code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
_snake_case : Tuple = logging.get_logger(__name__)
_snake_case : List[Any] = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class A ( _a ):
lowercase_ = 'gptj'
lowercase_ = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self : Dict , lowerCAmelCase_ : Tuple=5_04_00 , lowerCAmelCase_ : int=20_48 , lowerCAmelCase_ : Optional[int]=40_96 , lowerCAmelCase_ : Tuple=28 , lowerCAmelCase_ : List[str]=16 , lowerCAmelCase_ : Any=64 , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Any="gelu_new" , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : int=1e-5 , lowerCAmelCase_ : Union[str, Any]=0.0_2 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Tuple=5_02_56 , lowerCAmelCase_ : Union[str, Any]=5_02_56 , lowerCAmelCase_ : List[str]=False , **lowerCAmelCase_ : Dict , ) -> Dict:
"""simple docstring"""
_a = vocab_size
_a = n_positions
_a = n_embd
_a = n_layer
_a = n_head
_a = n_inner
_a = rotary_dim
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = use_cache
_a = bos_token_id
_a = eos_token_id
super().__init__(
bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , tie_word_embeddings=lowerCAmelCase_ , **lowerCAmelCase_ )
class A ( _a ):
def __init__( self : Dict , lowerCAmelCase_ : PretrainedConfig , lowerCAmelCase_ : str = "default" , lowerCAmelCase_ : List[PatchingSpec] = None , lowerCAmelCase_ : bool = False , ) -> Optional[int]:
"""simple docstring"""
super().__init__(lowerCAmelCase_ , task=lowerCAmelCase_ , patching_specs=lowerCAmelCase_ , use_past=lowerCAmelCase_ )
if not getattr(self._config , '''pad_token_id''' , lowerCAmelCase_ ):
# TODO: how to do that better?
_a = 0
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
_a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(lowerCAmelCase_ , direction='''inputs''' )
_a = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def __lowerCAmelCase ( self : str ) -> int:
"""simple docstring"""
return self._config.n_layer
@property
def __lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
return self._config.n_head
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : PreTrainedTokenizer , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
_a = super(lowerCAmelCase_ , self ).generate_dummy_inputs(
lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ )
# We need to order the input in the way they appears in the forward()
_a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_a = [
(torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ )) for _ in range(self.num_layers )
]
_a = common_inputs['''attention_mask''']
if self.use_past:
_a = ordered_inputs['''attention_mask'''].dtype
_a = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(lowerCAmelCase_ , lowerCAmelCase_ , dtype=lowerCAmelCase_ )] , dim=1 )
return ordered_inputs
@property
def __lowerCAmelCase ( self : Optional[int] ) -> int:
"""simple docstring"""
return 13
| 22 |
'''simple docstring'''
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
_a = AutoTokenizer.from_pretrained('''google/mt5-small''' )
_a = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
_a = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
_a = shift_tokens_right(lowerCAmelCase_ , model.config.pad_token_id , model.config.decoder_start_token_id )
_a = model(lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_ ).logits
_a = optax.softmax_cross_entropy(lowerCAmelCase_ , onehot(lowerCAmelCase_ , logits.shape[-1] ) ).mean()
_a = -(labels.shape[-1] * loss.item())
_a = -8_4.9_1_2_7
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 22 | 1 |
'''simple docstring'''
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
if not isinstance(UpperCamelCase , UpperCamelCase ):
raise TypeError('''only integers accepted as input''' )
else:
_a = str(abs(UpperCamelCase ) )
_a = [list(UpperCamelCase ) for char in range(len(UpperCamelCase ) )]
for index in range(len(UpperCamelCase ) ):
num_transpositions[index].pop(UpperCamelCase )
return max(
int(''''''.join(list(UpperCamelCase ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__('doctest').testmod()
| 22 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
_snake_case : Optional[Any] = 8
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Dict=BITS ):
'''simple docstring'''
_a = x.device
_a = (x * 255).int().clamp(0 , 255 )
_a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase )
_a = rearrange(UpperCamelCase , '''d -> d 1 1''' )
_a = rearrange(UpperCamelCase , '''b c h w -> b c 1 h w''' )
_a = ((x & mask) != 0).float()
_a = rearrange(UpperCamelCase , '''b c d h w -> b (c d) h w''' )
_a = bits * 2 - 1
return bits
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Any=BITS ):
'''simple docstring'''
_a = x.device
_a = (x > 0).int()
_a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase , dtype=torch.intaa )
_a = rearrange(UpperCamelCase , '''d -> d 1 1''' )
_a = rearrange(UpperCamelCase , '''b (c d) h w -> b c d h w''' , d=8 )
_a = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' )
return (dec / 255).clamp(0.0 , 1.0 )
def snake_case_ (self : Union[str, Any] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : float = 0.0 , UpperCamelCase : bool = True , UpperCamelCase : Any=None , UpperCamelCase : bool = True , ):
'''simple docstring'''
if self.num_inference_steps is None:
raise ValueError(
'''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
_a = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
_a = self.alphas_cumprod[timestep]
_a = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
_a = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
_a = self.bit_scale
if self.config.clip_sample:
_a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
_a = self._get_variance(UpperCamelCase , UpperCamelCase )
_a = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
_a = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
_a = model_output.device if torch.is_tensor(UpperCamelCase ) else '''cpu'''
_a = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase ).to(UpperCamelCase )
_a = self._get_variance(UpperCamelCase , UpperCamelCase ) ** 0.5 * eta * noise
_a = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase )
def snake_case_ (self : Any , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : str="epsilon" , UpperCamelCase : Dict=None , UpperCamelCase : bool = True , ):
'''simple docstring'''
_a = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
_a , _a = torch.split(UpperCamelCase , sample.shape[1] , dim=1 )
else:
_a = None
# 1. compute alphas, betas
_a = self.alphas_cumprod[t]
_a = self.alphas_cumprod[t - 1] if t > 0 else self.one
_a = 1 - alpha_prod_t
_a = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
_a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
_a = model_output
else:
raise ValueError(f'Unsupported prediction_type {prediction_type}.' )
# 3. Clip "predicted x_0"
_a = self.bit_scale
if self.config.clip_sample:
_a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_a = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
_a = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_a = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_a = 0
if t > 0:
_a = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase ).to(model_output.device )
_a = (self._get_variance(UpperCamelCase , predicted_variance=UpperCamelCase ) ** 0.5) * noise
_a = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase )
class A ( _a ):
def __init__( self : Any , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , lowerCAmelCase_ : Optional[float] = 1.0 , ) -> int:
"""simple docstring"""
super().__init__()
_a = bit_scale
_a = (
ddim_bit_scheduler_step if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ )
@torch.no_grad()
def __call__( self : List[Any] , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 50 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Any , ) -> Union[Tuple, ImagePipelineOutput]:
"""simple docstring"""
_a = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=lowerCAmelCase_ , )
_a = decimal_to_bits(lowerCAmelCase_ ) * self.bit_scale
_a = latents.to(self.device )
self.scheduler.set_timesteps(lowerCAmelCase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
_a = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample
# compute the previous noisy sample x_t -> x_t-1
_a = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample
_a = bits_to_decimal(lowerCAmelCase_ )
if output_type == "pil":
_a = self.numpy_to_pil(lowerCAmelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
_snake_case : int = logging.getLogger(__name__)
class A :
def __init__( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
_a = False
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any ) -> int:
"""simple docstring"""
if not self.initialized:
_a = RagRetriever(
lowerCAmelCase_ , question_encoder_tokenizer=lowerCAmelCase_ , generator_tokenizer=lowerCAmelCase_ , index=lowerCAmelCase_ , init_retrieval=lowerCAmelCase_ , )
_a = True
def __lowerCAmelCase ( self : Any ) -> List[str]:
"""simple docstring"""
self.retriever.index.init_index()
def __lowerCAmelCase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] ) -> Any:
"""simple docstring"""
_a , _a = self.retriever._main_retrieve(lowerCAmelCase_ , lowerCAmelCase_ )
return doc_ids, retrieved_doc_embeds
class A ( _a ):
def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int=None ) -> Union[str, Any]:
"""simple docstring"""
if index is not None and index.is_initialized() and len(lowerCAmelCase_ ) > 0:
raise ValueError(
'''When using Ray for distributed fine-tuning, '''
'''you\'ll need to provide the paths instead, '''
'''as the dataset and the index are loaded '''
'''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' )
super().__init__(
lowerCAmelCase_ , question_encoder_tokenizer=lowerCAmelCase_ , generator_tokenizer=lowerCAmelCase_ , index=lowerCAmelCase_ , init_retrieval=lowerCAmelCase_ , )
_a = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
for worker in self.retrieval_workers
] )
def __lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
logger.info('''initializing retrieval''' )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] ) -> int:
"""simple docstring"""
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
_a = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
_a , _a = ray.get(random_worker.retrieve.remote(lowerCAmelCase_ , lowerCAmelCase_ ) )
else:
_a , _a = self._main_retrieve(lowerCAmelCase_ , lowerCAmelCase_ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase_ )
@classmethod
def __lowerCAmelCase ( cls : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return super(lowerCAmelCase_ , cls ).get_tokenizers(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ )
@classmethod
def __lowerCAmelCase ( cls : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : List[Any] ) -> int:
"""simple docstring"""
_a = kwargs.pop('''config''' , lowerCAmelCase_ ) or RagConfig.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
_a = RagTokenizer.from_pretrained(lowerCAmelCase_ , config=lowerCAmelCase_ )
_a = rag_tokenizer.question_encoder
_a = rag_tokenizer.generator
if indexed_dataset is not None:
_a = '''custom'''
_a = CustomHFIndex(config.retrieval_vector_size , lowerCAmelCase_ )
else:
_a = cls._build_index(lowerCAmelCase_ )
return cls(
lowerCAmelCase_ , question_encoder_tokenizer=lowerCAmelCase_ , generator_tokenizer=lowerCAmelCase_ , retrieval_workers=lowerCAmelCase_ , index=lowerCAmelCase_ , )
| 22 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case : Optional[int] = logging.get_logger(__name__)
_snake_case : Any = {
'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json',
'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json',
'junnyu/roformer_chinese_char_small': (
'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json'
),
'junnyu/roformer_chinese_char_base': (
'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json'
),
'junnyu/roformer_small_discriminator': (
'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json'
),
'junnyu/roformer_small_generator': (
'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json'
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class A ( _a ):
lowercase_ = 'roformer'
def __init__( self : str , lowerCAmelCase_ : int=5_00_00 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int=7_68 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : List[str]=30_72 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : int=15_36 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : Dict=1e-12 , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Tuple=True , **lowerCAmelCase_ : Optional[int] , ) -> str:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
_a = vocab_size
_a = hidden_size if embedding_size is None else embedding_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = hidden_act
_a = intermediate_size
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = initializer_range
_a = layer_norm_eps
_a = rotary_value
_a = use_cache
class A ( _a ):
@property
def __lowerCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
