1.0 , snake_case=False , snake_case="sine" , snake_case="resnet50" , snake_case=True , snake_case=False , snake_case=2 , snake_case=5 , snake_case=2 , snake_case=1 , snake_case=1 , snake_case=2 , snake_case=5 , snake_case=2 , snake_case=0.25 , **snake_case , ):
if backbone_config is not None and use_timm_backbone:
raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' )
lowercase = CONFIG_MAPPING['resnet'](out_features=['stage4'] )
elif isinstance(snake_case , snake_case ):
lowercase = backbone_config.get('model_type' )
lowercase = CONFIG_MAPPING[backbone_model_type]
lowercase = config_class.from_dict(snake_case )
lowercase = use_timm_backbone
lowercase = backbone_config
lowercase = num_channels
lowercase = num_queries
lowercase = d_model
lowercase = encoder_ffn_dim
lowercase = encoder_layers
lowercase = encoder_attention_heads
lowercase = decoder_ffn_dim
lowercase = decoder_layers
lowercase = decoder_attention_heads
lowercase = dropout
lowercase = attention_dropout
lowercase = activation_dropout
lowercase = activation_function
lowercase = init_std
lowercase = init_xavier_std
lowercase = encoder_layerdrop
lowercase = decoder_layerdrop
lowercase = encoder_layers
lowercase = auxiliary_loss
lowercase = position_embedding_type
lowercase = backbone
lowercase = use_pretrained_backbone
lowercase = dilation
# Hungarian matcher
lowercase = class_cost
lowercase = bbox_cost
lowercase = giou_cost
# Loss coefficients
lowercase = mask_loss_coefficient
lowercase = dice_loss_coefficient
lowercase = cls_loss_coefficient
lowercase = bbox_loss_coefficient
lowercase = giou_loss_coefficient
lowercase = focal_alpha
super().__init__(is_encoder_decoder=snake_case , **snake_case )
@property
def SCREAMING_SNAKE_CASE__ ( self ):
return self.encoder_attention_heads
@property
def SCREAMING_SNAKE_CASE__ ( self ):
return self.d_model
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
lowercase = self.backbone_config.to_dict()
lowercase = self.__class__.model_type
return output
class A_ ( __lowerCamelCase ):
'''simple docstring'''
_UpperCamelCase : List[str] = version.parse("""1.11""" )
@property
def SCREAMING_SNAKE_CASE__ ( self ):
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
('pixel_mask', {0: 'batch'}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self ):
return 1E-5
@property
def SCREAMING_SNAKE_CASE__ ( self ):
return 12
| 84 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int:
if len(__snake_case ) != len(__snake_case ):
raise ValueError('String lengths must match!' )
__A : Optional[Any] = 0
for chara, chara in zip(__snake_case , __snake_case ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ : Optional[int] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["EncoderDecoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : str = ["TFEncoderDecoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : List[str] = ["FlaxEncoderDecoderModel"]
if TYPE_CHECKING:
from .configuration_encoder_decoder import EncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encoder_decoder import EncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_encoder_decoder import TFEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel
else:
import sys
SCREAMING_SNAKE_CASE__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 85 |
'''simple docstring'''
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Tuple = logging.get_logger(__name__)
def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]:
__A : int = RobertaPreLayerNormConfig.from_pretrained(
__snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] )
# convert state_dict
__A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) )
__A : str = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith('roberta.' ):
__A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ):
continue
__A : str = tensor_value
__A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case )
model.save_pretrained(__snake_case )
# convert tokenizer
__A : List[Any] = AutoTokenizer.from_pretrained(__snake_case )
tokenizer.save_pretrained(__snake_case )
if __name__ == "__main__":
lowercase__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint-repo''',
default=None,
type=str,
required=True,
help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path) | 8 | 0 |
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def __snake_case ( __UpperCamelCase : Optional[int] ):
"""simple docstring"""
if "img_encoder.pos_embed" in name:
A_ = name.replace("img_encoder.pos_embed" ,"vision_model.embeddings.position_embeddings" )
if "img_encoder.patch_embed.proj" in name:
A_ = name.replace("img_encoder.patch_embed.proj" ,"vision_model.embeddings.patch_embeddings.projection" )
if "img_encoder.patch_embed.norm" in name:
A_ = name.replace("img_encoder.patch_embed.norm" ,"vision_model.embeddings.layernorm" )
if "img_encoder.layers" in name:
A_ = name.replace("img_encoder.layers" ,"vision_model.encoder.stages" )
if "blocks" in name and "res" not in name:
A_ = name.replace("blocks" ,"layers" )
if "attn" in name and "pre_assign" not in name:
A_ = name.replace("attn" ,"self_attn" )
if "proj" in name and "self_attn" in name and "text" not in name:
A_ = name.replace("proj" ,"out_proj" )
if "pre_assign_attn.attn.proj" in name:
A_ = name.replace("pre_assign_attn.attn.proj" ,"pre_assign_attn.attn.out_proj" )
if "norm1" in name:
A_ = name.replace("norm1" ,"layer_norm1" )
if "norm2" in name and "pre_assign" not in name:
A_ = name.replace("norm2" ,"layer_norm2" )
if "img_encoder.norm" in name:
A_ = name.replace("img_encoder.norm" ,"vision_model.layernorm" )
# text encoder
if "text_encoder.token_embedding" in name:
A_ = name.replace("text_encoder.token_embedding" ,"text_model.embeddings.token_embedding" )
if "text_encoder.positional_embedding" in name:
A_ = name.replace("text_encoder.positional_embedding" ,"text_model.embeddings.position_embedding.weight" )
if "text_encoder.transformer.resblocks." in name:
A_ = name.replace("text_encoder.transformer.resblocks." ,"text_model.encoder.layers." )
if "ln_1" in name:
A_ = name.replace("ln_1" ,"layer_norm1" )
if "ln_2" in name:
A_ = name.replace("ln_2" ,"layer_norm2" )
if "c_fc" in name:
A_ = name.replace("c_fc" ,"fc1" )
if "c_proj" in name:
A_ = name.replace("c_proj" ,"fc2" )
if "text_encoder" in name:
A_ = name.replace("text_encoder" ,"text_model" )
if "ln_final" in name:
A_ = name.replace("ln_final" ,"final_layer_norm" )
# projection layers
if "img_projector.linear_hidden." in name:
A_ = name.replace("img_projector.linear_hidden." ,"visual_projection." )
if "img_projector.linear_out." in name:
A_ = name.replace("img_projector.linear_out." ,"visual_projection.3." )
if "text_projector.linear_hidden" in name:
A_ = name.replace("text_projector.linear_hidden" ,"text_projection" )
if "text_projector.linear_out" in name:
A_ = name.replace("text_projector.linear_out" ,"text_projection.3" )
return name
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
A_ = orig_state_dict.pop(__UpperCamelCase )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
A_ = key.split("." )
A_ , A_ = int(key_split[2] ), int(key_split[4] )
A_ = config.vision_config.hidden_size
if "weight" in key:
A_ = val[:dim, :]
A_ = val[dim : dim * 2, :]
A_ = val[-dim:, :]
else:
A_ = val[:dim]
A_ = val[dim : dim * 2]
A_ = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
A_ = key.split("." )
A_ = int(key_split[3] )
A_ = config.text_config.hidden_size
if "weight" in key:
A_ = val[:dim, :]
A_ = val[
dim : dim * 2, :
]
A_ = val[-dim:, :]
else:
A_ = val[:dim]
A_ = val[dim : dim * 2]
A_ = val[-dim:]
else:
A_ = rename_key(__UpperCamelCase )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
A_ = val.squeeze_()
else:
A_ = val
return orig_state_dict
def __snake_case ( ):
"""simple docstring"""
A_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw )
return im
@torch.no_grad()
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[int]="groupvit-gcc-yfcc" ,__UpperCamelCase : List[Any]=False ):
"""simple docstring"""
A_ = GroupViTConfig()
A_ = GroupViTModel(__UpperCamelCase ).eval()
A_ = torch.load(__UpperCamelCase ,map_location="cpu" )["model"]
A_ = convert_state_dict(__UpperCamelCase ,__UpperCamelCase )
A_ , A_ = model.load_state_dict(__UpperCamelCase ,strict=__UpperCamelCase )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__UpperCamelCase ) == 0)
# verify result
A_ = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" )
A_ = prepare_img()
A_ = processor(text=["a photo of a cat", "a photo of a dog"] ,images=__UpperCamelCase ,padding=__UpperCamelCase ,return_tensors="pt" )
with torch.no_grad():
A_ = model(**__UpperCamelCase )
if model_name == "groupvit-gcc-yfcc":
A_ = torch.tensor([[13.3523, 6.3629]] )
elif model_name == "groupvit-gcc-redcaps":
A_ = torch.tensor([[16.1873, 8.6230]] )
else:
raise ValueError(f'''Model name {model_name} not supported.''' )
assert torch.allclose(outputs.logits_per_image ,__UpperCamelCase ,atol=1E-3 )
processor.save_pretrained(__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
print("Successfully saved processor and model to" ,__UpperCamelCase )
if push_to_hub:
print("Pushing to the hub..." )
processor.push_to_hub(__UpperCamelCase ,organization="nielsr" )
model.push_to_hub(__UpperCamelCase ,organization="nielsr" )
if __name__ == "__main__":
__a :Tuple = argparse.ArgumentParser()
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.'
)
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint')
parser.add_argument(
'--model_name',
default='groupvit-gccy-fcc',
type=str,
help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.',
)
__a :int = parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub) | 86 |
'''simple docstring'''
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
lowercase__ : Dict = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} )
lowerCAmelCase = field(
default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
lowerCAmelCase = field(
default=a__ , metadata={
'''help''': (
'''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `max_length` value of the model configuration.'''
)
} , )
lowerCAmelCase = field(
default=a__ , metadata={
'''help''': (
'''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `num_beams` value of the model configuration.'''
)
} , )
lowerCAmelCase = field(
default=a__ , metadata={
'''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'''
} , )
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[Any] = super().to_dict()
for k, v in d.items():
if isinstance(_UpperCAmelCase , _UpperCAmelCase):
__A : List[Any] = v.to_dict()
return d | 8 | 0 |
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
_lowerCamelCase : Optional[int] = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""")
_lowerCamelCase : Any = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split()
_lowerCamelCase : Optional[int] = """|""".join(sys.argv[1:])
_lowerCamelCase : str = re.compile(rF'''^({joined_dirs}).*?\.py$''')
_lowerCamelCase : List[str] = [x for x in modified_files if regex.match(x)]
print(""" """.join(relevant_modified_files), end="""""")
| 87 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : List[Any] = logging.get_logger(__name__)
lowercase__ : Optional[int] = {
'''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''',
}
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = '''lxmert'''
lowerCAmelCase = {}
def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ):
'''simple docstring'''
__A : Tuple = vocab_size
__A : int = hidden_size
__A : str = num_attention_heads
__A : Tuple = hidden_act
__A : int = intermediate_size
__A : str = hidden_dropout_prob
__A : Optional[int] = attention_probs_dropout_prob
__A : Optional[Any] = max_position_embeddings
__A : Tuple = type_vocab_size
__A : Optional[int] = initializer_range
__A : Any = layer_norm_eps
__A : Optional[Any] = num_qa_labels
__A : Optional[int] = num_object_labels
__A : Any = num_attr_labels
__A : Union[str, Any] = l_layers
__A : Optional[int] = x_layers
__A : List[Any] = r_layers
__A : Tuple = visual_feat_dim
__A : Tuple = visual_pos_dim
__A : Optional[int] = visual_loss_normalizer
__A : int = task_matched
__A : List[Any] = task_mask_lm
__A : Optional[Any] = task_obj_predict
__A : str = task_qa
__A : List[Any] = visual_obj_loss
__A : Optional[Any] = visual_attr_loss
__A : Union[str, Any] = visual_feat_loss
__A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers}
super().__init__(**_UpperCAmelCase) | 8 | 0 |
"""simple docstring"""
import inspect
import os
import unittest
from pathlib import Path
import torch
import accelerate
from accelerate.test_utils import execute_subprocess_async
from accelerate.test_utils.testing import run_command
class lowercase__ ( unittest.TestCase ):
__UpperCAmelCase = inspect.getfile(accelerate.test_utils )
__UpperCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] )
__UpperCAmelCase = ['''accelerate''', '''launch''']
__UpperCAmelCase = Path.home() / '''.cache/huggingface/accelerate'''
__UpperCAmelCase = '''default_config.yaml'''
__UpperCAmelCase = config_folder / config_file
__UpperCAmelCase = config_folder / '''_default_config.yaml'''
__UpperCAmelCase = Path('''tests/test_configs''' )
@classmethod
def UpperCamelCase_ ( cls) -> List[str]:
if cls.config_path.is_file():
cls.config_path.rename(cls.changed_path)
@classmethod
def UpperCamelCase_ ( cls) -> Tuple:
if cls.changed_path.is_file():
cls.changed_path.rename(cls.config_path)
def UpperCamelCase_ ( self) -> Optional[int]:
_lowerCamelCase : Dict = self.base_cmd
if torch.cuda.is_available() and (torch.cuda.device_count() > 1):
cmd += ["--multi_gpu"]
execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy())
def UpperCamelCase_ ( self) -> int:
for config in sorted(self.test_config_path.glob("""**/*.yaml""")):
with self.subTest(config_file=SCREAMING_SNAKE_CASE):
execute_subprocess_async(
self.base_cmd + ["""--config_file""", str(SCREAMING_SNAKE_CASE), self.test_file_path] , env=os.environ.copy())
def UpperCamelCase_ ( self) -> Any:
execute_subprocess_async(["""accelerate""", """test"""] , env=os.environ.copy())
class lowercase__ ( unittest.TestCase ):
__UpperCAmelCase = '''test-tpu'''
__UpperCAmelCase = '''us-central1-a'''
__UpperCAmelCase = '''ls'''
__UpperCAmelCase = ['''accelerate''', '''tpu-config''']
__UpperCAmelCase = '''cd /usr/share'''
__UpperCAmelCase = '''tests/test_samples/test_command_file.sh'''
__UpperCAmelCase = '''Running gcloud compute tpus tpu-vm ssh'''
def UpperCamelCase_ ( self) -> str:
_lowerCamelCase : Union[str, Any] = run_command(
self.cmd
+ ["""--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug"""] , return_stdout=SCREAMING_SNAKE_CASE , )
self.assertIn(
F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , SCREAMING_SNAKE_CASE , )
def UpperCamelCase_ ( self) -> str:
_lowerCamelCase : int = run_command(
self.cmd
+ [
"""--config_file""",
"""tests/test_configs/0_12_0.yaml""",
"""--command""",
self.command,
"""--tpu_zone""",
self.tpu_zone,
"""--tpu_name""",
self.tpu_name,
"""--debug""",
] , return_stdout=SCREAMING_SNAKE_CASE , )
self.assertIn(
F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , SCREAMING_SNAKE_CASE , )
def UpperCamelCase_ ( self) -> Optional[Any]:
_lowerCamelCase : Any = run_command(
self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--debug"""] , return_stdout=SCREAMING_SNAKE_CASE)
self.assertIn(
F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , SCREAMING_SNAKE_CASE , )
def UpperCamelCase_ ( self) -> str:
_lowerCamelCase : Optional[int] = run_command(
self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--debug"""] , return_stdout=SCREAMING_SNAKE_CASE , )
self.assertIn(
F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , SCREAMING_SNAKE_CASE , )
def UpperCamelCase_ ( self) -> Dict:
_lowerCamelCase : Optional[int] = run_command(
self.cmd
+ [
"""--config_file""",
"""tests/test_configs/latest.yaml""",
"""--command""",
self.command,
"""--command""",
"""echo \"Hello World\"""",
"""--debug""",
] , return_stdout=SCREAMING_SNAKE_CASE , )
self.assertIn(
F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all' , SCREAMING_SNAKE_CASE , )
def UpperCamelCase_ ( self) -> Optional[int]:
_lowerCamelCase : Union[str, Any] = run_command(
self.cmd
+ ["""--config_file""", """tests/test_configs/latest.yaml""", """--command_file""", self.command_file, """--debug"""] , return_stdout=SCREAMING_SNAKE_CASE , )
self.assertIn(
F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , SCREAMING_SNAKE_CASE , )
def UpperCamelCase_ ( self) -> Dict:
_lowerCamelCase : Optional[int] = run_command(
self.cmd
+ [
"""--config_file""",
"""tests/test_configs/0_12_0.yaml""",
"""--command_file""",
self.command_file,
"""--tpu_zone""",
self.tpu_zone,
"""--tpu_name""",
self.tpu_name,
"""--debug""",
] , return_stdout=SCREAMING_SNAKE_CASE , )
self.assertIn(
F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , SCREAMING_SNAKE_CASE , )
def UpperCamelCase_ ( self) -> Optional[Any]:
_lowerCamelCase : List[str] = run_command(
self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--debug"""] , return_stdout=SCREAMING_SNAKE_CASE , )
self.assertIn(
F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all' , SCREAMING_SNAKE_CASE , )
def UpperCamelCase_ ( self) -> int:
_lowerCamelCase : Union[str, Any] = run_command(
self.cmd
+ [
"""--config_file""",
"""tests/test_configs/latest.yaml""",
"""--install_accelerate""",
"""--accelerate_version""",
"""12.0.0""",
"""--debug""",
] , return_stdout=SCREAMING_SNAKE_CASE , )
self.assertIn(
F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all' , SCREAMING_SNAKE_CASE , )
| 88 |
'''simple docstring'''
import math
import sys
def _lowerCAmelCase ( __snake_case : int ) -> int:
if number != int(__snake_case ):
raise ValueError('the value of input must be a natural number' )
if number < 0:
raise ValueError('the value of input must not be a negative number' )
if number == 0:
return 1
__A : str = [-1] * (number + 1)
__A : Dict = 0
for i in range(1 , number + 1 ):
__A : int = sys.maxsize
__A : int = int(math.sqrt(__snake_case ) )
for j in range(1 , root + 1 ):
__A : str = 1 + answers[i - (j**2)]
__A : Dict = min(__snake_case , __snake_case )
__A : Union[str, Any] = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__)
@add_end_docstrings(_a )
class _lowerCamelCase( _a ):
def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]:
"""simple docstring"""
super().__init__(*lowerCamelCase, **lowerCamelCase)
requires_backends(self, 'vision')
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING)
def UpperCamelCase ( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None) -> Dict:
"""simple docstring"""
_lowercase : Any = {}
_lowercase : Union[str, Any] = {}
if prompt is not None:
_lowercase : Optional[int] = prompt
if generate_kwargs is not None:
_lowercase : Dict = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
_lowercase : Optional[Any] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
'\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,'
' please use only one')
_lowercase : Union[str, Any] = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self, lowerCamelCase, **lowerCamelCase) -> Optional[int]:
"""simple docstring"""
return super().__call__(lowerCamelCase, **lowerCamelCase)
def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=None) -> Union[str, Any]:
"""simple docstring"""
_lowercase : Any = load_image(lowerCamelCase)
if prompt is not None:
if not isinstance(lowerCamelCase, lowerCamelCase):
raise ValueError(
F'''Received an invalid text input, got - {type(lowerCamelCase)} - but expected a single string. '''
'Note also that one single text can be provided for conditional image to text generation.')
_lowercase : Optional[int] = self.model.config.model_type
if model_type == "git":
_lowercase : int = self.image_processor(images=lowerCamelCase, return_tensors=self.framework)
_lowercase : List[str] = self.tokenizer(text=lowerCamelCase, add_special_tokens=lowerCamelCase).input_ids
_lowercase : List[str] = [self.tokenizer.cls_token_id] + input_ids
_lowercase : Optional[Any] = torch.tensor(lowerCamelCase).unsqueeze(0)
model_inputs.update({'input_ids': input_ids})
elif model_type == "pix2struct":
_lowercase : Optional[int] = self.image_processor(images=lowerCamelCase, header_text=lowerCamelCase, return_tensors=self.framework)
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
_lowercase : Tuple = self.image_processor(images=lowerCamelCase, return_tensors=self.framework)
_lowercase : List[str] = self.tokenizer(lowerCamelCase, return_tensors=self.framework)
model_inputs.update(lowerCamelCase)
else:
raise ValueError(F'''Model type {model_type} does not support conditional text generation''')
else:
_lowercase : str = self.image_processor(images=lowerCamelCase, return_tensors=self.framework)
if self.model.config.model_type == "git" and prompt is None:
_lowercase : Optional[int] = None
return model_inputs
def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=None) -> Optional[int]:
"""simple docstring"""
if (
"input_ids" in model_inputs
and isinstance(model_inputs['input_ids'], lowerCamelCase)
and all(x is None for x in model_inputs['input_ids'])
):
_lowercase : Optional[Any] = None
if generate_kwargs is None:
_lowercase : Any = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
_lowercase : Tuple = model_inputs.pop(self.model.main_input_name)
_lowercase : Optional[int] = self.model.generate(lowerCamelCase, **lowerCamelCase, **lowerCamelCase)
return model_outputs
def UpperCamelCase ( self, lowerCamelCase) -> int:
"""simple docstring"""
_lowercase : List[Any] = []
for output_ids in model_outputs:
_lowercase : Tuple = {
'generated_text': self.tokenizer.decode(
lowerCamelCase, skip_special_tokens=lowerCamelCase, )
}
records.append(lowerCamelCase)
return records
| 89 |
'''simple docstring'''
from __future__ import annotations
def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]:
__A : int = list(range(len(__snake_case ) ) )
__A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )]
index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case )
__A : float = 0
__A : list[float] = [0] * len(__snake_case )
for i in index:
if weight[i] <= capacity:
__A : Optional[int] = 1
max_value += value[i]
capacity -= weight[i]
else:
__A : List[Any] = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__UpperCAmelCase = {
'''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''],
'''tokenization_ctrl''': ['''CTRLTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CTRLForSequenceClassification''',
'''CTRLLMHeadModel''',
'''CTRLModel''',
'''CTRLPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFCTRLForSequenceClassification''',
'''TFCTRLLMHeadModel''',
'''TFCTRLModel''',
'''TFCTRLPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig
from .tokenization_ctrl import CTRLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ctrl import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
CTRLPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_ctrl import (
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCTRLForSequenceClassification,
TFCTRLLMHeadModel,
TFCTRLModel,
TFCTRLPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 90 |
'''simple docstring'''
from __future__ import annotations
import math
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase):
'''simple docstring'''
__A : int = size
# approximate the overall size of segment tree with given value
__A : Optional[Any] = [0 for i in range(0 , 4 * size)]
# create array to store lazy update
__A : Optional[Any] = [0 for i in range(0 , 4 * size)]
__A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
return idx * 2
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
return idx * 2 + 1
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
if left_element == right_element:
__A : List[Any] = a[left_element - 1]
else:
__A : List[str] = (left_element + right_element) // 2
self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase)
__A : Any = max(
self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)])
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
if self.flag[idx] is True:
__A : Optional[Any] = self.lazy[idx]
__A : Optional[Any] = False
if left_element != right_element:
__A : List[Any] = self.lazy[idx]
__A : Dict = self.lazy[idx]
__A : Tuple = True
__A : Union[str, Any] = True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
__A : Optional[int] = val
if left_element != right_element:
__A : Tuple = val
__A : Any = val
__A : Tuple = True
__A : Union[str, Any] = True
return True
__A : str = (left_element + right_element) // 2
self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
__A : int = max(
self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)])
return True
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
if self.flag[idx] is True:
__A : Union[str, Any] = self.lazy[idx]
__A : List[str] = False
if left_element != right_element:
__A : Union[str, Any] = self.lazy[idx]
__A : Optional[int] = self.lazy[idx]
__A : str = True
__A : Union[str, Any] = True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
__A : Any = (left_element + right_element) // 2
__A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
__A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
return max(_UpperCAmelCase , _UpperCAmelCase)
def __str__( self):
'''simple docstring'''
return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)])
if __name__ == "__main__":
lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
lowercase__ : str = 15
lowercase__ : List[Any] = SegmentTree(size)
segt.build(1, 1, size, A)
print(segt.query(1, 1, size, 4, 6))
print(segt.query(1, 1, size, 7, 11))
print(segt.query(1, 1, size, 7, 12))
segt.update(1, 1, size, 1, 3, 1_11)
print(segt.query(1, 1, size, 1, 15))
segt.update(1, 1, size, 7, 8, 2_35)
print(segt) | 8 | 0 |
"""simple docstring"""
from queue import PriorityQueue
from typing import Any
import numpy as np
def _snake_case ( snake_case__ : dict , snake_case__ : str , snake_case__ : set , snake_case__ : set , snake_case__ : dict , snake_case__ : dict , snake_case__ : PriorityQueue , snake_case__ : dict , snake_case__ : float | int , ):
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
A = cst_fwd.get(snake_case__ , np.inf )
A = cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
A = new_cost_f
A = v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
A = cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def _snake_case ( snake_case__ : str , snake_case__ : str , snake_case__ : dict , snake_case__ : dict ):
A = -1
A = set()
A = set()
A = {source: 0}
A = {destination: 0}
A = {source: None}
A = {destination: None}
A = PriorityQueue()
A = PriorityQueue()
A = np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
A , A = queue_forward.get()
visited_forward.add(snake_case__ )
A , A = queue_backward.get()
visited_backward.add(snake_case__ )
A = pass_and_relaxation(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , )
A = pass_and_relaxation(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , )
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
A = shortest_distance
return shortest_path_distance
_lowercase = {
'''B''': [['''C''', 1]],
'''C''': [['''D''', 1]],
'''D''': [['''F''', 1]],
'''E''': [['''B''', 1], ['''G''', 2]],
'''F''': [],
'''G''': [['''F''', 1]],
}
_lowercase = {
'''B''': [['''E''', 1]],
'''C''': [['''B''', 1]],
'''D''': [['''C''', 1]],
'''F''': [['''D''', 1], ['''G''', 1]],
'''E''': [[None, np.inf]],
'''G''': [['''E''', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod() | 91 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float:
__A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
# formula for sum of series
return total
def _lowerCAmelCase ( ) -> Union[str, Any]:
print(sum_of_series(1 , 1 , 10 ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
'''simple docstring'''
def _lowerCAmelCase ( __magic_name__ : float , __magic_name__ : float ) -> float:
if mass < 0:
raise ValueError('''The mass of a body cannot be negative''' )
return 0.5 * mass * abs(__magic_name__ ) * abs(__magic_name__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 92 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ):
'''simple docstring'''
__A : Optional[int] = parent
__A : str = 13
__A : List[Any] = 7
__A : List[str] = True
__A : str = True
__A : Optional[Any] = True
__A : int = True
__A : Dict = 99
__A : Dict = 384
__A : Any = 2
__A : int = 4
__A : Optional[Any] = 37
__A : Optional[int] = 'gelu'
__A : Dict = 0.1
__A : Optional[int] = 0.1
__A : Any = 512
__A : int = 16
__A : List[str] = 2
__A : str = 0.02
__A : Any = 3
__A : str = 4
__A : Union[str, Any] = 128
__A : int = 2
__A : List[Any] = 9
__A : List[Any] = 1
__A : List[Any] = None
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__A : str = None
if self.use_input_mask:
__A : List[Any] = random_attention_mask([self.batch_size, self.seq_length])
__A : Optional[Any] = None
if self.use_token_type_ids:
__A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
__A : Optional[int] = None
__A : List[str] = None
__A : Dict = None
if self.use_labels:
__A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__A : str = ids_tensor([self.batch_size] , self.num_choices)
__A : List[Any] = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : int = TFConvBertModel(config=_UpperCAmelCase)
__A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__A : Tuple = [input_ids, input_mask]
__A : Any = model(_UpperCAmelCase)
__A : Dict = model(_UpperCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase)
__A : str = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : str = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Optional[int] = self.num_labels
__A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase)
__A : Optional[Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : Dict = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Tuple = self.num_choices
__A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase)
__A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1))
__A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1))
__A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1))
__A : int = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__A : Optional[Any] = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : List[Any] = self.num_labels
__A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase)
__A : str = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : int = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase)
__A : Any = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : Union[str, Any] = model(_UpperCAmelCase)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Optional[int] = self.prepare_config_and_inputs()
(
(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,
) : Union[str, Any] = config_and_inputs
__A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ):
lowerCAmelCase = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase = (
{
'''feature-extraction''': TFConvBertModel,
'''fill-mask''': TFConvBertForMaskedLM,
'''question-answering''': TFConvBertForQuestionAnswering,
'''text-classification''': TFConvBertForSequenceClassification,
'''token-classification''': TFConvBertForTokenClassification,
'''zero-shot''': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = TFConvBertModelTester(self)
__A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase)
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__A : List[str] = True
__A : List[str] = True
if hasattr(_UpperCAmelCase , 'use_cache'):
__A : List[Any] = True
__A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length)
__A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase)
for model_class in self.all_model_classes:
__A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)
__A : Optional[int] = model_class(_UpperCAmelCase)
__A : Optional[Any] = len(model(_UpperCAmelCase))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase)
__A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1')
__A : Tuple = tf.keras.models.load_model(_UpperCAmelCase)
__A : str = model(_UpperCAmelCase)
if self.is_encoder_decoder:
__A : Optional[int] = outputs['encoder_hidden_states']
__A : str = outputs['encoder_attentions']
else:
__A : List[Any] = outputs['hidden_states']
__A : Optional[Any] = outputs['attentions']
self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase)
__A : str = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase)
self.assertListEqual(
list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base')
self.assertIsNotNone(_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__A : Any = True
__A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length)
__A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length)
__A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase)
__A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase)
def check_decoder_attentions_output(_UpperCAmelCase):
__A : List[str] = len(_UpperCAmelCase)
self.assertEqual(out_len % 2 , 0)
__A : Any = outputs.decoder_attentions
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_UpperCAmelCase):
__A : str = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__A : Dict = True
__A : Any = False
__A : str = model_class(_UpperCAmelCase)
__A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : List[str] = len(_UpperCAmelCase)
self.assertEqual(config.output_hidden_states , _UpperCAmelCase)
check_encoder_attentions_output(_UpperCAmelCase)
if self.is_encoder_decoder:
__A : Union[str, Any] = model_class(_UpperCAmelCase)
__A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
self.assertEqual(config.output_hidden_states , _UpperCAmelCase)
check_decoder_attentions_output(_UpperCAmelCase)
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__A : int = True
__A : Tuple = model_class(_UpperCAmelCase)
__A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
self.assertEqual(config.output_hidden_states , _UpperCAmelCase)
check_encoder_attentions_output(_UpperCAmelCase)
# Check attention is always last and order is fine
__A : Any = True
__A : str = True
__A : Union[str, Any] = model_class(_UpperCAmelCase)
__A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase))
self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase)
check_encoder_attentions_output(_UpperCAmelCase)
@require_tf
class SCREAMING_SNAKE_CASE (unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base')
__A : str = tf.constant([[0, 1, 2, 3, 4, 5]])
__A : Optional[int] = model(_UpperCAmelCase)[0]
__A : List[Any] = [1, 6, 768]
self.assertEqual(output.shape , _UpperCAmelCase)
__A : Tuple = tf.constant(
[
[
[-0.03475493, -0.4686034, -0.30638832],
[0.22637248, -0.26988646, -0.7423424],
[0.10324868, -0.45013508, -0.58280784],
]
])
tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4) | 8 | 0 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def snake_case ( self ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase__ :List[str] = UNetaDModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
return model
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :int = self.dummy_uncond_unet
lowerCAmelCase__ :int = PNDMScheduler()
lowerCAmelCase__ :Any = PNDMPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase )
pndm.to(__UpperCAmelCase )
pndm.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase__ :Optional[int] = torch.manual_seed(0 )
lowerCAmelCase__ :List[str] = pndm(generator=__UpperCAmelCase , num_inference_steps=2_0 , output_type='numpy' ).images
lowerCAmelCase__ :str = torch.manual_seed(0 )
lowerCAmelCase__ :Union[str, Any] = pndm(generator=__UpperCAmelCase , num_inference_steps=2_0 , output_type='numpy' , return_dict=__UpperCAmelCase )[0]
lowerCAmelCase__ :List[Any] = image[0, -3:, -3:, -1]
lowerCAmelCase__ :List[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
lowerCAmelCase__ :Optional[int] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Union[str, Any] = 'google/ddpm-cifar10-32'
lowerCAmelCase__ :Optional[Any] = UNetaDModel.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ :Any = PNDMScheduler()
lowerCAmelCase__ :Dict = PNDMPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase )
pndm.to(__UpperCAmelCase )
pndm.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase__ :Union[str, Any] = torch.manual_seed(0 )
lowerCAmelCase__ :str = pndm(generator=__UpperCAmelCase , output_type='numpy' ).images
lowerCAmelCase__ :List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
lowerCAmelCase__ :int = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 93 |
'''simple docstring'''
import argparse
import os
import re
lowercase__ : Optional[int] = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
lowercase__ : Dict = re.compile(r'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowercase__ : str = re.compile(r'''\[([^\]]+)\]''')
def _lowerCAmelCase ( __snake_case : str ) -> Tuple:
__A : List[Any] = _re_indent.search(__snake_case )
return "" if search is None else search.groups()[0]
def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]:
__A : Tuple = 0
__A : Optional[int] = code.split('\n' )
if start_prompt is not None:
while not lines[index].startswith(__snake_case ):
index += 1
__A : Optional[int] = ['\n'.join(lines[:index] )]
else:
__A : Any = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
__A : Tuple = [lines[index]]
index += 1
while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ):
current_block.append(lines[index] )
blocks.append('\n'.join(__snake_case ) )
if index < len(__snake_case ) - 1:
__A : Union[str, Any] = [lines[index + 1]]
index += 1
else:
__A : Union[str, Any] = []
else:
blocks.append('\n'.join(__snake_case ) )
__A : Optional[Any] = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(__snake_case ) > 0:
blocks.append('\n'.join(__snake_case ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(__snake_case ):
blocks.append('\n'.join(lines[index:] ) )
return blocks
def _lowerCAmelCase ( __snake_case : List[Any] ) -> int:
def _inner(__snake_case : List[Any] ):
return key(__snake_case ).lower().replace('_' , '' )
return _inner
def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]:
# If no key is provided, we use a noop.
def noop(__snake_case : List[Any] ):
return x
if key is None:
__A : Optional[Any] = noop
# Constants are all uppercase, they go first.
__A : str = [obj for obj in objects if key(__snake_case ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
__A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()]
# Functions begin with a lowercase, they go last.
__A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()]
__A : Tuple = ignore_underscore(__snake_case )
return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case )
def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple:
# This inner function sort imports between [ ].
def _replace(__snake_case : Tuple ):
__A : List[str] = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
__A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__A : Dict = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]"
__A : List[Any] = import_statement.split('\n' )
if len(__snake_case ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
__A : Optional[int] = 2 if lines[1].strip() == '[' else 1
__A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
__A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] )
__A : Any = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(__snake_case ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
__A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] )
else:
__A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__A : Tuple = keys[:-1]
__A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] )
return "\n".join(__snake_case )
else:
# Finally we have to deal with imports fitting on one line
__A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case )
return import_statement
def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]:
with open(__snake_case , 'r' ) as f:
__A : Dict = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
__A : str = split_code_in_indented_blocks(
__snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(__snake_case ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
__A : Tuple = main_blocks[block_idx]
__A : int = block.split('\n' )
# Get to the start of the imports.
__A : Tuple = 0
while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
__A : Optional[int] = len(__snake_case )
else:
line_idx += 1
if line_idx >= len(__snake_case ):
continue
# Ignore beginning and last line: they don't contain anything.
__A : Dict = '\n'.join(block_lines[line_idx:-1] )
__A : int = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
__A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case )
# We have two categories of import key: list or _import_structure[key].append/extend
__A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
__A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
__A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None]
__A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
__A : str = 0
__A : Any = []
for i in range(len(__snake_case ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
__A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(__snake_case )
count += 1
# And we put our main block back together with its first and last line.
__A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(__snake_case ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(__snake_case , 'w' ) as f:
f.write('\n'.join(__snake_case ) )
def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]:
__A : Tuple = []
for root, _, files in os.walk(__snake_case ):
if "__init__.py" in files:
__A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case )
if result:
__A : Dict = [os.path.join(__snake_case , '__init__.py' )]
if len(__snake_case ) > 0:
raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' )
if __name__ == "__main__":
lowercase__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
lowercase__ : Union[str, Any] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only) | 8 | 0 |
'''simple docstring'''
from queue import PriorityQueue
from typing import Any
import numpy as np
def lowercase_ ( __A : dict , __A : str , __A : set , __A : set , __A : dict , __A : dict , __A : PriorityQueue , __A : dict , __A : float | int , ) -> float | int:
"""simple docstring"""
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
lowercase : str =cst_fwd.get(__A , np.inf )
lowercase : str =cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
lowercase : int =new_cost_f
lowercase : Optional[int] =v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
lowercase : List[Any] =cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def lowercase_ ( __A : str , __A : str , __A : dict , __A : dict ) -> int:
"""simple docstring"""
lowercase : Optional[Any] =-1
lowercase : Tuple =set()
lowercase : str =set()
lowercase : List[str] ={source: 0}
lowercase : List[str] ={destination: 0}
lowercase : Tuple ={source: None}
lowercase : List[Any] ={destination: None}
lowercase : PriorityQueue[Any] =PriorityQueue()
lowercase : PriorityQueue[Any] =PriorityQueue()
lowercase : Any =np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
lowercase , lowercase : int =queue_forward.get()
visited_forward.add(__A )
lowercase , lowercase : int =queue_backward.get()
visited_backward.add(__A )
lowercase : Dict =pass_and_relaxation(
__A , __A , __A , __A , __A , __A , __A , __A , __A , )
lowercase : List[Any] =pass_and_relaxation(
__A , __A , __A , __A , __A , __A , __A , __A , __A , )
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
lowercase : Union[str, Any] =shortest_distance
return shortest_path_distance
SCREAMING_SNAKE_CASE = {
'B': [['C', 1]],
'C': [['D', 1]],
'D': [['F', 1]],
'E': [['B', 1], ['G', 2]],
'F': [],
'G': [['F', 1]],
}
SCREAMING_SNAKE_CASE = {
'B': [['E', 1]],
'C': [['B', 1]],
'D': [['C', 1]],
'F': [['D', 1], ['G', 1]],
'E': [[None, np.inf]],
'G': [['E', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 94 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : int ) -> bool:
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print('''Program to check whether a number is a Perfect number or not...''')
lowercase__ : int = int(input('''Enter number: ''').strip())
print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""") | 8 | 0 |
"""simple docstring"""
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def snake_case ( A__ ):
if isinstance(A__ ,collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class UpperCamelCase_ :
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]:
pass
def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]:
pass
def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict:
pass
def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float ) -> Dict:
UpperCAmelCase_ : Tuple = np.abs((a - b) ).max()
self.assertLessEqual(lowerCAmelCase_ , lowerCAmelCase_ , f"""Difference between torch and flax is {diff} (>= {tol}).""" )
def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : str ) -> List[Any]:
UpperCAmelCase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase_ , lowerCAmelCase_ )
UpperCAmelCase_ : List[Any] = FlaxVisionTextDualEncoderModel(lowerCAmelCase_ )
UpperCAmelCase_ : List[Any] = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )
self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) )
def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : List[str] ) -> Dict:
UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ )
UpperCAmelCase_ : Optional[Any] = {"vision_model": vision_model, "text_model": text_model}
UpperCAmelCase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase_ )
UpperCAmelCase_ : Tuple = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )
self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Optional[int] ) -> Tuple:
UpperCAmelCase_ , UpperCAmelCase_ : str = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ )
UpperCAmelCase_ : Tuple = {"vision_model": vision_model, "text_model": text_model}
UpperCAmelCase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase_ )
UpperCAmelCase_ : List[str] = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )
UpperCAmelCase_ : List[str] = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCAmelCase_ )
UpperCAmelCase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ )
UpperCAmelCase_ : Dict = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )
UpperCAmelCase_ : Union[str, Any] = after_output[0]
UpperCAmelCase_ : Any = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase_ , 1e-3 )
def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Union[str, Any] ) -> Dict:
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ )
UpperCAmelCase_ : List[str] = {"vision_model": vision_model, "text_model": text_model}
UpperCAmelCase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase_ )
UpperCAmelCase_ : List[Any] = model(
input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , output_attentions=lowerCAmelCase_ )
UpperCAmelCase_ : List[str] = output.vision_model_output.attentions
self.assertEqual(len(lowerCAmelCase_ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase_ : str = to_atuple(vision_model.config.image_size )
UpperCAmelCase_ : Optional[Any] = to_atuple(vision_model.config.patch_size )
UpperCAmelCase_ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
UpperCAmelCase_ : Dict = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
UpperCAmelCase_ : List[str] = output.text_model_output.attentions
self.assertEqual(len(lowerCAmelCase_ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> str:
pt_model.to(lowerCAmelCase_ )
pt_model.eval()
# prepare inputs
UpperCAmelCase_ : Dict = inputs_dict
UpperCAmelCase_ : List[str] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
UpperCAmelCase_ : int = pt_model(**lowerCAmelCase_ ).to_tuple()
UpperCAmelCase_ : int = fx_model(**lowerCAmelCase_ ).to_tuple()
self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) , "Output lengths differ between Flax and PyTorch" )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase_ , pt_output.numpy() , 4e-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCAmelCase_ )
UpperCAmelCase_ : List[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ )
UpperCAmelCase_ : Optional[Any] = fx_model_loaded(**lowerCAmelCase_ ).to_tuple()
self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) , "Output lengths differ between Flax and PyTorch" )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase_ , pt_output.numpy() , 4e-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCAmelCase_ )
UpperCAmelCase_ : Optional[Any] = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ , from_flax=lowerCAmelCase_ )
pt_model_loaded.to(lowerCAmelCase_ )
pt_model_loaded.eval()
with torch.no_grad():
UpperCAmelCase_ : Tuple = pt_model_loaded(**lowerCAmelCase_ ).to_tuple()
self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) , "Output lengths differ between Flax and PyTorch" )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(lowerCAmelCase_ , pt_output_loaded.numpy() , 4e-2 )
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ) -> Any:
UpperCAmelCase_ : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase_ , lowerCAmelCase_ )
UpperCAmelCase_ : List[Any] = VisionTextDualEncoderModel(lowerCAmelCase_ )
UpperCAmelCase_ : Dict = FlaxVisionTextDualEncoderModel(lowerCAmelCase_ )
UpperCAmelCase_ : Any = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase_ )
UpperCAmelCase_ : Dict = fx_state
self.check_pt_flax_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ) -> Tuple:
UpperCAmelCase_ : str = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase_ , lowerCAmelCase_ )
UpperCAmelCase_ : List[Any] = VisionTextDualEncoderModel(lowerCAmelCase_ )
UpperCAmelCase_ : Dict = FlaxVisionTextDualEncoderModel(lowerCAmelCase_ )
UpperCAmelCase_ : List[Any] = load_flax_weights_in_pytorch_model(lowerCAmelCase_ , fx_model.params )
self.check_pt_flax_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any:
UpperCAmelCase_ : str = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]:
UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]:
UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs()
self.check_save_load(**lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
UpperCAmelCase_ : str = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**lowerCAmelCase_ )
@is_pt_flax_cross_test
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str:
UpperCAmelCase_ : int = self.prepare_config_and_inputs()
UpperCAmelCase_ : int = config_inputs_dict.pop("vision_config" )
UpperCAmelCase_ : int = config_inputs_dict.pop("text_config" )
UpperCAmelCase_ : Optional[Any] = config_inputs_dict
self.check_equivalence_pt_to_flax(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
self.check_equivalence_flax_to_pt(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
@slow
def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
UpperCAmelCase_ , UpperCAmelCase_ : int = self.get_pretrained_model_and_inputs()
UpperCAmelCase_ : List[Any] = model_a(**lowerCAmelCase_ )
UpperCAmelCase_ : int = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(lowerCAmelCase_ )
UpperCAmelCase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ )
UpperCAmelCase_ : Any = model_a(**lowerCAmelCase_ )
UpperCAmelCase_ : Optional[int] = after_outputs[0]
UpperCAmelCase_ : int = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase_ , 1e-5 )
@require_flax
class UpperCamelCase_ (__A , unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]:
UpperCAmelCase_ : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
"hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-bert" , vision_from_pt=lowerCAmelCase_ , text_from_pt=lowerCAmelCase_ , )
UpperCAmelCase_ : List[Any] = 13
UpperCAmelCase_ : Optional[Any] = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
UpperCAmelCase_ : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
UpperCAmelCase_ : Optional[Any] = random_attention_mask([batch_size, 4] )
UpperCAmelCase_ : str = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> List[str]:
UpperCAmelCase_ : List[str] = FlaxViTModel(lowerCAmelCase_ )
UpperCAmelCase_ : Any = FlaxBertModel(lowerCAmelCase_ )
return vision_model, text_model
def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]:
UpperCAmelCase_ : Union[str, Any] = FlaxViTModelTester(self )
UpperCAmelCase_ : Optional[int] = FlaxBertModelTester(self )
UpperCAmelCase_ : Any = vit_model_tester.prepare_config_and_inputs()
UpperCAmelCase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ : Any = vision_config_and_inputs
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class UpperCamelCase_ (__A , unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]:
UpperCAmelCase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
"hf-internal-testing/tiny-random-clip" , "hf-internal-testing/tiny-bert" , vision_from_pt=lowerCAmelCase_ , text_from_pt=lowerCAmelCase_ , )
UpperCAmelCase_ : Any = 13
UpperCAmelCase_ : Union[str, Any] = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
UpperCAmelCase_ : Optional[int] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
UpperCAmelCase_ : int = random_attention_mask([batch_size, 4] )
UpperCAmelCase_ : int = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ) -> str:
UpperCAmelCase_ : Tuple = FlaxCLIPVisionModel(lowerCAmelCase_ )
UpperCAmelCase_ : Optional[Any] = FlaxBertModel(lowerCAmelCase_ )
return vision_model, text_model
def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int:
UpperCAmelCase_ : List[Any] = FlaxCLIPVisionModelTester(self )
UpperCAmelCase_ : Union[str, Any] = FlaxBertModelTester(self )
UpperCAmelCase_ : List[str] = clip_model_tester.prepare_config_and_inputs()
UpperCAmelCase_ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ : Any = vision_config_and_inputs
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class UpperCamelCase_ (unittest.TestCase ):
@slow
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]:
UpperCAmelCase_ : Any = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" , logit_scale_init_value=1.0 )
UpperCAmelCase_ : Tuple = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" )
UpperCAmelCase_ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
UpperCAmelCase_ : int = processor(
text=["una foto di un gatto", "una foto di un cane"] , images=lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors="np" )
UpperCAmelCase_ : Optional[int] = model(**lowerCAmelCase_ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
UpperCAmelCase_ : List[str] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] )
self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase_ , atol=1e-3 ) )
| 95 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Tuple = logging.get_logger(__name__)
lowercase__ : str = [
['''attention''', '''attn'''],
['''encoder_attention''', '''encoder_attn'''],
['''q_lin''', '''q_proj'''],
['''k_lin''', '''k_proj'''],
['''v_lin''', '''v_proj'''],
['''out_lin''', '''out_proj'''],
['''norm_embeddings''', '''layernorm_embedding'''],
['''position_embeddings''', '''embed_positions'''],
['''embeddings''', '''embed_tokens'''],
['''ffn.lin''', '''fc'''],
]
def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple:
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
__A : Optional[Any] = k.replace(__snake_case , __snake_case )
if k.startswith('encoder' ):
__A : Any = k.replace('.attn' , '.self_attn' )
__A : Any = k.replace('norm1' , 'self_attn_layer_norm' )
__A : str = k.replace('norm2' , 'final_layer_norm' )
elif k.startswith('decoder' ):
__A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' )
__A : str = k.replace('norm2' , 'encoder_attn_layer_norm' )
__A : int = k.replace('norm3' , 'final_layer_norm' )
return k
def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict:
__A : Optional[int] = [
'model.encoder.layernorm_embedding.weight',
'model.encoder.layernorm_embedding.bias',
'model.decoder.layernorm_embedding.weight',
'model.decoder.layernorm_embedding.bias',
]
for k in keys:
__A : Tuple = sd.pop(__snake_case )
__A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' )
assert new_k not in sd
__A : str = v
lowercase__ : Tuple = ['''START''']
@torch.no_grad()
def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int:
__A : List[str] = torch.load(__snake_case , map_location='cpu' )
__A : Tuple = model['model']
__A : str = BlenderbotConfig.from_json_file(__snake_case )
__A : int = BlenderbotForConditionalGeneration(__snake_case )
__A : List[Any] = m.model.state_dict().keys()
__A : Optional[int] = []
__A : Optional[int] = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
__A : Union[str, Any] = rename_state_dict_key(__snake_case )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
__A : Optional[Any] = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(__snake_case )
m.model.load_state_dict(__snake_case , strict=__snake_case )
m.half()
m.save_pretrained(__snake_case )
if __name__ == "__main__":
lowercase__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''')
parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''')
parser.add_argument(
'''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use'''
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json) | 8 | 0 |
"""simple docstring"""
import requests
__lowerCamelCase = '' # <-- Put your OpenWeatherMap appid here!
__lowerCamelCase = 'https://api.openweathermap.org/data/2.5/'
def a ( __UpperCAmelCase : str = "Chicago" , __UpperCAmelCase : str = APPID ) -> dict:
return requests.get(URL_BASE + """weather""" , params=locals() ).json()
def a ( __UpperCAmelCase : str = "Kolkata, India" , __UpperCAmelCase : str = APPID ) -> dict:
return requests.get(URL_BASE + """forecast""" , params=locals() ).json()
def a ( __UpperCAmelCase : float = 55.68 , __UpperCAmelCase : float = 12.57 , __UpperCAmelCase : str = APPID ) -> dict:
return requests.get(URL_BASE + """onecall""" , params=locals() ).json()
if __name__ == "__main__":
from pprint import pprint
while True:
__lowerCamelCase = input('Enter a location:').strip()
if location:
pprint(current_weather(location))
else:
break
| 96 |
'''simple docstring'''
import mpmath # for roots of unity
import numpy as np
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None):
'''simple docstring'''
__A : List[Any] = list(poly_a or [0])[:]
__A : Optional[int] = list(poly_b or [0])[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
__A : Union[str, Any] = len(self.polyA)
while self.polyB[-1] == 0:
self.polyB.pop()
__A : Optional[int] = len(self.polyB)
# Add 0 to make lengths equal a power of 2
__A : Optional[Any] = int(
2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1)))
while len(self.polyA) < self.c_max_length:
self.polyA.append(0)
while len(self.polyB) < self.c_max_length:
self.polyB.append(0)
# A complex root used for the fourier transform
__A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1))
# The product
__A : Tuple = self.__multiply()
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
__A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB]
# Corner case
if len(_UpperCAmelCase) <= 1:
return dft[0]
#
__A : Dict = self.c_max_length // 2
while next_ncol > 0:
__A : Optional[Any] = [[] for i in range(_UpperCAmelCase)]
__A : Tuple = self.root**next_ncol
# First half of next step
__A : Optional[Any] = 1
for j in range(self.c_max_length // (next_ncol * 2)):
for i in range(_UpperCAmelCase):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j])
current_root *= root
# Second half of next step
__A : List[str] = 1
for j in range(self.c_max_length // (next_ncol * 2)):
for i in range(_UpperCAmelCase):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j])
current_root *= root
# Update
__A : Optional[int] = new_dft
__A : Tuple = next_ncol // 2
return dft[0]
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = self.__dft('A')
__A : Optional[Any] = self.__dft('B')
__A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0]) <= 1:
return inverce_c[0]
# Inverse DFT
__A : Dict = 2
while next_ncol <= self.c_max_length:
__A : Optional[int] = [[] for i in range(_UpperCAmelCase)]
__A : Any = self.root ** (next_ncol // 2)
__A : Tuple = 1
# First half of next step
for j in range(self.c_max_length // next_ncol):
for i in range(next_ncol // 2):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2)
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root))
current_root *= root
# Update
__A : int = new_inverse_c
next_ncol *= 2
# Unpack
__A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self):
'''simple docstring'''
__A : int = 'A = ' + ' + '.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A]))
__A : Optional[Any] = 'B = ' + ' + '.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B]))
__A : str = 'A*B = ' + ' + '.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.product))
return F'{a}\n{b}\n{c}'
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def a ( snake_case__: Dict , snake_case__: Any , snake_case__: Dict ):
'''simple docstring'''
lowercase_ = AutoConfig.from_pretrained(snake_case__ )
lowercase_ = FlaxAutoModelForSeqaSeqLM.from_config(config=snake_case__ )
lowercase_ = checkpoints.load_tax_checkpoint(snake_case__ )
lowercase_ = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp''']
if config.model_type == "t5":
lowercase_ = '''SelfAttention'''
if config.model_type == "longt5" and config.encoder_attention_type == "local":
lowercase_ = '''LocalSelfAttention'''
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase_ = '''TransientGlobalSelfAttention'''
else:
raise ValueError(
'''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`'''
''' attribute with a value from [\'local\', \'transient-global].''' )
# Encoder
for layer_index in range(config.num_layers ):
lowercase_ = F'''layers_{str(snake_case__ )}'''
# Self-Attention
lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel''']
lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel''']
lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel''']
lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel''']
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale''']
# Layer Normalization
lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale''']
if split_mlp_wi:
lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel''']
lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel''']
else:
lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel''']
lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel''']
# Layer Normalization
lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale''']
# Assigning
lowercase_ = flax_model.params['''encoder''']['''block'''][str(snake_case__ )]['''layer''']
lowercase_ = tax_attention_key
lowercase_ = tax_attention_out
lowercase_ = tax_attention_query
lowercase_ = tax_attention_value
lowercase_ = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase_ = tax_global_layer_norm
if split_mlp_wi:
lowercase_ = tax_mlp_wi_a
lowercase_ = tax_mlp_wi_a
else:
lowercase_ = tax_mlp_wi
lowercase_ = tax_mlp_wo
lowercase_ = tax_mlp_layer_norm
lowercase_ = flax_model_encoder_layer_block
# Only for layer 0:
lowercase_ = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T
lowercase_ = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase_ = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T
lowercase_ = tax_encoder_global_rel_embedding
# Assigning
lowercase_ = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale''']
lowercase_ = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers ):
lowercase_ = F'''layers_{str(snake_case__ )}'''
# Self-Attention
lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel''']
lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel''']
lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel''']
lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel''']
# Layer Normalization
lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][
'''scale'''
]
# Encoder-Decoder-Attention
lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention''']
lowercase_ = tax_enc_dec_attention_module['''key''']['''kernel''']
lowercase_ = tax_enc_dec_attention_module['''out''']['''kernel''']
lowercase_ = tax_enc_dec_attention_module['''query''']['''kernel''']
lowercase_ = tax_enc_dec_attention_module['''value''']['''kernel''']
# Layer Normalization
lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale''']
# MLP
if split_mlp_wi:
lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel''']
lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel''']
else:
lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel''']
lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel''']
# Layer Normalization
lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale''']
# Assigning
lowercase_ = flax_model.params['''decoder''']['''block'''][str(snake_case__ )]['''layer''']
lowercase_ = tax_attention_key
lowercase_ = tax_attention_out
lowercase_ = tax_attention_query
lowercase_ = tax_attention_value
lowercase_ = tax_pre_attention_layer_norm
lowercase_ = tax_enc_dec_attention_key
lowercase_ = tax_enc_dec_attention_out
lowercase_ = tax_enc_dec_attention_query
lowercase_ = tax_enc_dec_attention_value
lowercase_ = tax_cross_layer_norm
if split_mlp_wi:
lowercase_ = tax_mlp_wi_a
lowercase_ = tax_mlp_wi_a
else:
lowercase_ = tax_mlp_wi
lowercase_ = tax_mlp_wo
lowercase_ = txa_mlp_layer_norm
lowercase_ = flax_model_decoder_layer_block
# Decoder Normalization
lowercase_ = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale''']
lowercase_ = txa_decoder_norm
# Only for layer 0:
lowercase_ = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T
lowercase_ = tax_decoder_rel_embedding
# Token Embeddings
lowercase_ = tax_model['''target''']['''token_embedder''']['''embedding''']
lowercase_ = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
lowercase_ = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel''']
flax_model.save_pretrained(snake_case__ )
print('''T5X Model was sucessfully converted!''' )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.'
)
parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.')
parser.add_argument(
'--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.'
)
__a = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 97 |
'''simple docstring'''
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ):
'''simple docstring'''
__A : Union[str, Any] = parent
__A : Tuple = batch_size
__A : List[str] = image_size
__A : Dict = patch_size
__A : Optional[Any] = num_channels
__A : Tuple = is_training
__A : Dict = use_labels
__A : List[Any] = hidden_size
__A : Tuple = num_hidden_layers
__A : int = num_attention_heads
__A : Optional[int] = intermediate_size
__A : Tuple = hidden_act
__A : Any = hidden_dropout_prob
__A : Optional[Any] = attention_probs_dropout_prob
__A : List[Any] = type_sequence_label_size
__A : List[Any] = initializer_range
__A : Optional[int] = num_labels
__A : List[Any] = scope
__A : Any = n_targets
__A : Union[str, Any] = num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
__A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size)
__A : int = num_patches + 1 + self.num_detection_tokens
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]])
__A : Tuple = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
__A : List[Any] = []
for i in range(self.batch_size):
__A : Optional[int] = {}
__A : Union[str, Any] = torch.randint(
high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase)
__A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase)
labels.append(_UpperCAmelCase)
__A : Any = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
return YolosConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , )
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Any = YolosModel(config=_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
__A : Dict = model(_UpperCAmelCase)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Any = YolosForObjectDetection(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
__A : str = model(pixel_values=_UpperCAmelCase)
__A : List[str] = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1))
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4))
__A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase)
self.parent.assertEqual(result.loss.shape , ())
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1))
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Any = self.prepare_config_and_inputs()
__A ,__A ,__A : Tuple = config_and_inputs
__A : Tuple = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ):
lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
lowerCAmelCase = (
{'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {}
)
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False):
'''simple docstring'''
__A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase)
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
__A : Any = []
for i in range(self.model_tester.batch_size):
__A : Tuple = {}
__A : Tuple = torch.ones(
size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long)
__A : Optional[Any] = torch.ones(
self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float)
labels.append(_UpperCAmelCase)
__A : str = labels
return inputs_dict
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = YolosModelTester(self)
__A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A : Tuple = model_class(_UpperCAmelCase)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
__A : Any = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A : List[Any] = model_class(_UpperCAmelCase)
__A : str = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A : int = [*signature.parameters.keys()]
__A : List[str] = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__A : Optional[int] = True
# in YOLOS, the seq_len is different
__A : Dict = self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
__A : Dict = True
__A : Dict = False
__A : Union[str, Any] = True
__A : Tuple = model_class(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
with torch.no_grad():
__A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : Union[str, Any] = outputs.attentions
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__A : List[Any] = True
__A : List[str] = model_class(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
with torch.no_grad():
__A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : Optional[Any] = outputs.attentions
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
__A : str = len(_UpperCAmelCase)
# Check attention is always last and order is fine
__A : Dict = True
__A : Dict = True
__A : Dict = model_class(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
with torch.no_grad():
__A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : Union[str, Any] = 1
self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase))
__A : Optional[Any] = outputs.attentions
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
__A : Tuple = model_class(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
with torch.no_grad():
__A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : Optional[Any] = outputs.hidden_states
__A : List[str] = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase)
# YOLOS has a different seq_length
__A : Dict = self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , )
__A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A : List[str] = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A : Optional[int] = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase)
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase)
self.assertIsNotNone(_UpperCAmelCase)
def _lowerCAmelCase ( ) -> int:
__A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE (unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase)
__A : Any = self.default_image_processor
__A : str = prepare_img()
__A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase)
# forward pass
with torch.no_grad():
__A : str = model(inputs.pixel_values)
# verify outputs
__A : Tuple = torch.Size((1, 100, 92))
self.assertEqual(outputs.logits.shape , _UpperCAmelCase)
__A : Dict = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , )
__A : int = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4))
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4))
# verify postprocessing
__A : List[str] = image_processor.post_process_object_detection(
_UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0]
__A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase)
__A : Union[str, Any] = [75, 75, 17, 63, 17]
__A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase)
self.assertEqual(len(results['scores']) , 5)
self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4))
self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase)
self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase)) | 8 | 0 |
'''simple docstring'''
import json
import os
from pathlib import Path
import pytest
from datasets.download.download_config import DownloadConfig
from datasets.download.download_manager import DownloadManager
from datasets.utils.file_utils import hash_url_to_filename
lowercase__ : str = 'http://www.mocksite.com/file1.txt'
lowercase__ : Union[str, Any] = '"text": ["foo", "foo"]'
lowercase__ : str = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8'
class __lowerCAmelCase :
"""simple docstring"""
_snake_case : str = 2_0_0
_snake_case : Any = {'Content-Length': '100'}
_snake_case : Dict = {}
def snake_case__ ( self : Tuple , **lowerCAmelCase__ : str ) -> Tuple:
'''simple docstring'''
return [bytes(lowerCAmelCase__ , '''utf-8''' )]
def a__ ( *lowercase : List[str], **lowercase : List[Any] ) -> Tuple:
"""simple docstring"""
return MockResponse()
@pytest.mark.parametrize('''urls_type''', [str, list, dict] )
def a__ ( lowercase : Dict, lowercase : str, lowercase : Any ) -> str:
"""simple docstring"""
import requests
monkeypatch.setattr(lowercase, '''request''', lowercase )
_UpperCamelCase = URL
if issubclass(lowercase, lowercase ):
_UpperCamelCase = url
elif issubclass(lowercase, lowercase ):
_UpperCamelCase = [url]
elif issubclass(lowercase, lowercase ):
_UpperCamelCase = {'''train''': url}
_UpperCamelCase = '''dummy'''
_UpperCamelCase = '''downloads'''
_UpperCamelCase = tmp_path
_UpperCamelCase = DownloadConfig(
cache_dir=os.path.join(lowercase, lowercase ), use_etag=lowercase, )
_UpperCamelCase = DownloadManager(dataset_name=lowercase, download_config=lowercase )
_UpperCamelCase = dl_manager.download(lowercase )
_UpperCamelCase = urls
for downloaded_paths in [downloaded_paths]:
if isinstance(lowercase, lowercase ):
_UpperCamelCase = [downloaded_paths]
_UpperCamelCase = [urls]
elif isinstance(lowercase, lowercase ):
assert "train" in downloaded_paths.keys()
_UpperCamelCase = downloaded_paths.values()
_UpperCamelCase = urls.values()
assert downloaded_paths
for downloaded_path, input_url in zip(lowercase, lowercase ):
assert downloaded_path == dl_manager.downloaded_paths[input_url]
_UpperCamelCase = Path(lowercase )
_UpperCamelCase = downloaded_path.parts
assert parts[-1] == HASH
assert parts[-2] == cache_subdir
assert downloaded_path.exists()
_UpperCamelCase = downloaded_path.read_text()
assert content == CONTENT
_UpperCamelCase = downloaded_path.with_suffix('''.json''' )
assert metadata_downloaded_path.exists()
_UpperCamelCase = json.loads(metadata_downloaded_path.read_text() )
assert metadata_content == {"url": URL, "etag": None}
@pytest.mark.parametrize('''paths_type''', [str, list, dict] )
def a__ ( lowercase : int, lowercase : Union[str, Any], lowercase : List[Any] ) -> Any:
"""simple docstring"""
_UpperCamelCase = str(lowercase )
if issubclass(lowercase, lowercase ):
_UpperCamelCase = filename
elif issubclass(lowercase, lowercase ):
_UpperCamelCase = [filename]
elif issubclass(lowercase, lowercase ):
_UpperCamelCase = {'''train''': filename}
_UpperCamelCase = '''dummy'''
_UpperCamelCase = xz_file.parent
_UpperCamelCase = '''extracted'''
_UpperCamelCase = DownloadConfig(
cache_dir=lowercase, use_etag=lowercase, )
_UpperCamelCase = DownloadManager(dataset_name=lowercase, download_config=lowercase )
_UpperCamelCase = dl_manager.extract(lowercase )
_UpperCamelCase = paths
for extracted_paths in [extracted_paths]:
if isinstance(lowercase, lowercase ):
_UpperCamelCase = [extracted_paths]
_UpperCamelCase = [paths]
elif isinstance(lowercase, lowercase ):
assert "train" in extracted_paths.keys()
_UpperCamelCase = extracted_paths.values()
_UpperCamelCase = paths.values()
assert extracted_paths
for extracted_path, input_path in zip(lowercase, lowercase ):
assert extracted_path == dl_manager.extracted_paths[input_path]
_UpperCamelCase = Path(lowercase )
_UpperCamelCase = extracted_path.parts
assert parts[-1] == hash_url_to_filename(lowercase, etag=lowercase )
assert parts[-2] == extracted_subdir
assert extracted_path.exists()
_UpperCamelCase = extracted_path.read_text()
_UpperCamelCase = text_file.read_text()
assert extracted_file_content == expected_file_content
def a__ ( lowercase : Tuple, lowercase : Tuple ) -> Tuple:
"""simple docstring"""
assert path.endswith('''.jsonl''' )
for num_items, line in enumerate(lowercase, start=1 ):
_UpperCamelCase = json.loads(line.decode('''utf-8''' ) )
assert item.keys() == {"col_1", "col_2", "col_3"}
assert num_items == 4
@pytest.mark.parametrize('''archive_jsonl''', ['''tar_jsonl_path''', '''zip_jsonl_path'''] )
def a__ ( lowercase : List[Any], lowercase : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = request.getfixturevalue(lowercase )
_UpperCamelCase = DownloadManager()
for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowercase ), start=1 ):
_test_jsonl(lowercase, lowercase )
assert num_jsonl == 2
@pytest.mark.parametrize('''archive_nested_jsonl''', ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] )
def a__ ( lowercase : List[Any], lowercase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase = request.getfixturevalue(lowercase )
_UpperCamelCase = DownloadManager()
for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowercase ), start=1 ):
for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowercase ), start=1 ):
_test_jsonl(lowercase, lowercase )
assert num_tar == 1
assert num_jsonl == 2
def a__ ( lowercase : Tuple ) -> Tuple:
"""simple docstring"""
_UpperCamelCase = DownloadManager()
for num_file, file in enumerate(dl_manager.iter_files(lowercase ), start=1 ):
assert os.path.basename(lowercase ) == ("test.txt" if num_file == 1 else "train.txt")
assert num_file == 2
| 98 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
lowercase__ : Optional[int] = None
lowercase__ : List[str] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
lowercase__ : List[str] = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
},
'''tokenizer_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''',
},
}
lowercase__ : Dict = {
'''camembert-base''': 5_12,
}
lowercase__ : str = '''▁'''
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = VOCAB_FILES_NAMES
lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase = ['''input_ids''', '''attention_mask''']
lowerCAmelCase = CamembertTokenizer
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ):
'''simple docstring'''
__A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token
super().__init__(
_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
__A : List[str] = vocab_file
__A : Optional[int] = False if not self.vocab_file else True
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__A : Optional[Any] = [self.cls_token_id]
__A : Optional[int] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None):
'''simple docstring'''
__A : Optional[int] = [self.sep_token_id]
__A : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.')
if not os.path.isdir(_UpperCAmelCase):
logger.error(F'Vocabulary path ({save_directory}) should be a directory')
return
__A : List[Any] = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase):
copyfile(self.vocab_file , _UpperCAmelCase)
return (out_vocab_file,) | 8 | 0 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
SCREAMING_SNAKE_CASE = get_tests_dir('fixtures')
SCREAMING_SNAKE_CASE = get_tests_dir('fixtures/dummy_feature_extractor_config.json')
SCREAMING_SNAKE_CASE = get_tests_dir('fixtures/dummy-config.json')
class __UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case_ ( self ):
__a = 0
def snake_case_ ( self ):
__a = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" )
self.assertIsInstance(__A , __A )
def snake_case_ ( self ):
__a = AutoFeatureExtractor.from_pretrained(__A )
self.assertIsInstance(__A , __A )
def snake_case_ ( self ):
with tempfile.TemporaryDirectory() as tmpdirname:
__a = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
__a = AutoFeatureExtractor.from_pretrained(__A ).to_dict()
config_dict.pop("""feature_extractor_type""" )
__a = WavaVecaFeatureExtractor(**__A )
# save in new folder
model_config.save_pretrained(__A )
config.save_pretrained(__A )
__a = AutoFeatureExtractor.from_pretrained(__A )
# make sure private variable is not incorrectly saved
__a = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(__A , __A )
def snake_case_ ( self ):
__a = AutoFeatureExtractor.from_pretrained(__A )
self.assertIsInstance(__A , __A )
def snake_case_ ( self ):
with self.assertRaisesRegex(
__A , """bert-base is not a local folder and is not a valid model identifier""" ):
__a = AutoFeatureExtractor.from_pretrained("""bert-base""" )
def snake_case_ ( self ):
with self.assertRaisesRegex(
__A , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
__a = AutoFeatureExtractor.from_pretrained(__A , revision="""aaaaaa""" )
def snake_case_ ( self ):
with self.assertRaisesRegex(
__A , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
__a = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" )
def snake_case_ ( self ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__A ):
__a = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__A ):
__a = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__A )
__a = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__A )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(__A )
__a = AutoFeatureExtractor.from_pretrained(__A , trust_remote_code=__A )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
def snake_case_ ( self ):
try:
AutoConfig.register("""custom""" , __A )
AutoFeatureExtractor.register(__A , __A )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__A ):
AutoFeatureExtractor.register(__A , __A )
# Now that the config is registered, it can be used as any other config with the auto-API
__a = CustomFeatureExtractor.from_pretrained(__A )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(__A )
__a = AutoFeatureExtractor.from_pretrained(__A )
self.assertIsInstance(__A , __A )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def snake_case_ ( self ):
class __UpperCAmelCase ( __A ):
"""simple docstring"""
_lowerCamelCase = True
try:
AutoConfig.register("""custom""" , __A )
AutoFeatureExtractor.register(__A , __A )
# If remote code is not set, the default is to use local
__a = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
__a = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__A )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
__a = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__A )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(not hasattr(__A , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
| 99 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
lowercase__ : Any = '''hf-internal-testing/tiny-random-bert'''
lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''')
lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6'''
class SCREAMING_SNAKE_CASE (unittest.TestCase ):
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase)
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(_UpperCAmelCase))
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase)))
with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f:
__A : Any = f.read()
self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase))
self.assertTrue(os.path.isfile(_UpperCAmelCase))
# File is cached at the same place the second time.
__A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase)
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase)
# Using a specific revision to test the full commit hash.
__A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223')
self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'):
__A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase)
with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'):
__A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa')
with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'):
__A : int = cached_file(_UpperCAmelCase , 'conf')
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'):
__A : Any = cached_file(_UpperCAmelCase , 'conf')
with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f:
__A : Dict = f.read()
self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf')))
__A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase)
self.assertIsNone(_UpperCAmelCase)
__A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase)
self.assertIsNone(_UpperCAmelCase)
__A : List[str] = mock.Mock()
__A : Dict = 500
__A : List[str] = {}
__A : List[Any] = HTTPError
__A : Optional[Any] = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head:
__A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase)
self.assertIsNone(_UpperCAmelCase)
# This check we did call the fake head request
mock_head.assert_called()
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase))
self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase))
self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt'))
# The function raises if the repository does not exist.
with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'):
get_file_from_repo('bert-base-case' , _UpperCAmelCase)
# The function raises if the revision does not exist.
with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'):
get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha')
__A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase)
# The name is the cached name which is not very easy to test, so instead we load the content.
__A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read())
self.assertEqual(config['hidden_size'] , 768)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
__A : Tuple = Path(_UpperCAmelCase) / 'a.txt'
filename.touch()
self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase))
self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt')) | 8 | 0 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaubertConfig,
TFFlaubertForMultipleChoice,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForSequenceClassification,
TFFlaubertForTokenClassification,
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
)
class __snake_case :
'''simple docstring'''
def __init__( self , A_ , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = parent
SCREAMING_SNAKE_CASE__ = 13
SCREAMING_SNAKE_CASE__ = 7
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = 2
SCREAMING_SNAKE_CASE__ = 99
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = 32
SCREAMING_SNAKE_CASE__ = 2
SCREAMING_SNAKE_CASE__ = 4
SCREAMING_SNAKE_CASE__ = 0.1
SCREAMING_SNAKE_CASE__ = 0.1
SCREAMING_SNAKE_CASE__ = 5_12
SCREAMING_SNAKE_CASE__ = 16
SCREAMING_SNAKE_CASE__ = 2
SCREAMING_SNAKE_CASE__ = 0.02
SCREAMING_SNAKE_CASE__ = 3
SCREAMING_SNAKE_CASE__ = 4
SCREAMING_SNAKE_CASE__ = '''last'''
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = 0
def lowercase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa )
SCREAMING_SNAKE_CASE__ = None
if self.use_input_lengths:
SCREAMING_SNAKE_CASE__ = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
SCREAMING_SNAKE_CASE__ = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
if self.use_labels:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa )
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices )
SCREAMING_SNAKE_CASE__ = FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , )
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = TFFlaubertModel(config=A_ )
SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids}
SCREAMING_SNAKE_CASE__ = model(A_ )
SCREAMING_SNAKE_CASE__ = [input_ids, input_mask]
SCREAMING_SNAKE_CASE__ = model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = TFFlaubertWithLMHeadModel(A_ )
SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids}
SCREAMING_SNAKE_CASE__ = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = TFFlaubertForQuestionAnsweringSimple(A_ )
SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''lengths''': input_lengths}
SCREAMING_SNAKE_CASE__ = model(A_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = TFFlaubertForSequenceClassification(A_ )
SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''lengths''': input_lengths}
SCREAMING_SNAKE_CASE__ = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = self.num_labels
SCREAMING_SNAKE_CASE__ = TFFlaubertForTokenClassification(config=A_ )
SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
SCREAMING_SNAKE_CASE__ = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = self.num_choices
SCREAMING_SNAKE_CASE__ = TFFlaubertForMultipleChoice(config=A_ )
SCREAMING_SNAKE_CASE__ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) )
SCREAMING_SNAKE_CASE__ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) )
SCREAMING_SNAKE_CASE__ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) )
SCREAMING_SNAKE_CASE__ = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
SCREAMING_SNAKE_CASE__ = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) = config_and_inputs
SCREAMING_SNAKE_CASE__ = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''langs''': token_type_ids,
'''lengths''': input_lengths,
}
return config, inputs_dict
@require_tf
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = (
(
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
TFFlaubertForSequenceClassification,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForTokenClassification,
TFFlaubertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCamelCase__ : Union[str, Any] = (
(TFFlaubertWithLMHeadModel,) if is_tf_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
lowerCamelCase__ : Optional[int] = (
{
"""feature-extraction""": TFFlaubertModel,
"""fill-mask""": TFFlaubertWithLMHeadModel,
"""question-answering""": TFFlaubertForQuestionAnsweringSimple,
"""text-classification""": TFFlaubertForSequenceClassification,
"""token-classification""": TFFlaubertForTokenClassification,
"""zero-shot""": TFFlaubertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCamelCase__ : Union[str, Any] = False
lowerCamelCase__ : Optional[Any] = False
def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ ):
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('''Fast''' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def lowercase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = TFFlaubertModelTester(self )
SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=A_ , emb_dim=37 )
def lowercase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*A_ )
def lowercase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*A_ )
def lowercase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*A_ )
def lowercase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*A_ )
def lowercase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_token_classification(*A_ )
def lowercase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ )
@slow
def lowercase_ ( self ):
'''simple docstring'''
for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE__ = TFFlaubertModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
@require_tf
@require_sentencepiece
@require_tokenizers
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowercase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' )
SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor(
[[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !"
SCREAMING_SNAKE_CASE__ = model(A_ )[0]
SCREAMING_SNAKE_CASE__ = tf.TensorShape((1, 8, 5_12) )
self.assertEqual(output.shape , A_ )
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor(
[
[
[-1.8768773, -1.566555, 0.27072418],
[-1.6920038, -0.5873505, 1.9329599],
[-2.9563985, -1.6993835, 1.7972052],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 100 |
'''simple docstring'''
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any:
__A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case )
__A : int = AutoModelForSeqaSeqLM.from_config(__snake_case )
model.save_pretrained(__snake_case )
AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version) | 8 | 0 |
import csv
from collections import defaultdict
from dataclasses import dataclass, field
from typing import List, Optional
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import ScalarFormatter
from transformers import HfArgumentParser
def a__ ( A__=None, A__=None ):
return field(default_factory=lambda: default, metadata=A__ )
@dataclass
class __lowercase :
"""simple docstring"""
_UpperCAmelCase = field(
metadata={"""help""": """The csv file to plot."""} , )
_UpperCAmelCase = field(
default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , )
_UpperCAmelCase = field(
default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , )
_UpperCAmelCase = field(
default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Disable logarithmic scale when plotting"""} , )
_UpperCAmelCase = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"""help""": """Whether the csv file has training results or inference results. Defaults to inference results."""
} , )
_UpperCAmelCase = field(
default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , )
_UpperCAmelCase = list_field(
default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} )
def a__ ( A__ ):
try:
int(A__ )
return True
except ValueError:
return False
def a__ ( A__ ):
try:
float(A__ )
return True
except ValueError:
return False
class __lowercase :
"""simple docstring"""
def __init__( self , lowerCAmelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = args
SCREAMING_SNAKE_CASE_ : int = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} )
with open(self.args.csv_file , newline='' ) as csv_file:
SCREAMING_SNAKE_CASE_ : Optional[Any] = csv.DictReader(lowerCAmelCase__ )
for row in reader:
SCREAMING_SNAKE_CASE_ : Optional[int] = row['model']
self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) )
self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) )
if can_convert_to_int(row['result'] ):
# value is not None
SCREAMING_SNAKE_CASE_ : int = int(row['result'] )
elif can_convert_to_float(row['result'] ):
# value is not None
SCREAMING_SNAKE_CASE_ : int = float(row['result'] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = plt.subplots()
SCREAMING_SNAKE_CASE_ : List[Any] = 'Time usage' if self.args.is_time else 'Memory usage'
SCREAMING_SNAKE_CASE_ : Dict = title_str + ' for training' if self.args.is_train else title_str + ' for inference'
if not self.args.no_log_scale:
# set logarithm scales
ax.set_xscale('log' )
ax.set_yscale('log' )
for axis in [ax.xaxis, ax.yaxis]:
axis.set_major_formatter(ScalarFormatter() )
for model_name_idx, model_name in enumerate(self.result_dict.keys() ):
SCREAMING_SNAKE_CASE_ : List[Any] = sorted(set(self.result_dict[model_name]['bsz'] ) )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = sorted(set(self.result_dict[model_name]['seq_len'] ) )
SCREAMING_SNAKE_CASE_ : List[Any] = self.result_dict[model_name]['result']
((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Optional[Any] = (
(batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
)
SCREAMING_SNAKE_CASE_ : Dict = (
model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx]
)
for inner_loop_value in inner_loop_array:
if self.args.plot_along_batch:
SCREAMING_SNAKE_CASE_ : Any = np.asarray(
[results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=lowerCAmelCase__ , )
else:
SCREAMING_SNAKE_CASE_ : int = np.asarray(
[results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , )
((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Tuple = (
('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz')
)
SCREAMING_SNAKE_CASE_ : str = np.asarray(lowerCAmelCase__ , lowerCAmelCase__ )[: len(lowerCAmelCase__ )]
plt.scatter(
lowerCAmelCase__ , lowerCAmelCase__ , label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' )
plt.plot(lowerCAmelCase__ , lowerCAmelCase__ , '--' )
title_str += F''' {label_model_name} vs.'''