_a = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 22 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
_snake_case : Any = {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json',
}
class A ( _a ):
lowercase_ = 'albert'
def __init__( self : List[str] , lowerCAmelCase_ : Tuple=3_00_00 , lowerCAmelCase_ : Dict=1_28 , lowerCAmelCase_ : str=40_96 , lowerCAmelCase_ : int=12 , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Tuple=64 , lowerCAmelCase_ : Union[str, Any]=1_63_84 , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Union[str, Any]="gelu_new" , lowerCAmelCase_ : List[str]=0 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : Dict=5_12 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : Any=0.0_2 , lowerCAmelCase_ : Tuple=1e-12 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : Union[str, Any]="absolute" , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Dict=3 , **lowerCAmelCase_ : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
_a = vocab_size
_a = embedding_size
_a = hidden_size
_a = num_hidden_layers
_a = num_hidden_groups
_a = num_attention_heads
_a = inner_group_num
_a = hidden_act
_a = intermediate_size
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = initializer_range
_a = layer_norm_eps
_a = classifier_dropout_prob
_a = position_embedding_type
class A ( _a ):
@property
def __lowerCAmelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 22 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class A :
lowercase_ = 42
lowercase_ = 42
class A :
def __init__( self : Optional[Any] , lowerCAmelCase_ : int ) -> str:
"""simple docstring"""
_a = [[] for _ in range(lowerCAmelCase_ )]
_a = size
def __getitem__( self : Any , lowerCAmelCase_ : int ) -> Iterator[Edge]:
"""simple docstring"""
return iter(self._graph[vertex] )
@property
def __lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
return self._size
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Dict:
"""simple docstring"""
if weight not in (0, 1):
raise ValueError('''Edge weight must be either 0 or 1.''' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('''Vertex indexes must be in [0; size).''' )
self._graph[from_vertex].append(Edge(lowerCAmelCase_ , lowerCAmelCase_ ) )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> int | None:
"""simple docstring"""
_a = deque([start_vertex] )
_a = [None] * self.size
_a = 0
while queue:
_a = queue.popleft()
_a = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
_a = current_distance + edge.weight
_a = distances[edge.destination_vertex]
if (
isinstance(lowerCAmelCase_ , lowerCAmelCase_ )
and new_distance >= dest_vertex_distance
):
continue
_a = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('''No path from start_vertex to finish_vertex.''' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
_snake_case : Tuple = logging.get_logger(__name__)
_snake_case : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_snake_case : List[Any] = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
_snake_case : Union[str, Any] = {
'squeezebert/squeezebert-uncased': 512,
'squeezebert/squeezebert-mnli': 512,
'squeezebert/squeezebert-mnli-headless': 512,
}
_snake_case : Tuple = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class A ( _a ):
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_INIT_CONFIGURATION
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = SqueezeBertTokenizer
def __init__( self : str , lowerCAmelCase_ : str=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[str]="[UNK]" , lowerCAmelCase_ : Union[str, Any]="[SEP]" , lowerCAmelCase_ : Optional[Any]="[PAD]" , lowerCAmelCase_ : Any="[CLS]" , lowerCAmelCase_ : List[str]="[MASK]" , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Optional[int] , ) -> int:
"""simple docstring"""
super().__init__(
lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , )
_a = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , lowerCAmelCase_ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , lowerCAmelCase_ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase_ ) != tokenize_chinese_chars
):
_a = getattr(lowerCAmelCase_ , normalizer_state.pop('''type''' ) )
_a = do_lower_case
_a = strip_accents
_a = tokenize_chinese_chars
_a = normalizer_class(**lowerCAmelCase_ )
_a = do_lower_case
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=None ) -> List[str]:
"""simple docstring"""
_a = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
_a = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ )
return tuple(lowerCAmelCase_ )
| 22 |
'''simple docstring'''
from math import pi, sqrt
def snake_case_ (UpperCamelCase : float ):
'''simple docstring'''
if num <= 0:
raise ValueError('''math domain error''' )
if num > 171.5:
raise OverflowError('''math range error''' )
elif num - int(UpperCamelCase ) not in (0, 0.5):
raise NotImplementedError('''num must be an integer or a half-integer''' )
elif num == 0.5:
return sqrt(UpperCamelCase )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def snake_case_ ():
'''simple docstring'''
assert gamma(0.5 ) == sqrt(UpperCamelCase )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
_snake_case : Optional[Any] = 1.0
while num:
_snake_case : Dict = float(input('Gamma of: '))
print(F'''gamma({num}) = {gamma(num)}''')
print('\nEnter 0 to exit...')
| 22 | 1 |
'''simple docstring'''
import contextlib
import importlib
import io
import unittest
import transformers
# Try to import everything from transformers to ensure every object can be loaded.
from transformers import * # noqa F406
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch
from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available
if is_torch_available():
from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification
if is_tf_available():
from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification
if is_flax_available():
from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification
_snake_case : List[str] = DUMMY_UNKNOWN_IDENTIFIER
# An actual model hosted on huggingface.co
_snake_case : Union[str, Any] = 'main'
# Default branch name
_snake_case : Dict = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2'
# One particular commit (not the top of `main`)
_snake_case : Dict = 'aaaaaaa'
# This commit does not exist, so we should 404.
_snake_case : str = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684'
# Sha-1 of config.json on the top of `main`, for checking purposes
_snake_case : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3'
@contextlib.contextmanager
def snake_case_ ():
'''simple docstring'''
print('''Welcome!''' )
yield
print('''Bye!''' )
@contextlib.contextmanager
def snake_case_ ():
'''simple docstring'''
print('''Bonjour!''' )
yield
print('''Au revoir!''' )
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
assert transformers.__spec__ is not None
assert importlib.util.find_spec('''transformers''' ) is not None
class A ( unittest.TestCase ):
@unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO )
def __lowerCAmelCase ( self : str , lowerCAmelCase_ : str ) -> int:
"""simple docstring"""
with ContextManagers([] ):
print('''Transformers are awesome!''' )
# The print statement adds a new line at the end of the output
self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' )
@unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO )
def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Optional[int] ) -> Any:
"""simple docstring"""
with ContextManagers([context_en()] ):
print('''Transformers are awesome!''' )
# The output should be wrapped with an English welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' )
@unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Any] ) -> str:
"""simple docstring"""
with ContextManagers([context_fr(), context_en()] ):
print('''Transformers are awesome!''' )
# The output should be wrapped with an English and French welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' )
@require_torch
def __lowerCAmelCase ( self : int ) -> Optional[int]:
"""simple docstring"""
self.assertEqual(find_labels(lowerCAmelCase_ ) , ['''labels'''] )
self.assertEqual(find_labels(lowerCAmelCase_ ) , ['''labels''', '''next_sentence_label'''] )
self.assertEqual(find_labels(lowerCAmelCase_ ) , ['''start_positions''', '''end_positions'''] )
class A ( _a ):
pass
self.assertEqual(find_labels(lowerCAmelCase_ ) , ['''labels'''] )
@require_tf
def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
self.assertEqual(find_labels(lowerCAmelCase_ ) , ['''labels'''] )
self.assertEqual(find_labels(lowerCAmelCase_ ) , ['''labels''', '''next_sentence_label'''] )
self.assertEqual(find_labels(lowerCAmelCase_ ) , ['''start_positions''', '''end_positions'''] )
class A ( _a ):
pass
self.assertEqual(find_labels(lowerCAmelCase_ ) , ['''labels'''] )
@require_flax
def __lowerCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
self.assertEqual(find_labels(lowerCAmelCase_ ) , [] )
self.assertEqual(find_labels(lowerCAmelCase_ ) , [] )
self.assertEqual(find_labels(lowerCAmelCase_ ) , [] )
class A ( _a ):
pass
self.assertEqual(find_labels(lowerCAmelCase_ ) , [] )
| 22 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : List[Any] ) -> int:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_euler''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_euler''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1
def __lowerCAmelCase ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_dpmpp_2m''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe(
[prompt] , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=lowerCAmelCase_ , )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array(
[0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 22 | 1 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class A ( unittest.TestCase ):
def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]=7 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=18 , lowerCAmelCase_ : Any=30 , lowerCAmelCase_ : Optional[int]=4_00 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=True , ) -> Optional[Any]:
"""simple docstring"""
_a = size if size is not None else {'''height''': 18, '''width''': 18}
_a = parent
_a = batch_size
_a = num_channels
_a = image_size
_a = min_resolution
_a = max_resolution
_a = do_resize
_a = size
_a = do_normalize
def __lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4],
[-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class A ( _a ,unittest.TestCase ):
lowercase_ = ImageGPTImageProcessor if is_vision_available() else None
def __lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_a = ImageGPTImageProcessingTester(self )
@property
def __lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def __lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase_ , '''clusters''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''size''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''do_normalize''' ) )
def __lowerCAmelCase ( self : List[Any] ) -> List[str]:
"""simple docstring"""
_a = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} )
_a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
def __lowerCAmelCase ( self : str ) -> str:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
_a = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a = os.path.join(lowerCAmelCase_ , '''image_processor.json''' )
image_processor_first.to_json_file(lowerCAmelCase_ )
_a = self.image_processing_class.from_json_file(lowerCAmelCase_ ).to_dict()
_a = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowerCAmelCase_ )
_a = self.image_processing_class.from_pretrained(lowerCAmelCase_ ).to_dict()
_a = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowerCAmelCase_ )
@unittest.skip('''ImageGPT requires clusters at initialization''' )
def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
pass
def snake_case_ ():
'''simple docstring'''
_a = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' )
_a = Image.open(dataset[4]['''file'''] )
_a = Image.open(dataset[5]['''file'''] )
_a = [imagea, imagea]
return images
@require_vision
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_a = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' )
_a = prepare_images()
# test non-batched
_a = image_processing(images[0] , return_tensors='''pt''' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 10_24) )
_a = [3_06, 1_91, 1_91]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCAmelCase_ )
# test batched
_a = image_processing(lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 10_24) )
_a = [3_03, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCAmelCase_ )
| 22 |
'''simple docstring'''
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
_snake_case : Any = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
_snake_case : Any = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n'
_snake_case : List[Any] = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n'
def snake_case_ (UpperCamelCase : Tuple ):
'''simple docstring'''
def remove_articles(UpperCamelCase : Optional[int] ):
_a = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE )
return re.sub(UpperCamelCase , ''' ''' , UpperCamelCase )
def white_space_fix(UpperCamelCase : Union[str, Any] ):
return " ".join(text.split() )
def remove_punc(UpperCamelCase : str ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(UpperCamelCase : Tuple ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase ) ) ) )
def snake_case_ (UpperCamelCase : int , UpperCamelCase : Dict ):
'''simple docstring'''
return int(normalize_answer(UpperCamelCase ) == normalize_answer(UpperCamelCase ) )
def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : List[str] ):
'''simple docstring'''
_a = [any(compute_exact(UpperCamelCase , UpperCamelCase ) for ref in refs ) for pred, refs in zip(UpperCamelCase , UpperCamelCase )]
return (sum(UpperCamelCase ) / len(UpperCamelCase )) * 100
def snake_case_ (UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
_a = [rgram for rgrams in rgramslist for rgram in rgrams]
_a = Counter(UpperCamelCase )
_a = Counter(UpperCamelCase )
_a = Counter()
for sgram, scount in sgramcounter.items():
_a = scount * numref
_a = Counter(UpperCamelCase )
_a = Counter()
for cgram, ccount in cgramcounter.items():
_a = ccount * numref
# KEEP
_a = sgramcounter_rep & cgramcounter_rep
_a = keepgramcounter_rep & rgramcounter
_a = sgramcounter_rep & rgramcounter
_a = 0
_a = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(UpperCamelCase ) > 0:
_a = keeptmpscorea / len(UpperCamelCase )
if len(UpperCamelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_a = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_a = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_a = sgramcounter_rep - cgramcounter_rep
_a = delgramcounter_rep - rgramcounter
_a = sgramcounter_rep - rgramcounter
_a = 0
_a = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
if len(UpperCamelCase ) > 0:
_a = deltmpscorea / len(UpperCamelCase )
# ADDITION
_a = set(UpperCamelCase ) - set(UpperCamelCase )
_a = set(UpperCamelCase ) & set(UpperCamelCase )
_a = set(UpperCamelCase ) - set(UpperCamelCase )
_a = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(UpperCamelCase ) > 0:
_a = addtmpscore / len(UpperCamelCase )
if len(UpperCamelCase ) > 0:
_a = addtmpscore / len(UpperCamelCase )
_a = 0
if addscore_precision > 0 or addscore_recall > 0:
_a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ):
'''simple docstring'''
_a = len(UpperCamelCase )
_a = ssent.split(''' ''' )
_a = csent.split(''' ''' )
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
for rsent in rsents:
_a = rsent.split(''' ''' )
_a = []
_a = []
_a = []
ragramslist.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
_a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_a = sum([delascore, delascore, delascore, delascore] ) / 4
_a = sum([addascore, addascore, addascore, addascore] ) / 4
_a = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def snake_case_ (UpperCamelCase : str , UpperCamelCase : bool = True , UpperCamelCase : str = "13a" , UpperCamelCase : bool = True ):
'''simple docstring'''
if lowercase:
_a = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_a = sacrebleu.metrics.bleu._get_tokenizer(UpperCamelCase )()(UpperCamelCase )
else:
_a = sacrebleu.TOKENIZERS[tokenizer]()(UpperCamelCase )
elif tokenizer == "moses":
_a = sacremoses.MosesTokenizer().tokenize(UpperCamelCase , return_str=UpperCamelCase , escape=UpperCamelCase )
elif tokenizer == "penn":
_a = sacremoses.MosesTokenizer().penn_tokenize(UpperCamelCase , return_str=UpperCamelCase )
else:
_a = sentence
if not return_str:
_a = normalized_sent.split()
return normalized_sent
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Dict ):
'''simple docstring'''
if not (len(UpperCamelCase ) == len(UpperCamelCase ) == len(UpperCamelCase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_a = 0
for src, pred, refs in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ):
sari_score += SARIsent(normalize(UpperCamelCase ) , normalize(UpperCamelCase ) , [normalize(UpperCamelCase ) for sent in refs] )
_a = sari_score / len(UpperCamelCase )
return 100 * sari_score
def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : List[str]="exp" , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[int]=False , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=False , ):
'''simple docstring'''
_a = len(references[0] )
if any(len(UpperCamelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a = [[refs[i] for refs in references] for i in range(UpperCamelCase )]
_a = sacrebleu.corpus_bleu(
UpperCamelCase , UpperCamelCase , smooth_method=UpperCamelCase , smooth_value=UpperCamelCase , force=UpperCamelCase , lowercase=UpperCamelCase , use_effective_order=UpperCamelCase , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def __lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any ) -> Dict:
"""simple docstring"""
_a = {}
result.update({'''sari''': compute_sari(sources=lowerCAmelCase_ , predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
result.update({'''exact''': compute_em(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
return result
| 22 | 1 |
'''simple docstring'''
from collections import deque
from math import floor
from random import random
from time import time
class A :
def __init__( self : Tuple ) -> str:
"""simple docstring"""
_a = {}
def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=1 ) -> Dict:
"""simple docstring"""
if self.graph.get(lowerCAmelCase_ ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
_a = [[w, v]]
if not self.graph.get(lowerCAmelCase_ ):
_a = []
def __lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
return list(self.graph )
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] ) -> str:
"""simple docstring"""
if self.graph.get(lowerCAmelCase_ ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(lowerCAmelCase_ )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Dict=-2 , lowerCAmelCase_ : List[str]=-1 ) -> Union[str, Any]:
"""simple docstring"""
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(lowerCAmelCase_ )
visited.append(lowerCAmelCase_ )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(lowerCAmelCase_ )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(lowerCAmelCase_ ) != 0:
_a = stack[len(lowerCAmelCase_ ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(lowerCAmelCase_ ) == 0:
return visited
def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Optional[int]=-1 ) -> str:
"""simple docstring"""
if c == -1:
_a = floor(random() * 1_00_00 ) + 10
for i in range(lowerCAmelCase_ ):
# every vertex has max 100 edges
for _ in range(floor(random() * 1_02 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(lowerCAmelCase_ , lowerCAmelCase_ , 1 )
def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Dict=-2 ) -> Optional[int]:
"""simple docstring"""
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(lowerCAmelCase_ )
visited.append(lowerCAmelCase_ )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Dict ) -> List[Any]:
"""simple docstring"""
_a = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : List[Any] ) -> Dict:
"""simple docstring"""
return len(self.graph[u] )
def __lowerCAmelCase ( self : str , lowerCAmelCase_ : List[str]=-2 ) -> int:
"""simple docstring"""
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(lowerCAmelCase_ )
visited.append(lowerCAmelCase_ )
_a = s
_a = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(lowerCAmelCase_ ) != 0:
_a = stack[len(lowerCAmelCase_ ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(lowerCAmelCase_ ) == 0:
return sorted_nodes
def __lowerCAmelCase ( self : List[Any] ) -> int:
"""simple docstring"""
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(lowerCAmelCase_ )
visited.append(lowerCAmelCase_ )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(lowerCAmelCase_ ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(lowerCAmelCase_ ) != 0:
_a = stack[len(lowerCAmelCase_ ) - 1]
else:
_a = False
indirect_parents.append(lowerCAmelCase_ )
_a = s
_a = ss
# check if se have reached the starting point
if len(lowerCAmelCase_ ) == 0:
return list(lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(lowerCAmelCase_ )
visited.append(lowerCAmelCase_ )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(lowerCAmelCase_ ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(lowerCAmelCase_ ) != 0:
_a = stack[len(lowerCAmelCase_ ) - 1]
else:
_a = False
indirect_parents.append(lowerCAmelCase_ )
_a = s
_a = ss
# check if se have reached the starting point
if len(lowerCAmelCase_ ) == 0:
return False
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any=-2 , lowerCAmelCase_ : Optional[Any]=-1 ) -> Optional[Any]:
"""simple docstring"""
_a = time()
self.dfs(lowerCAmelCase_ , lowerCAmelCase_ )
_a = time()
return end - begin
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Tuple=-2 ) -> List[str]:
"""simple docstring"""
_a = time()
self.bfs(lowerCAmelCase_ )
_a = time()
return end - begin
class A :
def __init__( self : List[Any] ) -> Any:
"""simple docstring"""
_a = {}
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str=1 ) -> Dict:
"""simple docstring"""
if self.graph.get(lowerCAmelCase_ ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
_a = [[w, v]]
# add the other way
if self.graph.get(lowerCAmelCase_ ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
_a = [[w, u]]
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> int:
"""simple docstring"""
if self.graph.get(lowerCAmelCase_ ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(lowerCAmelCase_ )
# the other way round
if self.graph.get(lowerCAmelCase_ ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Any=-2 , lowerCAmelCase_ : Optional[int]=-1 ) -> Optional[int]:
"""simple docstring"""
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(lowerCAmelCase_ )
visited.append(lowerCAmelCase_ )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(lowerCAmelCase_ )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(lowerCAmelCase_ ) != 0:
_a = stack[len(lowerCAmelCase_ ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(lowerCAmelCase_ ) == 0:
return visited
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Union[str, Any]=-1 ) -> Any:
"""simple docstring"""
if c == -1:
_a = floor(random() * 1_00_00 ) + 10
for i in range(lowerCAmelCase_ ):
# every vertex has max 100 edges
for _ in range(floor(random() * 1_02 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(lowerCAmelCase_ , lowerCAmelCase_ , 1 )
def __lowerCAmelCase ( self : str , lowerCAmelCase_ : List[Any]=-2 ) -> Optional[Any]:
"""simple docstring"""
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(lowerCAmelCase_ )
visited.append(lowerCAmelCase_ )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[int] ) -> Any:
"""simple docstring"""
return len(self.graph[u] )
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(lowerCAmelCase_ )
visited.append(lowerCAmelCase_ )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(lowerCAmelCase_ ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(lowerCAmelCase_ ) != 0:
_a = stack[len(lowerCAmelCase_ ) - 1]
else:
_a = False
indirect_parents.append(lowerCAmelCase_ )
_a = s
_a = ss
# check if se have reached the starting point
if len(lowerCAmelCase_ ) == 0:
return list(lowerCAmelCase_ )
def __lowerCAmelCase ( self : str ) -> str:
"""simple docstring"""
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(lowerCAmelCase_ )
visited.append(lowerCAmelCase_ )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(lowerCAmelCase_ ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(lowerCAmelCase_ ) != 0:
_a = stack[len(lowerCAmelCase_ ) - 1]
else:
_a = False
indirect_parents.append(lowerCAmelCase_ )
_a = s
_a = ss
# check if se have reached the starting point
if len(lowerCAmelCase_ ) == 0:
return False
def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return list(self.graph )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : int=-2 , lowerCAmelCase_ : int=-1 ) -> List[Any]:
"""simple docstring"""
_a = time()
self.dfs(lowerCAmelCase_ , lowerCAmelCase_ )
_a = time()
return end - begin
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Dict=-2 ) -> int:
"""simple docstring"""
_a = time()
self.bfs(lowerCAmelCase_ )
_a = time()
return end - begin
| 22 |
'''simple docstring'''
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'):
_snake_case : Tuple = {
'linear': PIL.Image.Resampling.BILINEAR,
'bilinear': PIL.Image.Resampling.BILINEAR,
'bicubic': PIL.Image.Resampling.BICUBIC,
'lanczos': PIL.Image.Resampling.LANCZOS,
'nearest': PIL.Image.Resampling.NEAREST,
}
else:
_snake_case : Any = {
'linear': PIL.Image.LINEAR,
'bilinear': PIL.Image.BILINEAR,
'bicubic': PIL.Image.BICUBIC,
'lanczos': PIL.Image.LANCZOS,
'nearest': PIL.Image.NEAREST,
}
def snake_case_ (UpperCamelCase : Optional[int] ):
'''simple docstring'''
_a = (images / 2 + 0.5).clamp(0 , 1 )
_a = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
_a = numpy_to_pil(UpperCamelCase )
return images
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
if images.ndim == 3:
_a = images[None, ...]