SCREAMING_SNAKE_CASE_ : Any = title_str[:-4]
SCREAMING_SNAKE_CASE_ : List[str] = 'Time in s' if self.args.is_time else 'Memory in MB'
# plot
plt.title(lowerCAmelCase__ )
plt.xlabel(lowerCAmelCase__ )
plt.ylabel(lowerCAmelCase__ )
plt.legend()
if self.args.figure_png_file is not None:
plt.savefig(self.args.figure_png_file )
else:
plt.show()
def a__ ( ):
SCREAMING_SNAKE_CASE_ : Any = HfArgumentParser(A__ )
SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args_into_dataclasses()[0]
SCREAMING_SNAKE_CASE_ : Optional[int] = Plot(args=A__ )
plot.plot()
if __name__ == "__main__":
main()
| 101 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
lowercase__ : Any = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = '''tapas'''
def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ):
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase)
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
__A : Dict = vocab_size
__A : Tuple = hidden_size
__A : Any = num_hidden_layers
__A : int = num_attention_heads
__A : Tuple = hidden_act
__A : Tuple = intermediate_size
__A : List[Any] = hidden_dropout_prob
__A : int = attention_probs_dropout_prob
__A : List[str] = max_position_embeddings
__A : Optional[int] = type_vocab_sizes
__A : str = initializer_range
__A : List[str] = layer_norm_eps
# Fine-tuning task hyperparameters
__A : List[str] = positive_label_weight
__A : List[Any] = num_aggregation_labels
__A : Optional[Any] = aggregation_loss_weight
__A : Tuple = use_answer_as_supervision
__A : List[str] = answer_loss_importance
__A : Any = use_normalized_answer_loss
__A : Any = huber_loss_delta
__A : Union[str, Any] = temperature
__A : Tuple = aggregation_temperature
__A : Optional[Any] = use_gumbel_for_cells
__A : List[str] = use_gumbel_for_aggregation
__A : Tuple = average_approximation_function
__A : List[str] = cell_selection_preference
__A : Dict = answer_loss_cutoff
__A : Union[str, Any] = max_num_rows
__A : Optional[Any] = max_num_columns
__A : int = average_logits_per_cell
__A : Optional[Any] = select_one_column
__A : int = allow_empty_column_selection
__A : List[Any] = init_cell_selection_weights_to_zero
__A : int = reset_position_index_per_cell
__A : Union[str, Any] = disable_per_token_loss
# Aggregation hyperparameters
__A : Optional[Any] = aggregation_labels
__A : List[str] = no_aggregation_label_index
if isinstance(self.aggregation_labels , _UpperCAmelCase):
__A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()} | 8 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__magic_name__ : str = logging.get_logger(__name__)
__magic_name__ : Union[str, Any] = {
"""RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""",
"""RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""",
"""RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""",
"""RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""",
"""RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""",
}
class lowercase__ ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
__lowerCAmelCase : Any = """rwkv"""
__lowerCAmelCase : List[str] = {"""max_position_embeddings""": """context_length"""}
def __init__( self , _A=5_0_2_7_7 , _A=1_0_2_4 , _A=4_0_9_6 , _A=3_2 , _A=None , _A=None , _A=1e-5 , _A=0 , _A=0 , _A=6 , _A=False , _A=True , **_A , ):
'''simple docstring'''
UpperCamelCase : Any = vocab_size
UpperCamelCase : Optional[Any] = context_length
UpperCamelCase : str = hidden_size
UpperCamelCase : int = num_hidden_layers
UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size
UpperCamelCase : Any = intermediate_size if intermediate_size is not None else 4 * hidden_size
UpperCamelCase : Any = layer_norm_epsilon
UpperCamelCase : Optional[int] = rescale_every
UpperCamelCase : Optional[int] = use_cache
UpperCamelCase : Union[str, Any] = bos_token_id
UpperCamelCase : Any = eos_token_id
super().__init__(
tie_word_embeddings=_A , bos_token_id=_A , eos_token_id=_A , **_A )
| 102 |
'''simple docstring'''
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize):
'''simple docstring'''
__A : Union[str, Any] = 'bilinear'
__A : int = max_size
__A : Optional[Any] = short_edge_length
def __call__( self , _UpperCAmelCase):
'''simple docstring'''
__A : int = []
for img in imgs:
__A ,__A : Dict = img.shape[:2]
# later: provide list and randomly choose index for resize
__A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1)
if size == 0:
return img
__A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase)
if h < w:
__A ,__A : Optional[Any] = size, scale * w
else:
__A ,__A : Optional[Any] = scale * h, size
if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size:
__A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase)
__A : Tuple = newh * scale
__A : Dict = neww * scale
__A : Dict = int(neww + 0.5)
__A : Optional[int] = int(newh + 0.5)
if img.dtype == np.uinta:
__A : int = Image.fromarray(_UpperCAmelCase)
__A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR)
__A : Dict = np.asarray(_UpperCAmelCase)
else:
__A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw
__A : Dict = nn.functional.interpolate(
_UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0)
img_augs.append(_UpperCAmelCase)
return img_augs
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase):
'''simple docstring'''
__A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST)
__A : List[Any] = cfg.INPUT.FORMAT
__A : Dict = cfg.SIZE_DIVISIBILITY
__A : str = cfg.PAD_VALUE
__A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST
__A : int = cfg.MODEL.DEVICE
__A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1)
__A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1)
__A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
__A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images]))
__A : Dict = [im.shape[-2:] for im in images]
__A : Optional[int] = [
nn.functional.pad(
_UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(_UpperCAmelCase , _UpperCAmelCase)
]
return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase)
def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False):
'''simple docstring'''
with torch.no_grad():
if not isinstance(_UpperCAmelCase , _UpperCAmelCase):
__A : int = [images]
if single_image:
assert len(_UpperCAmelCase) == 1
for i in range(len(_UpperCAmelCase)):
if isinstance(images[i] , torch.Tensor):
images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float())
elif not isinstance(images[i] , torch.Tensor):
images.insert(
_UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format))
.to(self.device)
.float() , )
# resize smallest edge
__A : str = torch.tensor([im.shape[:2] for im in images])
__A : List[str] = self.aug(_UpperCAmelCase)
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
__A : Any = [self.normalizer(_UpperCAmelCase) for x in images]
# now pad them to do the following operations
__A ,__A : Any = self.pad(_UpperCAmelCase)
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
__A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase)
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict:
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int:
assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!"
__A ,__A : int = box_size
tensor[:, 0].clamp_(min=0 , max=__snake_case )
tensor[:, 1].clamp_(min=0 , max=__snake_case )
tensor[:, 2].clamp_(min=0 , max=__snake_case )
tensor[:, 3].clamp_(min=0 , max=__snake_case ) | 8 | 0 |
"""simple docstring"""
from __future__ import annotations
import time
snake_case = list[tuple[int, int]]
snake_case = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class UpperCAmelCase :
def __init__( self : Any , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Node | None ):
"""simple docstring"""
_snake_case = pos_x
_snake_case = pos_y
_snake_case = (pos_y, pos_x)
_snake_case = goal_x
_snake_case = goal_y
_snake_case = parent
class UpperCAmelCase :
def __init__( self : List[str] , __lowerCamelCase : tuple[int, int] , __lowerCamelCase : tuple[int, int] ):
"""simple docstring"""
_snake_case = Node(start[1] , start[0] , goal[1] , goal[0] , __lowerCamelCase )
_snake_case = Node(goal[1] , goal[0] , goal[1] , goal[0] , __lowerCamelCase )
_snake_case = [self.start]
_snake_case = False
def __UpperCAmelCase ( self : int ):
"""simple docstring"""
while self.node_queue:
_snake_case = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
_snake_case = True
return self.retrace_path(__lowerCamelCase )
_snake_case = self.get_successors(__lowerCamelCase )
for node in successors:
self.node_queue.append(__lowerCamelCase )
if not self.reached:
return [self.start.pos]
return None
def __UpperCAmelCase ( self : str , __lowerCamelCase : Node ):
"""simple docstring"""
_snake_case = []
for action in delta:
_snake_case = parent.pos_x + action[1]
_snake_case = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCamelCase ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(__lowerCamelCase , __lowerCamelCase , self.target.pos_y , self.target.pos_x , __lowerCamelCase ) )
return successors
def __UpperCAmelCase ( self : str , __lowerCamelCase : Node | None ):
"""simple docstring"""
_snake_case = node
_snake_case = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
_snake_case = current_node.parent
path.reverse()
return path
class UpperCAmelCase :
def __init__( self : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ):
"""simple docstring"""
_snake_case = BreadthFirstSearch(__lowerCamelCase , __lowerCamelCase )
_snake_case = BreadthFirstSearch(__lowerCamelCase , __lowerCamelCase )
_snake_case = False
def __UpperCAmelCase ( self : List[str] ):
"""simple docstring"""
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
_snake_case = self.fwd_bfs.node_queue.pop(0 )
_snake_case = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
_snake_case = True
return self.retrace_bidirectional_path(
__lowerCamelCase , __lowerCamelCase )
_snake_case = current_bwd_node
_snake_case = current_fwd_node
_snake_case = {
self.fwd_bfs: self.fwd_bfs.get_successors(__lowerCamelCase ),
self.bwd_bfs: self.bwd_bfs.get_successors(__lowerCamelCase ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(__lowerCamelCase )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Node , __lowerCamelCase : Node ):
"""simple docstring"""
_snake_case = self.fwd_bfs.retrace_path(__lowerCamelCase )
_snake_case = self.bwd_bfs.retrace_path(__lowerCamelCase )
bwd_path.pop()
bwd_path.reverse()
_snake_case = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
snake_case = (0, 0)
snake_case = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
snake_case = time.time()
snake_case = BreadthFirstSearch(init, goal)
snake_case = bfs.search()
snake_case = time.time() - start_bfs_time
print('''Unidirectional BFS computation time : ''', bfs_time)
snake_case = time.time()
snake_case = BidirectionalBreadthFirstSearch(init, goal)
snake_case = bd_bfs.search()
snake_case = time.time() - start_bd_bfs_time
print('''Bidirectional BFS computation time : ''', bd_bfs_time)
| 103 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741
__A : Tuple = len(__snake_case )
__A : Optional[int] = 0
__A : str = [0] * n
__A : int = [False] * n
__A : Tuple = [False] * n
def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ):
if parent == root:
out_edge_count += 1
__A : str = True
__A : Tuple = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
__A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case )
__A : int = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
__A : Tuple = True
# AP found via cycle
if at == low[to]:
__A : Optional[Any] = True
else:
__A : Any = min(low[at] , __snake_case )
return out_edge_count
for i in range(__snake_case ):
if not visited[i]:
__A : Tuple = 0
__A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case )
__A : Union[str, Any] = out_edge_count > 1
for x in range(len(__snake_case ) ):
if is_art[x] is True:
print(__snake_case )
# Adjacency list of graph
lowercase__ : Tuple = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data) | 8 | 0 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCamelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
UpperCamelCase = {
"""vocab_file""": {
"""google/electra-small-generator""": (
"""https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"""
),
"""google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""",
"""google/electra-large-generator""": (
"""https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"""
),
"""google/electra-small-discriminator""": (
"""https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"""
),
"""google/electra-base-discriminator""": (
"""https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"""
),
"""google/electra-large-discriminator""": (
"""https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""google/electra-small-generator""": (
"""https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"""
),
"""google/electra-base-generator""": (
"""https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"""
),
"""google/electra-large-generator""": (
"""https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"""
),
"""google/electra-small-discriminator""": (
"""https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"""
),
"""google/electra-base-discriminator""": (
"""https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"""
),
"""google/electra-large-discriminator""": (
"""https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"""
),
},
}
UpperCamelCase = {
"""google/electra-small-generator""": 512,
"""google/electra-base-generator""": 512,
"""google/electra-large-generator""": 512,
"""google/electra-small-discriminator""": 512,
"""google/electra-base-discriminator""": 512,
"""google/electra-large-discriminator""": 512,
}
UpperCamelCase = {
"""google/electra-small-generator""": {"""do_lower_case""": True},
"""google/electra-base-generator""": {"""do_lower_case""": True},
"""google/electra-large-generator""": {"""do_lower_case""": True},
"""google/electra-small-discriminator""": {"""do_lower_case""": True},
"""google/electra-base-discriminator""": {"""do_lower_case""": True},
"""google/electra-large-discriminator""": {"""do_lower_case""": True},
}
class UpperCamelCase__ ( _lowerCAmelCase ):
"""simple docstring"""
A__ : Dict = VOCAB_FILES_NAMES
A__ : str = PRETRAINED_VOCAB_FILES_MAP
A__ : List[Any] = PRETRAINED_INIT_CONFIGURATION
A__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ : List[str] = ElectraTokenizer
def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="[UNK]" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="[PAD]" , SCREAMING_SNAKE_CASE__="[CLS]" , SCREAMING_SNAKE_CASE__="[MASK]" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ) -> str:
super().__init__(
SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , SCREAMING_SNAKE_CASE__ ) != do_lower_case
or normalizer_state.get("strip_accents" , SCREAMING_SNAKE_CASE__ ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars
):
A__ = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop("type" ) )
A__ = do_lower_case
A__ = strip_accents
A__ = tokenize_chinese_chars
A__ = normalizer_class(**SCREAMING_SNAKE_CASE__ )
A__ = do_lower_case
def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> List[str]:
A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]:
A__ = [self.sep_token_id]
A__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]:
A__ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ )
return tuple(SCREAMING_SNAKE_CASE__ )
| 104 |
'''simple docstring'''
import argparse
import torch
# Step 1. clone https://github.com/microsoft/unilm
# Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd
# Step 3. cd unilm
# Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink
# import classes
from unilm.wavlm.WavLM import WavLM as WavLMOrig
from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig
from transformers import WavLMConfig, WavLMModel, logging
logging.set_verbosity_info()
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
lowercase__ : int = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''',
'''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''',
'''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''ctc_proj''',
'''mask_emb''': '''masked_spec_embed''',
}
lowercase__ : Dict = [
'''ctc_proj''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]:
for attribute in key.split('.' ):
__A : int = getattr(__snake_case , __snake_case )
if weight_type is not None:
__A : Optional[int] = getattr(__snake_case , __snake_case ).shape
else:
__A : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}'
)
if weight_type == "weight":
__A : Tuple = value
elif weight_type == "weight_g":
__A : Union[str, Any] = value
elif weight_type == "weight_v":
__A : Optional[Any] = value
elif weight_type == "bias":
__A : Optional[int] = value
else:
__A : Optional[int] = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]:
__A : Optional[Any] = []
__A : Any = fairseq_model.state_dict()
__A : Union[str, Any] = hf_model.feature_extractor
for name, value in fairseq_dict.items():
__A : Union[str, Any] = False
if "conv_layers" in name:
load_conv_layer(
__snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , )
__A : Optional[Any] = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__A : int = True
if "*" in mapped_key:
__A : Any = name.split(__snake_case )[0].split('.' )[-2]
__A : List[Any] = mapped_key.replace('*' , __snake_case )
if "weight_g" in name:
__A : Optional[Any] = 'weight_g'
elif "weight_v" in name:
__A : Union[str, Any] = 'weight_v'
elif "bias" in name and "relative_attention_bias" not in name:
__A : Optional[Any] = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__A : Tuple = 'weight'
else:
__A : Dict = None
set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
continue
if not is_used:
unused_weights.append(__snake_case )
logger.warning(f'Unused weights: {unused_weights}' )
def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int:
__A : int = full_name.split('conv_layers.' )[-1]
__A : List[str] = name.split('.' )
__A : Optional[int] = int(items[0] )
__A : str = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'
)
__A : Optional[int] = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'
)
__A : Union[str, Any] = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'
" found."
)
__A : Dict = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'
)
__A : Any = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(__snake_case )
@torch.no_grad()
def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any:
# load the pre-trained checkpoints
__A : List[str] = torch.load(__snake_case )
__A : Dict = WavLMConfigOrig(checkpoint['cfg'] )
__A : Optional[int] = WavLMOrig(__snake_case )
model.load_state_dict(checkpoint['model'] )
model.eval()
if config_path is not None:
__A : List[Any] = WavLMConfig.from_pretrained(__snake_case )
else:
__A : Dict = WavLMConfig()
__A : Optional[Any] = WavLMModel(__snake_case )
recursively_load_weights(__snake_case , __snake_case )
hf_wavlm.save_pretrained(__snake_case )
if __name__ == "__main__":
lowercase__ : Tuple = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
lowercase__ : Any = parser.parse_args()
convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path) | 8 | 0 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
UpperCamelCase__ : str = logging.get_logger(__name__)
UpperCamelCase__ : str = {
'''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''',
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
__a : Union[str, Any] = "deta"
__a : Optional[int] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self ,snake_case__=None ,snake_case__=900 ,snake_case__=2048 ,snake_case__=6 ,snake_case__=2048 ,snake_case__=8 ,snake_case__=6 ,snake_case__=1024 ,snake_case__=8 ,snake_case__=0.0 ,snake_case__=True ,snake_case__="relu" ,snake_case__=256 ,snake_case__=0.1 ,snake_case__=0.0 ,snake_case__=0.0 ,snake_case__=0.02 ,snake_case__=1.0 ,snake_case__=True ,snake_case__=False ,snake_case__="sine" ,snake_case__=5 ,snake_case__=4 ,snake_case__=4 ,snake_case__=True ,snake_case__=300 ,snake_case__=True ,snake_case__=True ,snake_case__=1 ,snake_case__=5 ,snake_case__=2 ,snake_case__=1 ,snake_case__=1 ,snake_case__=5 ,snake_case__=2 ,snake_case__=0.1 ,snake_case__=0.25 ,**snake_case__ ,):
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' )
SCREAMING_SNAKE_CASE_ : List[Any] = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] )
else:
if isinstance(snake_case__ ,snake_case__ ):
SCREAMING_SNAKE_CASE_ : List[str] = backbone_config.pop('model_type' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type]
SCREAMING_SNAKE_CASE_ : Optional[Any] = config_class.from_dict(snake_case__ )
SCREAMING_SNAKE_CASE_ : str = backbone_config
SCREAMING_SNAKE_CASE_ : Optional[int] = num_queries
SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_position_embeddings
SCREAMING_SNAKE_CASE_ : Optional[int] = d_model
SCREAMING_SNAKE_CASE_ : List[Any] = encoder_ffn_dim
SCREAMING_SNAKE_CASE_ : Optional[int] = encoder_layers
SCREAMING_SNAKE_CASE_ : Optional[int] = encoder_attention_heads
SCREAMING_SNAKE_CASE_ : List[str] = decoder_ffn_dim
SCREAMING_SNAKE_CASE_ : List[str] = decoder_layers
SCREAMING_SNAKE_CASE_ : Optional[int] = decoder_attention_heads
SCREAMING_SNAKE_CASE_ : Optional[Any] = dropout
SCREAMING_SNAKE_CASE_ : Optional[int] = attention_dropout
SCREAMING_SNAKE_CASE_ : int = activation_dropout
SCREAMING_SNAKE_CASE_ : Any = activation_function
SCREAMING_SNAKE_CASE_ : Any = init_std
SCREAMING_SNAKE_CASE_ : int = init_xavier_std
SCREAMING_SNAKE_CASE_ : Tuple = encoder_layerdrop
SCREAMING_SNAKE_CASE_ : Tuple = auxiliary_loss
SCREAMING_SNAKE_CASE_ : str = position_embedding_type
# deformable attributes
SCREAMING_SNAKE_CASE_ : Optional[Any] = num_feature_levels
SCREAMING_SNAKE_CASE_ : Any = encoder_n_points
SCREAMING_SNAKE_CASE_ : Dict = decoder_n_points
SCREAMING_SNAKE_CASE_ : Optional[int] = two_stage
SCREAMING_SNAKE_CASE_ : str = two_stage_num_proposals
SCREAMING_SNAKE_CASE_ : List[Any] = with_box_refine
SCREAMING_SNAKE_CASE_ : Optional[Any] = assign_first_stage
if two_stage is True and with_box_refine is False:
raise ValueError('If two_stage is True, with_box_refine must be True.' )
# Hungarian matcher
SCREAMING_SNAKE_CASE_ : List[Any] = class_cost
SCREAMING_SNAKE_CASE_ : Optional[Any] = bbox_cost
SCREAMING_SNAKE_CASE_ : Any = giou_cost
# Loss coefficients
SCREAMING_SNAKE_CASE_ : List[Any] = mask_loss_coefficient
SCREAMING_SNAKE_CASE_ : str = dice_loss_coefficient
SCREAMING_SNAKE_CASE_ : List[Any] = bbox_loss_coefficient
SCREAMING_SNAKE_CASE_ : str = giou_loss_coefficient
SCREAMING_SNAKE_CASE_ : Union[str, Any] = eos_coefficient
SCREAMING_SNAKE_CASE_ : Tuple = focal_alpha
super().__init__(is_encoder_decoder=snake_case__ ,**snake_case__ )
@property
def snake_case ( self ):
return self.encoder_attention_heads
@property
def snake_case ( self ):
return self.d_model
def snake_case ( self ):
SCREAMING_SNAKE_CASE_ : Optional[Any] = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.backbone_config.to_dict()
SCREAMING_SNAKE_CASE_ : Any = self.__class__.model_type
return output
| 105 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block
@dataclass
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = 42
class SCREAMING_SNAKE_CASE (a__ , a__ ):
@register_to_config
def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ):
'''simple docstring'''
super().__init__()
__A : Dict = sample_size
# time
if time_embedding_type == "fourier":
__A : int = GaussianFourierProjection(
embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase)
__A : Any = 2 * block_out_channels[0]
elif time_embedding_type == "positional":
__A : List[str] = Timesteps(
block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase)
__A : List[str] = block_out_channels[0]
if use_timestep_embedding:
__A : Optional[Any] = block_out_channels[0] * 4
__A : Optional[int] = TimestepEmbedding(
in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , )
__A : Dict = nn.ModuleList([])
__A : Dict = None
__A : Tuple = nn.ModuleList([])
__A : Tuple = None
# down
__A : Any = in_channels
for i, down_block_type in enumerate(_UpperCAmelCase):
__A : Tuple = output_channel
__A : Optional[Any] = block_out_channels[i]
if i == 0:
input_channel += extra_in_channels
__A : List[str] = i == len(_UpperCAmelCase) - 1
__A : int = get_down_block(
_UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , )
self.down_blocks.append(_UpperCAmelCase)
# mid
__A : str = get_mid_block(
_UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , )
# up
__A : Optional[int] = list(reversed(_UpperCAmelCase))
__A : Optional[int] = reversed_block_out_channels[0]
if out_block_type is None:
__A : str = out_channels
else:
__A : List[Any] = block_out_channels[0]
for i, up_block_type in enumerate(_UpperCAmelCase):
__A : Optional[Any] = output_channel
__A : Optional[Any] = (
reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels
)
__A : Dict = i == len(_UpperCAmelCase) - 1
__A : str = get_up_block(
_UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , )
self.up_blocks.append(_UpperCAmelCase)
__A : Optional[int] = output_channel
# out
__A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32)
__A : Optional[Any] = get_out_block(
out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , )
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ):
'''simple docstring'''
__A : Any = timestep
if not torch.is_tensor(_UpperCAmelCase):
__A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device)
elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0:
__A : Any = timesteps[None].to(sample.device)
__A : List[Any] = self.time_proj(_UpperCAmelCase)
if self.config.use_timestep_embedding:
__A : Dict = self.time_mlp(_UpperCAmelCase)
else:
__A : Dict = timestep_embed[..., None]
__A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype)
__A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]))
# 2. down
__A : int = ()
for downsample_block in self.down_blocks:
__A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase)
down_block_res_samples += res_samples
# 3. mid
if self.mid_block:
__A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase)
# 4. up
for i, upsample_block in enumerate(self.up_blocks):
__A : Any = down_block_res_samples[-1:]
__A : Optional[int] = down_block_res_samples[:-1]
__A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase)
# 5. post-process
if self.out_block:
__A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase)
if not return_dict:
return (sample,)
return UNetaDOutput(sample=_UpperCAmelCase) | 8 | 0 |
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Pipeline,
ZeroShotClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
__snake_case :List[str] ={'LayoutLMv2Config', 'LayoutLMv3Config'}
@is_pipeline_test
class lowerCAmelCase__ ( unittest.TestCase ):
A_ : Any = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
A_ : List[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
A_ : Dict = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
A_ : int = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict ) -> Any:
A = ZeroShotClassificationPipeline(
model=__UpperCamelCase , tokenizer=__UpperCamelCase , candidate_labels=['polics', 'health'] )
return classifier, ["Who are you voting for in 2020?", "My stomach hurts."]
def __UpperCamelCase ( self : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] ) -> int:
A = classifier('Who are you voting for in 2020?' , candidate_labels='politics' )
self.assertEqual(__UpperCamelCase , {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase )]} )
# No kwarg
A = classifier('Who are you voting for in 2020?' , ['politics'] )
self.assertEqual(__UpperCamelCase , {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase )]} )
A = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] )
self.assertEqual(__UpperCamelCase , {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase )]} )
A = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' )
self.assertEqual(
__UpperCamelCase , {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 )
A = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] )
self.assertEqual(
__UpperCamelCase , {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 )
A = classifier(
'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' )
self.assertEqual(__UpperCamelCase , {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase )]} )
# https://github.com/huggingface/transformers/issues/13846
A = classifier(['I am happy'] , ['positive', 'negative'] )
self.assertEqual(
__UpperCamelCase , [
{'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]}
for i in range(1 )
] , )
A = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] )
self.assertEqual(
__UpperCamelCase , [
{'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]}
for i in range(2 )
] , )
with self.assertRaises(__UpperCamelCase ):
classifier('' , candidate_labels='politics' )
with self.assertRaises(__UpperCamelCase ):
classifier(__UpperCamelCase , candidate_labels='politics' )
with self.assertRaises(__UpperCamelCase ):
classifier('Who are you voting for in 2020?' , candidate_labels='' )
with self.assertRaises(__UpperCamelCase ):
classifier('Who are you voting for in 2020?' , candidate_labels=__UpperCamelCase )
with self.assertRaises(__UpperCamelCase ):
classifier(
'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , )
with self.assertRaises(__UpperCamelCase ):
classifier(
'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=__UpperCamelCase , )
self.run_entailment_id(__UpperCamelCase )
def __UpperCamelCase ( self : int , __UpperCamelCase : Pipeline ) -> Any:
A = zero_shot_classifier.model.config
A = config.labelaid
A = zero_shot_classifier.entailment_id
A = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2}
self.assertEqual(zero_shot_classifier.entailment_id , -1 )
A = {'entailment': 0, 'neutral': 1, 'contradiction': 2}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
A = {'ENTAIL': 0, 'NON-ENTAIL': 1}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
A = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0}
self.assertEqual(zero_shot_classifier.entailment_id , 2 )
A = original_labelaid
self.assertEqual(__UpperCamelCase , zero_shot_classifier.entailment_id )
@require_torch
def __UpperCamelCase ( self : Tuple ) -> Optional[Any]:
A = pipeline(
'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , )
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] )
@require_torch
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
A = pipeline(
'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , )
A = zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['science', 'public health', 'politics'],
'scores': [0.3_3_3, 0.3_3_3, 0.3_3_3],
} , )
@require_tf
def __UpperCamelCase ( self : int ) -> Dict:
A = pipeline(
'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , )
A = zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['science', 'public health', 'politics'],
'scores': [0.3_3_3, 0.3_3_3, 0.3_3_3],
} , )
@slow
@require_torch
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]:
A = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' )
A = zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['politics', 'public health', 'science'],
'scores': [0.9_7_6, 0.0_1_5, 0.0_0_9],
} , )
A = zero_shot_classifier(
'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'
' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'
' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'
' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'
' machine translation tasks show these models to be superior in quality while being more parallelizable'
' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'
' English-to-German translation task, improving over the existing best results, including ensembles by'
' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'
' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'
' fraction of the training costs of the best models from the literature. We show that the Transformer'
' generalizes well to other tasks by applying it successfully to English constituency parsing both with'
' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=__UpperCamelCase , )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , {
'sequence': (
'The dominant sequence transduction models are based on complex recurrent or convolutional neural'
' networks in an encoder-decoder configuration. The best performing models also connect the'
' encoder and decoder through an attention mechanism. We propose a new simple network'
' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'
' and convolutions entirely. Experiments on two machine translation tasks show these models to be'
' superior in quality while being more parallelizable and requiring significantly less time to'
' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'
' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'
' English-to-French translation task, our model establishes a new single-model state-of-the-art'
' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'
' costs of the best models from the literature. We show that the Transformer generalizes well to'
' other tasks by applying it successfully to English constituency parsing both with large and'
' limited training data.'
),
'labels': ['translation', 'machine learning', 'vision', 'statistics'],
'scores': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],
} , )
@slow
@require_tf
def __UpperCamelCase ( self : List[str] ) -> Any:
A = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' )
A = zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['politics', 'public health', 'science'],
'scores': [0.9_7_6, 0.0_1_5, 0.0_0_9],
} , )
A = zero_shot_classifier(
'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'
' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'
' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'
' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'
' machine translation tasks show these models to be superior in quality while being more parallelizable'
' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'
' English-to-German translation task, improving over the existing best results, including ensembles by'
' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'
' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'
' fraction of the training costs of the best models from the literature. We show that the Transformer'
' generalizes well to other tasks by applying it successfully to English constituency parsing both with'
' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=__UpperCamelCase , )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , {
'sequence': (
'The dominant sequence transduction models are based on complex recurrent or convolutional neural'
' networks in an encoder-decoder configuration. The best performing models also connect the'
' encoder and decoder through an attention mechanism. We propose a new simple network'
' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'
' and convolutions entirely. Experiments on two machine translation tasks show these models to be'
' superior in quality while being more parallelizable and requiring significantly less time to'
' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'
' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'
' English-to-French translation task, our model establishes a new single-model state-of-the-art'
' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'
' costs of the best models from the literature. We show that the Transformer generalizes well to'
' other tasks by applying it successfully to English constituency parsing both with large and'
' limited training data.'
),
'labels': ['translation', 'machine learning', 'vision', 'statistics'],
'scores': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],
} , ) | 106 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int:
if len(__snake_case ) != len(__snake_case ):
raise ValueError('String lengths must match!' )
__A : Optional[Any] = 0
for chara, chara in zip(__snake_case , __snake_case ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
'''simple docstring'''
from sklearn.metrics import fa_score
import datasets
_UpperCAmelCase : Dict = '''
The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:
F1 = 2 * (precision * recall) / (precision + recall)
'''
_UpperCAmelCase : str = '''
Args:
predictions (`list` of `int`): Predicted labels.
references (`list` of `int`): Ground truth labels.
labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.
pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.
average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.
- \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.
- \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.
- \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.
- \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
sample_weight (`list` of `float`): Sample weights Defaults to None.
Returns:
f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.
Examples:
Example 1-A simple binary example
>>> f1_metric = datasets.load_metric("f1")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])
>>> print(results)
{\'f1\': 0.5}
Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.
>>> f1_metric = datasets.load_metric("f1")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)
>>> print(round(results[\'f1\'], 2))
0.67
Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.
>>> f1_metric = datasets.load_metric("f1")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])
>>> print(round(results[\'f1\'], 2))
0.35
Example 4-A multiclass example, with different values for the `average` input.
>>> predictions = [0, 2, 1, 0, 0, 1]
>>> references = [0, 1, 2, 0, 1, 2]
>>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")
>>> print(round(results[\'f1\'], 2))
0.27
>>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")
>>> print(round(results[\'f1\'], 2))
0.33
>>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")
>>> print(round(results[\'f1\'], 2))
0.27
>>> results = f1_metric.compute(predictions=predictions, references=references, average=None)
>>> print(results)
{\'f1\': array([0.8, 0. , 0. ])}
'''
_UpperCAmelCase : str = '''
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ ( datasets.Metric ):
"""simple docstring"""
def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('int32' ) ),
'references': datasets.Sequence(datasets.Value('int32' ) ),
}
if self.config_name == 'multilabel'
else {
'predictions': datasets.Value('int32' ),
'references': datasets.Value('int32' ),
} ), reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'], )
def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : int, UpperCamelCase__ : List[Any], UpperCamelCase__ : Dict=None, UpperCamelCase__ : Dict=1, UpperCamelCase__ : List[Any]="binary", UpperCamelCase__ : str=None ) -> Optional[int]:
_A = fa_score(
UpperCamelCase__, UpperCamelCase__, labels=UpperCamelCase__, pos_label=UpperCamelCase__, average=UpperCamelCase__, sample_weight=UpperCamelCase__ )
return {"f1": float(UpperCamelCase__ ) if score.size == 1 else score}
| 107 |
'''simple docstring'''
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Tuple = logging.get_logger(__name__)
def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]:
__A : int = RobertaPreLayerNormConfig.from_pretrained(
__snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] )
# convert state_dict
__A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) )
__A : str = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith('roberta.' ):
__A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ):
continue
__A : str = tensor_value
__A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case )
model.save_pretrained(__snake_case )
# convert tokenizer
__A : List[Any] = AutoTokenizer.from_pretrained(__snake_case )
tokenizer.save_pretrained(__snake_case )
if __name__ == "__main__":
lowercase__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint-repo''',
default=None,
type=str,
required=True,
help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path) | 8 | 0 |
from __future__ import annotations
def _SCREAMING_SNAKE_CASE ( __snake_case ) -> int:
_UpperCAmelCase = len(__snake_case ) // 2
# choose the middle 3 elements
_UpperCAmelCase = lst[m - 1 : m + 2]
# if middle element is peak
if three[1] > three[0] and three[1] > three[2]:
return three[1]
# if increasing, recurse on right
elif three[0] < three[2]:
if len(lst[:m] ) == 2:
m -= 1
return peak(lst[m:] )
# decreasing
else:
if len(lst[:m] ) == 2:
m += 1
return peak(lst[:m] )
if __name__ == "__main__":
import doctest
doctest.testmod() | 108 |
'''simple docstring'''
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
lowercase__ : Dict = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} )
lowerCAmelCase = field(
default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
lowerCAmelCase = field(
default=a__ , metadata={
'''help''': (
'''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `max_length` value of the model configuration.'''
)
} , )
lowerCAmelCase = field(
default=a__ , metadata={
'''help''': (
'''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `num_beams` value of the model configuration.'''
)
} , )
lowerCAmelCase = field(
default=a__ , metadata={
'''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'''
} , )
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[Any] = super().to_dict()
for k, v in d.items():
if isinstance(_UpperCAmelCase , _UpperCAmelCase):
__A : List[Any] = v.to_dict()
return d | 8 | 0 |
'''simple docstring'''
import re
def __magic_name__ ( __UpperCAmelCase ) -> list:
'''simple docstring'''
return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" , str_ )]
def __magic_name__ ( __UpperCAmelCase ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = split_input(str_ )
return "".join(
["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
try:
__SCREAMING_SNAKE_CASE = split_input(__UpperCAmelCase )
if upper:
__SCREAMING_SNAKE_CASE = """""".join(
[
separator.join([char.upper() for char in sub_str] )
for sub_str in string_split
] )
else:
__SCREAMING_SNAKE_CASE = """""".join(
[
separator.join([char.lower() for char in sub_str] )
for sub_str in string_split
] )
return res_str
except IndexError:
return "not valid string"
def __magic_name__ ( __UpperCAmelCase ) -> str:
'''simple docstring'''
return to_simple_case(__UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase ) -> str:
'''simple docstring'''
try:
__SCREAMING_SNAKE_CASE = to_simple_case(__UpperCAmelCase )
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
return to_complex_case(__UpperCAmelCase , __UpperCAmelCase , """_""" )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
return to_complex_case(__UpperCAmelCase , __UpperCAmelCase , """-""" )
if __name__ == "__main__":
__import__("doctest").testmod()
| 109 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : List[Any] = logging.get_logger(__name__)
lowercase__ : Optional[int] = {
'''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''',
}
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = '''lxmert'''
lowerCAmelCase = {}
def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ):
'''simple docstring'''
__A : Tuple = vocab_size
__A : int = hidden_size
__A : str = num_attention_heads
__A : Tuple = hidden_act
__A : int = intermediate_size
__A : str = hidden_dropout_prob
__A : Optional[int] = attention_probs_dropout_prob
__A : Optional[Any] = max_position_embeddings
__A : Tuple = type_vocab_size
__A : Optional[int] = initializer_range
__A : Any = layer_norm_eps
__A : Optional[Any] = num_qa_labels
__A : Optional[int] = num_object_labels
__A : Any = num_attr_labels
__A : Union[str, Any] = l_layers
__A : Optional[int] = x_layers
__A : List[Any] = r_layers
__A : Tuple = visual_feat_dim
__A : Tuple = visual_pos_dim
__A : Optional[int] = visual_loss_normalizer
__A : int = task_matched
__A : List[Any] = task_mask_lm
__A : Optional[Any] = task_obj_predict
__A : str = task_qa
__A : List[Any] = visual_obj_loss
__A : Optional[Any] = visual_attr_loss
__A : Union[str, Any] = visual_feat_loss
__A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers}
super().__init__(**_UpperCAmelCase) | 8 | 0 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name
class a ( lowercase ):
def __init__( self , UpperCamelCase_ , UpperCamelCase_ ):
super().__init__()
self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ )
@torch.no_grad()
def __call__( self , UpperCamelCase_ = 1 , UpperCamelCase_ = 100 , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = True , ):
if audio_length_in_s is None:
UpperCAmelCase__ : Any = self.unet.config.sample_size / self.unet.config.sample_rate
UpperCAmelCase__ : Any = audio_length_in_s * self.unet.config.sample_rate
UpperCAmelCase__ : str = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'''
F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' )
UpperCAmelCase__ : str = int(UpperCamelCase_ )
if sample_size % down_scale_factor != 0:
UpperCAmelCase__ : Union[str, Any] = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'''
F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'''
' process.' )
UpperCAmelCase__ : Optional[int] = int(UpperCamelCase_ )
UpperCAmelCase__ : List[str] = next(iter(self.unet.parameters() ) ).dtype
UpperCAmelCase__ : Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
UpperCAmelCase__ : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=UpperCamelCase_ )
# set step values
self.scheduler.set_timesteps(UpperCamelCase_ , device=audio.device )
UpperCAmelCase__ : List[str] = self.scheduler.timesteps.to(UpperCamelCase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
UpperCAmelCase__ : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample
# 2. compute previous image: x_t -> t_t-1
UpperCAmelCase__ : Dict = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample
UpperCAmelCase__ : int = audio.clamp(-1 , 1 ).float().cpu().numpy()
UpperCAmelCase__ : Tuple = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=UpperCamelCase_ )
| 110 |
'''simple docstring'''
import math
import sys
def _lowerCAmelCase ( __snake_case : int ) -> int:
if number != int(__snake_case ):
raise ValueError('the value of input must be a natural number' )
if number < 0:
raise ValueError('the value of input must not be a negative number' )
if number == 0:
return 1
__A : str = [-1] * (number + 1)
__A : Dict = 0
for i in range(1 , number + 1 ):
__A : int = sys.maxsize
__A : int = int(math.sqrt(__snake_case ) )
for j in range(1 , root + 1 ):
__A : str = 1 + answers[i - (j**2)]
__A : Dict = min(__snake_case , __snake_case )
__A : Union[str, Any] = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
_lowerCamelCase : str = 0 # The first color of the flag.
_lowerCamelCase : List[Any] = 1 # The second color of the flag.
_lowerCamelCase : str = 2 # The third color of the flag.