_a = (images * 255).round().astype('''uint8''' )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
_a = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images]
else:
_a = [Image.fromarray(UpperCamelCase ) for image in images]
return pil_images
| 22 | 1 |
'''simple docstring'''
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
_snake_case : Union[str, Any] = logging.get_logger(__name__)
@add_end_docstrings(_a )
class A ( _a ):
def __init__( self : Any , **lowerCAmelCase_ : Dict ) -> Optional[int]:
"""simple docstring"""
super().__init__(**lowerCAmelCase_ )
requires_backends(self , '''vision''' )
requires_backends(self , '''torch''' )
if self.framework != "pt":
raise ValueError(F'The {self.__class__} is only available in PyTorch.' )
self.check_model_type(lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple , **lowerCAmelCase_ : Tuple ) -> Optional[int]:
"""simple docstring"""
_a = {}
_a = {}
_a = {}
# preprocess args
if "points_per_batch" in kwargs:
_a = kwargs['''points_per_batch''']
if "points_per_crop" in kwargs:
_a = kwargs['''points_per_crop''']
if "crops_n_layers" in kwargs:
_a = kwargs['''crops_n_layers''']
if "crop_overlap_ratio" in kwargs:
_a = kwargs['''crop_overlap_ratio''']
if "crop_n_points_downscale_factor" in kwargs:
_a = kwargs['''crop_n_points_downscale_factor''']
# postprocess args
if "pred_iou_thresh" in kwargs:
_a = kwargs['''pred_iou_thresh''']
if "stability_score_offset" in kwargs:
_a = kwargs['''stability_score_offset''']
if "mask_threshold" in kwargs:
_a = kwargs['''mask_threshold''']
if "stability_score_thresh" in kwargs:
_a = kwargs['''stability_score_thresh''']
if "crops_nms_thresh" in kwargs:
_a = kwargs['''crops_nms_thresh''']
if "output_rle_mask" in kwargs:
_a = kwargs['''output_rle_mask''']
if "output_bboxes_mask" in kwargs:
_a = kwargs['''output_bboxes_mask''']
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__( self : Dict , lowerCAmelCase_ : Optional[Any] , *lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str=None , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return super().__call__(lowerCAmelCase_ , *lowerCAmelCase_ , num_workers=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any]=64 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : float = 5_12 / 15_00 , lowerCAmelCase_ : Optional[int] = 32 , lowerCAmelCase_ : Optional[int] = 1 , ) -> Dict:
"""simple docstring"""
_a = load_image(lowerCAmelCase_ )
_a = self.image_processor.size['''longest_edge''']
_a , _a , _a , _a = self.image_processor.generate_crop_boxes(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
_a = self.image_processor(images=lowerCAmelCase_ , return_tensors='''pt''' )
with self.device_placement():
if self.framework == "pt":
_a = self.get_inference_context()
with inference_context():
_a = self._ensure_tensor_on_device(lowerCAmelCase_ , device=self.device )
_a = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) )
_a = image_embeddings
_a = grid_points.shape[1]
_a = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
'''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. '''
'''To return all points at once, set points_per_batch to None''' )
for i in range(0 , lowerCAmelCase_ , lowerCAmelCase_ ):
_a = grid_points[:, i : i + points_per_batch, :, :]
_a = input_labels[:, i : i + points_per_batch]
_a = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any]=0.8_8 , lowerCAmelCase_ : Tuple=0.9_5 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : Optional[int]=1 , ) -> str:
"""simple docstring"""
_a = model_inputs.pop('''input_boxes''' )
_a = model_inputs.pop('''is_last''' )
_a = model_inputs.pop('''original_sizes''' ).tolist()
_a = model_inputs.pop('''reshaped_input_sizes''' ).tolist()
_a = self.model(**lowerCAmelCase_ )
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
_a = model_outputs['''pred_masks''']
_a = self.image_processor.post_process_masks(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , binarize=lowerCAmelCase_ )
_a = model_outputs['''iou_scores''']
_a , _a , _a = self.image_processor.filter_masks(
masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[Any]=0.7 , ) -> int:
"""simple docstring"""
_a = []
_a = []
_a = []
for model_output in model_outputs:
all_scores.append(model_output.pop('''iou_scores''' ) )
all_masks.extend(model_output.pop('''masks''' ) )
all_boxes.append(model_output.pop('''boxes''' ) )
_a = torch.cat(lowerCAmelCase_ )
_a = torch.cat(lowerCAmelCase_ )
_a , _a , _a , _a = self.image_processor.post_process_for_mask_generation(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
_a = defaultdict(lowerCAmelCase_ )
for output in model_outputs:
for k, v in output.items():
extra[k].append(lowerCAmelCase_ )
_a = {}
if output_rle_mask:
_a = rle_mask
if output_bboxes_mask:
_a = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 22 |
'''simple docstring'''
import requests
def snake_case_ (UpperCamelCase : str , UpperCamelCase : str ):
'''simple docstring'''
_a = {'''Content-Type''': '''application/json'''}
_a = requests.post(UpperCamelCase , json={'''text''': message_body} , headers=UpperCamelCase )
if response.status_code != 200:
_a = (
'''Request to slack returned an error '''
f'{response.status_code}, the response is:\n{response.text}'
)
raise ValueError(UpperCamelCase )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
| 22 | 1 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
_snake_case : Optional[Any] = 8
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Dict=BITS ):
'''simple docstring'''
_a = x.device
_a = (x * 255).int().clamp(0 , 255 )
_a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase )
_a = rearrange(UpperCamelCase , '''d -> d 1 1''' )
_a = rearrange(UpperCamelCase , '''b c h w -> b c 1 h w''' )
_a = ((x & mask) != 0).float()
_a = rearrange(UpperCamelCase , '''b c d h w -> b (c d) h w''' )
_a = bits * 2 - 1
return bits
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Any=BITS ):
'''simple docstring'''
_a = x.device
_a = (x > 0).int()
_a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase , dtype=torch.intaa )
_a = rearrange(UpperCamelCase , '''d -> d 1 1''' )
_a = rearrange(UpperCamelCase , '''b (c d) h w -> b c d h w''' , d=8 )
_a = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' )
return (dec / 255).clamp(0.0 , 1.0 )
def snake_case_ (self : Union[str, Any] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : float = 0.0 , UpperCamelCase : bool = True , UpperCamelCase : Any=None , UpperCamelCase : bool = True , ):
'''simple docstring'''
if self.num_inference_steps is None:
raise ValueError(
'''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
_a = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
_a = self.alphas_cumprod[timestep]
_a = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
_a = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
_a = self.bit_scale
if self.config.clip_sample:
_a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
_a = self._get_variance(UpperCamelCase , UpperCamelCase )
_a = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
_a = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
_a = model_output.device if torch.is_tensor(UpperCamelCase ) else '''cpu'''
_a = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase ).to(UpperCamelCase )
_a = self._get_variance(UpperCamelCase , UpperCamelCase ) ** 0.5 * eta * noise
_a = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase )
def snake_case_ (self : Any , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : str="epsilon" , UpperCamelCase : Dict=None , UpperCamelCase : bool = True , ):
'''simple docstring'''
_a = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
_a , _a = torch.split(UpperCamelCase , sample.shape[1] , dim=1 )
else:
_a = None
# 1. compute alphas, betas
_a = self.alphas_cumprod[t]
_a = self.alphas_cumprod[t - 1] if t > 0 else self.one
_a = 1 - alpha_prod_t
_a = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
_a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
_a = model_output
else:
raise ValueError(f'Unsupported prediction_type {prediction_type}.' )
# 3. Clip "predicted x_0"
_a = self.bit_scale
if self.config.clip_sample:
_a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_a = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
_a = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_a = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_a = 0
if t > 0:
_a = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase ).to(model_output.device )
_a = (self._get_variance(UpperCamelCase , predicted_variance=UpperCamelCase ) ** 0.5) * noise
_a = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase )
class A ( _a ):
def __init__( self : Any , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , lowerCAmelCase_ : Optional[float] = 1.0 , ) -> int:
"""simple docstring"""
super().__init__()
_a = bit_scale
_a = (
ddim_bit_scheduler_step if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ )
@torch.no_grad()
def __call__( self : List[Any] , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 50 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Any , ) -> Union[Tuple, ImagePipelineOutput]:
"""simple docstring"""
_a = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=lowerCAmelCase_ , )
_a = decimal_to_bits(lowerCAmelCase_ ) * self.bit_scale
_a = latents.to(self.device )
self.scheduler.set_timesteps(lowerCAmelCase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
_a = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample
# compute the previous noisy sample x_t -> x_t-1
_a = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample
_a = bits_to_decimal(lowerCAmelCase_ )
if output_type == "pil":
_a = self.numpy_to_pil(lowerCAmelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCAmelCase_ )
| 22 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
_snake_case : Tuple = logging.get_logger(__name__)
class A ( _a ):
lowercase_ = ['pixel_values']
def __init__( self : str , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : Any , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase_ )
_a = size if size is not None else {'''shortest_edge''': 2_56}
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
_a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_a = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ )
return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' )
return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Tuple ) -> np.ndarray:
"""simple docstring"""
return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : Union[str, Any] , ) -> Union[str, Any]:
"""simple docstring"""
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = make_list_of_images(lowerCAmelCase_ )
if not valid_images(lowerCAmelCase_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_a = [to_numpy_array(lowerCAmelCase_ ) for image in images]
if do_resize:
_a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images]
if do_rescale:
_a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images]
if do_normalize:
_a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images]
_a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Tuple] = None ) -> Any:
"""simple docstring"""
_a = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowerCAmelCase_ ):
_a = target_sizes.numpy()
_a = []
for idx in range(len(lowerCAmelCase_ ) ):
_a = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase_ )
_a = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase_ )
else:
_a = logits.argmax(dim=1 )
_a = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 22 | 1 |
'''simple docstring'''
from __future__ import annotations
_snake_case : List[str] = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def snake_case_ (UpperCamelCase : list[list[int]] , UpperCamelCase : list[int] , UpperCamelCase : list[int] , UpperCamelCase : int , UpperCamelCase : list[list[int]] , ):
'''simple docstring'''
_a = [
[0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase ) )
] # the reference grid
_a = 1
_a = [
[0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase ) )
] # the action grid
_a = init[0]
_a = init[1]
_a = 0
_a = g + heuristic[x][y] # cost from starting cell to destination cell
_a = [[f, g, x, y]]
_a = False # flag that is set when search is complete
_a = False # flag set if we can't find expand
while not found and not resign:
if len(UpperCamelCase ) == 0:
raise ValueError('''Algorithm is unable to find solution''' )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
_a = cell.pop()
_a = next_cell[2]
_a = next_cell[3]
_a = next_cell[1]
if x == goal[0] and y == goal[1]:
_a = True
else:
for i in range(len(UpperCamelCase ) ): # to try out different valid actions
_a = x + DIRECTIONS[i][0]
_a = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(UpperCamelCase ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
_a = g + cost
_a = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