_lowerCamelCase : List[str] = (red, white, blue)
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list:
"""simple docstring"""
if not sequence:
return []
if len(__snake_case ) == 1:
return list(__snake_case )
A__ = 0
A__ = len(__snake_case ) - 1
A__ = 0
while mid <= high:
if sequence[mid] == colors[0]:
A__ = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
A__ = sequence[high], sequence[mid]
high -= 1
else:
A__ = f"""The elements inside the sequence must contains only {colors} values"""
raise ValueError(__snake_case )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCamelCase : Union[str, Any] = input("""Enter numbers separated by commas:\n""").strip()
_lowerCamelCase : Tuple = [int(item.strip()) for item in user_input.split(""",""")]
print(F'''{dutch_national_flag_sort(unsorted)}''')
| 87 |
'''simple docstring'''
from __future__ import annotations
def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]:
__A : int = list(range(len(__snake_case ) ) )
__A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )]
index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case )
__A : float = 0
__A : list[float] = [0] * len(__snake_case )
for i in index:
if weight[i] <= capacity:
__A : Optional[int] = 1
max_value += value[i]
capacity -= weight[i]
else:
__A : List[Any] = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowercase_ ( a__ , a__ ):
@register_to_config
def __init__( self , *,
__A = 4 , __A = 768 , __A , __A , ) -> List[Any]:
super().__init__()
SCREAMING_SNAKE_CASE_ : str =nn.Parameter(torch.zeros(_UpperCAmelCase ) )
# parameters for additional clip time embeddings
SCREAMING_SNAKE_CASE_ : List[str] =nn.Linear(_UpperCAmelCase , _UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : List[str] =nn.Linear(_UpperCAmelCase , _UpperCAmelCase )
# parameters for encoder hidden states
SCREAMING_SNAKE_CASE_ : Dict =clip_extra_context_tokens
SCREAMING_SNAKE_CASE_ : List[Any] =nn.Linear(
_UpperCAmelCase , self.clip_extra_context_tokens * cross_attention_dim )
SCREAMING_SNAKE_CASE_ : Dict =nn.Linear(_UpperCAmelCase , _UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : List[Any] =nn.LayerNorm(_UpperCAmelCase )
def _snake_case ( self , *, __A , __A , __A , __A ) -> Tuple:
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
SCREAMING_SNAKE_CASE_ : Optional[int] =image_embeddings.shape[0]
SCREAMING_SNAKE_CASE_ : List[Any] =self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
SCREAMING_SNAKE_CASE_ : Dict =classifier_free_guidance_embeddings.expand(
_UpperCAmelCase , -1 )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
SCREAMING_SNAKE_CASE_ : List[str] =prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
SCREAMING_SNAKE_CASE_ : Any =self.embedding_proj(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : Optional[Any] =self.clip_image_embeddings_project_to_time_embeddings(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : Tuple =time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
SCREAMING_SNAKE_CASE_ : Tuple =self.clip_extra_context_tokens_proj(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : int =clip_extra_context_tokens.reshape(_UpperCAmelCase , -1 , self.clip_extra_context_tokens )
SCREAMING_SNAKE_CASE_ : Optional[Any] =clip_extra_context_tokens.permute(0 , 2 , 1 )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.encoder_hidden_states_proj(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : Optional[int] =self.text_encoder_hidden_states_norm(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : Any =torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 443 |
'''simple docstring'''
from __future__ import annotations
import math
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase):
'''simple docstring'''
__A : int = size
# approximate the overall size of segment tree with given value
__A : Optional[Any] = [0 for i in range(0 , 4 * size)]
# create array to store lazy update
__A : Optional[Any] = [0 for i in range(0 , 4 * size)]
__A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
return idx * 2
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
return idx * 2 + 1
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
if left_element == right_element:
__A : List[Any] = a[left_element - 1]
else:
__A : List[str] = (left_element + right_element) // 2
self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase)
__A : Any = max(
self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)])
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
if self.flag[idx] is True:
__A : Optional[Any] = self.lazy[idx]
__A : Optional[Any] = False
if left_element != right_element:
__A : List[Any] = self.lazy[idx]
__A : Dict = self.lazy[idx]
__A : Tuple = True
__A : Union[str, Any] = True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
__A : Optional[int] = val
if left_element != right_element:
__A : Tuple = val
__A : Any = val
__A : Tuple = True
__A : Union[str, Any] = True
return True
__A : str = (left_element + right_element) // 2
self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
__A : int = max(
self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)])
return True
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
if self.flag[idx] is True:
__A : Union[str, Any] = self.lazy[idx]
__A : List[str] = False
if left_element != right_element:
__A : Union[str, Any] = self.lazy[idx]
__A : Optional[int] = self.lazy[idx]
__A : str = True
__A : Union[str, Any] = True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
__A : Any = (left_element + right_element) // 2
__A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
__A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
return max(_UpperCAmelCase , _UpperCAmelCase)
def __str__( self):
'''simple docstring'''
return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)])
if __name__ == "__main__":
lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
lowercase__ : str = 15
lowercase__ : List[Any] = SegmentTree(size)
segt.build(1, 1, size, A)
print(segt.query(1, 1, size, 4, 6))
print(segt.query(1, 1, size, 7, 11))
print(segt.query(1, 1, size, 7, 12))
segt.update(1, 1, size, 1, 3, 1_11)
print(segt.query(1, 1, size, 1, 15))
segt.update(1, 1, size, 7, 8, 2_35)
print(segt) | 8 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase_ = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ['''MBartTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ['''MBartTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
'''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MBartForCausalLM''',
'''MBartForConditionalGeneration''',
'''MBartForQuestionAnswering''',
'''MBartForSequenceClassification''',
'''MBartModel''',
'''MBartPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
'''TFMBartForConditionalGeneration''',
'''TFMBartModel''',
'''TFMBartPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
'''FlaxMBartForConditionalGeneration''',
'''FlaxMBartForQuestionAnswering''',
'''FlaxMBartForSequenceClassification''',
'''FlaxMBartModel''',
'''FlaxMBartPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart import MBartTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart_fast import MBartTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mbart import (
MBART_PRETRAINED_MODEL_ARCHIVE_LIST,
MBartForCausalLM,
MBartForConditionalGeneration,
MBartForQuestionAnswering,
MBartForSequenceClassification,
MBartModel,
MBartPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mbart import (
FlaxMBartForConditionalGeneration,
FlaxMBartForQuestionAnswering,
FlaxMBartForSequenceClassification,
FlaxMBartModel,
FlaxMBartPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 625 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float:
__A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
# formula for sum of series
return total
def _lowerCAmelCase ( ) -> Union[str, Any]:
print(sum_of_series(1 , 1 , 10 ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import YolosImageProcessor
class __UpperCamelCase ( unittest.TestCase ):
def __init__( self :int ,_UpperCamelCase :List[Any] ,_UpperCamelCase :str=7 ,_UpperCamelCase :str=3 ,_UpperCamelCase :int=3_0 ,_UpperCamelCase :str=4_0_0 ,_UpperCamelCase :str=True ,_UpperCamelCase :List[str]=None ,_UpperCamelCase :Tuple=True ,_UpperCamelCase :Tuple=[0.5, 0.5, 0.5] ,_UpperCamelCase :Optional[Any]=[0.5, 0.5, 0.5] ,_UpperCamelCase :Union[str, Any]=True ,_UpperCamelCase :Dict=1 / 2_5_5 ,_UpperCamelCase :Optional[Any]=True ,):
snake_case_ : int = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3}
snake_case_ : List[Any] = parent
snake_case_ : Optional[Any] = batch_size
snake_case_ : Tuple = num_channels
snake_case_ : str = min_resolution
snake_case_ : List[Any] = max_resolution
snake_case_ : int = do_resize
snake_case_ : Any = size
snake_case_ : int = do_normalize
snake_case_ : Union[str, Any] = image_mean
snake_case_ : List[str] = image_std
snake_case_ : Dict = do_rescale
snake_case_ : List[str] = rescale_factor
snake_case_ : Union[str, Any] = do_pad
def a__ ( self :Dict ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def a__ ( self :Optional[Any] ,_UpperCamelCase :str ,_UpperCamelCase :Optional[int]=False ):
if not batched:
snake_case_ : str = image_inputs[0]
if isinstance(_UpperCAmelCase ,Image.Image ):
snake_case_ : Tuple = image.size
else:
snake_case_ : int = image.shape[1], image.shape[2]
if w < h:
snake_case_ : Optional[int] = int(self.size["""shortest_edge"""] * h / w )
snake_case_ : int = self.size['shortest_edge']
elif w > h:
snake_case_ : List[Any] = self.size['shortest_edge']
snake_case_ : Dict = int(self.size["""shortest_edge"""] * w / h )
else:
snake_case_ : Tuple = self.size['shortest_edge']
snake_case_ : List[Any] = self.size['shortest_edge']
else:
snake_case_ : List[Any] = []
for image in image_inputs:
snake_case_ : Union[str, Any] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case_ : Union[str, Any] = max(_UpperCAmelCase ,key=lambda _UpperCamelCase : item[0] )[0]
snake_case_ : Optional[int] = max(_UpperCAmelCase ,key=lambda _UpperCamelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __UpperCamelCase ( a__ , unittest.TestCase ):
lowercase : str = YolosImageProcessor if is_vision_available() else None
def a__ ( self :Any ):
snake_case_ : List[Any] = YolosImageProcessingTester(self )
@property
def a__ ( self :Dict ):
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self :Optional[Any] ):
snake_case_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(_UpperCAmelCase ,"""image_std""" ) )
self.assertTrue(hasattr(_UpperCAmelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(_UpperCAmelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(_UpperCAmelCase ,"""size""" ) )
def a__ ( self :Tuple ):
snake_case_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} )
self.assertEqual(image_processor.do_pad ,_UpperCAmelCase )
snake_case_ : Any = self.image_processing_class.from_dict(
self.image_processor_dict ,size=4_2 ,max_size=8_4 ,pad_and_return_pixel_mask=_UpperCAmelCase )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 4_2, """longest_edge""": 8_4} )
self.assertEqual(image_processor.do_pad ,_UpperCAmelCase )
def a__ ( self :int ):
pass
def a__ ( self :Optional[int] ):
snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase ,Image.Image )
# Test not batched input
snake_case_ : Dict = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
snake_case_ : List[Any] = self.image_processor_tester.get_expected_values(_UpperCAmelCase )
self.assertEqual(
encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,)
# Test batched
snake_case_ : str = self.image_processor_tester.get_expected_values(_UpperCAmelCase ,batched=_UpperCAmelCase )
snake_case_ : List[Any] = image_processing(_UpperCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) ,)
def a__ ( self :Union[str, Any] ):
snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCAmelCase ,numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase ,np.ndarray )
# Test not batched input
snake_case_ : Union[str, Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_UpperCAmelCase )
self.assertEqual(
encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,)
# Test batched
snake_case_ : Optional[Any] = image_processing(_UpperCAmelCase ,return_tensors="""pt""" ).pixel_values
snake_case_ : List[Any] = self.image_processor_tester.get_expected_values(_UpperCAmelCase ,batched=_UpperCAmelCase )
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) ,)
def a__ ( self :List[str] ):
snake_case_ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCAmelCase ,torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase ,torch.Tensor )
# Test not batched input
snake_case_ : Any = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
snake_case_ : int = self.image_processor_tester.get_expected_values(_UpperCAmelCase )
self.assertEqual(
encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,)
# Test batched
snake_case_ : Any = image_processing(_UpperCAmelCase ,return_tensors="""pt""" ).pixel_values
snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_UpperCAmelCase ,batched=_UpperCAmelCase )
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) ,)
def a__ ( self :str ):
snake_case_ : Any = self.image_processing_class(**self.image_processor_dict )
snake_case_ : Dict = self.image_processing_class(do_resize=_UpperCAmelCase ,do_normalize=_UpperCAmelCase ,do_rescale=_UpperCAmelCase )
# create random PyTorch tensors
snake_case_ : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCAmelCase ,torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase ,torch.Tensor )
# Test whether the method "pad" and calling the image processor return the same tensors
snake_case_ : Any = image_processing_a.pad(_UpperCAmelCase ,return_tensors="""pt""" )
snake_case_ : Optional[int] = image_processing_a(_UpperCAmelCase ,return_tensors="""pt""" )
self.assertTrue(
torch.allclose(encoded_images_with_method["""pixel_values"""] ,encoded_images["""pixel_values"""] ,atol=1E-4 ) )
@slow
def a__ ( self :int ):
snake_case_ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" ,"""r""" ) as f:
snake_case_ : int = json.loads(f.read() )
snake_case_ : Any = {'image_id': 3_9_7_6_9, 'annotations': target}
# encode them
snake_case_ : int = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" )
snake_case_ : str = image_processing(images=_UpperCAmelCase ,annotations=_UpperCAmelCase ,return_tensors="""pt""" )
# verify pixel values
snake_case_ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["""pixel_values"""].shape ,_UpperCAmelCase )
snake_case_ : List[str] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] ,_UpperCAmelCase ,atol=1E-4 ) )
# verify area
snake_case_ : Union[str, Any] = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] ,_UpperCAmelCase ) )
# verify boxes
snake_case_ : Tuple = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape ,_UpperCAmelCase )
snake_case_ : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] ,_UpperCAmelCase ,atol=1E-3 ) )
# verify image_id
snake_case_ : Union[str, Any] = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] ,_UpperCAmelCase ) )
# verify is_crowd
snake_case_ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] ,_UpperCAmelCase ) )
# verify class_labels
snake_case_ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] ,_UpperCAmelCase ) )
# verify orig_size
snake_case_ : Union[str, Any] = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] ,_UpperCAmelCase ) )
# verify size
snake_case_ : List[str] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] ,_UpperCAmelCase ) )
@slow
def a__ ( self :Optional[Any] ):
snake_case_ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" ,"""r""" ) as f:
snake_case_ : Any = json.loads(f.read() )
snake_case_ : Optional[int] = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target}
snake_case_ : Dict = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
snake_case_ : List[Any] = YolosImageProcessor(format="""coco_panoptic""" )
snake_case_ : Optional[int] = image_processing(images=_UpperCAmelCase ,annotations=_UpperCAmelCase ,masks_path=_UpperCAmelCase ,return_tensors="""pt""" )
# verify pixel values
snake_case_ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["""pixel_values"""].shape ,_UpperCAmelCase )
snake_case_ : int = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] ,_UpperCAmelCase ,atol=1E-4 ) )
# verify area
snake_case_ : Union[str, Any] = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] ,_UpperCAmelCase ) )
# verify boxes
snake_case_ : Optional[Any] = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape ,_UpperCAmelCase )
snake_case_ : Union[str, Any] = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] ,_UpperCAmelCase ,atol=1E-3 ) )
# verify image_id
snake_case_ : Union[str, Any] = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] ,_UpperCAmelCase ) )
# verify is_crowd
snake_case_ : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] ,_UpperCAmelCase ) )
# verify class_labels
snake_case_ : Optional[int] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] ,_UpperCAmelCase ) )
# verify masks
snake_case_ : Tuple = 8_2_2_8_7_3
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() ,_UpperCAmelCase )
# verify orig_size
snake_case_ : str = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] ,_UpperCAmelCase ) )
# verify size
snake_case_ : int = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] ,_UpperCAmelCase ) ) | 334 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ):
'''simple docstring'''
__A : Optional[int] = parent
__A : str = 13
__A : List[Any] = 7
__A : List[str] = True
__A : str = True
__A : Optional[Any] = True
__A : int = True
__A : Dict = 99
__A : Dict = 384
__A : Any = 2
__A : int = 4
__A : Optional[Any] = 37
__A : Optional[int] = 'gelu'
__A : Dict = 0.1
__A : Optional[int] = 0.1
__A : Any = 512
__A : int = 16
__A : List[str] = 2
__A : str = 0.02
__A : Any = 3
__A : str = 4
__A : Union[str, Any] = 128
__A : int = 2
__A : List[Any] = 9
__A : List[Any] = 1
__A : List[Any] = None
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__A : str = None
if self.use_input_mask:
__A : List[Any] = random_attention_mask([self.batch_size, self.seq_length])
__A : Optional[Any] = None
if self.use_token_type_ids:
__A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
__A : Optional[int] = None
__A : List[str] = None
__A : Dict = None
if self.use_labels:
__A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__A : str = ids_tensor([self.batch_size] , self.num_choices)
__A : List[Any] = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : int = TFConvBertModel(config=_UpperCAmelCase)
__A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__A : Tuple = [input_ids, input_mask]
__A : Any = model(_UpperCAmelCase)
__A : Dict = model(_UpperCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase)
__A : str = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : str = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Optional[int] = self.num_labels
__A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase)
__A : Optional[Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : Dict = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Tuple = self.num_choices
__A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase)
__A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1))
__A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1))
__A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1))
__A : int = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__A : Optional[Any] = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : List[Any] = self.num_labels
__A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase)
__A : str = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : int = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase)
__A : Any = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : Union[str, Any] = model(_UpperCAmelCase)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Optional[int] = self.prepare_config_and_inputs()
(
(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,
) : Union[str, Any] = config_and_inputs
__A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ):
lowerCAmelCase = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase = (
{
'''feature-extraction''': TFConvBertModel,
'''fill-mask''': TFConvBertForMaskedLM,
'''question-answering''': TFConvBertForQuestionAnswering,
'''text-classification''': TFConvBertForSequenceClassification,
'''token-classification''': TFConvBertForTokenClassification,
'''zero-shot''': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = TFConvBertModelTester(self)
__A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase)
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__A : List[str] = True
__A : List[str] = True
if hasattr(_UpperCAmelCase , 'use_cache'):
__A : List[Any] = True
__A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length)
__A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase)
for model_class in self.all_model_classes:
__A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)
__A : Optional[int] = model_class(_UpperCAmelCase)
__A : Optional[Any] = len(model(_UpperCAmelCase))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase)
__A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1')
__A : Tuple = tf.keras.models.load_model(_UpperCAmelCase)
__A : str = model(_UpperCAmelCase)
if self.is_encoder_decoder:
__A : Optional[int] = outputs['encoder_hidden_states']
__A : str = outputs['encoder_attentions']
else:
__A : List[Any] = outputs['hidden_states']
__A : Optional[Any] = outputs['attentions']
self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase)
__A : str = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase)
self.assertListEqual(
list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base')
self.assertIsNotNone(_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__A : Any = True
__A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length)
__A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length)
__A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase)
__A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase)
def check_decoder_attentions_output(_UpperCAmelCase):
__A : List[str] = len(_UpperCAmelCase)
self.assertEqual(out_len % 2 , 0)
__A : Any = outputs.decoder_attentions
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_UpperCAmelCase):
__A : str = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__A : Dict = True
__A : Any = False
__A : str = model_class(_UpperCAmelCase)
__A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : List[str] = len(_UpperCAmelCase)
self.assertEqual(config.output_hidden_states , _UpperCAmelCase)
check_encoder_attentions_output(_UpperCAmelCase)
if self.is_encoder_decoder:
__A : Union[str, Any] = model_class(_UpperCAmelCase)
__A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
self.assertEqual(config.output_hidden_states , _UpperCAmelCase)
check_decoder_attentions_output(_UpperCAmelCase)
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__A : int = True
__A : Tuple = model_class(_UpperCAmelCase)
__A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
self.assertEqual(config.output_hidden_states , _UpperCAmelCase)
check_encoder_attentions_output(_UpperCAmelCase)
# Check attention is always last and order is fine
__A : Any = True
__A : str = True
__A : Union[str, Any] = model_class(_UpperCAmelCase)
__A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase))
self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase)
check_encoder_attentions_output(_UpperCAmelCase)
@require_tf
class SCREAMING_SNAKE_CASE (unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base')
__A : str = tf.constant([[0, 1, 2, 3, 4, 5]])
__A : Optional[int] = model(_UpperCAmelCase)[0]
__A : List[Any] = [1, 6, 768]
self.assertEqual(output.shape , _UpperCAmelCase)
__A : Tuple = tf.constant(
[
[
[-0.03475493, -0.4686034, -0.30638832],
[0.22637248, -0.26988646, -0.7423424],
[0.10324868, -0.45013508, -0.58280784],
]
])
tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4) | 8 | 0 |
'''simple docstring'''
from __future__ import annotations
import queue
class UpperCamelCase__ :
def __init__( self : str , lowerCamelCase : List[str] ):
'''simple docstring'''
a__ = data
a__ = None
a__ = None
def _lowerCamelCase () -> TreeNode:
print("\n********Press N to stop entering at any point of time********\n" )
a__ = input("Enter the value of the root node: " ).strip().lower()
a__ = queue.Queue()
a__ = TreeNode(int(__snake_case ) )
q.put(__snake_case )
while not q.empty():
a__ = q.get()
a__ = f'''Enter the left node of {node_found.data}: '''
a__ = input(__snake_case ).strip().lower() or 'n'
if check == "n":
return tree_node
a__ = TreeNode(int(__snake_case ) )
a__ = left_node
q.put(__snake_case )
a__ = f'''Enter the right node of {node_found.data}: '''
a__ = input(__snake_case ).strip().lower() or 'n'
if check == "n":
return tree_node
a__ = TreeNode(int(__snake_case ) )
a__ = right_node
q.put(__snake_case )
raise
def _lowerCamelCase (__lowerCamelCase : TreeNode ) -> None:
if not isinstance(__snake_case , __snake_case ) or not node:
return
print(node.data , end="," )
pre_order(node.left )
pre_order(node.right )
def _lowerCamelCase (__lowerCamelCase : TreeNode ) -> None:
if not isinstance(__snake_case , __snake_case ) or not node:
return
in_order(node.left )
print(node.data , end="," )
in_order(node.right )
def _lowerCamelCase (__lowerCamelCase : TreeNode ) -> None:
if not isinstance(__snake_case , __snake_case ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end="," )
def _lowerCamelCase (__lowerCamelCase : TreeNode ) -> None:
if not isinstance(__snake_case , __snake_case ) or not node:
return
a__ = queue.Queue()
q.put(__snake_case )
while not q.empty():
a__ = q.get()
print(node_dequeued.data , end="," )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def _lowerCamelCase (__lowerCamelCase : TreeNode ) -> None:
if not isinstance(__snake_case , __snake_case ) or not node:
return
a__ = queue.Queue()
q.put(__snake_case )
while not q.empty():
a__ = []
while not q.empty():
a__ = q.get()
print(node_dequeued.data , end="," )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__snake_case )
def _lowerCamelCase (__lowerCamelCase : TreeNode ) -> None:
if not isinstance(__snake_case , __snake_case ) or not node:
return
a__ = []
a__ = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end="," )
stack.append(__snake_case )
a__ = n.left
# end of while means current node doesn't have left child
a__ = stack.pop()
# start to traverse its right child
a__ = n.right
def _lowerCamelCase (__lowerCamelCase : TreeNode ) -> None:
if not isinstance(__snake_case , __snake_case ) or not node:
return
a__ = []
a__ = node
while n or stack:
while n:
stack.append(__snake_case )
a__ = n.left
a__ = stack.pop()
print(n.data , end="," )
a__ = n.right
def _lowerCamelCase (__lowerCamelCase : TreeNode ) -> None:
if not isinstance(__snake_case , __snake_case ) or not node:
return
a__ = [], []
a__ = node
stacka.append(__snake_case )
while stacka: # to find the reversed order of post order, store it in stack2
a__ = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__snake_case )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end="," )
def _lowerCamelCase (__lowerCamelCase : str = "" , __lowerCamelCase : Dict=50 , __lowerCamelCase : Optional[int]="*" ) -> str:
if not s:
return "\n" + width * char
a__ = divmod(width - len(__snake_case ) - 2 , 2 )
return f'''{left * char} {s} {(left + extra) * char}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("Binary Tree Traversals"))
lowerCAmelCase_ : TreeNode = build_tree()
print(prompt("Pre Order Traversal"))
pre_order(node)
print(prompt() + "\n")
print(prompt("In Order Traversal"))
in_order(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal"))
post_order(node)
print(prompt() + "\n")
print(prompt("Level Order Traversal"))
level_order(node)
print(prompt() + "\n")
print(prompt("Actual Level Order Traversal"))
level_order_actual(node)
print("*" * 50 + "\n")
print(prompt("Pre Order Traversal - Iteration Version"))
pre_order_iter(node)
print(prompt() + "\n")
print(prompt("In Order Traversal - Iteration Version"))
in_order_iter(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal - Iteration Version"))
post_order_iter(node)
print(prompt())
| 489 |
'''simple docstring'''
import argparse
import os
import re
lowercase__ : Optional[int] = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
lowercase__ : Dict = re.compile(r'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowercase__ : str = re.compile(r'''\[([^\]]+)\]''')
def _lowerCAmelCase ( __snake_case : str ) -> Tuple:
__A : List[Any] = _re_indent.search(__snake_case )
return "" if search is None else search.groups()[0]
def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]:
__A : Tuple = 0
__A : Optional[int] = code.split('\n' )
if start_prompt is not None:
while not lines[index].startswith(__snake_case ):
index += 1
__A : Optional[int] = ['\n'.join(lines[:index] )]
else:
__A : Any = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
__A : Tuple = [lines[index]]
index += 1
while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ):
current_block.append(lines[index] )
blocks.append('\n'.join(__snake_case ) )
if index < len(__snake_case ) - 1:
__A : Union[str, Any] = [lines[index + 1]]
index += 1
else:
__A : Union[str, Any] = []
else:
blocks.append('\n'.join(__snake_case ) )
__A : Optional[Any] = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(__snake_case ) > 0:
blocks.append('\n'.join(__snake_case ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(__snake_case ):
blocks.append('\n'.join(lines[index:] ) )
return blocks
def _lowerCAmelCase ( __snake_case : List[Any] ) -> int:
def _inner(__snake_case : List[Any] ):
return key(__snake_case ).lower().replace('_' , '' )
return _inner
def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]:
# If no key is provided, we use a noop.
def noop(__snake_case : List[Any] ):
return x
if key is None:
__A : Optional[Any] = noop
# Constants are all uppercase, they go first.
__A : str = [obj for obj in objects if key(__snake_case ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
__A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()]
# Functions begin with a lowercase, they go last.
__A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()]
__A : Tuple = ignore_underscore(__snake_case )
return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case )
def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple:
# This inner function sort imports between [ ].
def _replace(__snake_case : Tuple ):
__A : List[str] = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
__A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__A : Dict = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]"
__A : List[Any] = import_statement.split('\n' )
if len(__snake_case ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
__A : Optional[int] = 2 if lines[1].strip() == '[' else 1
__A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
__A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] )
__A : Any = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(__snake_case ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
__A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] )
else:
__A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__A : Tuple = keys[:-1]
__A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] )
return "\n".join(__snake_case )
else:
# Finally we have to deal with imports fitting on one line
__A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case )
return import_statement
def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]:
with open(__snake_case , 'r' ) as f:
__A : Dict = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
__A : str = split_code_in_indented_blocks(
__snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(__snake_case ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
__A : Tuple = main_blocks[block_idx]
__A : int = block.split('\n' )
# Get to the start of the imports.
__A : Tuple = 0
while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
__A : Optional[int] = len(__snake_case )
else:
line_idx += 1
if line_idx >= len(__snake_case ):
continue
# Ignore beginning and last line: they don't contain anything.
__A : Dict = '\n'.join(block_lines[line_idx:-1] )
__A : int = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
__A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case )
# We have two categories of import key: list or _import_structure[key].append/extend
__A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
__A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
__A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None]
__A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
__A : str = 0
__A : Any = []
for i in range(len(__snake_case ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
__A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(__snake_case )
count += 1
# And we put our main block back together with its first and last line.
__A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(__snake_case ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(__snake_case , 'w' ) as f:
f.write('\n'.join(__snake_case ) )
def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]:
__A : Tuple = []
for root, _, files in os.walk(__snake_case ):
if "__init__.py" in files:
__A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case )
if result:
__A : Dict = [os.path.join(__snake_case , '__init__.py' )]
if len(__snake_case ) > 0:
raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' )
if __name__ == "__main__":
lowercase__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
lowercase__ : Union[str, Any] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only) | 8 | 0 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''}
# See all LED models at https://huggingface.co/models?filter=LED
lowerCamelCase_ = {
'''vocab_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''',
},
'''merges_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''',
},
'''tokenizer_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''',
},
}
lowerCamelCase_ = {
'''allenai/led-base-16384''': 1_63_84,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def __lowercase ( ) -> Optional[Any]:
'''simple docstring'''
_A = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
_A = bs[:]
_A = 0
for b in range(2**8 ):
if b not in bs:
bs.append(__snake_case )
cs.append(2**8 + n )
n += 1
_A = [chr(__snake_case ) for n in cs]
return dict(zip(__snake_case , __snake_case ) )
def __lowercase ( __lowercase ) -> str:
'''simple docstring'''
_A = set()
_A = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_A = char
return pairs
class _UpperCAmelCase ( a__ ):
"""simple docstring"""
snake_case = VOCAB_FILES_NAMES
snake_case = PRETRAINED_VOCAB_FILES_MAP
snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case = ['''input_ids''', '''attention_mask''']
def __init__( self : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any]="replace" , __UpperCAmelCase : Tuple="<s>" , __UpperCAmelCase : Optional[Any]="</s>" , __UpperCAmelCase : Dict="</s>" , __UpperCAmelCase : str="<s>" , __UpperCAmelCase : Any="<unk>" , __UpperCAmelCase : Optional[Any]="<pad>" , __UpperCAmelCase : Dict="<mask>" , __UpperCAmelCase : int=False , **__UpperCAmelCase : Union[str, Any] , ):
'''simple docstring'''
_A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token
_A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token
_A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token
_A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token
_A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token
_A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
_A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
super().__init__(
errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , )
with open(_UpperCAmelCase , encoding="utf-8" ) as vocab_handle:
_A = json.load(_UpperCAmelCase )
_A = {v: k for k, v in self.encoder.items()}
_A = errors # how to handle errors in decoding
_A = bytes_to_unicode()
_A = {v: k for k, v in self.byte_encoder.items()}
with open(_UpperCAmelCase , encoding="utf-8" ) as merges_handle:
_A = merges_handle.read().split("\n" )[1:-1]
_A = [tuple(merge.split() ) for merge in bpe_merges]
_A = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
_A = {}
_A = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
_A = re.compile(R"\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
return len(self.encoder )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[Any] ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
_A = tuple(_UpperCAmelCase )
_A = get_pairs(_UpperCAmelCase )
if not pairs:
return token
while True:
_A = min(_UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
_A = bigram
_A = []
_A = 0
while i < len(_UpperCAmelCase ):
try:
_A = word.index(_UpperCAmelCase , _UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_A = j
if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_A = tuple(_UpperCAmelCase )
_A = new_word
if len(_UpperCAmelCase ) == 1:
break
else:
_A = get_pairs(_UpperCAmelCase )
_A = ' '.join(_UpperCAmelCase )
_A = word
return word
def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Any ):
'''simple docstring'''
_A = []
for token in re.findall(self.pat , _UpperCAmelCase ):
_A = ''.join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCAmelCase ).split(" " ) )
return bpe_tokens
def lowerCAmelCase ( self : Dict , __UpperCAmelCase : Dict ):
'''simple docstring'''
return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) )
def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : str ):
'''simple docstring'''
return self.decoder.get(_UpperCAmelCase )
def lowerCAmelCase ( self : int , __UpperCAmelCase : Any ):
'''simple docstring'''
_A = ''.join(_UpperCAmelCase )
_A = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] = None ):
'''simple docstring'''
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_A = os.path.join(
_UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
_A = os.path.join(
_UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(_UpperCAmelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + "\n" )
_A = 0
with open(_UpperCAmelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
_A = token_index
writer.write(" ".join(_UpperCAmelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_A = [self.cls_token_id]
_A = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCAmelCase ( self : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : int = None , __UpperCAmelCase : Union[str, Any] = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(_UpperCAmelCase )) + [1]
return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1]
def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] = None ):
'''simple docstring'''
_A = [self.sep_token_id]
_A = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any]=False , **__UpperCAmelCase : Dict ):
'''simple docstring'''
_A = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(_UpperCAmelCase ) > 0 and not text[0].isspace()):
_A = ' ' + text
return (text, kwargs)
def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] = None , __UpperCAmelCase : List[Any] = PaddingStrategy.DO_NOT_PAD , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Union[str, Any] = None , ):
'''simple docstring'''
_A = super()._pad(
encoded_inputs=_UpperCAmelCase , max_length=_UpperCAmelCase , padding_strategy=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , )
# Load from model defaults
if return_attention_mask is None:
_A = 'attention_mask' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
_A = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
_A = len(encoded_inputs["global_attention_mask"] ) != len(_UpperCAmelCase )
if needs_to_be_padded:
_A = len(_UpperCAmelCase ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
_A = (
encoded_inputs['global_attention_mask'] + [-1] * difference
)
elif self.padding_side == "left":
_A = [-1] * difference + encoded_inputs[
'global_attention_mask'
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 330 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : int ) -> bool:
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print('''Program to check whether a number is a Perfect number or not...''')
lowercase__ : int = int(input('''Enter number: ''').strip())
print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""") | 8 | 0 |
def A ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
lowerCamelCase : List[str] = 0
lowerCamelCase : Optional[int] = len(__snake_case )
for i in range(n - 1 ):
for j in range(i + 1 ,__snake_case ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def A ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
if len(__snake_case ) <= 1:
return arr, 0
lowerCamelCase : List[Any] = len(__snake_case ) // 2
lowerCamelCase : int = arr[0:mid]
lowerCamelCase : List[Any] = arr[mid:]
lowerCamelCase : Optional[Any] = count_inversions_recursive(__snake_case )
lowerCamelCase : Any = count_inversions_recursive(__snake_case )
lowerCamelCase : str = _count_cross_inversions(__snake_case ,__snake_case )
lowerCamelCase : int = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple:
lowerCamelCase : List[str] = []
lowerCamelCase : Optional[int] = 0
while i < len(__snake_case ) and j < len(__snake_case ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(__snake_case ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(__snake_case ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def A ( ) -> Any:
lowerCamelCase : Optional[Any] = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
lowerCamelCase : Tuple = count_inversions_bf(__snake_case )
lowerCamelCase : Optional[Any] = count_inversions_recursive(__snake_case )
assert num_inversions_bf == num_inversions_recursive == 8
print("number of inversions = " ,__snake_case )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
lowerCamelCase : str = count_inversions_bf(__snake_case )
lowerCamelCase : Any = count_inversions_recursive(__snake_case )
assert num_inversions_bf == num_inversions_recursive == 0
print("number of inversions = " ,__snake_case )
# an empty list should also have zero inversions
lowerCamelCase : Union[str, Any] = []
lowerCamelCase : List[Any] = count_inversions_bf(__snake_case )
lowerCamelCase : List[Any] = count_inversions_recursive(__snake_case )
assert num_inversions_bf == num_inversions_recursive == 0
print("number of inversions = " ,__snake_case )
if __name__ == "__main__":
main()
| 311 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Tuple = logging.get_logger(__name__)
lowercase__ : str = [
['''attention''', '''attn'''],
['''encoder_attention''', '''encoder_attn'''],
['''q_lin''', '''q_proj'''],
['''k_lin''', '''k_proj'''],
['''v_lin''', '''v_proj'''],
['''out_lin''', '''out_proj'''],
['''norm_embeddings''', '''layernorm_embedding'''],
['''position_embeddings''', '''embed_positions'''],
['''embeddings''', '''embed_tokens'''],
['''ffn.lin''', '''fc'''],
]
def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple:
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
__A : Optional[Any] = k.replace(__snake_case , __snake_case )
if k.startswith('encoder' ):
__A : Any = k.replace('.attn' , '.self_attn' )
__A : Any = k.replace('norm1' , 'self_attn_layer_norm' )
__A : str = k.replace('norm2' , 'final_layer_norm' )
elif k.startswith('decoder' ):
__A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' )
__A : str = k.replace('norm2' , 'encoder_attn_layer_norm' )
__A : int = k.replace('norm3' , 'final_layer_norm' )
return k
def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict:
__A : Optional[int] = [
'model.encoder.layernorm_embedding.weight',
'model.encoder.layernorm_embedding.bias',
'model.decoder.layernorm_embedding.weight',
'model.decoder.layernorm_embedding.bias',
]
for k in keys:
__A : Tuple = sd.pop(__snake_case )
__A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' )
assert new_k not in sd
__A : str = v
lowercase__ : Tuple = ['''START''']
@torch.no_grad()
def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int:
__A : List[str] = torch.load(__snake_case , map_location='cpu' )
__A : Tuple = model['model']
__A : str = BlenderbotConfig.from_json_file(__snake_case )
__A : int = BlenderbotForConditionalGeneration(__snake_case )
__A : List[Any] = m.model.state_dict().keys()
__A : Optional[int] = []
__A : Optional[int] = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
__A : Union[str, Any] = rename_state_dict_key(__snake_case )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
__A : Optional[Any] = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(__snake_case )
m.model.load_state_dict(__snake_case , strict=__snake_case )
m.half()
m.save_pretrained(__snake_case )
if __name__ == "__main__":
lowercase__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''')
parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''')
parser.add_argument(
'''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use'''
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json) | 8 | 0 |
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class _A ( a__ ):
_UpperCamelCase : Optional[int] = '''naver-clova-ix/donut-base-finetuned-docvqa'''
_UpperCamelCase : Tuple = (
'''This is a tool that answers a question about an document (pdf). It takes an input named `document` which '''
'''should be the document containing the information, as well as a `question` that is the question about the '''
'''document. It returns a text that contains the answer to the question.'''
)
_UpperCamelCase : Any = '''document_qa'''
_UpperCamelCase : Tuple = AutoProcessor
_UpperCamelCase : List[Any] = VisionEncoderDecoderModel
_UpperCamelCase : List[Any] = ['''image''', '''text''']
_UpperCamelCase : List[Any] = ['''text''']
def __init__( self : Any , *_A : List[str] , **_A : int ) -> Tuple:
"""simple docstring"""
if not is_vision_available():
raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
def __a ( self : str , _A : List[str] , _A : Dict ) -> int:
"""simple docstring"""
lowercase : Optional[int] = '<s_docvqa><s_question>{user_input}</s_question><s_answer>'
lowercase : List[Any] = task_prompt.replace('''{user_input}''' , _UpperCAmelCase )
lowercase : Tuple = self.pre_processor.tokenizer(
_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors='''pt''' ).input_ids
lowercase : Any = self.pre_processor(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def __a ( self : Optional[int] , _A : Union[str, Any] ) -> List[str]:
"""simple docstring"""
return self.model.generate(
inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_UpperCAmelCase , ).sequences
def __a ( self : int , _A : int ) -> Optional[Any]:
"""simple docstring"""
lowercase : Optional[Any] = self.pre_processor.batch_decode(_UpperCAmelCase )[0]
lowercase : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' )
lowercase : int = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' )
lowercase : Any = re.sub(r'''<.*?>''' , '''''' , _UpperCAmelCase , count=1 ).strip() # remove first task start token
lowercase : List[str] = self.pre_processor.tokenajson(_UpperCAmelCase )
return sequence["answer"] | 217 |
'''simple docstring'''
import mpmath # for roots of unity
import numpy as np
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None):
'''simple docstring'''
__A : List[Any] = list(poly_a or [0])[:]
__A : Optional[int] = list(poly_b or [0])[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
__A : Union[str, Any] = len(self.polyA)
while self.polyB[-1] == 0:
self.polyB.pop()
__A : Optional[int] = len(self.polyB)
# Add 0 to make lengths equal a power of 2
__A : Optional[Any] = int(
2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1)))
while len(self.polyA) < self.c_max_length:
self.polyA.append(0)
while len(self.polyB) < self.c_max_length:
self.polyB.append(0)
# A complex root used for the fourier transform
__A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1))
# The product
__A : Tuple = self.__multiply()
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
__A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB]
# Corner case
if len(_UpperCAmelCase) <= 1:
return dft[0]
#
__A : Dict = self.c_max_length // 2
while next_ncol > 0:
__A : Optional[Any] = [[] for i in range(_UpperCAmelCase)]
__A : Tuple = self.root**next_ncol
# First half of next step
__A : Optional[Any] = 1
for j in range(self.c_max_length // (next_ncol * 2)):
for i in range(_UpperCAmelCase):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j])
current_root *= root
# Second half of next step
__A : List[str] = 1
for j in range(self.c_max_length // (next_ncol * 2)):
for i in range(_UpperCAmelCase):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j])
current_root *= root
# Update
__A : Optional[int] = new_dft
__A : Tuple = next_ncol // 2
return dft[0]
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = self.__dft('A')
__A : Optional[Any] = self.__dft('B')
__A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0]) <= 1:
return inverce_c[0]
# Inverse DFT
__A : Dict = 2
while next_ncol <= self.c_max_length:
__A : Optional[int] = [[] for i in range(_UpperCAmelCase)]
__A : Any = self.root ** (next_ncol // 2)
__A : Tuple = 1
# First half of next step
for j in range(self.c_max_length // next_ncol):
for i in range(next_ncol // 2):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2)
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root))
current_root *= root
# Update
__A : int = new_inverse_c
next_ncol *= 2
# Unpack
__A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self):
'''simple docstring'''
__A : int = 'A = ' + ' + '.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A]))
__A : Optional[Any] = 'B = ' + ' + '.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B]))
__A : str = 'A*B = ' + ' + '.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.product))
return F'{a}\n{b}\n{c}'
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
'''simple docstring'''
from __future__ import annotations
from functools import lru_cache
from math import ceil
snake_case_ : str = 100
snake_case_ : Tuple = set(range(3, NUM_PRIMES, 2))
primes.add(2)
snake_case_ : int
for prime in range(3, ceil(NUM_PRIMES**0.5), 2):
if prime not in primes:
continue
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
@lru_cache(maxsize=100)
def __snake_case ( _UpperCAmelCase : int):
if number_to_partition < 0:
return set()
elif number_to_partition == 0:
return {1}
UpperCamelCase = set()
UpperCamelCase = 42
UpperCamelCase = 42
for prime in primes:
if prime > number_to_partition:
continue
for sub in partition(number_to_partition - prime):
ret.add(sub * prime)
return ret
def __snake_case ( _UpperCAmelCase : int = 5000):
for number_to_partition in range(1, __snake_case):
if len(partition(__snake_case)) > number_unique_partitions:
return number_to_partition
return None
if __name__ == "__main__":
print(F'''{solution() = }''')
| 212 |
'''simple docstring'''
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ):
'''simple docstring'''
__A : Union[str, Any] = parent
__A : Tuple = batch_size
__A : List[str] = image_size
__A : Dict = patch_size
__A : Optional[Any] = num_channels
__A : Tuple = is_training
__A : Dict = use_labels
__A : List[Any] = hidden_size
__A : Tuple = num_hidden_layers
__A : int = num_attention_heads
__A : Optional[int] = intermediate_size
__A : Tuple = hidden_act
__A : Any = hidden_dropout_prob
__A : Optional[Any] = attention_probs_dropout_prob
__A : List[Any] = type_sequence_label_size
__A : List[Any] = initializer_range
__A : Optional[int] = num_labels
__A : List[Any] = scope
__A : Any = n_targets
__A : Union[str, Any] = num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
__A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size)
__A : int = num_patches + 1 + self.num_detection_tokens
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]])
__A : Tuple = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
__A : List[Any] = []
for i in range(self.batch_size):
__A : Optional[int] = {}
__A : Union[str, Any] = torch.randint(
high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase)
__A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase)
labels.append(_UpperCAmelCase)
__A : Any = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
return YolosConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , )
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Any = YolosModel(config=_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
__A : Dict = model(_UpperCAmelCase)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Any = YolosForObjectDetection(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
__A : str = model(pixel_values=_UpperCAmelCase)
__A : List[str] = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1))
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4))
__A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase)
self.parent.assertEqual(result.loss.shape , ())
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1))
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Any = self.prepare_config_and_inputs()
__A ,__A ,__A : Tuple = config_and_inputs
__A : Tuple = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ):
lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
lowerCAmelCase = (
{'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {}
)
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False):
'''simple docstring'''
__A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase)
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
__A : Any = []
for i in range(self.model_tester.batch_size):
__A : Tuple = {}
__A : Tuple = torch.ones(
size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long)
__A : Optional[Any] = torch.ones(
self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float)
labels.append(_UpperCAmelCase)
__A : str = labels
return inputs_dict
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = YolosModelTester(self)
__A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A : Tuple = model_class(_UpperCAmelCase)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
__A : Any = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A : List[Any] = model_class(_UpperCAmelCase)
__A : str = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A : int = [*signature.parameters.keys()]
__A : List[str] = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__A : Optional[int] = True
# in YOLOS, the seq_len is different
__A : Dict = self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
__A : Dict = True
__A : Dict = False
__A : Union[str, Any] = True
__A : Tuple = model_class(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
with torch.no_grad():
__A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : Union[str, Any] = outputs.attentions
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__A : List[Any] = True
__A : List[str] = model_class(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
with torch.no_grad():
__A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : Optional[Any] = outputs.attentions
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
__A : str = len(_UpperCAmelCase)
# Check attention is always last and order is fine
__A : Dict = True
__A : Dict = True
__A : Dict = model_class(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
with torch.no_grad():
__A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : Union[str, Any] = 1
self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase))
__A : Optional[Any] = outputs.attentions
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
__A : Tuple = model_class(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
with torch.no_grad():
__A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : Optional[Any] = outputs.hidden_states
__A : List[str] = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase)
# YOLOS has a different seq_length
__A : Dict = self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , )
__A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A : List[str] = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A : Optional[int] = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase)
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase)
self.assertIsNotNone(_UpperCAmelCase)
def _lowerCAmelCase ( ) -> int:
__A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE (unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase)
__A : Any = self.default_image_processor
__A : str = prepare_img()
__A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase)
# forward pass
with torch.no_grad():
__A : str = model(inputs.pixel_values)
# verify outputs
__A : Tuple = torch.Size((1, 100, 92))
self.assertEqual(outputs.logits.shape , _UpperCAmelCase)
__A : Dict = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , )
__A : int = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4))
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4))
# verify postprocessing
__A : List[str] = image_processor.post_process_object_detection(
_UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0]
__A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase)
__A : Union[str, Any] = [75, 75, 17, 63, 17]
__A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase)
self.assertEqual(len(results['scores']) , 5)
self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4))
self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase)
self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase)) | 8 | 0 |
'''simple docstring'''
import importlib.metadata
from typing import Union
from packaging.version import Version, parse
from .constants import STR_OPERATION_TO_FUNC
a_ : Any = parse(importlib.metadata.version("""torch"""))
def a_ ( __snake_case : Union[str, Version] , __snake_case : str , __snake_case : str ) -> Optional[Any]:
"""simple docstring"""
if operation not in STR_OPERATION_TO_FUNC.keys():
raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' )
lowerCamelCase_ =STR_OPERATION_TO_FUNC[operation]
if isinstance(__snake_case , __snake_case ):
lowerCamelCase_ =parse(importlib.metadata.version(__snake_case ) )
return operation(__snake_case , parse(__snake_case ) )
def a_ ( __snake_case : str , __snake_case : str ) -> Dict:
"""simple docstring"""
return compare_versions(__snake_case , __snake_case , __snake_case )
| 676 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
lowercase__ : Optional[int] = None
lowercase__ : List[str] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
lowercase__ : List[str] = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
},
'''tokenizer_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''',
},
}
lowercase__ : Dict = {
'''camembert-base''': 5_12,
}
lowercase__ : str = '''▁'''
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = VOCAB_FILES_NAMES
lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase = ['''input_ids''', '''attention_mask''']
lowerCAmelCase = CamembertTokenizer
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ):
'''simple docstring'''
__A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token
super().__init__(
_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
__A : List[str] = vocab_file
__A : Optional[int] = False if not self.vocab_file else True
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__A : Optional[Any] = [self.cls_token_id]
__A : Optional[int] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None):
'''simple docstring'''
__A : Optional[int] = [self.sep_token_id]
__A : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.')
if not os.path.isdir(_UpperCAmelCase):
logger.error(F'Vocabulary path ({save_directory}) should be a directory')
return
__A : List[Any] = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase):
copyfile(self.vocab_file , _UpperCAmelCase)
return (out_vocab_file,) | 8 | 0 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase__ ( a__):
UpperCamelCase_ = ["""image_processor""", """tokenizer"""]
UpperCamelCase_ = """CLIPImageProcessor"""
UpperCamelCase_ = ("""CLIPTokenizer""", """CLIPTokenizerFast""")
def __init__( self : Dict , UpperCamelCase__ : Any=None , UpperCamelCase__ : Union[str, Any]=None , **UpperCamelCase__ : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _UpperCAmelCase , )
SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop('''feature_extractor''' )
SCREAMING_SNAKE_CASE : str = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : List[Any] , UpperCamelCase__ : int=None , UpperCamelCase__ : str=None , UpperCamelCase__ : Dict=None , **UpperCamelCase__ : Tuple ):
'''simple docstring'''
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
SCREAMING_SNAKE_CASE : int = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if images is not None:
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if text is not None and images is not None:
SCREAMING_SNAKE_CASE : str = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase )
def __A ( self : Union[str, Any] , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : Dict ):
'''simple docstring'''
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def __A ( self : int , *UpperCamelCase__ : Any , **UpperCamelCase__ : List[Any] ):
'''simple docstring'''
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def __A ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.tokenizer.model_input_names
SCREAMING_SNAKE_CASE : Tuple = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __A ( self : List[Any] ):
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _UpperCAmelCase , )
return self.image_processor_class
@property
def __A ( self : Union[str, Any] ):
'''simple docstring'''
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _UpperCAmelCase , )
return self.image_processor
| 248 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
lowercase__ : Any = '''hf-internal-testing/tiny-random-bert'''
lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''')
lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6'''
class SCREAMING_SNAKE_CASE (unittest.TestCase ):
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase)
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(_UpperCAmelCase))
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase)))
with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f:
__A : Any = f.read()
self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase))
self.assertTrue(os.path.isfile(_UpperCAmelCase))
# File is cached at the same place the second time.
__A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase)
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase)
# Using a specific revision to test the full commit hash.
__A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223')
self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'):
__A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase)
with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'):
__A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa')
with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'):
__A : int = cached_file(_UpperCAmelCase , 'conf')
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'):
__A : Any = cached_file(_UpperCAmelCase , 'conf')
with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f:
__A : Dict = f.read()
self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf')))
__A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase)
self.assertIsNone(_UpperCAmelCase)
__A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase)
self.assertIsNone(_UpperCAmelCase)
__A : List[str] = mock.Mock()
__A : Dict = 500
__A : List[str] = {}
__A : List[Any] = HTTPError
__A : Optional[Any] = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head:
__A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase)
self.assertIsNone(_UpperCAmelCase)
# This check we did call the fake head request
mock_head.assert_called()
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase))
self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase))
self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt'))
# The function raises if the repository does not exist.
with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'):
get_file_from_repo('bert-base-case' , _UpperCAmelCase)
# The function raises if the revision does not exist.
with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'):
get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha')
__A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase)
# The name is the cached name which is not very easy to test, so instead we load the content.
__A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read())
self.assertEqual(config['hidden_size'] , 768)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
__A : Tuple = Path(_UpperCAmelCase) / 'a.txt'
filename.touch()
self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase))
self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt')) | 8 | 0 |
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
_lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE ( lowercase_=None , lowercase_=None ) -> List[str]:
"""simple docstring"""
return field(default_factory=lambda: default , metadata=__snake_case )
@dataclass
class UpperCamelCase_ :
'''simple docstring'''
UpperCAmelCase__ = list_field(
default=[] , metadata={
'''help''': (
'''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version'''
''' of all available models'''
)
} , )
UpperCAmelCase__ = list_field(
default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} )
UpperCAmelCase__ = list_field(
default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , )
UpperCAmelCase__ = field(
default=a__ , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , )
UpperCAmelCase__ = field(
default=a__ , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , )
UpperCAmelCase__ = field(
default=a__ , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} )
UpperCAmelCase__ = field(default=a__ , metadata={'''help''': '''Use FP16 to accelerate inference.'''} )
UpperCAmelCase__ = field(default=a__ , metadata={'''help''': '''Benchmark training of model'''} )
UpperCAmelCase__ = field(default=a__ , metadata={'''help''': '''Verbose memory tracing'''} )
UpperCAmelCase__ = field(
default=a__ , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , )
UpperCAmelCase__ = field(
default=a__ , metadata={
'''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory'''
} , )
UpperCAmelCase__ = field(default=a__ , metadata={'''help''': '''Trace memory line by line'''} )
UpperCAmelCase__ = field(default=a__ , metadata={'''help''': '''Save result to a CSV file'''} )
UpperCAmelCase__ = field(default=a__ , metadata={'''help''': '''Save all print statements in a log file'''} )
UpperCAmelCase__ = field(default=a__ , metadata={'''help''': '''Whether to print environment information'''} )
UpperCAmelCase__ = field(
default=a__ , metadata={
'''help''': (
'''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use'''
''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled'''
''' for debugging / testing and on TPU.'''
)
} , )
UpperCAmelCase__ = field(
default=F"inference_time_{round(time() )}.csv" , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , )
UpperCAmelCase__ = field(
default=F"inference_memory_{round(time() )}.csv" , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , )
UpperCAmelCase__ = field(
default=F"train_time_{round(time() )}.csv" , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , )
UpperCAmelCase__ = field(
default=F"train_memory_{round(time() )}.csv" , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , )
UpperCAmelCase__ = field(
default=F"env_info_{round(time() )}.csv" , metadata={'''help''': '''CSV filename used if saving environment information.'''} , )
UpperCAmelCase__ = field(
default=F"log_{round(time() )}.csv" , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , )
UpperCAmelCase__ = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} )
UpperCAmelCase__ = field(
default=a__ , metadata={
'''help''': (
'''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain'''
''' model weights.'''
)
} , )
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int:
'''simple docstring'''
warnings.warn(
f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"""
''' are deprecated in general and it is advised to use external Benchmarking libraries '''
''' to benchmark Transformer models.''' , _UpperCAmelCase , )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict:
'''simple docstring'''
return json.dumps(dataclasses.asdict(self) , indent=2)
@property
def SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]:
'''simple docstring'''
if len(self.models) <= 0:
raise ValueError(
'''Please make sure you provide at least one model name / model identifier, *e.g.* `--models'''
''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''')
return self.models
@property
def SCREAMING_SNAKE_CASE ( self : List[str]) ->int:
'''simple docstring'''
if not self.multi_process:
return False
elif self.is_tpu:
logger.info('''Multiprocessing is currently not possible on TPU.''')
return False
else:
return True
| 87 |
'''simple docstring'''
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any:
__A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case )
__A : int = AutoModelForSeqaSeqLM.from_config(__snake_case )
model.save_pretrained(__snake_case )
AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version) | 8 | 0 |
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple=0 ) -> Any:
# Format the message.
if name is None:
SCREAMING_SNAKE_CASE_ : Union[str, Any] =None
else:
SCREAMING_SNAKE_CASE_ : List[Any] ='.' * max(0 , spaces - 2 ) + '# {:' + str(5_0 - spaces ) + 's}'
SCREAMING_SNAKE_CASE_ : Dict =fmt.format(__snake_case )
# Print and recurse (if needed).
if isinstance(__snake_case , __snake_case ):
if msg is not None:
print(__snake_case )
for k in val.keys():
recursive_print(__snake_case , val[k] , spaces + 2 )
elif isinstance(__snake_case , torch.Tensor ):
print(__snake_case , ''':''' , val.size() )
else:
print(__snake_case , ''':''' , __snake_case )
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] ) -> Union[str, Any]:
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
SCREAMING_SNAKE_CASE_ : Optional[Any] =param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
SCREAMING_SNAKE_CASE_ : Optional[Any] =(num_heads, hidden_size, num_splits) + input_shape[1:]
SCREAMING_SNAKE_CASE_ : List[str] =param.view(*__snake_case )
SCREAMING_SNAKE_CASE_ : Tuple =param.transpose(0 , 2 )
SCREAMING_SNAKE_CASE_ : Dict =param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
SCREAMING_SNAKE_CASE_ : Dict =(num_heads, num_splits, hidden_size) + input_shape[1:]
SCREAMING_SNAKE_CASE_ : str =param.view(*__snake_case )
SCREAMING_SNAKE_CASE_ : Optional[Any] =param.transpose(0 , 1 ).contiguous()
SCREAMING_SNAKE_CASE_ : Dict =param.view(*__snake_case )
return param
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict ) -> Union[str, Any]:
# The converted output model.
SCREAMING_SNAKE_CASE_ : str ={}
# old versions did not store training args
SCREAMING_SNAKE_CASE_ : List[str] =input_state_dict.get('''args''' , __snake_case )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
SCREAMING_SNAKE_CASE_ : Tuple =ds_args.padded_vocab_size
SCREAMING_SNAKE_CASE_ : str =ds_args.max_position_embeddings
SCREAMING_SNAKE_CASE_ : str =ds_args.hidden_size
SCREAMING_SNAKE_CASE_ : Any =ds_args.num_layers
SCREAMING_SNAKE_CASE_ : List[Any] =ds_args.num_attention_heads
SCREAMING_SNAKE_CASE_ : Union[str, Any] =ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
SCREAMING_SNAKE_CASE_ : List[Any] =config.n_head
# The hidden_size per head.
SCREAMING_SNAKE_CASE_ : List[str] =config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
SCREAMING_SNAKE_CASE_ : Optional[Any] =input_state_dict['checkpoint_version']
else:
SCREAMING_SNAKE_CASE_ : List[str] =0.0
# The model.
SCREAMING_SNAKE_CASE_ : Any =input_state_dict['model']
# The language model.
SCREAMING_SNAKE_CASE_ : Tuple =model['language_model']
# The embeddings.
SCREAMING_SNAKE_CASE_ : Any =lm['embedding']
# The word embeddings.
SCREAMING_SNAKE_CASE_ : int =embeddings['word_embeddings']['weight']
# Truncate the embedding table to vocab_size rows.
SCREAMING_SNAKE_CASE_ : Union[str, Any] =word_embeddings[: config.vocab_size, :]
SCREAMING_SNAKE_CASE_ : Any =word_embeddings
# The position embeddings.
SCREAMING_SNAKE_CASE_ : List[Any] =embeddings['position_embeddings']['weight']
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
SCREAMING_SNAKE_CASE_ : Dict =pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' )
# Store the position embeddings.
SCREAMING_SNAKE_CASE_ : Any =pos_embeddings
# The transformer.
SCREAMING_SNAKE_CASE_ : Any =lm['transformer'] if 'transformer' in lm.keys() else lm['encoder']
# The regex to extract layer names.
SCREAMING_SNAKE_CASE_ : Optional[Any] =re.compile(R'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' )
# The simple map of names for "automated" rules.
SCREAMING_SNAKE_CASE_ : int ={
'attention.dense': '.attn.c_proj.',
'self_attention.dense': '.attn.c_proj.',
'mlp.dense_h_to_4h': '.mlp.c_fc.',
'mlp.dense_4h_to_h': '.mlp.c_proj.',
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
SCREAMING_SNAKE_CASE_ : str =layer_re.match(__snake_case )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
SCREAMING_SNAKE_CASE_ : Any =int(m.group(1 ) )
# The name of the operation.
SCREAMING_SNAKE_CASE_ : List[Any] =m.group(2 )
# Is it a weight or a bias?
SCREAMING_SNAKE_CASE_ : str =m.group(3 )
# The name of the layer.
SCREAMING_SNAKE_CASE_ : Dict =f'transformer.h.{layer_idx}'
# For layernorm(s), simply store the layer norm.
if op_name.endswith('''layernorm''' ):
SCREAMING_SNAKE_CASE_ : str ='ln_1' if op_name.startswith('''input''' ) else 'ln_2'
SCREAMING_SNAKE_CASE_ : Union[str, Any] =val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
SCREAMING_SNAKE_CASE_ : Dict =torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , __snake_case , __snake_case )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =causal_mask
# Insert a "dummy" tensor for masked_bias.
SCREAMING_SNAKE_CASE_ : Any =torch.tensor(-1E4 , dtype=torch.floataa )
SCREAMING_SNAKE_CASE_ : List[Any] =masked_bias
SCREAMING_SNAKE_CASE_ : List[Any] =fix_query_key_value_ordering(__snake_case , __snake_case , 3 , __snake_case , __snake_case )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
SCREAMING_SNAKE_CASE_ : List[Any] =out_val.transpose(0 , 1 ).contiguous()
# Store.
SCREAMING_SNAKE_CASE_ : List[Any] =out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
SCREAMING_SNAKE_CASE_ : Any =fix_query_key_value_ordering(__snake_case , __snake_case , 3 , __snake_case , __snake_case )
# Store. No change of shape.
SCREAMING_SNAKE_CASE_ : Optional[Any] =out_val
# Transpose the weights.
elif weight_or_bias == "weight":
SCREAMING_SNAKE_CASE_ : Union[str, Any] =megatron_to_transformers[op_name]
SCREAMING_SNAKE_CASE_ : Union[str, Any] =val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
SCREAMING_SNAKE_CASE_ : Optional[Any] =megatron_to_transformers[op_name]
SCREAMING_SNAKE_CASE_ : Tuple =val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
SCREAMING_SNAKE_CASE_ : List[Any] =transformer['final_layernorm.weight']
SCREAMING_SNAKE_CASE_ : int =transformer['final_layernorm.bias']
# For LM head, transformers' wants the matrix to weight embeddings.
SCREAMING_SNAKE_CASE_ : Union[str, Any] =word_embeddings
# It should be done!
return output_state_dict
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]:
# Create the argument parser.
SCREAMING_SNAKE_CASE_ : List[Any] =argparse.ArgumentParser()
parser.add_argument('''--print-checkpoint-structure''' , action='''store_true''' )
parser.add_argument(
'''path_to_checkpoint''' , type=__snake_case , help='''Path to the checkpoint file (.zip archive or direct .pt file)''' , )
parser.add_argument(
'''--config_file''' , default='''''' , type=__snake_case , help='''An optional config json file describing the pre-trained model.''' , )
SCREAMING_SNAKE_CASE_ : Optional[Any] =parser.parse_args()
# Extract the basename.
SCREAMING_SNAKE_CASE_ : List[Any] =os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' )
if args.path_to_checkpoint.endswith('''.zip''' ):
with zipfile.ZipFile(args.path_to_checkpoint , '''r''' ) as checkpoint:
with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict:
SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.load(__snake_case , map_location='''cpu''' )
else:
SCREAMING_SNAKE_CASE_ : List[Any] =torch.load(args.path_to_checkpoint , map_location='''cpu''' )
SCREAMING_SNAKE_CASE_ : Dict =input_state_dict.get('''args''' , __snake_case )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
SCREAMING_SNAKE_CASE_ : int ='gelu_fast'
elif ds_args.openai_gelu:
SCREAMING_SNAKE_CASE_ : Dict ='gelu_new'
else:
SCREAMING_SNAKE_CASE_ : int ='gelu'
else:
# in the very early days this used to be "gelu_new"
SCREAMING_SNAKE_CASE_ : Optional[Any] ='gelu_new'
# Spell out all parameters in case the defaults change.
SCREAMING_SNAKE_CASE_ : str =GPTaConfig(
vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__snake_case , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='''cls_index''' , summary_use_proj=__snake_case , summary_activation=__snake_case , summary_proj_to_labels=__snake_case , summary_first_dropout=0.1 , scale_attn_weights=__snake_case , use_cache=__snake_case , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , )
else:
SCREAMING_SNAKE_CASE_ : int =GPTaConfig.from_json_file(args.config_file )
SCREAMING_SNAKE_CASE_ : Optional[Any] =['GPT2LMHeadModel']
# Convert.
print('''Converting''' )
SCREAMING_SNAKE_CASE_ : str =convert_megatron_checkpoint(__snake_case , __snake_case , __snake_case )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(__snake_case , __snake_case )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
SCREAMING_SNAKE_CASE_ : List[Any] =ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
SCREAMING_SNAKE_CASE_ : Tuple ='gpt2'
elif tokenizer_type == "PretrainedFromHF":
SCREAMING_SNAKE_CASE_ : Optional[int] =ds_args.tokenizer_name_or_path
else:
raise ValueError(f'Unrecognized tokenizer_type {tokenizer_type}' )
else:
SCREAMING_SNAKE_CASE_ : int ='gpt2'
SCREAMING_SNAKE_CASE_ : Optional[int] =AutoTokenizer.from_pretrained(__snake_case )
SCREAMING_SNAKE_CASE_ : List[str] =type(__snake_case ).__name__
SCREAMING_SNAKE_CASE_ : int =tokenizer_class
# Store the config to file.
print('''Saving config''' )
config.save_pretrained(__snake_case )
# Save tokenizer based on args
print(f'Adding {tokenizer_class} tokenizer files' )
tokenizer.save_pretrained(__snake_case )
# Store the state_dict to file.
SCREAMING_SNAKE_CASE_ : Dict =os.path.join(__snake_case , '''pytorch_model.bin''' )
print(f'Saving checkpoint to "{output_checkpoint_file}"' )
torch.save(__snake_case , __snake_case )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 443 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
lowercase__ : Any = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = '''tapas'''
def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ):
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase)
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
__A : Dict = vocab_size
__A : Tuple = hidden_size
__A : Any = num_hidden_layers
__A : int = num_attention_heads
__A : Tuple = hidden_act
__A : Tuple = intermediate_size
__A : List[Any] = hidden_dropout_prob
__A : int = attention_probs_dropout_prob
__A : List[str] = max_position_embeddings
__A : Optional[int] = type_vocab_sizes
__A : str = initializer_range
__A : List[str] = layer_norm_eps
# Fine-tuning task hyperparameters
__A : List[str] = positive_label_weight
__A : List[Any] = num_aggregation_labels
__A : Optional[Any] = aggregation_loss_weight
__A : Tuple = use_answer_as_supervision
__A : List[str] = answer_loss_importance
__A : Any = use_normalized_answer_loss
__A : Any = huber_loss_delta
__A : Union[str, Any] = temperature
__A : Tuple = aggregation_temperature
__A : Optional[Any] = use_gumbel_for_cells
__A : List[str] = use_gumbel_for_aggregation
__A : Tuple = average_approximation_function
__A : List[str] = cell_selection_preference
__A : Dict = answer_loss_cutoff
__A : Union[str, Any] = max_num_rows
__A : Optional[Any] = max_num_columns
__A : int = average_logits_per_cell
__A : Optional[Any] = select_one_column
__A : int = allow_empty_column_selection
__A : List[Any] = init_cell_selection_weights_to_zero
__A : int = reset_position_index_per_cell
__A : Union[str, Any] = disable_per_token_loss
# Aggregation hyperparameters
__A : Optional[Any] = aggregation_labels
__A : List[str] = no_aggregation_label_index
if isinstance(self.aggregation_labels , _UpperCAmelCase):
__A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()} | 8 | 0 |
def _UpperCAmelCase ( A = 50 ):
'''simple docstring'''
UpperCAmelCase__ =[1] * (length + 1)
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
ways_number[row_length] += ways_number[
row_length - tile_start - tile_length
]
return ways_number[length]
if __name__ == "__main__":
print(f"""{solution() = }""")
| 625 |
'''simple docstring'''
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize):
'''simple docstring'''
__A : Union[str, Any] = 'bilinear'
__A : int = max_size
__A : Optional[Any] = short_edge_length
def __call__( self , _UpperCAmelCase):
'''simple docstring'''
__A : int = []
for img in imgs:
__A ,__A : Dict = img.shape[:2]
# later: provide list and randomly choose index for resize
__A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1)
if size == 0:
return img
__A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase)
if h < w:
__A ,__A : Optional[Any] = size, scale * w
else:
__A ,__A : Optional[Any] = scale * h, size
if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size:
__A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase)
__A : Tuple = newh * scale
__A : Dict = neww * scale
__A : Dict = int(neww + 0.5)
__A : Optional[int] = int(newh + 0.5)
if img.dtype == np.uinta:
__A : int = Image.fromarray(_UpperCAmelCase)
__A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR)
__A : Dict = np.asarray(_UpperCAmelCase)
else:
__A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw
__A : Dict = nn.functional.interpolate(
_UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0)
img_augs.append(_UpperCAmelCase)
return img_augs
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase):
'''simple docstring'''
__A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST)
__A : List[Any] = cfg.INPUT.FORMAT
__A : Dict = cfg.SIZE_DIVISIBILITY
__A : str = cfg.PAD_VALUE
__A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST
__A : int = cfg.MODEL.DEVICE
__A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1)
__A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1)
__A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
__A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images]))
__A : Dict = [im.shape[-2:] for im in images]
__A : Optional[int] = [
nn.functional.pad(
_UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(_UpperCAmelCase , _UpperCAmelCase)
]
return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase)
def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False):
'''simple docstring'''
with torch.no_grad():
if not isinstance(_UpperCAmelCase , _UpperCAmelCase):
__A : int = [images]
if single_image:
assert len(_UpperCAmelCase) == 1
for i in range(len(_UpperCAmelCase)):
if isinstance(images[i] , torch.Tensor):
images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float())
elif not isinstance(images[i] , torch.Tensor):
images.insert(
_UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format))
.to(self.device)
.float() , )
# resize smallest edge
__A : str = torch.tensor([im.shape[:2] for im in images])
__A : List[str] = self.aug(_UpperCAmelCase)
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
__A : Any = [self.normalizer(_UpperCAmelCase) for x in images]
# now pad them to do the following operations
__A ,__A : Any = self.pad(_UpperCAmelCase)
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
__A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase)
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict:
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int:
assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!"
__A ,__A : int = box_size
tensor[:, 0].clamp_(min=0 , max=__snake_case )
tensor[:, 1].clamp_(min=0 , max=__snake_case )
tensor[:, 2].clamp_(min=0 , max=__snake_case )
tensor[:, 3].clamp_(min=0 , max=__snake_case ) | 8 | 0 |
'''simple docstring'''
class __UpperCamelCase :
def __init__( self :List[Any] ):
snake_case_ : Union[str, Any] = {}
def a__ ( self :List[Any] ):
print(self.vertex )
for i in self.vertex:
print(_UpperCAmelCase ,""" -> """ ,""" -> """.join([str(_UpperCAmelCase ) for j in self.vertex[i]] ) )
def a__ ( self :List[Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :int ):
if from_vertex in self.vertex:
self.vertex[from_vertex].append(_UpperCAmelCase )
else:
# else make a new vertex
snake_case_ : Tuple = [to_vertex]
def a__ ( self :Dict ):
snake_case_ : str = [False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(_UpperCAmelCase ,_UpperCAmelCase )
def a__ ( self :Tuple ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :int ):
snake_case_ : Dict = True
print(_UpperCAmelCase ,end=""" """ )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(_UpperCAmelCase ,_UpperCAmelCase )
if __name__ == "__main__":
__A : Any = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print('DFS:')
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3 | 334 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741
__A : Tuple = len(__snake_case )
__A : Optional[int] = 0
__A : str = [0] * n
__A : int = [False] * n
__A : Tuple = [False] * n
def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ):
if parent == root:
out_edge_count += 1
__A : str = True
__A : Tuple = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
__A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case )
__A : int = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
__A : Tuple = True
# AP found via cycle
if at == low[to]:
__A : Optional[Any] = True
else:
__A : Any = min(low[at] , __snake_case )
return out_edge_count
for i in range(__snake_case ):
if not visited[i]:
__A : Tuple = 0
__A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case )
__A : Union[str, Any] = out_edge_count > 1
for x in range(len(__snake_case ) ):
if is_art[x] is True:
print(__snake_case )
# Adjacency list of graph
lowercase__ : Tuple = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data) | 8 | 0 |
'''simple docstring'''
import sys
lowerCAmelCase_ : int = (
'''73167176531330624919225119674426574742355349194934'''
'''96983520312774506326239578318016984801869478851843'''
'''85861560789112949495459501737958331952853208805511'''
'''12540698747158523863050715693290963295227443043557'''
'''66896648950445244523161731856403098711121722383113'''
'''62229893423380308135336276614282806444486645238749'''
'''30358907296290491560440772390713810515859307960866'''
'''70172427121883998797908792274921901699720888093776'''
'''65727333001053367881220235421809751254540594752243'''
'''52584907711670556013604839586446706324415722155397'''
'''53697817977846174064955149290862569321978468622482'''
'''83972241375657056057490261407972968652414535100474'''
'''82166370484403199890008895243450658541227588666881'''
'''16427171479924442928230863465674813919123162824586'''
'''17866458359124566529476545682848912883142607690042'''
'''24219022671055626321111109370544217506941658960408'''
'''07198403850962455444362981230987879927244284909188'''
'''84580156166097919133875499200524063689912560717606'''
'''05886116467109405077541002256983155200055935729725'''
'''71636269561882670428252483600823257530420752963450'''
)
def _lowerCamelCase (__lowerCamelCase : str ) -> int:
a__ = 1
for digit in s:
product *= int(__snake_case )
return product
def _lowerCamelCase (__lowerCamelCase : str = N ) -> int:
a__ = -sys.maxsize - 1
a__ = n[:13]
a__ = 13
while cur_index < len(__snake_case ) - 13:
if int(n[cur_index] ) >= int(substr[0] ):
a__ = substr[1:] + n[cur_index]
cur_index += 1
else:
a__ = max(__snake_case , str_eval(__snake_case ) )
a__ = n[cur_index : cur_index + 13]
cur_index += 13
return largest_product
if __name__ == "__main__":
print(f"""{solution() = }""")
| 489 |
'''simple docstring'''
import argparse
import torch
# Step 1. clone https://github.com/microsoft/unilm
# Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd
# Step 3. cd unilm
# Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink
# import classes
from unilm.wavlm.WavLM import WavLM as WavLMOrig
from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig
from transformers import WavLMConfig, WavLMModel, logging
logging.set_verbosity_info()
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
lowercase__ : int = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''',
'''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''',
'''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''ctc_proj''',
'''mask_emb''': '''masked_spec_embed''',
}
lowercase__ : Dict = [
'''ctc_proj''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]:
for attribute in key.split('.' ):
__A : int = getattr(__snake_case , __snake_case )
if weight_type is not None:
__A : Optional[int] = getattr(__snake_case , __snake_case ).shape
else:
__A : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}'
)
if weight_type == "weight":
__A : Tuple = value
elif weight_type == "weight_g":
__A : Union[str, Any] = value
elif weight_type == "weight_v":
__A : Optional[Any] = value
elif weight_type == "bias":
__A : Optional[int] = value
else:
__A : Optional[int] = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]:
__A : Optional[Any] = []
__A : Any = fairseq_model.state_dict()
__A : Union[str, Any] = hf_model.feature_extractor
for name, value in fairseq_dict.items():
__A : Union[str, Any] = False
if "conv_layers" in name:
load_conv_layer(
__snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , )
__A : Optional[Any] = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__A : int = True
if "*" in mapped_key:
__A : Any = name.split(__snake_case )[0].split('.' )[-2]
__A : List[Any] = mapped_key.replace('*' , __snake_case )
if "weight_g" in name:
__A : Optional[Any] = 'weight_g'
elif "weight_v" in name:
__A : Union[str, Any] = 'weight_v'
elif "bias" in name and "relative_attention_bias" not in name:
__A : Optional[Any] = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__A : Tuple = 'weight'
else:
__A : Dict = None
set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
continue
if not is_used:
unused_weights.append(__snake_case )
logger.warning(f'Unused weights: {unused_weights}' )
def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int:
__A : int = full_name.split('conv_layers.' )[-1]
__A : List[str] = name.split('.' )
__A : Optional[int] = int(items[0] )
__A : str = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'
)
__A : Optional[int] = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'
)
__A : Union[str, Any] = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'
" found."
)
__A : Dict = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'
)
__A : Any = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(__snake_case )
@torch.no_grad()
def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any:
# load the pre-trained checkpoints
__A : List[str] = torch.load(__snake_case )
__A : Dict = WavLMConfigOrig(checkpoint['cfg'] )
__A : Optional[int] = WavLMOrig(__snake_case )
model.load_state_dict(checkpoint['model'] )
model.eval()
if config_path is not None:
__A : List[Any] = WavLMConfig.from_pretrained(__snake_case )
else:
__A : Dict = WavLMConfig()
__A : Optional[Any] = WavLMModel(__snake_case )
recursively_load_weights(__snake_case , __snake_case )
hf_wavlm.save_pretrained(__snake_case )
if __name__ == "__main__":
lowercase__ : Tuple = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
lowercase__ : Any = parser.parse_args()
convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path) | 8 | 0 |
'''simple docstring'''
def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase ) -> int:
'''simple docstring'''
_A = len(__snake_case ), len(grid[0] )
if (
min(__snake_case , __snake_case ) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col) )
_A = 0
count += depth_first_search(__snake_case , row + 1 , __snake_case , __snake_case )
count += depth_first_search(__snake_case , row - 1 , __snake_case , __snake_case )
count += depth_first_search(__snake_case , __snake_case , col + 1 , __snake_case )
count += depth_first_search(__snake_case , __snake_case , col - 1 , __snake_case )
visit.remove((row, col) )
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 330 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block
@dataclass
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = 42
class SCREAMING_SNAKE_CASE (a__ , a__ ):
@register_to_config
def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ):
'''simple docstring'''
super().__init__()
__A : Dict = sample_size
# time
if time_embedding_type == "fourier":
__A : int = GaussianFourierProjection(
embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase)
__A : Any = 2 * block_out_channels[0]
elif time_embedding_type == "positional":
__A : List[str] = Timesteps(
block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase)
__A : List[str] = block_out_channels[0]
if use_timestep_embedding:
__A : Optional[Any] = block_out_channels[0] * 4
__A : Optional[int] = TimestepEmbedding(
in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , )
__A : Dict = nn.ModuleList([])
__A : Dict = None
__A : Tuple = nn.ModuleList([])
__A : Tuple = None
# down
__A : Any = in_channels
for i, down_block_type in enumerate(_UpperCAmelCase):
__A : Tuple = output_channel
__A : Optional[Any] = block_out_channels[i]
if i == 0:
input_channel += extra_in_channels
__A : List[str] = i == len(_UpperCAmelCase) - 1
__A : int = get_down_block(
_UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , )
self.down_blocks.append(_UpperCAmelCase)
# mid
__A : str = get_mid_block(
_UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , )
# up
__A : Optional[int] = list(reversed(_UpperCAmelCase))
__A : Optional[int] = reversed_block_out_channels[0]
if out_block_type is None:
__A : str = out_channels
else:
__A : List[Any] = block_out_channels[0]
for i, up_block_type in enumerate(_UpperCAmelCase):
__A : Optional[Any] = output_channel
__A : Optional[Any] = (
reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels
)
__A : Dict = i == len(_UpperCAmelCase) - 1
__A : str = get_up_block(
_UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , )
self.up_blocks.append(_UpperCAmelCase)
__A : Optional[int] = output_channel
# out
__A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32)
__A : Optional[Any] = get_out_block(
out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , )
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ):
'''simple docstring'''
__A : Any = timestep
if not torch.is_tensor(_UpperCAmelCase):
__A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device)
elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0:
__A : Any = timesteps[None].to(sample.device)
__A : List[Any] = self.time_proj(_UpperCAmelCase)
if self.config.use_timestep_embedding:
__A : Dict = self.time_mlp(_UpperCAmelCase)
else:
__A : Dict = timestep_embed[..., None]
__A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype)
__A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]))
# 2. down
__A : int = ()
for downsample_block in self.down_blocks:
__A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase)
down_block_res_samples += res_samples
# 3. mid
if self.mid_block:
__A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase)
# 4. up
for i, upsample_block in enumerate(self.up_blocks):
__A : Any = down_block_res_samples[-1:]
__A : Optional[int] = down_block_res_samples[:-1]
__A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase)
# 5. post-process
if self.out_block:
__A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase)
if not return_dict:
return (sample,)
return UNetaDOutput(sample=_UpperCAmelCase) | 8 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
'''configuration_blip_2''': [
'''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Blip2Config''',
'''Blip2QFormerConfig''',
'''Blip2VisionConfig''',
],
'''processing_blip_2''': ['''Blip2Processor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Dict = [
'''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Blip2Model''',
'''Blip2QFormerModel''',
'''Blip2PreTrainedModel''',
'''Blip2ForConditionalGeneration''',
'''Blip2VisionModel''',
]
if TYPE_CHECKING:
from .configuration_blip_a import (
BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlipaConfig,
BlipaQFormerConfig,
BlipaVisionConfig,
)
from .processing_blip_a import BlipaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip_a import (
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipaForConditionalGeneration,
BlipaModel,
BlipaPreTrainedModel,
BlipaQFormerModel,
BlipaVisionModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 311 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int:
if len(__snake_case ) != len(__snake_case ):
raise ValueError('String lengths must match!' )
__A : Optional[Any] = 0
for chara, chara in zip(__snake_case , __snake_case ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser(
description=(
'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='bert', choices=['bert'])
parser.add_argument('--model_name', default='bert-base-uncased', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
lowerCAmelCase_ = parser.parse_args()
if args.model_type == "bert":
lowerCAmelCase_ = BertForMaskedLM.from_pretrained(args.model_name)
lowerCAmelCase_ = '''bert'''
else:
raise ValueError('args.model_type should be "bert".')
lowerCAmelCase_ = model.state_dict()
lowerCAmelCase_ = {}
for w in ["word_embeddings", "position_embeddings"]:
lowerCAmelCase_ = state_dict[f'''{prefix}.embeddings.{w}.weight''']
for w in ["weight", "bias"]:
lowerCAmelCase_ = state_dict[f'''{prefix}.embeddings.LayerNorm.{w}''']
lowerCAmelCase_ = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
for w in ["weight", "bias"]:
lowerCAmelCase_ = state_dict[
f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}'''
]
lowerCAmelCase_ = state_dict[
f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}'''
]
lowerCAmelCase_ = state_dict[
f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}'''
]
lowerCAmelCase_ = state_dict[
f'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}'''
]
lowerCAmelCase_ = state_dict[
f'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}'''
]
lowerCAmelCase_ = state_dict[
f'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}'''
]
lowerCAmelCase_ = state_dict[
f'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}'''
]
lowerCAmelCase_ = state_dict[
f'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}'''
]
std_idx += 1
lowerCAmelCase_ = state_dict['''cls.predictions.decoder.weight''']
lowerCAmelCase_ = state_dict['''cls.predictions.bias''']
if args.vocab_transform:
for w in ["weight", "bias"]:
lowerCAmelCase_ = state_dict[f'''cls.predictions.transform.dense.{w}''']
lowerCAmelCase_ = state_dict[f'''cls.predictions.transform.LayerNorm.{w}''']
print(f'''N layers selected for distillation: {std_idx}''')
print(f'''Number of params transferred for distillation: {len(compressed_sd.keys())}''')
print(f'''Save transferred checkpoint to {args.dump_checkpoint}.''')
torch.save(compressed_sd, args.dump_checkpoint) | 217 |
'''simple docstring'''
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Tuple = logging.get_logger(__name__)
def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]:
__A : int = RobertaPreLayerNormConfig.from_pretrained(
__snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] )
# convert state_dict
__A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) )
__A : str = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith('roberta.' ):
__A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ):
continue
__A : str = tensor_value
__A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case )
model.save_pretrained(__snake_case )
# convert tokenizer
__A : List[Any] = AutoTokenizer.from_pretrained(__snake_case )
tokenizer.save_pretrained(__snake_case )
if __name__ == "__main__":
lowercase__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint-repo''',
default=None,
type=str,
required=True,
help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path) | 8 | 0 |
'''simple docstring'''
def __snake_case ( _UpperCAmelCase : Dict):
UpperCamelCase = [0] * len(__snake_case)
UpperCamelCase = []
UpperCamelCase = [1] * len(__snake_case)
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(__snake_case)):
if indegree[i] == 0:
queue.append(__snake_case)
while queue:
UpperCamelCase = queue.pop(0)
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
UpperCamelCase = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(__snake_case)
print(max(__snake_case))
# Adjacency list of Graph
snake_case_ : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 212 |
'''simple docstring'''
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
lowercase__ : Dict = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} )
lowerCAmelCase = field(
default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
lowerCAmelCase = field(
default=a__ , metadata={
'''help''': (
'''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `max_length` value of the model configuration.'''
)
} , )
lowerCAmelCase = field(
default=a__ , metadata={
'''help''': (
'''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `num_beams` value of the model configuration.'''