_a = 1
_a = i
_a = []
_a = goal[0]
_a = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
_a = x - DIRECTIONS[action[x][y]][0]
_a = y - DIRECTIONS[action[x][y]][1]
_a = xa
_a = ya
invpath.append([x, y] )
_a = []
for i in range(len(UpperCamelCase ) ):
path.append(invpath[len(UpperCamelCase ) - 1 - i] )
return path, action
if __name__ == "__main__":
_snake_case : str = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
_snake_case : List[Any] = [0, 0]
# all coordinates are given in format [y,x]
_snake_case : Optional[int] = [len(grid) - 1, len(grid[0]) - 1]
_snake_case : Tuple = 1
# the cost map which pushes the path closer to the goal
_snake_case : str = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
_snake_case : Optional[int] = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
_snake_case : str = 99
_snake_case , _snake_case : Any = search(grid, init, goal, cost, heuristic)
print('ACTION MAP')
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 22 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def snake_case_ (UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : int , UpperCamelCase : Optional[int] = None , ):
'''simple docstring'''
_a = {}
if train_file is not None:
_a = [train_file]
if eval_file is not None:
_a = [eval_file]
if test_file is not None:
_a = [test_file]
_a = datasets.load_dataset('''csv''' , data_files=UpperCamelCase )
_a = list(ds[list(files.keys() )[0]].features.keys() )
_a = features_name.pop(UpperCamelCase )
_a = list(set(ds[list(files.keys() )[0]][label_name] ) )
_a = {label: i for i, label in enumerate(UpperCamelCase )}
_a = tokenizer.model_input_names
_a = {}
if len(UpperCamelCase ) == 1:
for k in files.keys():
_a = ds[k].map(
lambda UpperCamelCase : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' ) , batched=UpperCamelCase , )
elif len(UpperCamelCase ) == 2:
for k in files.keys():
_a = ds[k].map(
lambda UpperCamelCase : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' , ) , batched=UpperCamelCase , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
_a = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
_a = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
_a = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
_snake_case : str = logging.getLogger(__name__)
@dataclass
class A :
lowercase_ = field(metadata={'help': 'Which column contains the label'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the training file'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the development file'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the test file'} )
lowercase_ = field(
default=128 ,metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} ,)
lowercase_ = field(
default=_a ,metadata={'help': 'Overwrite the cached training and evaluation sets'} )
@dataclass
class A :
lowercase_ = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
lowercase_ = field(
default=_a ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
lowercase_ = field(
default=_a ,metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
lowercase_ = field(default=_a ,metadata={'help': 'Set this flag to use fast tokenization.'} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowercase_ = field(
default=_a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,)
def snake_case_ ():
'''simple docstring'''
_a = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
_a , _a , _a = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. Use'
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(
f'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, '
f'16-bits training: {training_args.fpaa}' )
logger.info(f'Training/evaluation parameters {training_args}' )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_a = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_a , _a , _a , _a = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
_a = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase ) , labelaid=UpperCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
_a = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , )
def compute_metrics(UpperCamelCase : EvalPrediction ) -> Dict:
_a = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
_a = TFTrainer(
model=UpperCamelCase , args=UpperCamelCase , train_dataset=UpperCamelCase , eval_dataset=UpperCamelCase , compute_metrics=UpperCamelCase , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_a = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_a = trainer.evaluate()
_a = os.path.join(training_args.output_dir , '''eval_results.txt''' )
with open(UpperCamelCase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(f' {key} = {value}' )
writer.write(f'{key} = {value}\n' )
results.update(UpperCamelCase )
return results
if __name__ == "__main__":
main()
| 22 | 1 |
'''simple docstring'''
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : str ):
'''simple docstring'''
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
_a = flax_key_tuple[:-1] + ('''weight''',)
_a = torch.permute(UpperCamelCase , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(UpperCamelCase ):
# linear layer
_a = flax_key_tuple[:-1] + ('''weight''',)
_a = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
_a = flax_key_tuple[:-1] + ('''weight''',)
return flax_key_tuple, flax_tensor
def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] ):
'''simple docstring'''
if "metadata" in layer:
_a = layer.split('''metadata''' )
_a = ''''''.join(split_layer[0] )[:-1]
_a = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )]
elif "kvstore" in layer:
_a = layer.split('''kvstore''' )
_a = ''''''.join(split_layer[0] )[:-1]
_a = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )]
else:
_a = layer.split('''/''' )
_a = '''/'''.join(split_layer[:-1] )
_a = (split_layer[-1],)
if "kvstore/path" in layer:
_a = f'{switch_checkpoint_path}/{checkpoint_info[layer]}'
elif "kvstore/driver" in layer:
_a = '''file'''
else:
_a = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
_a = rename_keys(UpperCamelCase )
_a = {}
for k, v in current_block.items():
_a = v
_a = new_current_block
torch.save(UpperCamelCase , UpperCamelCase )
def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : Tuple , UpperCamelCase : str = WEIGHTS_NAME ):
'''simple docstring'''
_a = convert_file_size_to_int(UpperCamelCase )
_a = []
_a = {}
_a = 0
_a = 0
os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase )
with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp:
_a = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target''']
_a = flatten_dict(UpperCamelCase , sep='''/''' )
_a = {}
for layer in checkpoint_info.keys():
_a , _a , _a = get_key_and_tensorstore_dict(
UpperCamelCase , UpperCamelCase , UpperCamelCase )
if curr_real_layer_name in all_layers:
_a = content
else:
_a = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
_a = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
_a = torch.tensor(UpperCamelCase )
_a = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
_a , _a = rename_base_flax_keys(tuple(key.split('''/''' ) ) , UpperCamelCase )
_a = '''/'''.join(UpperCamelCase )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
_a = os.path.join(
UpperCamelCase , weights_name.replace('''.bin''' , f'-{len(UpperCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(UpperCamelCase , UpperCamelCase )
sharded_state_dicts.append(current_block.keys() )
del current_block
_a = {}
_a = 0
_a = raw_weights.to(getattr(UpperCamelCase , UpperCamelCase ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
_a = os.path.join(UpperCamelCase , weights_name.replace('''.bin''' , f'-{len(UpperCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(UpperCamelCase , UpperCamelCase )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(UpperCamelCase ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
_a = {}
_a = {}
for idx, shard in enumerate(UpperCamelCase ):
_a = weights_name.replace(
'''.bin''' , f'-{idx+1:05d}-of-{len(UpperCamelCase ):05d}.bin' ) # len(sharded_state_dicts):05d}
_a = os.path.join(UpperCamelCase , weights_name.replace('''.bin''' , f'-{idx+1:05d}-of-???.bin' ) )
os.rename(UpperCamelCase , os.path.join(UpperCamelCase , UpperCamelCase ) )
_a = shard
for key in shard:
_a = shard_file
# Add the metadata
_a = {'''total_size''': total_size}
_a = {'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(UpperCamelCase , UpperCamelCase ) , '''w''' , encoding='''utf-8''' ) as f:
_a = json.dumps(UpperCamelCase , indent=2 , sort_keys=UpperCamelCase ) + '''\n'''
f.write(UpperCamelCase )
return metadata, index
if __name__ == "__main__":
_snake_case : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--switch_t5x_checkpoint_path',
default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size')
parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted',
type=str,
required=False,
help='Path to the output pytorch model.',
)
_snake_case : Tuple = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def snake_case_ ():
'''simple docstring'''
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
_a = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' )
config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' )
_a = SwitchTransformersForConditionalGeneration.from_pretrained(
'''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' )
_a = TaTokenizer.from_pretrained('''t5-small''' )
_a = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.'''
_a = tokenizer(UpperCamelCase , return_tensors='''pt''' ).input_ids
_a = model.generate(UpperCamelCase , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 22 |
'''simple docstring'''
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A ( _a ,unittest.TestCase ):
lowercase_ = LEDTokenizer
lowercase_ = LEDTokenizerFast
lowercase_ = True
def __lowerCAmelCase ( self : int ) -> List[Any]:
"""simple docstring"""
super().setUp()
_a = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
_a = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) )
_a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
_a = {'''unk_token''': '''<unk>'''}
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowerCAmelCase_ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(lowerCAmelCase_ ) )
def __lowerCAmelCase ( self : Union[str, Any] , **lowerCAmelCase_ : int ) -> Optional[int]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , **lowerCAmelCase_ : Any ) -> int:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> List[str]:
"""simple docstring"""
return "lower newer", "lower newer"
@cached_property
def __lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' )
@cached_property
def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' )
@require_torch
def __lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
_a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
_a = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
_a = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
@require_torch
def __lowerCAmelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
_a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIn('''input_ids''' , lowerCAmelCase_ )
self.assertIn('''attention_mask''' , lowerCAmelCase_ )
self.assertNotIn('''labels''' , lowerCAmelCase_ )
self.assertNotIn('''decoder_attention_mask''' , lowerCAmelCase_ )
@require_torch
def __lowerCAmelCase ( self : List[str] ) -> str:
"""simple docstring"""
_a = [
'''Summary of the text.''',
'''Another summary.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='''max_length''' , return_tensors='''pt''' )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
@require_torch
def __lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(
['''I am a small frog''' * 10_24, '''I am a small frog'''] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertEqual(batch.input_ids.shape , (2, 51_22) )
@require_torch
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a = ['''A long paragraph for summarization.''']
_a = [
'''Summary of the text.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(lowerCAmelCase_ , return_tensors='''pt''' )
_a = tokenizer(text_target=lowerCAmelCase_ , return_tensors='''pt''' )
_a = inputs['''input_ids''']
_a = targets['''input_ids''']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def __lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = ['''Summary of the text.''', '''Another summary.''']
_a = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
_a = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ )
_a = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['''input_ids''']]
_a = tokenizer.pad(lowerCAmelCase_ )
self.assertSequenceEqual(outputs['''global_attention_mask'''] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> Dict:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
_a = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
_a = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
_a = '''A, <mask> AllenNLP sentence.'''