)
} , )
lowerCAmelCase = field(
default=a__ , metadata={
'''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'''
} , )
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[Any] = super().to_dict()
for k, v in d.items():
if isinstance(_UpperCAmelCase , _UpperCAmelCase):
__A : List[Any] = v.to_dict()
return d | 8 | 0 |
'''simple docstring'''
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
'''kwargs, expected''' , [
({'''num_shards''': 0, '''max_num_jobs''': 1}, []),
({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]),
({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__snake_case , i + 1 ) for i in range(10 )]),
({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]),
({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]),
({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def a_ ( __snake_case : List[Any] , __snake_case : Any ) -> Any:
"""simple docstring"""
lowerCamelCase_ =_distribute_shards(**__snake_case )
assert out == expected
@pytest.mark.parametrize(
'''gen_kwargs, max_num_jobs, expected''' , [
({'''foo''': 0}, 10, [{'''foo''': 0}]),
({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]),
({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]),
({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]),
({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]),
] , )
def a_ ( __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Optional[int] ) -> List[str]:
"""simple docstring"""
lowerCamelCase_ =_split_gen_kwargs(__snake_case , __snake_case )
assert out == expected
@pytest.mark.parametrize(
'''gen_kwargs, expected''' , [
({'''foo''': 0}, 1),
({'''shards''': [0]}, 1),
({'''shards''': [0, 1, 2, 3]}, 4),
({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4),
({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4),
({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError),
] , )
def a_ ( __snake_case : Dict , __snake_case : List[Any] ) -> Optional[Any]:
"""simple docstring"""
if expected is RuntimeError:
with pytest.raises(__snake_case ):
_number_of_shards_in_gen_kwargs(__snake_case )
else:
lowerCamelCase_ =_number_of_shards_in_gen_kwargs(__snake_case )
assert out == expected
| 676 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : List[Any] = logging.get_logger(__name__)
lowercase__ : Optional[int] = {
'''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''',
}
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = '''lxmert'''
lowerCAmelCase = {}
def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ):
'''simple docstring'''
__A : Tuple = vocab_size
__A : int = hidden_size
__A : str = num_attention_heads
__A : Tuple = hidden_act
__A : int = intermediate_size
__A : str = hidden_dropout_prob
__A : Optional[int] = attention_probs_dropout_prob
__A : Optional[Any] = max_position_embeddings
__A : Tuple = type_vocab_size
__A : Optional[int] = initializer_range
__A : Any = layer_norm_eps
__A : Optional[Any] = num_qa_labels
__A : Optional[int] = num_object_labels
__A : Any = num_attr_labels
__A : Union[str, Any] = l_layers
__A : Optional[int] = x_layers
__A : List[Any] = r_layers
__A : Tuple = visual_feat_dim
__A : Tuple = visual_pos_dim
__A : Optional[int] = visual_loss_normalizer
__A : int = task_matched
__A : List[Any] = task_mask_lm
__A : Optional[Any] = task_obj_predict
__A : str = task_qa
__A : List[Any] = visual_obj_loss
__A : Optional[Any] = visual_attr_loss
__A : Union[str, Any] = visual_feat_loss
__A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers}
super().__init__(**_UpperCAmelCase) | 8 | 0 |
import argparse
import json
from collections import OrderedDict
from functools import partial
from pathlib import Path
import timm
import torch
from huggingface_hub import hf_hub_download
from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCamelCase : Optional[int] = logging.get_logger()
def A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = True ):
print(f"""Converting {name}...""" )
with torch.no_grad():
if hidden_sizes == 128:
if name[-1] == "S":
SCREAMING_SNAKE_CASE : Tuple = timm.create_model('''levit_128s''' , pretrained=__snake_case )
else:
SCREAMING_SNAKE_CASE : Any = timm.create_model('''levit_128''' , pretrained=__snake_case )
if hidden_sizes == 192:
SCREAMING_SNAKE_CASE : Union[str, Any] = timm.create_model('''levit_192''' , pretrained=__snake_case )
if hidden_sizes == 256:
SCREAMING_SNAKE_CASE : List[Any] = timm.create_model('''levit_256''' , pretrained=__snake_case )
if hidden_sizes == 384:
SCREAMING_SNAKE_CASE : List[str] = timm.create_model('''levit_384''' , pretrained=__snake_case )
from_model.eval()
SCREAMING_SNAKE_CASE : Tuple = LevitForImageClassificationWithTeacher(__snake_case ).eval()
SCREAMING_SNAKE_CASE : List[Any] = OrderedDict()
SCREAMING_SNAKE_CASE : int = from_model.state_dict()
SCREAMING_SNAKE_CASE : List[Any] = list(from_model.state_dict().keys() )
SCREAMING_SNAKE_CASE : Optional[int] = list(our_model.state_dict().keys() )
print(len(__snake_case ) , len(__snake_case ) )
for i in range(len(__snake_case ) ):
SCREAMING_SNAKE_CASE : Optional[int] = weights[og_keys[i]]
our_model.load_state_dict(__snake_case )
SCREAMING_SNAKE_CASE : Tuple = torch.randn((2, 3, 224, 224) )
SCREAMING_SNAKE_CASE : Optional[int] = from_model(__snake_case )
SCREAMING_SNAKE_CASE : List[str] = our_model(__snake_case ).logits
assert torch.allclose(__snake_case , __snake_case ), "The model logits don't match the original one."
SCREAMING_SNAKE_CASE : List[Any] = name
print(__snake_case )
if push_to_hub:
our_model.save_pretrained(save_directory / checkpoint_name )
SCREAMING_SNAKE_CASE : Optional[int] = LevitImageProcessor()
image_processor.save_pretrained(save_directory / checkpoint_name )
print(f"""Pushed {checkpoint_name}""" )
def A ( _lowercase , _lowercase = None , _lowercase = True ):
SCREAMING_SNAKE_CASE : Tuple = 'imagenet-1k-id2label.json'
SCREAMING_SNAKE_CASE : List[str] = 1_000
SCREAMING_SNAKE_CASE : Any = (1, num_labels)
SCREAMING_SNAKE_CASE : Dict = 'huggingface/label-files'
SCREAMING_SNAKE_CASE : Optional[Any] = num_labels
SCREAMING_SNAKE_CASE : str = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) )
SCREAMING_SNAKE_CASE : Union[str, Any] = {int(__snake_case ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : Tuple = idalabel
SCREAMING_SNAKE_CASE : Dict = {v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : List[Any] = partial(__snake_case , num_labels=__snake_case , idalabel=__snake_case , labelaid=__snake_case )
SCREAMING_SNAKE_CASE : Optional[Any] = {
'levit-128S': 128,
'levit-128': 128,
'levit-192': 192,
'levit-256': 256,
'levit-384': 384,
}
SCREAMING_SNAKE_CASE : Optional[Any] = {
'levit-128S': ImageNetPreTrainedConfig(
hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ),
'levit-128': ImageNetPreTrainedConfig(
hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ),
'levit-192': ImageNetPreTrainedConfig(
hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ),
'levit-256': ImageNetPreTrainedConfig(
hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ),
'levit-384': ImageNetPreTrainedConfig(
hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ),
}
if model_name:
convert_weight_and_push(
names_to_hidden_sizes[model_name] , __snake_case , names_to_config[model_name] , __snake_case , __snake_case )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(names_to_hidden_sizes[model_name] , __snake_case , __snake_case , __snake_case , __snake_case )
return config, expected_shape
if __name__ == "__main__":
__UpperCamelCase : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default=None,
type=str,
help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='levit-dump-folder/',
type=Path,
required=False,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
parser.add_argument(
'--no-push_to_hub',
dest='push_to_hub',
action='store_false',
help='Do not push model and image processor to the hub',
)
__UpperCamelCase : Optional[Any] = parser.parse_args()
__UpperCamelCase : Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 248 |
'''simple docstring'''
import math
import sys
def _lowerCAmelCase ( __snake_case : int ) -> int:
if number != int(__snake_case ):
raise ValueError('the value of input must be a natural number' )
if number < 0:
raise ValueError('the value of input must not be a negative number' )
if number == 0:
return 1
__A : str = [-1] * (number + 1)
__A : Dict = 0
for i in range(1 , number + 1 ):
__A : int = sys.maxsize
__A : int = int(math.sqrt(__snake_case ) )
for j in range(1 , root + 1 ):
__A : str = 1 + answers[i - (j**2)]
__A : Dict = min(__snake_case , __snake_case )
__A : Union[str, Any] = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
import torch
from diffusers import DiffusionPipeline
class UpperCamelCase_ ( a__ ):
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int) ->str:
'''simple docstring'''
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase)
def __call__( self : str) ->Dict:
'''simple docstring'''
A__ = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
A__ = 1
A__ = self.unet(_UpperCAmelCase , _UpperCAmelCase).sample
A__ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase).prev_sample
A__ = scheduler_output - scheduler_output + torch.ones_like(_UpperCAmelCase)
return result
| 87 |
'''simple docstring'''
from __future__ import annotations
def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]:
__A : int = list(range(len(__snake_case ) ) )
__A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )]
index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case )
__A : float = 0
__A : list[float] = [0] * len(__snake_case )
for i in index:
if weight[i] <= capacity:
__A : Optional[int] = 1
max_value += value[i]
capacity -= weight[i]
else:
__A : List[Any] = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowercase = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
_lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 443 |
'''simple docstring'''
from __future__ import annotations
import math
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase):
'''simple docstring'''
__A : int = size
# approximate the overall size of segment tree with given value
__A : Optional[Any] = [0 for i in range(0 , 4 * size)]
# create array to store lazy update
__A : Optional[Any] = [0 for i in range(0 , 4 * size)]
__A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
return idx * 2
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
return idx * 2 + 1
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
if left_element == right_element:
__A : List[Any] = a[left_element - 1]
else:
__A : List[str] = (left_element + right_element) // 2
self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase)
__A : Any = max(
self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)])
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
if self.flag[idx] is True:
__A : Optional[Any] = self.lazy[idx]
__A : Optional[Any] = False
if left_element != right_element:
__A : List[Any] = self.lazy[idx]
__A : Dict = self.lazy[idx]
__A : Tuple = True
__A : Union[str, Any] = True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
__A : Optional[int] = val
if left_element != right_element:
__A : Tuple = val
__A : Any = val
__A : Tuple = True
__A : Union[str, Any] = True
return True
__A : str = (left_element + right_element) // 2
self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
__A : int = max(
self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)])
return True
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
if self.flag[idx] is True:
__A : Union[str, Any] = self.lazy[idx]
__A : List[str] = False
if left_element != right_element:
__A : Union[str, Any] = self.lazy[idx]
__A : Optional[int] = self.lazy[idx]
__A : str = True
__A : Union[str, Any] = True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
__A : Any = (left_element + right_element) // 2
__A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
__A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
return max(_UpperCAmelCase , _UpperCAmelCase)
def __str__( self):
'''simple docstring'''
return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)])
if __name__ == "__main__":
lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
lowercase__ : str = 15
lowercase__ : List[Any] = SegmentTree(size)
segt.build(1, 1, size, A)
print(segt.query(1, 1, size, 4, 6))
print(segt.query(1, 1, size, 7, 11))
print(segt.query(1, 1, size, 7, 12))
segt.update(1, 1, size, 1, 3, 1_11)
print(segt.query(1, 1, size, 1, 15))
segt.update(1, 1, size, 7, 8, 2_35)
print(segt) | 8 | 0 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
UpperCamelCase_ = 0
UpperCamelCase_ = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
UpperCamelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
UpperCamelCase_ = tuple[int, int]
class snake_case_ :
'''simple docstring'''
def __init__( self, A_, A_, A_, A_, A_, A_, ) -> Dict:
UpperCAmelCase__ =pos_x
UpperCAmelCase__ =pos_y
UpperCAmelCase__ =(pos_y, pos_x)
UpperCAmelCase__ =goal_x
UpperCAmelCase__ =goal_y
UpperCAmelCase__ =g_cost
UpperCAmelCase__ =parent
UpperCAmelCase__ =self.calculate_heuristic()
UpperCAmelCase__ =self.g_cost + self.h_cost
def __UpperCAmelCase ( self ) -> Dict:
UpperCAmelCase__ =self.pos_x - self.goal_x
UpperCAmelCase__ =self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(_UpperCAmelCase ) + abs(_UpperCAmelCase )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self, A_ ) -> List[str]:
return self.f_cost < other.f_cost
class snake_case_ :
'''simple docstring'''
def __init__( self, A_, A_ ) -> Optional[int]:
UpperCAmelCase__ =Node(start[1], start[0], goal[1], goal[0], 0, _UpperCAmelCase )
UpperCAmelCase__ =Node(goal[1], goal[0], goal[1], goal[0], 9_9999, _UpperCAmelCase )
UpperCAmelCase__ =[self.start]
UpperCAmelCase__ =[]
UpperCAmelCase__ =False
def __UpperCAmelCase ( self ) -> str:
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
UpperCAmelCase__ =self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(_UpperCAmelCase )
self.closed_nodes.append(_UpperCAmelCase )
UpperCAmelCase__ =self.get_successors(_UpperCAmelCase )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(_UpperCAmelCase )
else:
# retrieve the best current path
UpperCAmelCase__ =self.open_nodes.pop(self.open_nodes.index(_UpperCAmelCase ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(_UpperCAmelCase )
else:
self.open_nodes.append(_UpperCAmelCase )
return [self.start.pos]
def __UpperCAmelCase ( self, A_ ) -> Dict:
UpperCAmelCase__ =[]
for action in delta:
UpperCAmelCase__ =parent.pos_x + action[1]
UpperCAmelCase__ =parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCAmelCase ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
_UpperCAmelCase, _UpperCAmelCase, self.target.pos_y, self.target.pos_x, parent.g_cost + 1, _UpperCAmelCase, ) )
return successors
def __UpperCAmelCase ( self, A_ ) -> List[str]:
UpperCAmelCase__ =node
UpperCAmelCase__ =[]
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
UpperCAmelCase__ =current_node.parent
path.reverse()
return path
class snake_case_ :
'''simple docstring'''
def __init__( self, A_, A_ ) -> Optional[Any]:
UpperCAmelCase__ =AStar(_UpperCAmelCase, _UpperCAmelCase )
UpperCAmelCase__ =AStar(_UpperCAmelCase, _UpperCAmelCase )
UpperCAmelCase__ =False
def __UpperCAmelCase ( self ) -> Dict:
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
UpperCAmelCase__ =self.fwd_astar.open_nodes.pop(0 )
UpperCAmelCase__ =self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
_UpperCAmelCase, _UpperCAmelCase )
self.fwd_astar.closed_nodes.append(_UpperCAmelCase )
self.bwd_astar.closed_nodes.append(_UpperCAmelCase )
UpperCAmelCase__ =current_bwd_node
UpperCAmelCase__ =current_fwd_node
UpperCAmelCase__ ={
self.fwd_astar: self.fwd_astar.get_successors(_UpperCAmelCase ),
self.bwd_astar: self.bwd_astar.get_successors(_UpperCAmelCase ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(_UpperCAmelCase )
else:
# retrieve the best current path
UpperCAmelCase__ =astar.open_nodes.pop(
astar.open_nodes.index(_UpperCAmelCase ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(_UpperCAmelCase )
else:
astar.open_nodes.append(_UpperCAmelCase )
return [self.fwd_astar.start.pos]
def __UpperCAmelCase ( self, A_, A_ ) -> str:
UpperCAmelCase__ =self.fwd_astar.retrace_path(_UpperCAmelCase )
UpperCAmelCase__ =self.bwd_astar.retrace_path(_UpperCAmelCase )
bwd_path.pop()
bwd_path.reverse()
UpperCAmelCase__ =fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
UpperCamelCase_ = (0, 0)
UpperCamelCase_ = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
UpperCamelCase_ = time.time()
UpperCamelCase_ = AStar(init, goal)
UpperCamelCase_ = a_star.search()
UpperCamelCase_ = time.time() - start_time
print(f"""AStar execution time = {end_time:f} seconds""")
UpperCamelCase_ = time.time()
UpperCamelCase_ = BidirectionalAStar(init, goal)
UpperCamelCase_ = time.time() - bd_start_time
print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
| 625 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float:
__A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
# formula for sum of series
return total
def _lowerCAmelCase ( ) -> Union[str, Any]:
print(sum_of_series(1 , 1 , 10 ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
'''simple docstring'''
import numpy as np
import datasets
__A : Optional[int] = '''
Compute the Mahalanobis Distance
Mahalonobis distance is the distance between a point and a distribution.
And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.
It was introduced by Prof. P. C. Mahalanobis in 1936
and has been used in various statistical applications ever since
[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]
'''
__A : List[str] = '''\
@article{de2000mahalanobis,
title={The mahalanobis distance},
author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},
journal={Chemometrics and intelligent laboratory systems},
volume={50},
number={1},
pages={1--18},
year={2000},
publisher={Elsevier}
}
'''
__A : Tuple = '''
Args:
X: List of datapoints to be compared with the `reference_distribution`.
reference_distribution: List of datapoints from the reference distribution we want to compare to.
Returns:
mahalanobis: The Mahalonobis distance for each datapoint in `X`.
Examples:
>>> mahalanobis_metric = datasets.load_metric("mahalanobis")
>>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])
>>> print(results)
{\'mahalanobis\': array([0.5])}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __UpperCamelCase ( datasets.Metric ):
def a__ ( self :List[str] ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
"""X""": datasets.Sequence(datasets.Value("""float""" ,id="""sequence""" ) ,id="""X""" ),
} ) ,)
def a__ ( self :str ,_UpperCamelCase :Tuple ,_UpperCamelCase :List[str] ):
snake_case_ : Any = np.array(_UpperCAmelCase )
snake_case_ : Union[str, Any] = np.array(_UpperCAmelCase )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError("""Expected `X` to be a 2D vector""" )
if len(reference_distribution.shape ) != 2:
raise ValueError("""Expected `reference_distribution` to be a 2D vector""" )
if reference_distribution.shape[0] < 2:
raise ValueError(
"""Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension""" )
# Get mahalanobis distance for each prediction
snake_case_ : Union[str, Any] = X - np.mean(_UpperCAmelCase )
snake_case_ : Tuple = np.cov(reference_distribution.T )
try:
snake_case_ : str = np.linalg.inv(_UpperCAmelCase )
except np.linalg.LinAlgError:
snake_case_ : List[Any] = np.linalg.pinv(_UpperCAmelCase )
snake_case_ : int = np.dot(_UpperCAmelCase ,_UpperCAmelCase )
snake_case_ : Union[str, Any] = np.dot(_UpperCAmelCase ,X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist} | 334 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ):
'''simple docstring'''
__A : Optional[int] = parent
__A : str = 13
__A : List[Any] = 7
__A : List[str] = True
__A : str = True
__A : Optional[Any] = True
__A : int = True
__A : Dict = 99
__A : Dict = 384
__A : Any = 2
__A : int = 4
__A : Optional[Any] = 37
__A : Optional[int] = 'gelu'
__A : Dict = 0.1
__A : Optional[int] = 0.1
__A : Any = 512
__A : int = 16
__A : List[str] = 2
__A : str = 0.02
__A : Any = 3
__A : str = 4
__A : Union[str, Any] = 128
__A : int = 2
__A : List[Any] = 9
__A : List[Any] = 1
__A : List[Any] = None
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__A : str = None
if self.use_input_mask:
__A : List[Any] = random_attention_mask([self.batch_size, self.seq_length])
__A : Optional[Any] = None
if self.use_token_type_ids:
__A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
__A : Optional[int] = None
__A : List[str] = None
__A : Dict = None
if self.use_labels:
__A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__A : str = ids_tensor([self.batch_size] , self.num_choices)
__A : List[Any] = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : int = TFConvBertModel(config=_UpperCAmelCase)
__A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__A : Tuple = [input_ids, input_mask]
__A : Any = model(_UpperCAmelCase)
__A : Dict = model(_UpperCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase)
__A : str = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : str = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Optional[int] = self.num_labels
__A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase)
__A : Optional[Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : Dict = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Tuple = self.num_choices
__A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase)
__A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1))
__A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1))
__A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1))
__A : int = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__A : Optional[Any] = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : List[Any] = self.num_labels
__A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase)
__A : str = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : int = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase)
__A : Any = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : Union[str, Any] = model(_UpperCAmelCase)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Optional[int] = self.prepare_config_and_inputs()
(
(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,
) : Union[str, Any] = config_and_inputs
__A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ):
lowerCAmelCase = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase = (
{
'''feature-extraction''': TFConvBertModel,
'''fill-mask''': TFConvBertForMaskedLM,
'''question-answering''': TFConvBertForQuestionAnswering,
'''text-classification''': TFConvBertForSequenceClassification,
'''token-classification''': TFConvBertForTokenClassification,
'''zero-shot''': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = TFConvBertModelTester(self)
__A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase)
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__A : List[str] = True
__A : List[str] = True
if hasattr(_UpperCAmelCase , 'use_cache'):
__A : List[Any] = True
__A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length)
__A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase)
for model_class in self.all_model_classes:
__A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)
__A : Optional[int] = model_class(_UpperCAmelCase)
__A : Optional[Any] = len(model(_UpperCAmelCase))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase)
__A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1')
__A : Tuple = tf.keras.models.load_model(_UpperCAmelCase)
__A : str = model(_UpperCAmelCase)
if self.is_encoder_decoder:
__A : Optional[int] = outputs['encoder_hidden_states']
__A : str = outputs['encoder_attentions']
else:
__A : List[Any] = outputs['hidden_states']
__A : Optional[Any] = outputs['attentions']
self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase)
__A : str = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase)
self.assertListEqual(
list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base')
self.assertIsNotNone(_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__A : Any = True
__A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length)
__A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length)
__A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase)
__A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase)
def check_decoder_attentions_output(_UpperCAmelCase):
__A : List[str] = len(_UpperCAmelCase)
self.assertEqual(out_len % 2 , 0)
__A : Any = outputs.decoder_attentions
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_UpperCAmelCase):
__A : str = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__A : Dict = True
__A : Any = False
__A : str = model_class(_UpperCAmelCase)
__A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : List[str] = len(_UpperCAmelCase)
self.assertEqual(config.output_hidden_states , _UpperCAmelCase)
check_encoder_attentions_output(_UpperCAmelCase)
if self.is_encoder_decoder:
__A : Union[str, Any] = model_class(_UpperCAmelCase)
__A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
self.assertEqual(config.output_hidden_states , _UpperCAmelCase)
check_decoder_attentions_output(_UpperCAmelCase)
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__A : int = True
__A : Tuple = model_class(_UpperCAmelCase)
__A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
self.assertEqual(config.output_hidden_states , _UpperCAmelCase)
check_encoder_attentions_output(_UpperCAmelCase)
# Check attention is always last and order is fine
__A : Any = True
__A : str = True
__A : Union[str, Any] = model_class(_UpperCAmelCase)
__A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase))
self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase)
check_encoder_attentions_output(_UpperCAmelCase)
@require_tf
class SCREAMING_SNAKE_CASE (unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base')
__A : str = tf.constant([[0, 1, 2, 3, 4, 5]])
__A : Optional[int] = model(_UpperCAmelCase)[0]
__A : List[Any] = [1, 6, 768]
self.assertEqual(output.shape , _UpperCAmelCase)
__A : Tuple = tf.constant(
[
[
[-0.03475493, -0.4686034, -0.30638832],
[0.22637248, -0.26988646, -0.7423424],
[0.10324868, -0.45013508, -0.58280784],
]
])
tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4) | 8 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCAmelCase_ : int = {
'''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : Optional[int] = [
'''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MegaForCausalLM''',
'''MegaForMaskedLM''',
'''MegaForMultipleChoice''',
'''MegaForQuestionAnswering''',
'''MegaForSequenceClassification''',
'''MegaForTokenClassification''',
'''MegaModel''',
'''MegaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 489 |
'''simple docstring'''
import argparse
import os
import re
lowercase__ : Optional[int] = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
lowercase__ : Dict = re.compile(r'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowercase__ : str = re.compile(r'''\[([^\]]+)\]''')
def _lowerCAmelCase ( __snake_case : str ) -> Tuple:
__A : List[Any] = _re_indent.search(__snake_case )
return "" if search is None else search.groups()[0]
def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]:
__A : Tuple = 0
__A : Optional[int] = code.split('\n' )
if start_prompt is not None:
while not lines[index].startswith(__snake_case ):
index += 1
__A : Optional[int] = ['\n'.join(lines[:index] )]
else:
__A : Any = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
__A : Tuple = [lines[index]]
index += 1
while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ):
current_block.append(lines[index] )
blocks.append('\n'.join(__snake_case ) )
if index < len(__snake_case ) - 1:
__A : Union[str, Any] = [lines[index + 1]]
index += 1
else:
__A : Union[str, Any] = []
else:
blocks.append('\n'.join(__snake_case ) )
__A : Optional[Any] = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(__snake_case ) > 0:
blocks.append('\n'.join(__snake_case ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(__snake_case ):
blocks.append('\n'.join(lines[index:] ) )
return blocks
def _lowerCAmelCase ( __snake_case : List[Any] ) -> int:
def _inner(__snake_case : List[Any] ):
return key(__snake_case ).lower().replace('_' , '' )
return _inner
def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]:
# If no key is provided, we use a noop.
def noop(__snake_case : List[Any] ):
return x
if key is None:
__A : Optional[Any] = noop
# Constants are all uppercase, they go first.
__A : str = [obj for obj in objects if key(__snake_case ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
__A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()]
# Functions begin with a lowercase, they go last.
__A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()]
__A : Tuple = ignore_underscore(__snake_case )
return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case )
def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple:
# This inner function sort imports between [ ].
def _replace(__snake_case : Tuple ):
__A : List[str] = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
__A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__A : Dict = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]"
__A : List[Any] = import_statement.split('\n' )
if len(__snake_case ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
__A : Optional[int] = 2 if lines[1].strip() == '[' else 1
__A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
__A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] )
__A : Any = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(__snake_case ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
__A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] )
else:
__A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__A : Tuple = keys[:-1]
__A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] )
return "\n".join(__snake_case )
else:
# Finally we have to deal with imports fitting on one line
__A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case )
return import_statement
def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]:
with open(__snake_case , 'r' ) as f:
__A : Dict = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
__A : str = split_code_in_indented_blocks(
__snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(__snake_case ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
__A : Tuple = main_blocks[block_idx]
__A : int = block.split('\n' )
# Get to the start of the imports.
__A : Tuple = 0
while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
__A : Optional[int] = len(__snake_case )
else:
line_idx += 1
if line_idx >= len(__snake_case ):
continue
# Ignore beginning and last line: they don't contain anything.
__A : Dict = '\n'.join(block_lines[line_idx:-1] )
__A : int = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
__A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case )
# We have two categories of import key: list or _import_structure[key].append/extend
__A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
__A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
__A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None]
__A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
__A : str = 0
__A : Any = []
for i in range(len(__snake_case ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
__A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(__snake_case )
count += 1
# And we put our main block back together with its first and last line.
__A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(__snake_case ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(__snake_case , 'w' ) as f:
f.write('\n'.join(__snake_case ) )
def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]:
__A : Tuple = []
for root, _, files in os.walk(__snake_case ):
if "__init__.py" in files:
__A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case )
if result:
__A : Dict = [os.path.join(__snake_case , '__init__.py' )]
if len(__snake_case ) > 0:
raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' )
if __name__ == "__main__":
lowercase__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
lowercase__ : Union[str, Any] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only) | 8 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCamelCase_ = {
'''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig''']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
'''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ResNetForImageClassification''',
'''ResNetModel''',
'''ResNetPreTrainedModel''',
'''ResNetBackbone''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
'''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFResNetForImageClassification''',
'''TFResNetModel''',
'''TFResNetPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
'''FlaxResNetForImageClassification''',
'''FlaxResNetModel''',
'''FlaxResNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 330 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : int ) -> bool:
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print('''Program to check whether a number is a Perfect number or not...''')
lowercase__ : int = int(input('''Enter number: ''').strip())
print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""") | 8 | 0 |
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def A ( _SCREAMING_SNAKE_CASE ) -> int:
lowerCamelCase : Union[str, Any] = SwinConfig(image_size=192 )
if "base" in model_name:
lowerCamelCase : Any = 6
lowerCamelCase : Tuple = 128
lowerCamelCase : str = (2, 2, 18, 2)
lowerCamelCase : Dict = (4, 8, 16, 32)
elif "large" in model_name:
lowerCamelCase : str = 12
lowerCamelCase : Tuple = 192
lowerCamelCase : str = (2, 2, 18, 2)
lowerCamelCase : List[Any] = (6, 12, 24, 48)
else:
raise ValueError("Model not supported, only supports base and large variants" )
lowerCamelCase : int = window_size
lowerCamelCase : Optional[int] = embed_dim
lowerCamelCase : List[Any] = depths
lowerCamelCase : Dict = num_heads
return config
def A ( _SCREAMING_SNAKE_CASE ) -> Dict:
if "encoder.mask_token" in name:
lowerCamelCase : str = name.replace("encoder.mask_token" ,"embeddings.mask_token" )
if "encoder.patch_embed.proj" in name:
lowerCamelCase : Optional[int] = name.replace("encoder.patch_embed.proj" ,"embeddings.patch_embeddings.projection" )
if "encoder.patch_embed.norm" in name:
lowerCamelCase : str = name.replace("encoder.patch_embed.norm" ,"embeddings.norm" )
if "attn.proj" in name:
lowerCamelCase : Optional[Any] = name.replace("attn.proj" ,"attention.output.dense" )
if "attn" in name:
lowerCamelCase : str = name.replace("attn" ,"attention.self" )
if "norm1" in name:
lowerCamelCase : Any = name.replace("norm1" ,"layernorm_before" )
if "norm2" in name:
lowerCamelCase : int = name.replace("norm2" ,"layernorm_after" )
if "mlp.fc1" in name:
lowerCamelCase : str = name.replace("mlp.fc1" ,"intermediate.dense" )
if "mlp.fc2" in name:
lowerCamelCase : Dict = name.replace("mlp.fc2" ,"output.dense" )
if name == "encoder.norm.weight":
lowerCamelCase : str = 'layernorm.weight'
if name == "encoder.norm.bias":
lowerCamelCase : List[Any] = 'layernorm.bias'
if "decoder" in name:
pass
else:
lowerCamelCase : List[str] = 'swin.' + name
return name
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[str]:
for key in orig_state_dict.copy().keys():
lowerCamelCase : List[str] = orig_state_dict.pop(__snake_case )
if "attn_mask" in key:
pass
elif "qkv" in key:
lowerCamelCase : Tuple = key.split("." )
lowerCamelCase : List[str] = int(key_split[2] )
lowerCamelCase : Dict = int(key_split[4] )
lowerCamelCase : Union[str, Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
lowerCamelCase : str = val[:dim, :]
lowerCamelCase : Dict = val[
dim : dim * 2, :
]
lowerCamelCase : Any = val[-dim:, :]
else:
lowerCamelCase : Tuple = val[
:dim
]
lowerCamelCase : Any = val[
dim : dim * 2
]
lowerCamelCase : Union[str, Any] = val[
-dim:
]
else:
lowerCamelCase : Tuple = val
return orig_state_dict
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
lowerCamelCase : Optional[int] = torch.load(__snake_case ,map_location="cpu" )['model']
lowerCamelCase : str = get_swin_config(__snake_case )
lowerCamelCase : str = SwinForMaskedImageModeling(__snake_case )
model.eval()
lowerCamelCase : Tuple = convert_state_dict(__snake_case ,__snake_case )
model.load_state_dict(__snake_case )
lowerCamelCase : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCamelCase : Optional[int] = ViTImageProcessor(size={"height": 192, "width": 192} )
lowerCamelCase : Tuple = Image.open(requests.get(__snake_case ,stream=__snake_case ).raw )
lowerCamelCase : List[Any] = image_processor(images=__snake_case ,return_tensors="pt" )
with torch.no_grad():
lowerCamelCase : List[str] = model(**__snake_case ).logits
print(outputs.keys() )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__snake_case )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__snake_case )
if push_to_hub:
print(f'''Pushing model and image processor for {model_name} to hub''' )
model.push_to_hub(f'''microsoft/{model_name}''' )
image_processor.push_to_hub(f'''microsoft/{model_name}''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='swin-base-simmim-window6-192',
type=str,
choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'],
help='Name of the Swin SimMIM model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path',
default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth',
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 311 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Tuple = logging.get_logger(__name__)
lowercase__ : str = [
['''attention''', '''attn'''],
['''encoder_attention''', '''encoder_attn'''],
['''q_lin''', '''q_proj'''],
['''k_lin''', '''k_proj'''],
['''v_lin''', '''v_proj'''],
['''out_lin''', '''out_proj'''],
['''norm_embeddings''', '''layernorm_embedding'''],
['''position_embeddings''', '''embed_positions'''],
['''embeddings''', '''embed_tokens'''],
['''ffn.lin''', '''fc'''],
]
def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple:
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
__A : Optional[Any] = k.replace(__snake_case , __snake_case )
if k.startswith('encoder' ):
__A : Any = k.replace('.attn' , '.self_attn' )
__A : Any = k.replace('norm1' , 'self_attn_layer_norm' )
__A : str = k.replace('norm2' , 'final_layer_norm' )
elif k.startswith('decoder' ):
__A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' )
__A : str = k.replace('norm2' , 'encoder_attn_layer_norm' )
__A : int = k.replace('norm3' , 'final_layer_norm' )
return k
def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict:
__A : Optional[int] = [
'model.encoder.layernorm_embedding.weight',
'model.encoder.layernorm_embedding.bias',
'model.decoder.layernorm_embedding.weight',
'model.decoder.layernorm_embedding.bias',
]
for k in keys:
__A : Tuple = sd.pop(__snake_case )
__A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' )
assert new_k not in sd
__A : str = v
lowercase__ : Tuple = ['''START''']
@torch.no_grad()
def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int:
__A : List[str] = torch.load(__snake_case , map_location='cpu' )
__A : Tuple = model['model']
__A : str = BlenderbotConfig.from_json_file(__snake_case )
__A : int = BlenderbotForConditionalGeneration(__snake_case )
__A : List[Any] = m.model.state_dict().keys()
__A : Optional[int] = []
__A : Optional[int] = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
__A : Union[str, Any] = rename_state_dict_key(__snake_case )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
__A : Optional[Any] = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(__snake_case )
m.model.load_state_dict(__snake_case , strict=__snake_case )
m.half()
m.save_pretrained(__snake_case )
if __name__ == "__main__":
lowercase__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''')
parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''')
parser.add_argument(
'''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use'''
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json) | 8 | 0 |
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str:
'''simple docstring'''
lowercase : List[Any] = TapasConfig.from_json_file(__snake_case )
# set absolute/relative position embeddings parameter
lowercase : List[str] = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
lowercase : int = TapasForQuestionAnswering(config=__snake_case )
elif task == "WTQ":
# run_task_main.py hparams
lowercase : Optional[Any] = 4
lowercase : Tuple = True
# hparam_utils.py hparams
lowercase : Optional[Any] = 0.6_6_4_6_9_4
lowercase : Any = 0.2_0_7_9_5_1
lowercase : int = 0.1_2_1_1_9_4
lowercase : Dict = True
lowercase : Optional[Any] = True
lowercase : Union[str, Any] = False
lowercase : str = 0.0_3_5_2_5_1_3
lowercase : Union[str, Any] = TapasForQuestionAnswering(config=__snake_case )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
lowercase : Optional[Any] = 4
lowercase : List[str] = False
# hparam_utils.py hparams
lowercase : Union[str, Any] = 3_6.4_5_1_9
lowercase : Optional[int] = 0.9_0_3_4_2_1
lowercase : Optional[Any] = 2_2_2.0_8_8
lowercase : Union[str, Any] = True
lowercase : List[Any] = True
lowercase : str = True
lowercase : List[Any] = 0.7_6_3_1_4_1
lowercase : Any = TapasForQuestionAnswering(config=__snake_case )
elif task == "TABFACT":
lowercase : int = TapasForSequenceClassification(config=__snake_case )
elif task == "MLM":
lowercase : int = TapasForMaskedLM(config=__snake_case )
elif task == "INTERMEDIATE_PRETRAINING":
lowercase : Tuple = TapasModel(config=__snake_case )
else:
raise ValueError(F"""Task {task} not supported.""" )
print(F"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(__snake_case , __snake_case , __snake_case )
# Save pytorch-model (weights and configuration)
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(__snake_case )
# Save tokenizer files
print(F"""Save tokenizer files to {pytorch_dump_path}""" )
lowercase : str = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=5_12 )
tokenizer.save_pretrained(__snake_case )
print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.'