_a = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ )
_a = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ )
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
_a = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
_a = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
| 22 | 1 |
'''simple docstring'''
import numpy as np
def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Dict ):
'''simple docstring'''
_a = int(np.ceil((x_end - xa) / h ) )
_a = np.zeros((n + 1,) )
_a = ya
_a = xa
for k in range(UpperCamelCase ):
_a = f(UpperCamelCase , y[k] )
_a = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
_a = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
_a = f(x + h , y[k] + h * ka )
_a = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 |
'''simple docstring'''
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'''split_dict''' , [
SplitDict(),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 , dataset_name='''my_dataset''' )} ),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 )} ),
SplitDict({'''train''': SplitInfo()} ),
] , )
def snake_case_ (UpperCamelCase : SplitDict ):
'''simple docstring'''
_a = split_dict._to_yaml_list()
assert len(UpperCamelCase ) == len(UpperCamelCase )
_a = SplitDict._from_yaml_list(UpperCamelCase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
_a = None
# the split name of split_dict takes over the name of the split info object
_a = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'''split_info''' , [SplitInfo(), SplitInfo(dataset_name=UpperCamelCase ), SplitInfo(dataset_name='''my_dataset''' )] )
def snake_case_ (UpperCamelCase : List[str] ):
'''simple docstring'''
_a = asdict(SplitDict({'''train''': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 22 | 1 |
'''simple docstring'''
def snake_case_ (UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : List[Any]=False ):
'''simple docstring'''
if isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ):
_a = len(set_a.intersection(UpperCamelCase ) )
if alternative_union:
_a = len(UpperCamelCase ) + len(UpperCamelCase )
else:
_a = len(set_a.union(UpperCamelCase ) )
return intersection / union
if isinstance(UpperCamelCase , (list, tuple) ) and isinstance(UpperCamelCase , (list, tuple) ):
_a = [element for element in set_a if element in set_b]
if alternative_union:
_a = len(UpperCamelCase ) + len(UpperCamelCase )
return len(UpperCamelCase ) / union
else:
_a = set_a + [element for element in set_b if element not in set_a]
return len(UpperCamelCase ) / len(UpperCamelCase )
return len(UpperCamelCase ) / len(UpperCamelCase )
return None
if __name__ == "__main__":
_snake_case : Dict = {'a', 'b', 'c', 'd', 'e'}
_snake_case : Dict = {'c', 'd', 'e', 'f', 'h', 'i'}
print(jaccard_similarity(set_a, set_b))
| 22 |
'''simple docstring'''
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
_snake_case : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
_snake_case : List[str] = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n'
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : int ) -> List[Any]:
"""simple docstring"""
_a = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) )
_a = self.diffusers_dir
shutil.copy(
os.path.join(lowerCAmelCase_ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , )
def __lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_a = '''src/diffusers'''
shutil.rmtree(self.diffusers_dir )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str=None ) -> Union[str, Any]:
"""simple docstring"""
_a = comment + F'\nclass {class_name}(nn.Module):\n' + class_code
if overwrite_result is not None:
_a = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result
_a = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
_a = black.format_str(lowerCAmelCase_ , mode=lowerCAmelCase_ )
_a = os.path.join(self.diffusers_dir , '''new_code.py''' )
with open(lowerCAmelCase_ , '''w''' , newline='''\n''' ) as f:
f.write(lowerCAmelCase_ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase_ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase_ )
with open(lowerCAmelCase_ , '''r''' ) as f:
self.assertTrue(f.read() , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' )
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , )
# With no empty line at the end
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , lowerCAmelCase_ , )
# Copy consistency with rename
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , lowerCAmelCase_ ) , )
# Copy consistency with a really long name
_a = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
F'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}' , F'{long_class_name}SchedulerOutput' , re.sub('''Bert''' , lowerCAmelCase_ , lowerCAmelCase_ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , lowerCAmelCase_ , overwrite_result=re.sub('''DDPM''' , '''Test''' , lowerCAmelCase_ ) , )
| 22 | 1 |
'''simple docstring'''
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_snake_case : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model')
@require_sentencepiece
@require_tokenizers
class A ( _a ,unittest.TestCase ):
lowercase_ = PegasusTokenizer
lowercase_ = PegasusTokenizerFast
lowercase_ = True
lowercase_ = True
def __lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
_a = PegasusTokenizer(lowerCAmelCase_ )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __lowerCAmelCase ( self : Optional[Any] ) -> int:
"""simple docstring"""
return PegasusTokenizer.from_pretrained('''google/pegasus-large''' )
def __lowerCAmelCase ( self : Dict , **lowerCAmelCase_ : Optional[int] ) -> PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : int ) -> List[Any]:
"""simple docstring"""
return ("This is a test", "This is a test")
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
_a = '''</s>'''
_a = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
_a = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''</s>''' )
self.assertEqual(vocab_keys[-1] , '''v''' )
self.assertEqual(len(lowerCAmelCase_ ) , 11_03 )
def __lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 11_03 )
def __lowerCAmelCase ( self : Optional[Any] ) -> int:
"""simple docstring"""
_a = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
_a = self.tokenizer_class.from_pretrained(self.tmpdirname )
_a = (
'''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important'''
''' </s> <pad> <pad> <pad>'''
)
_a = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ).input_ids[0]
_a = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ).input_ids[0]
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> List[str]:
"""simple docstring"""
_a = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
_a = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.'''
_a = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1]
_a = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ ).input_ids[0]
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
_a = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_61_03
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 1_03
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 10_24
_a = '''To ensure a smooth flow of bank resolutions.'''
_a = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1]
_a = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ ).input_ids[0]
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def __lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
_a = ['''This is going to be way too long.''' * 1_50, '''short example''']
_a = ['''not super long but more than 5 tokens''', '''tiny''']
_a = self._large_tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' )
_a = self._large_tokenizer(
text_target=lowerCAmelCase_ , max_length=5 , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 10_24)
assert batch.attention_mask.shape == (2, 10_24)
assert targets["input_ids"].shape == (2, 5)
assert len(lowerCAmelCase_ ) == 2 # input_ids, attention_mask.
@slow
def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
_a = {'''input_ids''': [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase_ , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , )
@require_sentencepiece
@require_tokenizers
class A ( _a ,unittest.TestCase ):
lowercase_ = PegasusTokenizer
lowercase_ = PegasusTokenizerFast
lowercase_ = True
lowercase_ = True
def __lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
_a = PegasusTokenizer(lowerCAmelCase_ , offset=0 , mask_token_sent=lowerCAmelCase_ , mask_token='''[MASK]''' )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' )
def __lowerCAmelCase ( self : Tuple , **lowerCAmelCase_ : List[str] ) -> PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Tuple ) -> Dict:
"""simple docstring"""
return ("This is a test", "This is a test")
def __lowerCAmelCase ( self : str ) -> List[str]:
"""simple docstring"""
_a = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
_a = self.tokenizer_class.from_pretrained(self.tmpdirname )
_a = (
'''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>'''
''' <pad> <pad> <pad>'''
)
_a = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ).input_ids[0]
_a = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ).input_ids[0]
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
@require_torch
def __lowerCAmelCase ( self : Union[str, Any] ) -> str:
"""simple docstring"""
_a = ['''This is going to be way too long.''' * 10_00, '''short example''']
_a = ['''not super long but more than 5 tokens''', '''tiny''']
_a = self._large_tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' )
_a = self._large_tokenizer(
text_target=lowerCAmelCase_ , max_length=5 , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 40_96)
assert batch.attention_mask.shape == (2, 40_96)
assert targets["input_ids"].shape == (2, 5)
assert len(lowerCAmelCase_ ) == 2 # input_ids, attention_mask.
def __lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
_a = (
'''This is an example string that is used to test the original TF implementation against the HF'''
''' implementation'''
)
_a = self._large_tokenizer(lowerCAmelCase_ ).input_ids
self.assertListEqual(
lowerCAmelCase_ , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
| 22 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
_snake_case : Tuple = logging.get_logger(__name__)
_snake_case : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_snake_case : List[Any] = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
_snake_case : Union[str, Any] = {
'squeezebert/squeezebert-uncased': 512,
'squeezebert/squeezebert-mnli': 512,
'squeezebert/squeezebert-mnli-headless': 512,
}
_snake_case : Tuple = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class A ( _a ):
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_INIT_CONFIGURATION
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = SqueezeBertTokenizer
def __init__( self : str , lowerCAmelCase_ : str=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[str]="[UNK]" , lowerCAmelCase_ : Union[str, Any]="[SEP]" , lowerCAmelCase_ : Optional[Any]="[PAD]" , lowerCAmelCase_ : Any="[CLS]" , lowerCAmelCase_ : List[str]="[MASK]" , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Optional[int] , ) -> int:
"""simple docstring"""
super().__init__(
lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , )
_a = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , lowerCAmelCase_ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , lowerCAmelCase_ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase_ ) != tokenize_chinese_chars
):
_a = getattr(lowerCAmelCase_ , normalizer_state.pop('''type''' ) )
_a = do_lower_case
_a = strip_accents
_a = tokenize_chinese_chars
_a = normalizer_class(**lowerCAmelCase_ )
_a = do_lower_case
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=None ) -> List[str]:
"""simple docstring"""
_a = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
_a = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ )
return tuple(lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
from typing import Optional
import pyspark
from .. import Features, NamedSplit
from ..download import DownloadMode
from ..packaged_modules.spark.spark import Spark
from .abc import AbstractDatasetReader
class A ( _a ):
def __init__( self : Dict , lowerCAmelCase_ : pyspark.sql.DataFrame , lowerCAmelCase_ : Optional[NamedSplit] = None , lowerCAmelCase_ : Optional[Features] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : str = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : str = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : str = "arrow" , **lowerCAmelCase_ : str , ) -> Optional[int]:
"""simple docstring"""
super().__init__(
split=lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ , streaming=lowerCAmelCase_ , **lowerCAmelCase_ , )
_a = load_from_cache_file
_a = file_format
_a = Spark(
df=lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , working_dir=lowerCAmelCase_ , **lowerCAmelCase_ , )
def __lowerCAmelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
if self.streaming:
return self.builder.as_streaming_dataset(split=self.split )
_a = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
self.builder.download_and_prepare(
download_mode=lowerCAmelCase_ , file_format=self._file_format , )
return self.builder.as_dataset(split=self.split )
| 22 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_snake_case : Dict = logging.get_logger(__name__)
class A ( _a ):
lowercase_ = ['pixel_values']
def __init__( self : List[Any] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : int , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase_ )
_a = size if size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ )
_a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_resize
_a = do_rescale
_a = do_normalize