)
parser.add_argument(
'--reset_position_index_per_cell',
default=False,
action='store_true',
help='Whether to use relative position embeddings or not. Defaults to True.',
)
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--tapas_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained TAPAS model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
lowerCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
) | 217 |
'''simple docstring'''
import mpmath # for roots of unity
import numpy as np
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None):
'''simple docstring'''
__A : List[Any] = list(poly_a or [0])[:]
__A : Optional[int] = list(poly_b or [0])[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
__A : Union[str, Any] = len(self.polyA)
while self.polyB[-1] == 0:
self.polyB.pop()
__A : Optional[int] = len(self.polyB)
# Add 0 to make lengths equal a power of 2
__A : Optional[Any] = int(
2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1)))
while len(self.polyA) < self.c_max_length:
self.polyA.append(0)
while len(self.polyB) < self.c_max_length:
self.polyB.append(0)
# A complex root used for the fourier transform
__A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1))
# The product
__A : Tuple = self.__multiply()
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
__A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB]
# Corner case
if len(_UpperCAmelCase) <= 1:
return dft[0]
#
__A : Dict = self.c_max_length // 2
while next_ncol > 0:
__A : Optional[Any] = [[] for i in range(_UpperCAmelCase)]
__A : Tuple = self.root**next_ncol
# First half of next step
__A : Optional[Any] = 1
for j in range(self.c_max_length // (next_ncol * 2)):
for i in range(_UpperCAmelCase):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j])
current_root *= root
# Second half of next step
__A : List[str] = 1
for j in range(self.c_max_length // (next_ncol * 2)):
for i in range(_UpperCAmelCase):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j])
current_root *= root
# Update
__A : Optional[int] = new_dft
__A : Tuple = next_ncol // 2
return dft[0]
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = self.__dft('A')
__A : Optional[Any] = self.__dft('B')
__A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0]) <= 1:
return inverce_c[0]
# Inverse DFT
__A : Dict = 2
while next_ncol <= self.c_max_length:
__A : Optional[int] = [[] for i in range(_UpperCAmelCase)]
__A : Any = self.root ** (next_ncol // 2)
__A : Tuple = 1
# First half of next step
for j in range(self.c_max_length // next_ncol):
for i in range(next_ncol // 2):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2)
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root))
current_root *= root
# Update
__A : int = new_inverse_c
next_ncol *= 2
# Unpack
__A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self):
'''simple docstring'''
__A : int = 'A = ' + ' + '.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A]))
__A : Optional[Any] = 'B = ' + ' + '.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B]))
__A : str = 'A*B = ' + ' + '.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.product))
return F'{a}\n{b}\n{c}'
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase__ ( a__, unittest.TestCase ):
'''simple docstring'''
_snake_case = BioGptTokenizer
_snake_case = False
def UpperCAmelCase ( self ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCamelCase = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
UpperCamelCase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
UpperCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) )
with open(self.merges_file , '''w''' ) as fp:
fp.write('''\n'''.join(_UpperCAmelCase ) )
def UpperCAmelCase ( self , lowerCamelCase__ ):
'''simple docstring'''
UpperCamelCase = 'lower newer'
UpperCamelCase = 'lower newer'
return input_text, output_text
def UpperCAmelCase ( self ):
'''simple docstring'''
UpperCamelCase = BioGptTokenizer(self.vocab_file , self.merges_file )
UpperCamelCase = 'lower'
UpperCamelCase = ['low', 'er</w>']
UpperCamelCase = tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase = tokens + ['<unk>']
UpperCamelCase = [1_4, 1_5, 2_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
UpperCamelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=_UpperCAmelCase )
UpperCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_UpperCAmelCase )
UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase )
UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 212 |
'''simple docstring'''
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ):
'''simple docstring'''
__A : Union[str, Any] = parent
__A : Tuple = batch_size
__A : List[str] = image_size
__A : Dict = patch_size
__A : Optional[Any] = num_channels
__A : Tuple = is_training
__A : Dict = use_labels
__A : List[Any] = hidden_size
__A : Tuple = num_hidden_layers
__A : int = num_attention_heads
__A : Optional[int] = intermediate_size
__A : Tuple = hidden_act
__A : Any = hidden_dropout_prob
__A : Optional[Any] = attention_probs_dropout_prob
__A : List[Any] = type_sequence_label_size
__A : List[Any] = initializer_range
__A : Optional[int] = num_labels
__A : List[Any] = scope
__A : Any = n_targets
__A : Union[str, Any] = num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
__A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size)
__A : int = num_patches + 1 + self.num_detection_tokens
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]])
__A : Tuple = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
__A : List[Any] = []
for i in range(self.batch_size):
__A : Optional[int] = {}
__A : Union[str, Any] = torch.randint(
high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase)
__A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase)
labels.append(_UpperCAmelCase)
__A : Any = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
return YolosConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , )
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Any = YolosModel(config=_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
__A : Dict = model(_UpperCAmelCase)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Any = YolosForObjectDetection(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
__A : str = model(pixel_values=_UpperCAmelCase)
__A : List[str] = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1))
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4))
__A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase)
self.parent.assertEqual(result.loss.shape , ())
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1))
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Any = self.prepare_config_and_inputs()
__A ,__A ,__A : Tuple = config_and_inputs
__A : Tuple = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ):
lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
lowerCAmelCase = (
{'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {}
)
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False):
'''simple docstring'''
__A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase)
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
__A : Any = []
for i in range(self.model_tester.batch_size):
__A : Tuple = {}
__A : Tuple = torch.ones(
size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long)
__A : Optional[Any] = torch.ones(
self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float)
labels.append(_UpperCAmelCase)
__A : str = labels
return inputs_dict
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = YolosModelTester(self)
__A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A : Tuple = model_class(_UpperCAmelCase)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
__A : Any = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A : List[Any] = model_class(_UpperCAmelCase)
__A : str = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A : int = [*signature.parameters.keys()]
__A : List[str] = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__A : Optional[int] = True
# in YOLOS, the seq_len is different
__A : Dict = self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
__A : Dict = True
__A : Dict = False
__A : Union[str, Any] = True
__A : Tuple = model_class(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
with torch.no_grad():
__A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : Union[str, Any] = outputs.attentions
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__A : List[Any] = True
__A : List[str] = model_class(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
with torch.no_grad():
__A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : Optional[Any] = outputs.attentions
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
__A : str = len(_UpperCAmelCase)
# Check attention is always last and order is fine
__A : Dict = True
__A : Dict = True
__A : Dict = model_class(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
with torch.no_grad():
__A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : Union[str, Any] = 1
self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase))
__A : Optional[Any] = outputs.attentions
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
__A : Tuple = model_class(_UpperCAmelCase)
model.to(_UpperCAmelCase)
model.eval()
with torch.no_grad():
__A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : Optional[Any] = outputs.hidden_states
__A : List[str] = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase)
# YOLOS has a different seq_length
__A : Dict = self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , )
__A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A : List[str] = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A : Optional[int] = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase)
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase)
self.assertIsNotNone(_UpperCAmelCase)
def _lowerCAmelCase ( ) -> int:
__A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE (unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase)
__A : Any = self.default_image_processor
__A : str = prepare_img()
__A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase)
# forward pass
with torch.no_grad():
__A : str = model(inputs.pixel_values)
# verify outputs
__A : Tuple = torch.Size((1, 100, 92))
self.assertEqual(outputs.logits.shape , _UpperCAmelCase)
__A : Dict = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , )
__A : int = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4))
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4))
# verify postprocessing
__A : List[str] = image_processor.post_process_object_detection(
_UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0]
__A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase)
__A : Union[str, Any] = [75, 75, 17, 63, 17]
__A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase)
self.assertEqual(len(results['scores']) , 5)
self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4))
self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase)
self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase)) | 8 | 0 |
'''simple docstring'''
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
a_ : List[str] = object()
# For specifying empty leaf dict `{}`
a_ : str = object()
def a_ ( __snake_case : Any , __snake_case : Dict ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ =tuple((re.compile(x + '''$''' ) for x in qs) )
for i in range(len(__snake_case ) - len(__snake_case ) + 1 ):
lowerCamelCase_ =[x.match(__snake_case ) for x, y in zip(__snake_case , ks[i:] )]
if matches and all(__snake_case ):
return True
return False
def a_ ( __snake_case : Tuple ) -> Optional[Any]:
"""simple docstring"""
def replace(__snake_case : int , __snake_case : Optional[Any] ):
for rule, replacement in rules:
if _match(__snake_case , __snake_case ):
return replacement
return val
return replace
def a_ ( ) -> Dict:
"""simple docstring"""
return [
# embeddings
(("transformer", "wpe", "embedding"), P('''mp''' , __snake_case )),
(("transformer", "wte", "embedding"), P('''mp''' , __snake_case )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__snake_case , '''mp''' )),
(("attention", "out_proj", "kernel"), P('''mp''' , __snake_case )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(__snake_case , '''mp''' )),
(("mlp", "c_fc", "bias"), P('''mp''' )),
(("mlp", "c_proj", "kernel"), P('''mp''' , __snake_case )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def a_ ( __snake_case : str ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =_get_partition_rules()
lowerCamelCase_ =_replacement_rules(__snake_case )
lowerCamelCase_ ={k: _unmatched for k in flatten_dict(__snake_case )}
lowerCamelCase_ ={k: replace(__snake_case , __snake_case ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(__snake_case ) )
| 676 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
lowercase__ : Optional[int] = None
lowercase__ : List[str] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
lowercase__ : List[str] = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
},
'''tokenizer_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''',
},
}
lowercase__ : Dict = {
'''camembert-base''': 5_12,
}
lowercase__ : str = '''▁'''
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = VOCAB_FILES_NAMES
lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase = ['''input_ids''', '''attention_mask''']
lowerCAmelCase = CamembertTokenizer
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ):
'''simple docstring'''
__A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token
super().__init__(
_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
__A : List[str] = vocab_file
__A : Optional[int] = False if not self.vocab_file else True
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__A : Optional[Any] = [self.cls_token_id]
__A : Optional[int] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None):
'''simple docstring'''
__A : Optional[int] = [self.sep_token_id]
__A : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.')
if not os.path.isdir(_UpperCAmelCase):
logger.error(F'Vocabulary path ({save_directory}) should be a directory')
return
__A : List[Any] = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase):
copyfile(self.vocab_file , _UpperCAmelCase)
return (out_vocab_file,) | 8 | 0 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase__ ( a__):
UpperCamelCase_ = ["""image_processor""", """tokenizer"""]
UpperCamelCase_ = """AutoImageProcessor"""
UpperCamelCase_ = """AutoTokenizer"""
def __init__( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] ):
'''simple docstring'''
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor
def __call__( self : List[str] , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : List[str] ):
'''simple docstring'''
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
SCREAMING_SNAKE_CASE : int = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if images is not None:
SCREAMING_SNAKE_CASE : List[Any] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if text is not None and images is not None:
SCREAMING_SNAKE_CASE : int = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase )
def __A ( self : List[str] , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : Optional[int] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def __A ( self : Tuple , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : int ):
'''simple docstring'''
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def __A ( self : List[Any] ):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 248 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
lowercase__ : Any = '''hf-internal-testing/tiny-random-bert'''
lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''')
lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6'''
class SCREAMING_SNAKE_CASE (unittest.TestCase ):
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase)
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(_UpperCAmelCase))
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase)))
with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f:
__A : Any = f.read()
self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase))
self.assertTrue(os.path.isfile(_UpperCAmelCase))
# File is cached at the same place the second time.
__A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase)
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase)
# Using a specific revision to test the full commit hash.
__A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223')
self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'):
__A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase)
with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'):
__A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa')
with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'):
__A : int = cached_file(_UpperCAmelCase , 'conf')
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'):
__A : Any = cached_file(_UpperCAmelCase , 'conf')
with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f:
__A : Dict = f.read()
self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf')))
__A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase)
self.assertIsNone(_UpperCAmelCase)
__A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase)
self.assertIsNone(_UpperCAmelCase)
__A : List[str] = mock.Mock()
__A : Dict = 500
__A : List[str] = {}
__A : List[Any] = HTTPError
__A : Optional[Any] = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head:
__A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase)
self.assertIsNone(_UpperCAmelCase)
# This check we did call the fake head request
mock_head.assert_called()
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase))
self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase))
self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt'))
# The function raises if the repository does not exist.
with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'):
get_file_from_repo('bert-base-case' , _UpperCAmelCase)
# The function raises if the revision does not exist.
with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'):
get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha')
__A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase)
# The name is the cached name which is not very easy to test, so instead we load the content.
__A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read())
self.assertEqual(config['hidden_size'] , 768)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
__A : Tuple = Path(_UpperCAmelCase) / 'a.txt'
filename.touch()
self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase))
self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt')) | 8 | 0 |
def SCREAMING_SNAKE_CASE ( lowercase_ = 10 ) -> str:
"""simple docstring"""
if not isinstance(__snake_case , __snake_case ) or n < 0:
raise ValueError('''Invalid input''' )
A__ = 10**n
A__ = 28_433 * (pow(2 , 7_830_457 , __snake_case )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F'''{solution(10) = }''')
| 87 |
'''simple docstring'''
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any:
__A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case )
__A : int = AutoModelForSeqaSeqLM.from_config(__snake_case )
model.save_pretrained(__snake_case )
AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version) | 8 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
'''microsoft/trocr-base-handwritten''': (
'''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json'''
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class lowercase_ ( a__ ):
__lowerCamelCase = "trocr"
__lowerCamelCase = ["past_key_values"]
__lowerCamelCase = {
"num_attention_heads": "decoder_attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "decoder_layers",
}
def __init__( self , __A=50_265 , __A=1_024 , __A=12 , __A=16 , __A=4_096 , __A="gelu" , __A=512 , __A=0.1 , __A=0.0 , __A=0.0 , __A=2 , __A=0.02 , __A=0.0 , __A=True , __A=False , __A=True , __A=True , __A=1 , __A=0 , __A=2 , **__A , ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ : List[str] =vocab_size
SCREAMING_SNAKE_CASE_ : List[str] =d_model
SCREAMING_SNAKE_CASE_ : List[Any] =decoder_layers
SCREAMING_SNAKE_CASE_ : List[Any] =decoder_attention_heads
SCREAMING_SNAKE_CASE_ : List[str] =decoder_ffn_dim
SCREAMING_SNAKE_CASE_ : Union[str, Any] =activation_function
SCREAMING_SNAKE_CASE_ : str =max_position_embeddings
SCREAMING_SNAKE_CASE_ : Tuple =dropout
SCREAMING_SNAKE_CASE_ : Union[str, Any] =attention_dropout
SCREAMING_SNAKE_CASE_ : List[Any] =activation_dropout
SCREAMING_SNAKE_CASE_ : Optional[int] =init_std
SCREAMING_SNAKE_CASE_ : int =decoder_layerdrop
SCREAMING_SNAKE_CASE_ : List[Any] =use_cache
SCREAMING_SNAKE_CASE_ : str =scale_embedding
SCREAMING_SNAKE_CASE_ : Optional[int] =use_learned_position_embeddings
SCREAMING_SNAKE_CASE_ : Optional[Any] =layernorm_embedding
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
| 443 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
lowercase__ : Any = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = '''tapas'''
def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ):
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase)
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
__A : Dict = vocab_size
__A : Tuple = hidden_size
__A : Any = num_hidden_layers
__A : int = num_attention_heads
__A : Tuple = hidden_act
__A : Tuple = intermediate_size
__A : List[Any] = hidden_dropout_prob
__A : int = attention_probs_dropout_prob
__A : List[str] = max_position_embeddings
__A : Optional[int] = type_vocab_sizes
__A : str = initializer_range
__A : List[str] = layer_norm_eps
# Fine-tuning task hyperparameters
__A : List[str] = positive_label_weight
__A : List[Any] = num_aggregation_labels
__A : Optional[Any] = aggregation_loss_weight
__A : Tuple = use_answer_as_supervision
__A : List[str] = answer_loss_importance
__A : Any = use_normalized_answer_loss
__A : Any = huber_loss_delta
__A : Union[str, Any] = temperature
__A : Tuple = aggregation_temperature
__A : Optional[Any] = use_gumbel_for_cells
__A : List[str] = use_gumbel_for_aggregation
__A : Tuple = average_approximation_function
__A : List[str] = cell_selection_preference
__A : Dict = answer_loss_cutoff
__A : Union[str, Any] = max_num_rows
__A : Optional[Any] = max_num_columns
__A : int = average_logits_per_cell
__A : Optional[Any] = select_one_column
__A : int = allow_empty_column_selection
__A : List[Any] = init_cell_selection_weights_to_zero
__A : int = reset_position_index_per_cell
__A : Union[str, Any] = disable_per_token_loss
# Aggregation hyperparameters
__A : Optional[Any] = aggregation_labels
__A : List[str] = no_aggregation_label_index
if isinstance(self.aggregation_labels , _UpperCAmelCase):
__A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()} | 8 | 0 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def _UpperCAmelCase ( A , A ):
'''simple docstring'''
UpperCAmelCase__ =XCLIPTextConfig()
# derive patch size from model name
UpperCAmelCase__ =model_name.find("patch" )
UpperCAmelCase__ =int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] )
UpperCAmelCase__ =XCLIPVisionConfig(patch_size=__snake_case , num_frames=__snake_case )
if "large" in model_name:
UpperCAmelCase__ =768
UpperCAmelCase__ =3072
UpperCAmelCase__ =12
UpperCAmelCase__ =1024
UpperCAmelCase__ =4096
UpperCAmelCase__ =16
UpperCAmelCase__ =24
UpperCAmelCase__ =768
UpperCAmelCase__ =3072
if model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ =336
UpperCAmelCase__ =XCLIPConfig.from_text_vision_configs(__snake_case , __snake_case )
if "large" in model_name:
UpperCAmelCase__ =768
return config
def _UpperCAmelCase ( A ):
'''simple docstring'''
if name == "token_embedding.weight":
UpperCAmelCase__ =name.replace("token_embedding.weight" , "text_model.embeddings.token_embedding.weight" )
if name == "positional_embedding":
UpperCAmelCase__ =name.replace("positional_embedding" , "text_model.embeddings.position_embedding.weight" )
if "ln_1" in name:
UpperCAmelCase__ =name.replace("ln_1" , "layer_norm1" )
if "ln_2" in name:
UpperCAmelCase__ =name.replace("ln_2" , "layer_norm2" )
if "c_fc" in name:
UpperCAmelCase__ =name.replace("c_fc" , "fc1" )
if "c_proj" in name:
UpperCAmelCase__ =name.replace("c_proj" , "fc2" )
if name.startswith("transformer.resblocks" ):
UpperCAmelCase__ =name.replace("transformer.resblocks" , "text_model.encoder.layers" )
if "attn.out_proj" in name and "message" not in name:
UpperCAmelCase__ =name.replace("attn.out_proj" , "self_attn.out_proj" )
if "ln_final" in name:
UpperCAmelCase__ =name.replace("ln_final" , "text_model.final_layer_norm" )
# visual encoder
if name == "visual.class_embedding":
UpperCAmelCase__ =name.replace("visual.class_embedding" , "vision_model.embeddings.class_embedding" )
if name == "visual.positional_embedding":
UpperCAmelCase__ =name.replace("visual.positional_embedding" , "vision_model.embeddings.position_embedding.weight" )
if name.startswith("visual.transformer.resblocks" ):
UpperCAmelCase__ =name.replace("visual.transformer.resblocks" , "vision_model.encoder.layers" )
if "visual.conv1" in name:
UpperCAmelCase__ =name.replace("visual.conv1" , "vision_model.embeddings.patch_embedding" )
if "visual.ln_pre" in name:
UpperCAmelCase__ =name.replace("visual.ln_pre" , "vision_model.pre_layernorm" )
if "visual.ln_post" in name:
UpperCAmelCase__ =name.replace("visual.ln_post" , "vision_model.post_layernorm" )
if "visual.proj" in name:
UpperCAmelCase__ =name.replace("visual.proj" , "visual_projection.weight" )
if "text_projection" in name:
UpperCAmelCase__ =name.replace("text_projection" , "text_projection.weight" )
# things on top
if "prompts_visual_proj" in name:
UpperCAmelCase__ =name.replace("prompts_visual_proj" , "prompts_visual_projection" )
if "prompts_visual_ln" in name:
UpperCAmelCase__ =name.replace("prompts_visual_ln" , "prompts_visual_layernorm" )
# mit
if name == "mit.positional_embedding":
UpperCAmelCase__ =name.replace("positional" , "position" )
if name.startswith("mit.resblocks" ):
UpperCAmelCase__ =name.replace("mit.resblocks" , "mit.encoder.layers" )
# prompts generator
if name.startswith("prompts_generator.norm" ):
UpperCAmelCase__ =name.replace("prompts_generator.norm" , "prompts_generator.layernorm" )
return name
def _UpperCAmelCase ( A , A ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
UpperCAmelCase__ =orig_state_dict.pop(__snake_case )
if "attn.in_proj" in key:
UpperCAmelCase__ =key.split("." )
if key.startswith("visual" ):
UpperCAmelCase__ =key_split[3]
UpperCAmelCase__ =config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
UpperCAmelCase__ =val[
:dim, :
]
UpperCAmelCase__ =val[
dim : dim * 2, :
]
UpperCAmelCase__ =val[
-dim:, :
]
else:
UpperCAmelCase__ =val[
:dim
]
UpperCAmelCase__ =val[
dim : dim * 2
]
UpperCAmelCase__ =val[
-dim:
]
else:
if "weight" in key:
UpperCAmelCase__ =val[
:dim, :
]
UpperCAmelCase__ =val[
dim : dim * 2, :
]
UpperCAmelCase__ =val[
-dim:, :
]
else:
UpperCAmelCase__ =val[:dim]
UpperCAmelCase__ =val[
dim : dim * 2
]
UpperCAmelCase__ =val[-dim:]
elif key.startswith("mit" ):
UpperCAmelCase__ =key_split[2]
UpperCAmelCase__ =config.vision_config.mit_hidden_size
if "weight" in key:
UpperCAmelCase__ =val[:dim, :]
UpperCAmelCase__ =val[dim : dim * 2, :]
UpperCAmelCase__ =val[-dim:, :]
else:
UpperCAmelCase__ =val[:dim]
UpperCAmelCase__ =val[dim : dim * 2]
UpperCAmelCase__ =val[-dim:]
else:
UpperCAmelCase__ =key_split[2]
UpperCAmelCase__ =config.text_config.hidden_size
if "weight" in key:
UpperCAmelCase__ =val[:dim, :]
UpperCAmelCase__ =val[
dim : dim * 2, :
]
UpperCAmelCase__ =val[-dim:, :]
else:
UpperCAmelCase__ =val[:dim]
UpperCAmelCase__ =val[
dim : dim * 2
]
UpperCAmelCase__ =val[-dim:]
else:
UpperCAmelCase__ =rename_key(__snake_case )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
UpperCAmelCase__ =val.T
UpperCAmelCase__ =val
return orig_state_dict
def _UpperCAmelCase ( A ):
'''simple docstring'''
if num_frames == 8:
UpperCAmelCase__ ='eating_spaghetti_8_frames.npy'
elif num_frames == 16:
UpperCAmelCase__ ='eating_spaghetti.npy'
elif num_frames == 32:
UpperCAmelCase__ ='eating_spaghetti_32_frames.npy'
UpperCAmelCase__ =hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video" , filename=__snake_case , repo_type="dataset" , )
UpperCAmelCase__ =np.load(__snake_case )
return list(__snake_case )
def _UpperCAmelCase ( A , A=None , A=False ):
'''simple docstring'''
UpperCAmelCase__ ={
# fully supervised kinetics-400 checkpoints
'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth',
'xclip-base-patch32-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'
),
'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth',
'xclip-base-patch16-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'
),
'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb',
'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f',
# fully supervised kinetics-600 checkpoints
'xclip-base-patch16-kinetics-600': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'
),
'xclip-base-patch16-kinetics-600-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'
),
'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be',
# few shot
'xclip-base-patch16-hmdb-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'
),
'xclip-base-patch16-hmdb-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'
),
'xclip-base-patch16-hmdb-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'
),
'xclip-base-patch16-hmdb-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'
),
'xclip-base-patch16-ucf-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'
),
'xclip-base-patch16-ucf-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'
),
'xclip-base-patch16-ucf-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'
),
'xclip-base-patch16-ucf-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'
),
# zero shot
'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth',
}
UpperCAmelCase__ =model_to_url[model_name]
UpperCAmelCase__ =8
if "16-frames" in model_name:
UpperCAmelCase__ =16
elif "shot" in model_name:
UpperCAmelCase__ =32
UpperCAmelCase__ =get_xclip_config(__snake_case , __snake_case )
UpperCAmelCase__ =XCLIPModel(__snake_case )
model.eval()
if "drive" in checkpoint_url:
UpperCAmelCase__ ='pytorch_model.bin'
gdown.cached_download(__snake_case , __snake_case , quiet=__snake_case )
UpperCAmelCase__ =torch.load(__snake_case , map_location="cpu" )['model']
else:
UpperCAmelCase__ =torch.hub.load_state_dict_from_url(__snake_case )['model']
UpperCAmelCase__ =convert_state_dict(__snake_case , __snake_case )
UpperCAmelCase__ =XCLIPModel(__snake_case )
UpperCAmelCase__ =model.load_state_dict(__snake_case , strict=__snake_case )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
UpperCAmelCase__ =336 if model_name == 'xclip-large-patch14-16-frames' else 224
UpperCAmelCase__ =VideoMAEImageProcessor(size=__snake_case )
UpperCAmelCase__ =CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" )
UpperCAmelCase__ =CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" )
UpperCAmelCase__ =XCLIPProcessor(image_processor=__snake_case , tokenizer=__snake_case )
UpperCAmelCase__ =prepare_video(__snake_case )
UpperCAmelCase__ =processor(
text=["playing sports", "eating spaghetti", "go shopping"] , videos=__snake_case , return_tensors="pt" , padding=__snake_case )
print("Shape of pixel values:" , inputs.pixel_values.shape )
with torch.no_grad():
UpperCAmelCase__ =model(**__snake_case )
# Verify outputs
UpperCAmelCase__ =outputs.logits_per_video
UpperCAmelCase__ =logits_per_video.softmax(dim=1 )
print("Probs:" , __snake_case )
# kinetics-400
if model_name == "xclip-base-patch32":
UpperCAmelCase__ =torch.tensor([[0.00_19, 0.99_51, 0.00_30]] )
elif model_name == "xclip-base-patch32-16-frames":
UpperCAmelCase__ =torch.tensor([[7.0_9_9_9e-0_4, 9.9_8_8_3e-0_1, 4.5_5_8_0e-0_4]] )
elif model_name == "xclip-base-patch16":
UpperCAmelCase__ =torch.tensor([[0.00_83, 0.96_81, 0.02_36]] )
elif model_name == "xclip-base-patch16-16-frames":
UpperCAmelCase__ =torch.tensor([[7.6_9_3_7e-0_4, 9.9_7_2_8e-0_1, 1.9_4_7_3e-0_3]] )
elif model_name == "xclip-large-patch14":
UpperCAmelCase__ =torch.tensor([[0.00_62, 0.98_64, 0.00_75]] )
elif model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ =torch.tensor([[3.3_8_7_7e-0_4, 9.9_9_3_7e-0_1, 2.8_8_8_8e-0_4]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
UpperCAmelCase__ =torch.tensor([[0.05_55, 0.89_14, 0.05_31]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
UpperCAmelCase__ =torch.tensor([[3.8_5_5_4e-0_4, 9.9_9_2_9e-0_1, 3.2_7_5_4e-0_4]] )
elif model_name == "xclip-large-patch14-kinetics-600":
UpperCAmelCase__ =torch.tensor([[0.00_36, 0.99_20, 0.00_45]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
UpperCAmelCase__ =torch.tensor([[7.1_8_9_0e-0_6, 9.9_9_9_4e-0_1, 5.6_5_5_9e-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
UpperCAmelCase__ =torch.tensor([[1.0_3_2_0e-0_5, 9.9_9_9_3e-0_1, 6.2_4_3_5e-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
UpperCAmelCase__ =torch.tensor([[4.1_3_7_7e-0_6, 9.9_9_9_0e-0_1, 9.8_3_8_6e-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
UpperCAmelCase__ =torch.tensor([[4.1_3_4_7e-0_5, 9.9_9_6_2e-0_1, 3.3_4_1_1e-0_4]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
UpperCAmelCase__ =torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
UpperCAmelCase__ =torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
UpperCAmelCase__ =torch.tensor([[0.00_27, 0.99_04, 0.00_70]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
UpperCAmelCase__ =torch.tensor([[9.8_2_1_9e-0_4, 9.9_5_9_3e-0_1, 3.0_8_6_3e-0_3]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
UpperCAmelCase__ =torch.tensor([[3.5_0_8_2e-0_4, 9.9_7_8_5e-0_1, 1.7_9_6_6e-0_3]] )
else:
raise ValueError(F"""Model name {model_name} not supported""" )
assert torch.allclose(__snake_case , __snake_case , atol=1e-3 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__snake_case )
if push_to_hub:
print("Pushing model, processor and slow tokenizer files to the hub..." )
model.push_to_hub(__snake_case , organization="nielsr" )
processor.push_to_hub(__snake_case , organization="nielsr" )
slow_tokenizer.push_to_hub(__snake_case , organization="nielsr" )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='xclip-base-patch32',
type=str,
help='Name of the model.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
UpperCamelCase_ = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 625 |
'''simple docstring'''
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize):
'''simple docstring'''
__A : Union[str, Any] = 'bilinear'
__A : int = max_size
__A : Optional[Any] = short_edge_length
def __call__( self , _UpperCAmelCase):
'''simple docstring'''
__A : int = []
for img in imgs:
__A ,__A : Dict = img.shape[:2]
# later: provide list and randomly choose index for resize
__A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1)
if size == 0:
return img
__A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase)
if h < w:
__A ,__A : Optional[Any] = size, scale * w
else:
__A ,__A : Optional[Any] = scale * h, size
if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size:
__A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase)
__A : Tuple = newh * scale
__A : Dict = neww * scale
__A : Dict = int(neww + 0.5)
__A : Optional[int] = int(newh + 0.5)
if img.dtype == np.uinta:
__A : int = Image.fromarray(_UpperCAmelCase)
__A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR)
__A : Dict = np.asarray(_UpperCAmelCase)
else:
__A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw
__A : Dict = nn.functional.interpolate(
_UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0)
img_augs.append(_UpperCAmelCase)
return img_augs
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase):
'''simple docstring'''
__A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST)
__A : List[Any] = cfg.INPUT.FORMAT
__A : Dict = cfg.SIZE_DIVISIBILITY
__A : str = cfg.PAD_VALUE
__A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST
__A : int = cfg.MODEL.DEVICE
__A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1)
__A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1)
__A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
__A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images]))
__A : Dict = [im.shape[-2:] for im in images]
__A : Optional[int] = [
nn.functional.pad(
_UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(_UpperCAmelCase , _UpperCAmelCase)
]
return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase)
def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False):
'''simple docstring'''
with torch.no_grad():
if not isinstance(_UpperCAmelCase , _UpperCAmelCase):
__A : int = [images]
if single_image:
assert len(_UpperCAmelCase) == 1
for i in range(len(_UpperCAmelCase)):
if isinstance(images[i] , torch.Tensor):
images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float())
elif not isinstance(images[i] , torch.Tensor):
images.insert(
_UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format))
.to(self.device)
.float() , )
# resize smallest edge
__A : str = torch.tensor([im.shape[:2] for im in images])
__A : List[str] = self.aug(_UpperCAmelCase)
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
__A : Any = [self.normalizer(_UpperCAmelCase) for x in images]
# now pad them to do the following operations
__A ,__A : Any = self.pad(_UpperCAmelCase)
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
__A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase)
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict:
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int:
assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!"
__A ,__A : int = box_size
tensor[:, 0].clamp_(min=0 , max=__snake_case )
tensor[:, 1].clamp_(min=0 , max=__snake_case )
tensor[:, 2].clamp_(min=0 , max=__snake_case )
tensor[:, 3].clamp_(min=0 , max=__snake_case ) | 8 | 0 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class __UpperCamelCase ( unittest.TestCase ):
def a__ ( self :List[Any] ):
snake_case_ : Dict = 0
def a__ ( self :List[str] ):
snake_case_ : Dict = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
self.assertIsInstance(_UpperCAmelCase ,_UpperCAmelCase )
def a__ ( self :Optional[int] ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : Union[str, Any] = Path(_UpperCAmelCase ) / 'preprocessor_config.json'
snake_case_ : Dict = Path(_UpperCAmelCase ) / 'config.json'
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(_UpperCAmelCase ,"""w""" ) ,)
json.dump({"""model_type""": """clip"""} ,open(_UpperCAmelCase ,"""w""" ) )
snake_case_ : List[Any] = AutoImageProcessor.from_pretrained(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase ,_UpperCAmelCase )
def a__ ( self :List[Any] ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : Tuple = Path(_UpperCAmelCase ) / 'preprocessor_config.json'
snake_case_ : Tuple = Path(_UpperCAmelCase ) / 'config.json'
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} ,open(_UpperCAmelCase ,"""w""" ) ,)
json.dump({"""model_type""": """clip"""} ,open(_UpperCAmelCase ,"""w""" ) )
snake_case_ : int = AutoImageProcessor.from_pretrained(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase ,_UpperCAmelCase )
def a__ ( self :Tuple ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : Optional[int] = CLIPConfig()
# Create a dummy config file with image_proceesor_type
snake_case_ : Union[str, Any] = Path(_UpperCAmelCase ) / 'preprocessor_config.json'
snake_case_ : List[Any] = Path(_UpperCAmelCase ) / 'config.json'
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(_UpperCAmelCase ,"""w""" ) ,)
json.dump({"""model_type""": """clip"""} ,open(_UpperCAmelCase ,"""w""" ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
snake_case_ : int = AutoImageProcessor.from_pretrained(_UpperCAmelCase ).to_dict()
config_dict.pop("""image_processor_type""" )
snake_case_ : List[Any] = CLIPImageProcessor(**_UpperCAmelCase )
# save in new folder
model_config.save_pretrained(_UpperCAmelCase )
config.save_pretrained(_UpperCAmelCase )
snake_case_ : str = AutoImageProcessor.from_pretrained(_UpperCAmelCase )
# make sure private variable is not incorrectly saved
snake_case_ : List[str] = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(_UpperCAmelCase ,_UpperCAmelCase )
def a__ ( self :Union[str, Any] ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : Dict = Path(_UpperCAmelCase ) / 'preprocessor_config.json'
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(_UpperCAmelCase ,"""w""" ) ,)
snake_case_ : int = AutoImageProcessor.from_pretrained(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase ,_UpperCAmelCase )
def a__ ( self :int ):
with self.assertRaisesRegex(
_UpperCAmelCase ,"""clip-base is not a local folder and is not a valid model identifier""" ):
snake_case_ : Optional[Any] = AutoImageProcessor.from_pretrained("""clip-base""" )
def a__ ( self :Tuple ):
with self.assertRaisesRegex(
_UpperCAmelCase ,R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
snake_case_ : List[Any] = AutoImageProcessor.from_pretrained(_UpperCAmelCase ,revision="""aaaaaa""" )
def a__ ( self :Optional[int] ):
with self.assertRaisesRegex(
_UpperCAmelCase ,"""hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" ,):
snake_case_ : Dict = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" )
def a__ ( self :Optional[int] ):
with self.assertRaises(_UpperCAmelCase ):
snake_case_ : int = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_UpperCAmelCase ):
snake_case_ : Dict = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=_UpperCAmelCase )
snake_case_ : Union[str, Any] = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=_UpperCAmelCase )
self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_UpperCAmelCase )
snake_case_ : List[Any] = AutoImageProcessor.from_pretrained(_UpperCAmelCase ,trust_remote_code=_UpperCAmelCase )
self.assertEqual(reloaded_image_processor.__class__.__name__ ,"""NewImageProcessor""" )
def a__ ( self :Optional[int] ):
try:
AutoConfig.register("""custom""" ,_UpperCAmelCase )
AutoImageProcessor.register(_UpperCAmelCase ,_UpperCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_UpperCAmelCase ):
AutoImageProcessor.register(_UpperCAmelCase ,_UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : Optional[int] = Path(_UpperCAmelCase ) / 'preprocessor_config.json'
snake_case_ : Optional[Any] = Path(_UpperCAmelCase ) / 'config.json'
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} ,open(_UpperCAmelCase ,"""w""" ) ,)
json.dump({"""model_type""": """clip"""} ,open(_UpperCAmelCase ,"""w""" ) )
snake_case_ : Union[str, Any] = CustomImageProcessor.from_pretrained(_UpperCAmelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_UpperCAmelCase )
snake_case_ : List[str] = AutoImageProcessor.from_pretrained(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase ,_UpperCAmelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def a__ ( self :Any ):
class __UpperCamelCase ( a__ ):
lowercase : str = True
try:
AutoConfig.register("""custom""" ,_UpperCAmelCase )
AutoImageProcessor.register(_UpperCAmelCase ,_UpperCAmelCase )
# If remote code is not set, the default is to use local
snake_case_ : Dict = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
snake_case_ : Dict = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=_UpperCAmelCase )
self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
snake_case_ : Tuple = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=_UpperCAmelCase )
self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" )
self.assertTrue(not hasattr(_UpperCAmelCase ,"""is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] | 334 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741
__A : Tuple = len(__snake_case )
__A : Optional[int] = 0
__A : str = [0] * n
__A : int = [False] * n
__A : Tuple = [False] * n
def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ):
if parent == root:
out_edge_count += 1
__A : str = True
__A : Tuple = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
__A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case )
__A : int = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
__A : Tuple = True
# AP found via cycle
if at == low[to]:
__A : Optional[Any] = True
else:
__A : Any = min(low[at] , __snake_case )
return out_edge_count
for i in range(__snake_case ):
if not visited[i]:
__A : Tuple = 0
__A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case )
__A : Union[str, Any] = out_edge_count > 1
for x in range(len(__snake_case ) ):
if is_art[x] is True:
print(__snake_case )
# Adjacency list of graph
lowercase__ : Tuple = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data) | 8 | 0 |
'''simple docstring'''
import argparse
import os
import pickle
import sys
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
lowerCAmelCase_ : Optional[int] = data_utils.TransfoXLTokenizer
lowerCAmelCase_ : str = data_utils.TransfoXLCorpus
lowerCAmelCase_ : Union[str, Any] = data_utils
lowerCAmelCase_ : int = data_utils
def _lowerCamelCase (__lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] ) -> Optional[Any]:
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(__snake_case , "rb" ) as fp:
a__ = pickle.load(__snake_case , encoding="latin1" )
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
a__ = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file']
print(f'''Save vocabulary to {pytorch_vocab_dump_path}''' )
a__ = corpus.vocab.__dict__
torch.save(__snake_case , __snake_case )
a__ = corpus.__dict__
corpus_dict_no_vocab.pop("vocab" , __snake_case )
a__ = pytorch_dump_folder_path + '/' + CORPUS_NAME
print(f'''Save dataset to {pytorch_dataset_dump_path}''' )
torch.save(__snake_case , __snake_case )
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
a__ = os.path.abspath(__snake_case )
a__ = os.path.abspath(__snake_case )
print(f'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' )
# Initialise PyTorch model
if transfo_xl_config_file == "":
a__ = TransfoXLConfig()
else:
a__ = TransfoXLConfig.from_json_file(__snake_case )
print(f'''Building PyTorch model from configuration: {config}''' )
a__ = TransfoXLLMHeadModel(__snake_case )
a__ = load_tf_weights_in_transfo_xl(__snake_case , __snake_case , __snake_case )
# Save pytorch-model
a__ = os.path.join(__snake_case , __snake_case )
a__ = os.path.join(__snake_case , __snake_case )
print(f'''Save PyTorch model to {os.path.abspath(__snake_case )}''' )
torch.save(model.state_dict() , __snake_case )
print(f'''Save configuration file to {os.path.abspath(__snake_case )}''' )
with open(__snake_case , "w" , encoding="utf-8" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowerCAmelCase_ : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--tf_checkpoint_path",
default="",
type=str,
help="An optional path to a TensorFlow checkpoint path to be converted.",
)
parser.add_argument(
"--transfo_xl_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--transfo_xl_dataset_file",
default="",
type=str,
help="An optional dataset file to be converted in a vocabulary.",
)
lowerCAmelCase_ : int = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(
args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file,
)
| 489 |
'''simple docstring'''
import argparse
import torch
# Step 1. clone https://github.com/microsoft/unilm
# Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd
# Step 3. cd unilm
# Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink
# import classes
from unilm.wavlm.WavLM import WavLM as WavLMOrig
from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig
from transformers import WavLMConfig, WavLMModel, logging
logging.set_verbosity_info()
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
lowercase__ : int = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''',
'''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''',
'''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''ctc_proj''',
'''mask_emb''': '''masked_spec_embed''',
}
lowercase__ : Dict = [
'''ctc_proj''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]:
for attribute in key.split('.' ):
__A : int = getattr(__snake_case , __snake_case )
if weight_type is not None:
__A : Optional[int] = getattr(__snake_case , __snake_case ).shape
else:
__A : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}'
)
if weight_type == "weight":
__A : Tuple = value
elif weight_type == "weight_g":
__A : Union[str, Any] = value
elif weight_type == "weight_v":
__A : Optional[Any] = value
elif weight_type == "bias":
__A : Optional[int] = value
else:
__A : Optional[int] = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]:
__A : Optional[Any] = []
__A : Any = fairseq_model.state_dict()
__A : Union[str, Any] = hf_model.feature_extractor
for name, value in fairseq_dict.items():
__A : Union[str, Any] = False
if "conv_layers" in name:
load_conv_layer(
__snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , )
__A : Optional[Any] = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__A : int = True
if "*" in mapped_key:
__A : Any = name.split(__snake_case )[0].split('.' )[-2]
__A : List[Any] = mapped_key.replace('*' , __snake_case )
if "weight_g" in name:
__A : Optional[Any] = 'weight_g'
elif "weight_v" in name:
__A : Union[str, Any] = 'weight_v'
elif "bias" in name and "relative_attention_bias" not in name:
__A : Optional[Any] = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__A : Tuple = 'weight'
else:
__A : Dict = None
set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
continue
if not is_used:
unused_weights.append(__snake_case )
logger.warning(f'Unused weights: {unused_weights}' )
def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int:
__A : int = full_name.split('conv_layers.' )[-1]
__A : List[str] = name.split('.' )
__A : Optional[int] = int(items[0] )
__A : str = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'
)
__A : Optional[int] = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'
)
__A : Union[str, Any] = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'
" found."
)
__A : Dict = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'
)
__A : Any = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(__snake_case )
@torch.no_grad()
def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any:
# load the pre-trained checkpoints
__A : List[str] = torch.load(__snake_case )
__A : Dict = WavLMConfigOrig(checkpoint['cfg'] )
__A : Optional[int] = WavLMOrig(__snake_case )
model.load_state_dict(checkpoint['model'] )
model.eval()
if config_path is not None:
__A : List[Any] = WavLMConfig.from_pretrained(__snake_case )
else:
__A : Dict = WavLMConfig()
__A : Optional[Any] = WavLMModel(__snake_case )
recursively_load_weights(__snake_case , __snake_case )
hf_wavlm.save_pretrained(__snake_case )
if __name__ == "__main__":
lowercase__ : Tuple = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
lowercase__ : Any = parser.parse_args()
convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path) | 8 | 0 |
'''simple docstring'''
import math
import sys
def __lowercase ( __lowercase ) -> int:
'''simple docstring'''
if number != int(__snake_case ):
raise ValueError("the value of input must be a natural number" )
if number < 0:
raise ValueError("the value of input must not be a negative number" )
if number == 0:
return 1
_A = [-1] * (number + 1)
_A = 0
for i in range(1 , number + 1 ):
_A = sys.maxsize
_A = int(math.sqrt(__snake_case ) )
for j in range(1 , root + 1 ):
_A = 1 + answers[i - (j**2)]
_A = min(__snake_case , __snake_case )
_A = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 330 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block
@dataclass
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = 42
class SCREAMING_SNAKE_CASE (a__ , a__ ):
@register_to_config
def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ):
'''simple docstring'''
super().__init__()
__A : Dict = sample_size
# time
if time_embedding_type == "fourier":
__A : int = GaussianFourierProjection(
embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase)
__A : Any = 2 * block_out_channels[0]
elif time_embedding_type == "positional":
__A : List[str] = Timesteps(
block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase)
__A : List[str] = block_out_channels[0]
if use_timestep_embedding:
__A : Optional[Any] = block_out_channels[0] * 4
__A : Optional[int] = TimestepEmbedding(
in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , )
__A : Dict = nn.ModuleList([])
__A : Dict = None
__A : Tuple = nn.ModuleList([])
__A : Tuple = None
# down
__A : Any = in_channels
for i, down_block_type in enumerate(_UpperCAmelCase):
__A : Tuple = output_channel
__A : Optional[Any] = block_out_channels[i]
if i == 0:
input_channel += extra_in_channels
__A : List[str] = i == len(_UpperCAmelCase) - 1
__A : int = get_down_block(
_UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , )
self.down_blocks.append(_UpperCAmelCase)
# mid
__A : str = get_mid_block(
_UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , )
# up
__A : Optional[int] = list(reversed(_UpperCAmelCase))
__A : Optional[int] = reversed_block_out_channels[0]
if out_block_type is None:
__A : str = out_channels
else:
__A : List[Any] = block_out_channels[0]
for i, up_block_type in enumerate(_UpperCAmelCase):
__A : Optional[Any] = output_channel
__A : Optional[Any] = (
reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels
)
__A : Dict = i == len(_UpperCAmelCase) - 1
__A : str = get_up_block(
_UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , )
self.up_blocks.append(_UpperCAmelCase)
__A : Optional[int] = output_channel
# out
__A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32)
__A : Optional[Any] = get_out_block(
out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , )
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ):
'''simple docstring'''
__A : Any = timestep
if not torch.is_tensor(_UpperCAmelCase):
__A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device)
elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0:
__A : Any = timesteps[None].to(sample.device)
__A : List[Any] = self.time_proj(_UpperCAmelCase)
if self.config.use_timestep_embedding:
__A : Dict = self.time_mlp(_UpperCAmelCase)
else:
__A : Dict = timestep_embed[..., None]
__A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype)
__A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]))
# 2. down
__A : int = ()
for downsample_block in self.down_blocks:
__A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase)
down_block_res_samples += res_samples
# 3. mid
if self.mid_block:
__A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase)
# 4. up
for i, upsample_block in enumerate(self.up_blocks):
__A : Any = down_block_res_samples[-1:]
__A : Optional[int] = down_block_res_samples[:-1]
__A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase)
# 5. post-process
if self.out_block:
__A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase)
if not return_dict:
return (sample,)
return UNetaDOutput(sample=_UpperCAmelCase) | 8 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
SCREAMING_SNAKE_CASE__ : int = {
'''configuration_m2m_100''': ['''M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''M2M100Config''', '''M2M100OnnxConfig'''],
'''tokenization_m2m_100''': ['''M2M100Tokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = [
'''M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''M2M100ForConditionalGeneration''',
'''M2M100Model''',
'''M2M100PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 311 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int:
if len(__snake_case ) != len(__snake_case ):
raise ValueError('String lengths must match!' )
__A : Optional[Any] = 0
for chara, chara in zip(__snake_case , __snake_case ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class _A ( unittest.TestCase ):
def __a ( self : List[Any] ) -> Any:
"""simple docstring"""
lowercase : str = inspect.getfile(accelerate.test_utils )
lowercase : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] )
lowercase : List[str] = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] )
lowercase : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] )
@require_multi_gpu
def __a ( self : Any ) -> List[str]:
"""simple docstring"""
print(f"""Found {torch.cuda.device_count()} devices.""" )
lowercase : Optional[Any] = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
@require_multi_gpu
def __a ( self : Dict ) -> int:
"""simple docstring"""
print(f"""Found {torch.cuda.device_count()} devices.""" )
lowercase : Dict = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path]
print(f"""Command: {cmd}""" )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
@require_multi_gpu
def __a ( self : Any ) -> List[Any]:
"""simple docstring"""
lowercase : Optional[int] = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
@require_multi_gpu
def __a ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
print(f"""Found {torch.cuda.device_count()} devices, using 2 devices only""" )
lowercase : Optional[int] = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ):
execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
if __name__ == "__main__":
lowerCAmelCase_ = Accelerator()
lowerCAmelCase_ = (accelerator.state.process_index + 2, 10)
lowerCAmelCase_ = torch.randint(0, 10, shape).to(accelerator.device)
lowerCAmelCase_ = ''''''
lowerCAmelCase_ = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
lowerCAmelCase_ = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
lowerCAmelCase_ = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg) | 217 |
'''simple docstring'''
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Tuple = logging.get_logger(__name__)
def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]:
__A : int = RobertaPreLayerNormConfig.from_pretrained(
__snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] )
# convert state_dict
__A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) )
__A : str = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith('roberta.' ):
__A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ):
continue
__A : str = tensor_value
__A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case )
model.save_pretrained(__snake_case )
# convert tokenizer
__A : List[Any] = AutoTokenizer.from_pretrained(__snake_case )
tokenizer.save_pretrained(__snake_case )
if __name__ == "__main__":
lowercase__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint-repo''',
default=None,
type=str,
required=True,
help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path) | 8 | 0 |
'''simple docstring'''
from math import sqrt
def __snake_case ( _UpperCAmelCase : int):
assert isinstance(__snake_case, __snake_case) and (
number >= 0
), "'number' must been an int and positive"
UpperCamelCase = True
# 0 and 1 are none primes.
if number <= 1:
UpperCamelCase = False
for divisor in range(2, int(round(sqrt(__snake_case))) + 1):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
UpperCamelCase = False
break
# precondition
assert isinstance(__snake_case, __snake_case), "'status' must been from type bool"
return status
def __snake_case ( _UpperCAmelCase : Tuple):
assert isinstance(__snake_case, __snake_case) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
UpperCamelCase = list(range(2, n + 1))
UpperCamelCase = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(__snake_case)):
for j in range(i + 1, len(__snake_case)):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
UpperCamelCase = 0
# filters actual prime numbers.
UpperCamelCase = [x for x in begin_list if x != 0]
# precondition
assert isinstance(__snake_case, __snake_case), "'ans' must been from type list"
return ans
def __snake_case ( _UpperCAmelCase : str):
assert isinstance(__snake_case, __snake_case) and (n > 2), "'N' must been an int and > 2"
UpperCamelCase = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2, n + 1):
if is_prime(__snake_case):
ans.append(__snake_case)
# precondition
assert isinstance(__snake_case, __snake_case), "'ans' must been from type list"
return ans
def __snake_case ( _UpperCAmelCase : List[Any]):
assert isinstance(__snake_case, __snake_case) and number >= 0, "'number' must been an int and >= 0"
UpperCamelCase = [] # this list will be returns of the function.