_a = do_center_crop
_a = crop_size
_a = size
_a = resample
_a = rescale_factor
_a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_a = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "shortest_edge" in size:
_a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
_a = (size['''height'''], size['''width'''])
else:
raise ValueError(F'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' )
return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Dict , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : List[str] , ) -> BatchFeature:
"""simple docstring"""
_a = do_resize if do_resize is not None else self.do_resize
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' , default_to_square=lowerCAmelCase_ )
_a = resample if resample is not None else self.resample
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = size if size is not None else self.size
_a = get_size_dict(lowerCAmelCase_ )
if not is_batched(lowerCAmelCase_ ):
_a = [images]
if not valid_images(lowerCAmelCase_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
_a = [to_numpy_array(lowerCAmelCase_ ) for image in images]
if do_resize:
_a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images]
if do_rescale:
_a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images]
if do_normalize:
_a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images]
_a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
from bisect import bisect
from itertools import accumulate
def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : Any , UpperCamelCase : str ):
'''simple docstring'''
_a = sorted(zip(UpperCamelCase , UpperCamelCase ) , key=lambda UpperCamelCase : x[0] / x[1] , reverse=UpperCamelCase )
_a , _a = [i[0] for i in r], [i[1] for i in r]
_a = list(accumulate(UpperCamelCase ) )
_a = bisect(UpperCamelCase , UpperCamelCase )
return (
0
if k == 0
else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k])
if k != n
else sum(vl[:k] )
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_snake_case : str = {
'configuration_layoutlmv3': [
'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LayoutLMv3Config',
'LayoutLMv3OnnxConfig',
],
'processing_layoutlmv3': ['LayoutLMv3Processor'],
'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[str] = ['LayoutLMv3TokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Optional[int] = [
'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv3ForQuestionAnswering',
'LayoutLMv3ForSequenceClassification',
'LayoutLMv3ForTokenClassification',
'LayoutLMv3Model',
'LayoutLMv3PreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Tuple = [
'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLayoutLMv3ForQuestionAnswering',
'TFLayoutLMv3ForSequenceClassification',
'TFLayoutLMv3ForTokenClassification',
'TFLayoutLMv3Model',
'TFLayoutLMv3PreTrainedModel',
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[Any] = ['LayoutLMv3FeatureExtractor']
_snake_case : Tuple = ['LayoutLMv3ImageProcessor']
if TYPE_CHECKING:
from .configuration_layoutlmva import (
LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP,
LayoutLMvaConfig,
LayoutLMvaOnnxConfig,
)
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_layoutlmva import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
TFLayoutLMvaPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
else:
import sys
_snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 22 | 1 |
'''simple docstring'''
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
_snake_case : Any = 4
_snake_case : Any = 3
class A ( _a ):
pass
def snake_case_ (UpperCamelCase : List[str] ):
'''simple docstring'''
for shard in shards:
for i in range(UpperCamelCase ):
yield {"i": i, "shard": shard}
def snake_case_ ():
'''simple docstring'''
_a = int(os.environ['''RANK'''] )
_a = int(os.environ['''WORLD_SIZE'''] )
_a = ArgumentParser()
parser.add_argument('''--streaming''' , type=UpperCamelCase )
parser.add_argument('''--local_rank''' , type=UpperCamelCase )
parser.add_argument('''--num_workers''' , type=UpperCamelCase , default=0 )
_a = parser.parse_args()
_a = args.streaming
_a = args.num_workers
_a = {'''shards''': [f'shard_{shard_idx}' for shard_idx in range(UpperCamelCase )]}
_a = IterableDataset.from_generator(UpperCamelCase , gen_kwargs=UpperCamelCase )
if not streaming:
_a = Dataset.from_list(list(UpperCamelCase ) )
_a = split_dataset_by_node(UpperCamelCase , rank=UpperCamelCase , world_size=UpperCamelCase )
_a = torch.utils.data.DataLoader(UpperCamelCase , num_workers=UpperCamelCase )
_a = NUM_SHARDS * NUM_ITEMS_PER_SHARD
_a = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
_a = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' )
if __name__ == "__main__":
main()
| 22 |
'''simple docstring'''
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class A ( _a ):
lowercase_ = (DDPMParallelScheduler,)
def __lowerCAmelCase ( self : Optional[Any] , **lowerCAmelCase_ : Optional[int] ) -> List[Any]:
"""simple docstring"""
_a = {
'''num_train_timesteps''': 10_00,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**lowerCAmelCase_ )
return config
def __lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCAmelCase_ )
def __lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
self.check_over_configs(thresholding=lowerCAmelCase_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , )
def __lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : str ) -> List[str]:
"""simple docstring"""
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=lowerCAmelCase_ )
def __lowerCAmelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.0_2 ) ) < 1e-5
def __lowerCAmelCase ( self : Dict ) -> str:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = len(lowerCAmelCase_ )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = self.dummy_sample_deter + 0.1
_a = self.dummy_sample_deter - 0.1
_a = samplea.shape[0]
_a = torch.stack([samplea, samplea, samplea] , dim=0 )
_a = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ )
_a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
_a = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) )
_a = torch.sum(torch.abs(lowerCAmelCase_ ) )
_a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2
assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3
def __lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = len(lowerCAmelCase_ )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = torch.manual_seed(0 )
for t in reversed(range(lowerCAmelCase_ ) ):
# 1. predict noise residual
_a = model(lowerCAmelCase_ , lowerCAmelCase_ )
# 2. predict previous mean of sample x_t-1
_a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(lowerCAmelCase_ ) )
_a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config(prediction_type='''v_prediction''' )
_a = scheduler_class(**lowerCAmelCase_ )
_a = len(lowerCAmelCase_ )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = torch.manual_seed(0 )
for t in reversed(range(lowerCAmelCase_ ) ):
# 1. predict noise residual
_a = model(lowerCAmelCase_ , lowerCAmelCase_ )
# 2. predict previous mean of sample x_t-1
_a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(lowerCAmelCase_ ) )
_a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def __lowerCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
_a = scheduler.timesteps
for i, timestep in enumerate(lowerCAmelCase_ ):
if i == len(lowerCAmelCase_ ) - 1:
_a = -1
else:
_a = timesteps[i + 1]
_a = scheduler.previous_timestep(lowerCAmelCase_ )
_a = prev_t.item()
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [1_00, 87, 50, 51, 0]
with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [1_00, 87, 50, 1, 0]
_a = len(lowerCAmelCase_ )
with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [scheduler.config.num_train_timesteps]
with self.assertRaises(
lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class A :
def __init__( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=13 , lowerCAmelCase_ : List[Any]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=99 , lowerCAmelCase_ : List[Any]=24 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Union[str, Any]=6 , lowerCAmelCase_ : Tuple=37 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[Any]=5_12 , lowerCAmelCase_ : Tuple=16 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : str=0.0_2 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int=10_00 , ) -> int:
"""simple docstring"""
_a = parent
_a = batch_size
_a = seq_length
_a = is_training
_a = use_input_mask
_a = use_token_type_ids
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = type_sequence_label_size
_a = initializer_range
_a = num_labels
_a = scope
_a = range_bbox
def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
_a = bbox[i, j, 3]
_a = bbox[i, j, 1]
_a = t
if bbox[i, j, 2] < bbox[i, j, 0]:
_a = bbox[i, j, 2]
_a = bbox[i, j, 0]
_a = t
_a = None
if self.use_input_mask:
_a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
_a = None
if self.use_token_type_ids:
_a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_a = None
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_a = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , ) -> Optional[int]:
"""simple docstring"""
_a = LiltModel(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
_a = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )
_a = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )
_a = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , ) -> Any:
"""simple docstring"""
_a = self.num_labels
_a = LiltForTokenClassification(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
_a = model(
lowerCAmelCase_ , bbox=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , ) -> Dict:
"""simple docstring"""
_a = LiltForQuestionAnswering(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
_a = model(
lowerCAmelCase_ , bbox=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
_a = self.prepare_config_and_inputs()
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) = config_and_inputs
_a = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class A ( _a ,_a ,_a ,unittest.TestCase ):
lowercase_ = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowercase_ = (
{
'feature-extraction': LiltModel,
'question-answering': LiltForQuestionAnswering,
'text-classification': LiltForSequenceClassification,
'token-classification': LiltForTokenClassification,
'zero-shot': LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase_ = False
lowercase_ = False
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] ) -> Optional[int]:
"""simple docstring"""
return True
def __lowerCAmelCase ( self : List[str] ) -> Any:
"""simple docstring"""
_a = LiltModelTester(self )
_a = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 )
def __lowerCAmelCase ( self : List[Any] ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : List[Any] ) -> int:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple ) -> Tuple:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_a = type
self.model_tester.create_and_check_model(*lowerCAmelCase_ )
def __lowerCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ )
@slow
def __lowerCAmelCase ( self : str ) -> List[Any]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a = LiltModel.from_pretrained(lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
@require_torch
@slow
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_a = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(lowerCAmelCase_ )
_a = torch.tensor([[1, 2]] , device=lowerCAmelCase_ )
_a = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowerCAmelCase_ )
# forward pass
with torch.no_grad():
_a = model(input_ids=lowerCAmelCase_ , bbox=lowerCAmelCase_ )
_a = torch.Size([1, 2, 7_68] )
_a = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=lowerCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , lowerCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowerCAmelCase_ , atol=1e-3 ) )
| 22 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def snake_case_ (UpperCamelCase : dict ):
'''simple docstring'''
return (data["data"], data["target"])
def snake_case_ (UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray ):
'''simple docstring'''
_a = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(UpperCamelCase , UpperCamelCase )
# Predict target for test data
_a = xgb.predict(UpperCamelCase )
_a = predictions.reshape(len(UpperCamelCase ) , 1 )
return predictions
def snake_case_ ():
'''simple docstring'''
_a = fetch_california_housing()
_a , _a = data_handling(UpperCamelCase )
_a , _a , _a , _a = train_test_split(
UpperCamelCase , UpperCamelCase , test_size=0.25 , random_state=1 )
_a = xgboost(UpperCamelCase , UpperCamelCase , UpperCamelCase )
# Error printing
print(f'Mean Absolute Error : {mean_absolute_error(UpperCamelCase , UpperCamelCase )}' )
print(f'Mean Square Error : {mean_squared_error(UpperCamelCase , UpperCamelCase )}' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 22 | 1 |
'''simple docstring'''
def snake_case_ (UpperCamelCase : list ):
'''simple docstring'''
if len(UpperCamelCase ) <= 1:
return lst
_a = 1
while i < len(UpperCamelCase ):
if lst[i - 1] <= lst[i]:
i += 1
else:
_a , _a = lst[i], lst[i - 1]
i -= 1
if i == 0:
_a = 1
return lst
if __name__ == "__main__":
_snake_case : Optional[int] = input('Enter numbers separated by a comma:\n').strip()
_snake_case : Union[str, Any] = [int(item) for item in user_input.split(',')]
print(gnome_sort(unsorted))
| 22 |
'''simple docstring'''
import qiskit
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
_a = qiskit.Aer.get_backend('''aer_simulator''' )
_a = qiskit.QuantumCircuit(4 , 2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 , 2 )
qc_ha.cx(1 , 2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 , 1 , 3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 , 0 ) # extract XOR value