# potential prime number factors.
UpperCamelCase = 2
UpperCamelCase = number
if number == 0 or number == 1:
ans.append(__snake_case)
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(__snake_case):
while quotient != 1:
if is_prime(__snake_case) and (quotient % factor == 0):
ans.append(__snake_case)
quotient /= factor
else:
factor += 1
else:
ans.append(__snake_case)
# precondition
assert isinstance(__snake_case, __snake_case), "'ans' must been from type list"
return ans
def __snake_case ( _UpperCAmelCase : str):
assert isinstance(__snake_case, __snake_case) and (
number >= 0
), "'number' bust been an int and >= 0"
UpperCamelCase = 0
# prime factorization of 'number'
UpperCamelCase = prime_factorization(__snake_case)
UpperCamelCase = max(__snake_case)
# precondition
assert isinstance(__snake_case, __snake_case), "'ans' must been from type int"
return ans
def __snake_case ( _UpperCAmelCase : Optional[Any]):
assert isinstance(__snake_case, __snake_case) and (
number >= 0
), "'number' bust been an int and >= 0"
UpperCamelCase = 0
# prime factorization of 'number'
UpperCamelCase = prime_factorization(__snake_case)
UpperCamelCase = min(__snake_case)
# precondition
assert isinstance(__snake_case, __snake_case), "'ans' must been from type int"
return ans
def __snake_case ( _UpperCAmelCase : Union[str, Any]):
assert isinstance(__snake_case, __snake_case), "'number' must been an int"
assert isinstance(number % 2 == 0, __snake_case), "compare bust been from type bool"
return number % 2 == 0
def __snake_case ( _UpperCAmelCase : List[str]):
assert isinstance(__snake_case, __snake_case), "'number' must been an int"
assert isinstance(number % 2 != 0, __snake_case), "compare bust been from type bool"
return number % 2 != 0
def __snake_case ( _UpperCAmelCase : Union[str, Any]):
assert (
isinstance(__snake_case, __snake_case) and (number > 2) and is_even(__snake_case)
), "'number' must been an int, even and > 2"
UpperCamelCase = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
UpperCamelCase = get_prime_numbers(__snake_case)
UpperCamelCase = len(__snake_case)
# run variable for while-loops.
UpperCamelCase = 0
UpperCamelCase = None
# exit variable. for break up the loops
UpperCamelCase = True
while i < len_pn and loop:
UpperCamelCase = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
UpperCamelCase = False
ans.append(prime_numbers[i])
ans.append(prime_numbers[j])
j += 1
i += 1
# precondition
assert (
isinstance(__snake_case, __snake_case)
and (len(__snake_case) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0])
and is_prime(ans[1])
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def __snake_case ( _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : int):
assert (
isinstance(__snake_case, __snake_case)
and isinstance(__snake_case, __snake_case)
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
UpperCamelCase = 0
while numbera != 0:
UpperCamelCase = numbera % numbera
UpperCamelCase = numbera
UpperCamelCase = rest
# precondition
assert isinstance(__snake_case, __snake_case) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def __snake_case ( _UpperCAmelCase : Optional[int], _UpperCAmelCase : List[Any]):
assert (
isinstance(__snake_case, __snake_case)
and isinstance(__snake_case, __snake_case)
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
UpperCamelCase = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
UpperCamelCase = prime_factorization(__snake_case)
UpperCamelCase = prime_factorization(__snake_case)
elif numbera == 1 or numbera == 1:
UpperCamelCase = []
UpperCamelCase = []
UpperCamelCase = max(__snake_case, __snake_case)
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
UpperCamelCase = prime_fac_a.count(__snake_case)
UpperCamelCase = prime_fac_a.count(__snake_case)
for _ in range(max(__snake_case, __snake_case)):
ans *= n
else:
UpperCamelCase = prime_fac_a.count(__snake_case)
for _ in range(__snake_case):
ans *= n
done.append(__snake_case)
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
UpperCamelCase = prime_fac_a.count(__snake_case)
for _ in range(__snake_case):
ans *= n
done.append(__snake_case)
# precondition
assert isinstance(__snake_case, __snake_case) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def __snake_case ( _UpperCAmelCase : Optional[Any]):
assert isinstance(__snake_case, __snake_case) and (n >= 0), "'number' must been a positive int"
UpperCamelCase = 0
UpperCamelCase = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(__snake_case):
ans += 1
# precondition
assert isinstance(__snake_case, __snake_case) and is_prime(
__snake_case), "'ans' must been a prime number and from type int"
return ans
def __snake_case ( _UpperCAmelCase : Optional[int], _UpperCAmelCase : Optional[int]):
assert (
is_prime(__snake_case) and is_prime(__snake_case) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
UpperCamelCase = p_number_a + 1 # jump to the next number
UpperCamelCase = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(__snake_case):
number += 1
while number < p_number_a:
ans.append(__snake_case)
number += 1
# fetch the next prime number.
while not is_prime(__snake_case):
number += 1
# precondition
assert (
isinstance(__snake_case, __snake_case)
and ans[0] != p_number_a
and ans[len(__snake_case) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def __snake_case ( _UpperCAmelCase : Dict):
assert isinstance(__snake_case, __snake_case) and (n >= 1), "'n' must been int and >= 1"
UpperCamelCase = [] # will be returned.
for divisor in range(1, n + 1):
if n % divisor == 0:
ans.append(__snake_case)
# precondition
assert ans[0] == 1 and ans[len(__snake_case) - 1] == n, "Error in function getDivisiors(...)"
return ans
def __snake_case ( _UpperCAmelCase : Union[str, Any]):
assert isinstance(__snake_case, __snake_case) and (
number > 1
), "'number' must been an int and >= 1"
UpperCamelCase = get_divisors(__snake_case)
# precondition
assert (
isinstance(__snake_case, __snake_case)
and (divisors[0] == 1)
and (divisors[len(__snake_case) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1]) == number
def __snake_case ( _UpperCAmelCase : Any, _UpperCAmelCase : int):
assert (
isinstance(__snake_case, __snake_case)
and isinstance(__snake_case, __snake_case)
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
UpperCamelCase = gcd(abs(__snake_case), abs(__snake_case))
# precondition
assert (
isinstance(__snake_case, __snake_case)
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def __snake_case ( _UpperCAmelCase : Tuple):
assert isinstance(__snake_case, __snake_case) and (n >= 0), "'n' must been a int and >= 0"
UpperCamelCase = 1 # this will be return.
for factor in range(1, n + 1):
ans *= factor
return ans
def __snake_case ( _UpperCAmelCase : str):
assert isinstance(__snake_case, __snake_case) and (n >= 0), "'n' must been an int and >= 0"
UpperCamelCase = 0
UpperCamelCase = 1
UpperCamelCase = 1 # this will be return
for _ in range(n - 1):
UpperCamelCase = ans
ans += fiba
UpperCamelCase = tmp
return ans
| 212 |
'''simple docstring'''
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
lowercase__ : Dict = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} )
lowerCAmelCase = field(
default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
lowerCAmelCase = field(
default=a__ , metadata={
'''help''': (
'''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `max_length` value of the model configuration.'''
)
} , )
lowerCAmelCase = field(
default=a__ , metadata={
'''help''': (
'''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `num_beams` value of the model configuration.'''
)
} , )
lowerCAmelCase = field(
default=a__ , metadata={
'''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'''
} , )
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[Any] = super().to_dict()
for k, v in d.items():
if isinstance(_UpperCAmelCase , _UpperCAmelCase):
__A : List[Any] = v.to_dict()
return d | 8 | 0 |
'''simple docstring'''
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / """utils"""))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class __UpperCamelCase ( unittest.TestCase ):
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =mock.Mock()
lowerCamelCase_ =500
lowerCamelCase_ ={}
lowerCamelCase_ =HTTPError
lowerCamelCase_ ={}
# Download this model to make sure it's in the cache.
lowerCamelCase_ =BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('''requests.Session.request''', return_value=_UpperCAmelCase ) as mock_head:
lowerCamelCase_ =BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =mock.Mock()
lowerCamelCase_ =500
lowerCamelCase_ ={}
lowerCamelCase_ =HTTPError
lowerCamelCase_ ={}
# Download this model to make sure it's in the cache.
lowerCamelCase_ =GPTaTokenizerFast.from_pretrained('''gpt2''' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('''requests.Session.request''', return_value=_UpperCAmelCase ) as mock_head:
lowerCamelCase_ =GPTaTokenizerFast.from_pretrained('''gpt2''' )
# This check we did call the fake head request
mock_head.assert_called()
def lowercase__ ( self ):
"""simple docstring"""
try:
lowerCamelCase_ =tempfile.mktemp()
with open(_UpperCAmelCase, '''wb''' ) as f:
http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', _UpperCAmelCase )
lowerCamelCase_ =AlbertTokenizer.from_pretrained(_UpperCAmelCase )
finally:
os.remove(_UpperCAmelCase )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile('''tokenizer.json''' ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open('''tokenizer.json''', '''wb''' ) as f:
http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''', _UpperCAmelCase )
lowerCamelCase_ =AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size, 1_000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove('''tokenizer.json''' )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' )
@is_staging_test
class __UpperCamelCase ( unittest.TestCase ):
lowercase : Any =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou']
@classmethod
def lowercase__ ( cls ):
"""simple docstring"""
lowerCamelCase_ =TOKEN
HfFolder.save_token(_UpperCAmelCase )
@classmethod
def lowercase__ ( cls ):
"""simple docstring"""
try:
delete_repo(token=cls._token, repo_id='''test-tokenizer''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='''valid_org/test-tokenizer-org''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='''test-dynamic-tokenizer''' )
except HTTPError:
pass
def lowercase__ ( self ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase_ =os.path.join(_UpperCAmelCase, '''vocab.txt''' )
with open(_UpperCAmelCase, '''w''', encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
lowerCamelCase_ =BertTokenizer(_UpperCAmelCase )
tokenizer.push_to_hub('''test-tokenizer''', use_auth_token=self._token )
lowerCamelCase_ =BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab )
# Reset repo
delete_repo(token=self._token, repo_id='''test-tokenizer''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_UpperCAmelCase, repo_id='''test-tokenizer''', push_to_hub=_UpperCAmelCase, use_auth_token=self._token )
lowerCamelCase_ =BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab )
def lowercase__ ( self ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase_ =os.path.join(_UpperCAmelCase, '''vocab.txt''' )
with open(_UpperCAmelCase, '''w''', encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
lowerCamelCase_ =BertTokenizer(_UpperCAmelCase )
tokenizer.push_to_hub('''valid_org/test-tokenizer-org''', use_auth_token=self._token )
lowerCamelCase_ =BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' )
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab )
# Reset repo
delete_repo(token=self._token, repo_id='''valid_org/test-tokenizer-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
_UpperCAmelCase, repo_id='''valid_org/test-tokenizer-org''', push_to_hub=_UpperCAmelCase, use_auth_token=self._token )
lowerCamelCase_ =BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' )
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab )
@require_tokenizers
def lowercase__ ( self ):
"""simple docstring"""
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase_ =os.path.join(_UpperCAmelCase, '''vocab.txt''' )
with open(_UpperCAmelCase, '''w''', encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
lowerCamelCase_ =CustomTokenizer(_UpperCAmelCase )
# No fast custom tokenizer
tokenizer.push_to_hub('''test-dynamic-tokenizer''', use_auth_token=self._token )
lowerCamelCase_ =AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''', trust_remote_code=_UpperCAmelCase )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__, '''CustomTokenizer''' )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase_ =os.path.join(_UpperCAmelCase, '''vocab.txt''' )
with open(_UpperCAmelCase, '''w''', encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
lowerCamelCase_ =BertTokenizerFast.from_pretrained(_UpperCAmelCase )
bert_tokenizer.save_pretrained(_UpperCAmelCase )
lowerCamelCase_ =CustomTokenizerFast.from_pretrained(_UpperCAmelCase )
tokenizer.push_to_hub('''test-dynamic-tokenizer''', use_auth_token=self._token )
lowerCamelCase_ =AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''', trust_remote_code=_UpperCAmelCase )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__, '''CustomTokenizerFast''' )
lowerCamelCase_ =AutoTokenizer.from_pretrained(
f'''{USER}/test-dynamic-tokenizer''', use_fast=_UpperCAmelCase, trust_remote_code=_UpperCAmelCase )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__, '''CustomTokenizer''' )
class __UpperCamelCase ( unittest.TestCase ):
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =Trie()
trie.add('''Hello 友達''' )
self.assertEqual(trie.data, {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} )
trie.add('''Hello''' )
trie.data
self.assertEqual(trie.data, {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =Trie()
self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ), ['''[CLS] This is a extra_id_100'''] )
trie.add('''[CLS]''' )
trie.add('''extra_id_1''' )
trie.add('''extra_id_100''' )
self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ), ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =Trie()
trie.add('''A''' )
self.assertEqual(trie.split('''ABC''' ), ['''A''', '''BC'''] )
self.assertEqual(trie.split('''BCA''' ), ['''BC''', '''A'''] )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =Trie()
trie.add('''TOKEN]''' )
trie.add('''[SPECIAL_TOKEN]''' )
self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ), ['''This is something ''', '''[SPECIAL_TOKEN]'''] )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =Trie()
trie.add('''A''' )
trie.add('''P''' )
trie.add('''[SPECIAL_TOKEN]''' )
self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ), ['''This is something ''', '''[SPECIAL_TOKEN]'''] )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =Trie()
trie.add('''AB''' )
trie.add('''B''' )
trie.add('''C''' )
self.assertEqual(trie.split('''ABC''' ), ['''AB''', '''C'''] )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =Trie()
trie.add('''ABC''' )
trie.add('''B''' )
trie.add('''CD''' )
self.assertEqual(trie.split('''ABCD''' ), ['''ABC''', '''D'''] )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =Trie()
lowerCamelCase_ =trie.cut_text('''ABC''', [0, 0, 2, 1, 2, 3] )
self.assertEqual(_UpperCAmelCase, ['''AB''', '''C'''] )
| 676 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : List[Any] = logging.get_logger(__name__)
lowercase__ : Optional[int] = {
'''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''',
}
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = '''lxmert'''
lowerCAmelCase = {}
def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ):
'''simple docstring'''
__A : Tuple = vocab_size
__A : int = hidden_size
__A : str = num_attention_heads
__A : Tuple = hidden_act
__A : int = intermediate_size
__A : str = hidden_dropout_prob
__A : Optional[int] = attention_probs_dropout_prob
__A : Optional[Any] = max_position_embeddings
__A : Tuple = type_vocab_size
__A : Optional[int] = initializer_range
__A : Any = layer_norm_eps
__A : Optional[Any] = num_qa_labels
__A : Optional[int] = num_object_labels
__A : Any = num_attr_labels
__A : Union[str, Any] = l_layers
__A : Optional[int] = x_layers
__A : List[Any] = r_layers
__A : Tuple = visual_feat_dim
__A : Tuple = visual_pos_dim
__A : Optional[int] = visual_loss_normalizer
__A : int = task_matched
__A : List[Any] = task_mask_lm
__A : Optional[Any] = task_obj_predict
__A : str = task_qa
__A : List[Any] = visual_obj_loss
__A : Optional[Any] = visual_attr_loss
__A : Union[str, Any] = visual_feat_loss
__A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers}
super().__init__(**_UpperCAmelCase) | 8 | 0 |
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def A ( _lowercase , _lowercase ):
SCREAMING_SNAKE_CASE : Optional[int] = list(__snake_case )
SCREAMING_SNAKE_CASE : int = list(__snake_case )
SCREAMING_SNAKE_CASE : List[str] = 0
for i in range(len(__snake_case ) ):
if lista[i] != lista[i]:
count += 1
SCREAMING_SNAKE_CASE : Tuple = '_'
if count > 1:
return False
else:
return "".join(__snake_case )
def A ( _lowercase ):
SCREAMING_SNAKE_CASE : List[str] = []
while True:
SCREAMING_SNAKE_CASE : Optional[int] = ['$'] * len(__snake_case )
SCREAMING_SNAKE_CASE : Dict = []
for i in range(len(__snake_case ) ):
for j in range(i + 1 , len(__snake_case ) ):
SCREAMING_SNAKE_CASE : Any = compare_string(binary[i] , binary[j] )
if k is False:
SCREAMING_SNAKE_CASE : List[str] = '*'
SCREAMING_SNAKE_CASE : List[str] = '*'
temp.append('''X''' )
for i in range(len(__snake_case ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(__snake_case ) == 0:
return pi
SCREAMING_SNAKE_CASE : Union[str, Any] = list(set(__snake_case ) )
def A ( _lowercase , _lowercase ):
SCREAMING_SNAKE_CASE : Optional[int] = []
for minterm in minterms:
SCREAMING_SNAKE_CASE : Tuple = ''
for _ in range(__snake_case ):
SCREAMING_SNAKE_CASE : int = str(minterm % 2 ) + string
minterm //= 2
temp.append(__snake_case )
return temp
def A ( _lowercase , _lowercase , _lowercase ):
SCREAMING_SNAKE_CASE : str = list(__snake_case )
SCREAMING_SNAKE_CASE : List[Any] = list(__snake_case )
SCREAMING_SNAKE_CASE : List[Any] = 0
for i in range(len(__snake_case ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def A ( _lowercase , _lowercase ):
SCREAMING_SNAKE_CASE : List[str] = []
SCREAMING_SNAKE_CASE : Any = [0] * len(__snake_case )
for i in range(len(chart[0] ) ):
SCREAMING_SNAKE_CASE : List[str] = 0
SCREAMING_SNAKE_CASE : int = -1
for j in range(len(__snake_case ) ):
if chart[j][i] == 1:
count += 1
SCREAMING_SNAKE_CASE : Any = j
if count == 1:
SCREAMING_SNAKE_CASE : Dict = 1
for i in range(len(__snake_case ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(__snake_case ) ):
SCREAMING_SNAKE_CASE : Optional[Any] = 0
temp.append(prime_implicants[i] )
while True:
SCREAMING_SNAKE_CASE : List[str] = 0
SCREAMING_SNAKE_CASE : Optional[Any] = -1
SCREAMING_SNAKE_CASE : Tuple = 0
for i in range(len(__snake_case ) ):
SCREAMING_SNAKE_CASE : Optional[Any] = chart[i].count(1 )
if count_n > max_n:
SCREAMING_SNAKE_CASE : List[Any] = count_n
SCREAMING_SNAKE_CASE : List[str] = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(__snake_case ) ):
SCREAMING_SNAKE_CASE : Dict = 0
def A ( _lowercase , _lowercase ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [[0 for x in range(len(__snake_case ) )] for x in range(len(__snake_case ) )]
for i in range(len(__snake_case ) ):
SCREAMING_SNAKE_CASE : Optional[int] = prime_implicants[i].count('''_''' )
for j in range(len(__snake_case ) ):
if is_for_table(prime_implicants[i] , binary[j] , __snake_case ):
SCREAMING_SNAKE_CASE : int = 1
return chart
def A ( ):
SCREAMING_SNAKE_CASE : Optional[Any] = int(input('''Enter the no. of variables\n''' ) )
SCREAMING_SNAKE_CASE : Optional[int] = [
float(__snake_case )
for x in input(
'''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split()
]
SCREAMING_SNAKE_CASE : Optional[Any] = decimal_to_binary(__snake_case , __snake_case )
SCREAMING_SNAKE_CASE : Dict = check(__snake_case )
print('''Prime Implicants are:''' )
print(__snake_case )
SCREAMING_SNAKE_CASE : List[Any] = prime_implicant_chart(__snake_case , __snake_case )
SCREAMING_SNAKE_CASE : Tuple = selection(__snake_case , __snake_case )
print('''Essential Prime Implicants are:''' )
print(__snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 248 |
'''simple docstring'''
import math
import sys
def _lowerCAmelCase ( __snake_case : int ) -> int:
if number != int(__snake_case ):
raise ValueError('the value of input must be a natural number' )
if number < 0:
raise ValueError('the value of input must not be a negative number' )
if number == 0:
return 1
__A : str = [-1] * (number + 1)
__A : Dict = 0
for i in range(1 , number + 1 ):
__A : int = sys.maxsize
__A : int = int(math.sqrt(__snake_case ) )
for j in range(1 , root + 1 ):
__A : str = 1 + answers[i - (j**2)]
__A : Dict = min(__snake_case , __snake_case )
__A : Union[str, Any] = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_enforce_args(__snake_case , __snake_case )
if n == 0:
return 0
A__ = float('''-inf''' )
for i in range(1 , n + 1 ):
A__ = max(
__snake_case , prices[i - 1] + naive_cut_rod_recursive(n - i , __snake_case ) )
return max_revue
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]:
"""simple docstring"""
_enforce_args(__snake_case , __snake_case )
A__ = [float('''-inf''' ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(__snake_case , __snake_case , __snake_case )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Any:
"""simple docstring"""
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
A__ = float('''-inf''' )
for i in range(1 , n + 1 ):
A__ = max(
__snake_case , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __snake_case , __snake_case ) , )
A__ = max_revenue
return max_rev[n]
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any:
"""simple docstring"""
_enforce_args(__snake_case , __snake_case )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
A__ = [float('''-inf''' ) for _ in range(n + 1 )]
A__ = 0
for i in range(1 , n + 1 ):
A__ = max_rev[i]
for j in range(1 , i + 1 ):
A__ = max(__snake_case , prices[j - 1] + max_rev[i - j] )
A__ = max_revenue_i
return max_rev[n]
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[Any]:
"""simple docstring"""
if n < 0:
A__ = f"""n must be greater than or equal to 0. Got n = {n}"""
raise ValueError(__snake_case )
if n > len(__snake_case ):
A__ = (
'Each integral piece of rod must have a corresponding price. '
f"""Got n = {n} but length of prices = {len(__snake_case )}"""
)
raise ValueError(__snake_case )
def SCREAMING_SNAKE_CASE ( ) -> Tuple:
"""simple docstring"""
A__ = [6, 10, 12, 15, 20, 23]
A__ = len(__snake_case )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
A__ = 36
A__ = top_down_cut_rod(__snake_case , __snake_case )
A__ = bottom_up_cut_rod(__snake_case , __snake_case )
A__ = naive_cut_rod_recursive(__snake_case , __snake_case )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 87 |
'''simple docstring'''
from __future__ import annotations
def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]:
__A : int = list(range(len(__snake_case ) ) )
__A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )]
index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case )
__A : float = 0
__A : list[float] = [0] * len(__snake_case )
for i in index:
if weight[i] <= capacity:
__A : Optional[int] = 1
max_value += value[i]
capacity -= weight[i]
else:
__A : List[Any] = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
from PIL import Image
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Image , UpperCAmelCase_ : float ) -> Image:
def brightness(UpperCAmelCase_ : int ) -> float:
return 1_2_8 + level + (c - 1_2_8)
if not -255.0 <= level <= 255.0:
raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' )
return img.point(__snake_case )
if __name__ == "__main__":
# Load image
with Image.open("""image_data/lena.jpg""") as img:
# Change brightness to 100
_lowercase = change_brightness(img, 100)
brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
| 443 |
'''simple docstring'''
from __future__ import annotations
import math
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase):
'''simple docstring'''
__A : int = size
# approximate the overall size of segment tree with given value
__A : Optional[Any] = [0 for i in range(0 , 4 * size)]
# create array to store lazy update
__A : Optional[Any] = [0 for i in range(0 , 4 * size)]
__A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
return idx * 2
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
return idx * 2 + 1
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
if left_element == right_element:
__A : List[Any] = a[left_element - 1]
else:
__A : List[str] = (left_element + right_element) // 2
self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase)
__A : Any = max(
self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)])
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
if self.flag[idx] is True:
__A : Optional[Any] = self.lazy[idx]
__A : Optional[Any] = False
if left_element != right_element:
__A : List[Any] = self.lazy[idx]
__A : Dict = self.lazy[idx]
__A : Tuple = True
__A : Union[str, Any] = True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
__A : Optional[int] = val
if left_element != right_element:
__A : Tuple = val
__A : Any = val
__A : Tuple = True
__A : Union[str, Any] = True
return True
__A : str = (left_element + right_element) // 2
self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
__A : int = max(
self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)])
return True
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
if self.flag[idx] is True:
__A : Union[str, Any] = self.lazy[idx]
__A : List[str] = False
if left_element != right_element:
__A : Union[str, Any] = self.lazy[idx]
__A : Optional[int] = self.lazy[idx]
__A : str = True
__A : Union[str, Any] = True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
__A : Any = (left_element + right_element) // 2
__A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
__A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
return max(_UpperCAmelCase , _UpperCAmelCase)
def __str__( self):
'''simple docstring'''
return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)])
if __name__ == "__main__":
lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
lowercase__ : str = 15
lowercase__ : List[Any] = SegmentTree(size)
segt.build(1, 1, size, A)
print(segt.query(1, 1, size, 4, 6))
print(segt.query(1, 1, size, 7, 11))
print(segt.query(1, 1, size, 7, 12))
segt.update(1, 1, size, 1, 3, 1_11)
print(segt.query(1, 1, size, 1, 15))
segt.update(1, 1, size, 7, 8, 2_35)
print(segt) | 8 | 0 |
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase_ = logging.get_logger(__name__)
def _UpperCAmelCase ( A , A ):
'''simple docstring'''
UpperCAmelCase__ =RobertaPreLayerNormConfig.from_pretrained(
__snake_case , architectures=["RobertaPreLayerNormForMaskedLM"] )
# convert state_dict
UpperCAmelCase__ =torch.load(hf_hub_download(repo_id=__snake_case , filename="pytorch_model.bin" ) )
UpperCAmelCase__ ={}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("roberta." ):
UpperCAmelCase__ ='roberta_prelayernorm.' + tensor_key[len("roberta." ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ):
continue
UpperCAmelCase__ =tensor_value
UpperCAmelCase__ =RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case )
model.save_pretrained(__snake_case )
# convert tokenizer
UpperCAmelCase__ =AutoTokenizer.from_pretrained(__snake_case )
tokenizer.save_pretrained(__snake_case )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint-repo',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
UpperCamelCase_ = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 625 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float:
__A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
# formula for sum of series
return total
def _lowerCAmelCase ( ) -> Union[str, Any]:
print(sum_of_series(1 , 1 , 10 ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
'''simple docstring'''
import inspect
import os
import sys
import unittest
import accelerate
from accelerate.test_utils import execute_subprocess_async, require_tpu
class __UpperCamelCase ( unittest.TestCase ):
def a__ ( self :int ):
snake_case_ : Dict = inspect.getfile(accelerate.test_utils )
snake_case_ : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] )
snake_case_ : Union[str, Any] = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] )
@require_tpu
def a__ ( self :int ):
snake_case_ : Tuple = F'''\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n '''.split()
snake_case_ : Optional[int] = [sys.executable] + distributed_args
execute_subprocess_async(_UpperCAmelCase ,env=os.environ.copy() ) | 334 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ):
'''simple docstring'''
__A : Optional[int] = parent
__A : str = 13
__A : List[Any] = 7
__A : List[str] = True
__A : str = True
__A : Optional[Any] = True
__A : int = True
__A : Dict = 99
__A : Dict = 384
__A : Any = 2
__A : int = 4
__A : Optional[Any] = 37
__A : Optional[int] = 'gelu'
__A : Dict = 0.1
__A : Optional[int] = 0.1
__A : Any = 512
__A : int = 16
__A : List[str] = 2
__A : str = 0.02
__A : Any = 3
__A : str = 4
__A : Union[str, Any] = 128
__A : int = 2
__A : List[Any] = 9
__A : List[Any] = 1
__A : List[Any] = None
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__A : str = None
if self.use_input_mask:
__A : List[Any] = random_attention_mask([self.batch_size, self.seq_length])
__A : Optional[Any] = None
if self.use_token_type_ids:
__A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
__A : Optional[int] = None
__A : List[str] = None
__A : Dict = None
if self.use_labels:
__A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__A : str = ids_tensor([self.batch_size] , self.num_choices)
__A : List[Any] = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : int = TFConvBertModel(config=_UpperCAmelCase)
__A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__A : Tuple = [input_ids, input_mask]
__A : Any = model(_UpperCAmelCase)
__A : Dict = model(_UpperCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase)
__A : str = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : str = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Optional[int] = self.num_labels
__A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase)
__A : Optional[Any] = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : Dict = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Tuple = self.num_choices
__A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase)
__A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1))
__A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1))
__A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1))
__A : int = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__A : Optional[Any] = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : List[Any] = self.num_labels
__A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase)
__A : str = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : int = model(_UpperCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
__A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase)
__A : Any = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__A : Union[str, Any] = model(_UpperCAmelCase)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Optional[int] = self.prepare_config_and_inputs()
(
(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,(
__A
) ,
) : Union[str, Any] = config_and_inputs
__A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ):
lowerCAmelCase = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase = (
{
'''feature-extraction''': TFConvBertModel,
'''fill-mask''': TFConvBertForMaskedLM,
'''question-answering''': TFConvBertForQuestionAnswering,
'''text-classification''': TFConvBertForSequenceClassification,
'''token-classification''': TFConvBertForTokenClassification,
'''zero-shot''': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = TFConvBertModelTester(self)
__A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase)
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__A : List[str] = True
__A : List[str] = True
if hasattr(_UpperCAmelCase , 'use_cache'):
__A : List[Any] = True
__A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length)
__A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase)
for model_class in self.all_model_classes:
__A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)
__A : Optional[int] = model_class(_UpperCAmelCase)
__A : Optional[Any] = len(model(_UpperCAmelCase))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase)
__A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1')
__A : Tuple = tf.keras.models.load_model(_UpperCAmelCase)
__A : str = model(_UpperCAmelCase)
if self.is_encoder_decoder:
__A : Optional[int] = outputs['encoder_hidden_states']
__A : str = outputs['encoder_attentions']
else:
__A : List[Any] = outputs['hidden_states']
__A : Optional[Any] = outputs['attentions']
self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase)
__A : str = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase)
self.assertListEqual(
list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base')
self.assertIsNotNone(_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__A : Any = True
__A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length)
__A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length)
__A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase)
__A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase)
def check_decoder_attentions_output(_UpperCAmelCase):
__A : List[str] = len(_UpperCAmelCase)
self.assertEqual(out_len % 2 , 0)
__A : Any = outputs.decoder_attentions
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_UpperCAmelCase):
__A : str = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__A : Dict = True
__A : Any = False
__A : str = model_class(_UpperCAmelCase)
__A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
__A : List[str] = len(_UpperCAmelCase)
self.assertEqual(config.output_hidden_states , _UpperCAmelCase)
check_encoder_attentions_output(_UpperCAmelCase)
if self.is_encoder_decoder:
__A : Union[str, Any] = model_class(_UpperCAmelCase)
__A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
self.assertEqual(config.output_hidden_states , _UpperCAmelCase)
check_decoder_attentions_output(_UpperCAmelCase)
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__A : int = True
__A : Tuple = model_class(_UpperCAmelCase)
__A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
self.assertEqual(config.output_hidden_states , _UpperCAmelCase)
check_encoder_attentions_output(_UpperCAmelCase)
# Check attention is always last and order is fine
__A : Any = True
__A : str = True
__A : Union[str, Any] = model_class(_UpperCAmelCase)
__A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase))
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase))
self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase)
check_encoder_attentions_output(_UpperCAmelCase)
@require_tf
class SCREAMING_SNAKE_CASE (unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base')
__A : str = tf.constant([[0, 1, 2, 3, 4, 5]])
__A : Optional[int] = model(_UpperCAmelCase)[0]
__A : List[Any] = [1, 6, 768]
self.assertEqual(output.shape , _UpperCAmelCase)
__A : Tuple = tf.constant(
[
[
[-0.03475493, -0.4686034, -0.30638832],
[0.22637248, -0.26988646, -0.7423424],
[0.10324868, -0.45013508, -0.58280784],
]
])
tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4) | 8 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase_ : str = {
'''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig''']
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : Optional[int] = ['''RemBertTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : Tuple = ['''RemBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : Optional[int] = [
'''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''RemBertForCausalLM''',
'''RemBertForMaskedLM''',
'''RemBertForMultipleChoice''',
'''RemBertForQuestionAnswering''',
'''RemBertForSequenceClassification''',
'''RemBertForTokenClassification''',
'''RemBertLayer''',
'''RemBertModel''',
'''RemBertPreTrainedModel''',
'''load_tf_weights_in_rembert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : Tuple = [
'''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFRemBertForCausalLM''',
'''TFRemBertForMaskedLM''',
'''TFRemBertForMultipleChoice''',
'''TFRemBertForQuestionAnswering''',
'''TFRemBertForSequenceClassification''',
'''TFRemBertForTokenClassification''',
'''TFRemBertLayer''',
'''TFRemBertModel''',
'''TFRemBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert import RemBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert_fast import RemBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rembert import (
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RemBertForCausalLM,
RemBertForMaskedLM,
RemBertForMultipleChoice,
RemBertForQuestionAnswering,
RemBertForSequenceClassification,
RemBertForTokenClassification,
RemBertLayer,
RemBertModel,
RemBertPreTrainedModel,
load_tf_weights_in_rembert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rembert import (
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertLayer,
TFRemBertModel,
TFRemBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 489 |
'''simple docstring'''
import argparse
import os
import re
lowercase__ : Optional[int] = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
lowercase__ : Dict = re.compile(r'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowercase__ : str = re.compile(r'''\[([^\]]+)\]''')
def _lowerCAmelCase ( __snake_case : str ) -> Tuple:
__A : List[Any] = _re_indent.search(__snake_case )
return "" if search is None else search.groups()[0]
def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]:
__A : Tuple = 0
__A : Optional[int] = code.split('\n' )
if start_prompt is not None:
while not lines[index].startswith(__snake_case ):
index += 1
__A : Optional[int] = ['\n'.join(lines[:index] )]
else:
__A : Any = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
__A : Tuple = [lines[index]]
index += 1
while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ):
current_block.append(lines[index] )
blocks.append('\n'.join(__snake_case ) )
if index < len(__snake_case ) - 1:
__A : Union[str, Any] = [lines[index + 1]]
index += 1
else:
__A : Union[str, Any] = []
else:
blocks.append('\n'.join(__snake_case ) )
__A : Optional[Any] = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(__snake_case ) > 0:
blocks.append('\n'.join(__snake_case ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(__snake_case ):
blocks.append('\n'.join(lines[index:] ) )
return blocks
def _lowerCAmelCase ( __snake_case : List[Any] ) -> int:
def _inner(__snake_case : List[Any] ):
return key(__snake_case ).lower().replace('_' , '' )
return _inner
def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]:
# If no key is provided, we use a noop.
def noop(__snake_case : List[Any] ):
return x
if key is None:
__A : Optional[Any] = noop
# Constants are all uppercase, they go first.
__A : str = [obj for obj in objects if key(__snake_case ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
__A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()]
# Functions begin with a lowercase, they go last.
__A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()]
__A : Tuple = ignore_underscore(__snake_case )
return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case )
def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple:
# This inner function sort imports between [ ].
def _replace(__snake_case : Tuple ):
__A : List[str] = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
__A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__A : Dict = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]"
__A : List[Any] = import_statement.split('\n' )
if len(__snake_case ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
__A : Optional[int] = 2 if lines[1].strip() == '[' else 1
__A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
__A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] )
__A : Any = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(__snake_case ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
__A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] )
else:
__A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__A : Tuple = keys[:-1]
__A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] )
return "\n".join(__snake_case )
else:
# Finally we have to deal with imports fitting on one line
__A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case )
return import_statement
def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]:
with open(__snake_case , 'r' ) as f:
__A : Dict = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
__A : str = split_code_in_indented_blocks(
__snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(__snake_case ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
__A : Tuple = main_blocks[block_idx]
__A : int = block.split('\n' )
# Get to the start of the imports.
__A : Tuple = 0
while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
__A : Optional[int] = len(__snake_case )
else:
line_idx += 1
if line_idx >= len(__snake_case ):
continue
# Ignore beginning and last line: they don't contain anything.
__A : Dict = '\n'.join(block_lines[line_idx:-1] )
__A : int = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
__A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case )
# We have two categories of import key: list or _import_structure[key].append/extend
__A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
__A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
__A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None]
__A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
__A : str = 0
__A : Any = []
for i in range(len(__snake_case ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
__A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(__snake_case )
count += 1
# And we put our main block back together with its first and last line.
__A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(__snake_case ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(__snake_case , 'w' ) as f:
f.write('\n'.join(__snake_case ) )
def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]:
__A : Tuple = []
for root, _, files in os.walk(__snake_case ):
if "__init__.py" in files:
__A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case )
if result:
__A : Dict = [os.path.join(__snake_case , '__init__.py' )]
if len(__snake_case ) > 0:
raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' )
if __name__ == "__main__":
lowercase__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
lowercase__ : Union[str, Any] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only) | 8 | 0 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 330 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : int ) -> bool:
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print('''Program to check whether a number is a Perfect number or not...''')
lowercase__ : int = int(input('''Enter number: ''').strip())
print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""") | 8 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.