qc_ha.measure(3 , 1 ) # extract AND value
# Execute the circuit on the qasm simulator
_a = qiskit.execute(UpperCamelCase , UpperCamelCase , shots=1000 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(UpperCamelCase )
if __name__ == "__main__":
_snake_case : Tuple = half_adder(1, 1)
print(F'''Half Adder Output Qubit Counts: {counts}''')
| 22 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case : Optional[Any] = logging.get_logger(__name__)
_snake_case : str = {
'tanreinama/GPTSAN-2.8B-spout_is_uniform': (
'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json'
),
}
class A ( _a ):
lowercase_ = 'gptsan-japanese'
lowercase_ = [
'past_key_values',
]
lowercase_ = {
'hidden_size': 'd_model',
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self : Union[str, Any] , lowerCAmelCase_ : Dict=3_60_00 , lowerCAmelCase_ : Union[str, Any]=12_80 , lowerCAmelCase_ : Optional[int]=10_24 , lowerCAmelCase_ : Union[str, Any]=81_92 , lowerCAmelCase_ : int=40_96 , lowerCAmelCase_ : Dict=1_28 , lowerCAmelCase_ : Optional[int]=10 , lowerCAmelCase_ : Union[str, Any]=0 , lowerCAmelCase_ : Optional[Any]=16 , lowerCAmelCase_ : Optional[int]=16 , lowerCAmelCase_ : str=1_28 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : int=1e-5 , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : Union[str, Any]="float32" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : List[str]=0.0_0_2 , lowerCAmelCase_ : Dict=False , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=3_59_98 , lowerCAmelCase_ : Tuple=3_59_95 , lowerCAmelCase_ : Optional[Any]=3_59_99 , **lowerCAmelCase_ : Any , ) -> List[str]:
"""simple docstring"""
_a = vocab_size
_a = max_position_embeddings
_a = d_model
_a = d_ff
_a = d_ext
_a = d_spout
_a = num_switch_layers
_a = num_ext_layers
_a = num_switch_layers + num_ext_layers
_a = num_heads
_a = num_experts
_a = expert_capacity
_a = dropout_rate
_a = layer_norm_epsilon
_a = router_bias
_a = router_jitter_noise
_a = router_dtype
_a = router_ignore_padding_tokens
_a = output_hidden_states
_a = output_attentions
_a = initializer_factor
_a = output_router_logits
_a = use_cache
super().__init__(
separator_token_id=lowerCAmelCase_ , pad_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , )
| 22 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
if len(UpperCamelCase ) != 32:
raise ValueError('''Input must be of length 32''' )
_a = B''''''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
_a = format(UpperCamelCase , '''08x''' )[-8:]
_a = B''''''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' )
return little_endian_hex
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
_a = B''''''
for char in message:
bit_string += format(UpperCamelCase , '''08b''' ).encode('''utf-8''' )
_a = format(len(UpperCamelCase ) , '''064b''' ).encode('''utf-8''' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(UpperCamelCase ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
if len(UpperCamelCase ) % 512 != 0:
raise ValueError('''Input must have length that\'s a multiple of 512''' )
for pos in range(0 , len(UpperCamelCase ) , 512 ):
_a = bit_string[pos : pos + 512]
_a = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
_a = format(UpperCamelCase , '''032b''' )
_a = ''''''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(UpperCamelCase , 2 )
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
return (a + b) % 2**32
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
if shift < 0:
raise ValueError('''Shift must be non-negative''' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
_a = preprocess(UpperCamelCase )
_a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
_a = 0X67452301
_a = 0Xefcdab89
_a = 0X98badcfe
_a = 0X10325476
_a = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(UpperCamelCase ):
_a = aa
_a = ba
_a = ca
_a = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
_a = d ^ (b & (c ^ d))
_a = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
_a = c ^ (d & (b ^ c))
_a = (5 * i + 1) % 16
elif i <= 47:
_a = b ^ c ^ d
_a = (3 * i + 5) % 16
else:
_a = c ^ (b | not_aa(UpperCamelCase ))
_a = (7 * i) % 16
_a = (f + a + added_consts[i] + block_words[g]) % 2**32
_a = d
_a = c
_a = b
_a = sum_aa(UpperCamelCase , left_rotate_aa(UpperCamelCase , shift_amounts[i] ) )
# Add hashed chunk to running total
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 | 1 |
'''simple docstring'''
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .tokenization_wavaveca import WavaVecaCTCTokenizer
class A ( _a ):
lowercase_ = 'Wav2Vec2FeatureExtractor'
lowercase_ = 'AutoTokenizer'
def __init__( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(lowerCAmelCase_ , lowerCAmelCase_ )
_a = self.feature_extractor
_a = False
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ) -> Tuple:
"""simple docstring"""
try:
return super().from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
except OSError:
warnings.warn(
F'Loading a tokenizer inside {cls.__name__} from a config that does not'
''' include a `tokenizer_class` attribute is deprecated and will be '''
'''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`'''
''' attribute to either your `config.json` or `tokenizer_config.json` '''
'''file to suppress this warning: ''' , lowerCAmelCase_ , )
_a = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
_a = WavaVecaCTCTokenizer.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
return cls(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ )
def __call__( self : str , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Any ) -> Optional[int]:
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*lowerCAmelCase_ , **lowerCAmelCase_ )
if "raw_speech" in kwargs:
warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' )
_a = kwargs.pop('''raw_speech''' )
else:
_a = kwargs.pop('''audio''' , lowerCAmelCase_ )
_a = kwargs.pop('''sampling_rate''' , lowerCAmelCase_ )
_a = kwargs.pop('''text''' , lowerCAmelCase_ )
if len(lowerCAmelCase_ ) > 0:
_a = args[0]
_a = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
_a = self.feature_extractor(lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ )
if text is not None:
_a = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ )
if text is None:
return inputs
elif audio is None:
return encodings
else:
_a = encodings['''input_ids''']
return inputs
def __lowerCAmelCase ( self : str , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Any ) -> Any:
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor.pad(*lowerCAmelCase_ , **lowerCAmelCase_ )
_a = kwargs.pop('''input_features''' , lowerCAmelCase_ )
_a = kwargs.pop('''labels''' , lowerCAmelCase_ )
if len(lowerCAmelCase_ ) > 0:
_a = args[0]
_a = args[1:]
if input_features is not None:
_a = self.feature_extractor.pad(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ )
if labels is not None:
_a = self.tokenizer.pad(lowerCAmelCase_ , **lowerCAmelCase_ )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
_a = labels['''input_ids''']
return input_features
def __lowerCAmelCase ( self : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : List[str] ) -> Optional[Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : List[Any] ) -> List[str]:
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ )
@contextmanager
def __lowerCAmelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your audio inputs, or in a separate call.''' )
_a = True
_a = self.tokenizer
yield
_a = self.feature_extractor
_a = False
| 22 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class A ( unittest.TestCase ):
def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]=7 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=18 , lowerCAmelCase_ : Any=30 , lowerCAmelCase_ : Optional[int]=4_00 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=True , ) -> Optional[Any]:
"""simple docstring"""
_a = size if size is not None else {'''height''': 18, '''width''': 18}
_a = parent
_a = batch_size
_a = num_channels
_a = image_size
_a = min_resolution
_a = max_resolution
_a = do_resize
_a = size
_a = do_normalize
def __lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4],
[-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class A ( _a ,unittest.TestCase ):
lowercase_ = ImageGPTImageProcessor if is_vision_available() else None
def __lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_a = ImageGPTImageProcessingTester(self )
@property
def __lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def __lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase_ , '''clusters''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''size''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''do_normalize''' ) )
def __lowerCAmelCase ( self : List[Any] ) -> List[str]:
"""simple docstring"""
_a = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} )
_a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
def __lowerCAmelCase ( self : str ) -> str:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
_a = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a = os.path.join(lowerCAmelCase_ , '''image_processor.json''' )
image_processor_first.to_json_file(lowerCAmelCase_ )
_a = self.image_processing_class.from_json_file(lowerCAmelCase_ ).to_dict()
_a = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowerCAmelCase_ )
_a = self.image_processing_class.from_pretrained(lowerCAmelCase_ ).to_dict()
_a = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowerCAmelCase_ )
@unittest.skip('''ImageGPT requires clusters at initialization''' )
def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
pass
def snake_case_ ():
'''simple docstring'''
_a = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' )
_a = Image.open(dataset[4]['''file'''] )
_a = Image.open(dataset[5]['''file'''] )
_a = [imagea, imagea]
return images
@require_vision
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_a = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' )
_a = prepare_images()
# test non-batched
_a = image_processing(images[0] , return_tensors='''pt''' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 10_24) )
_a = [3_06, 1_91, 1_91]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCAmelCase_ )
# test batched
_a = image_processing(lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 10_24) )
_a = [3_03, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
from collections.abc import Sequence
def snake_case_ (UpperCamelCase : Sequence[int] | None = None ):
'''simple docstring'''
if nums is None or not nums:
raise ValueError('''Input sequence should not be empty''' )
_a = nums[0]
for i in range(1 , len(UpperCamelCase ) ):
_a = nums[i]
_a = max(UpperCamelCase , ans + num , UpperCamelCase )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_snake_case : List[str] = int(input('Enter number of elements : ').strip())
_snake_case : Union[str, Any] = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n]
print(max_subsequence_sum(array))
| 22 |
'''simple docstring'''
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
_a = AutoTokenizer.from_pretrained('''google/mt5-small''' )
_a = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
_a = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
_a = shift_tokens_right(lowerCAmelCase_ , model.config.pad_token_id , model.config.decoder_start_token_id )
_a = model(lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_ ).logits
_a = optax.softmax_cross_entropy(lowerCAmelCase_ , onehot(lowerCAmelCase_ , logits.shape[-1] ) ).mean()
_a = -(labels.shape[-1] * loss.item())
_a = -8_4.9_1_2_7
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 22 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class A :
lowercase_ = 42
lowercase_ = None
lowercase_ = None
def snake_case_ ():
'''simple docstring'''
_a = Node(1 )
_a = Node(2 )
_a = Node(3 )
_a = Node(4 )
_a = Node(5 )
return tree
def snake_case_ (UpperCamelCase : Node | None ):
'''simple docstring'''
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def snake_case_ (UpperCamelCase : Node | None ):
'''simple docstring'''
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def snake_case_ (UpperCamelCase : Node | None ):
'''simple docstring'''
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def snake_case_ (UpperCamelCase : Node | None ):
'''simple docstring'''
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def snake_case_ (UpperCamelCase : Node | None ):
'''simple docstring'''
_a = []
if root is None:
return output
_a = deque([root] )
while process_queue:
_a = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def snake_case_ (UpperCamelCase : Node | None , UpperCamelCase : int ):
'''simple docstring'''
_a = []
def populate_output(UpperCamelCase : Node | None , UpperCamelCase : int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(UpperCamelCase , UpperCamelCase )
return output
def snake_case_ (UpperCamelCase : Node | None , UpperCamelCase : int ):
'''simple docstring'''
_a = []
def populate_output(UpperCamelCase : Node | None , UpperCamelCase : int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(UpperCamelCase , UpperCamelCase )
return output
def snake_case_ (UpperCamelCase : Node | None ):
'''simple docstring'''
if root is None:
return []
_a = []
_a = 0
_a = height(UpperCamelCase )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(UpperCamelCase , UpperCamelCase ) )
_a = 1
else:
output.append(get_nodes_from_right_to_left(UpperCamelCase , UpperCamelCase ) )
_a = 0
return output
def snake_case_ (): # Main function for testing.
'''simple docstring'''
_a = make_tree()
print(f'In-order Traversal: {inorder(UpperCamelCase )}' )
print(f'Pre-order Traversal: {preorder(UpperCamelCase )}' )
print(f'Post-order Traversal: {postorder(UpperCamelCase )}' , '''\n''' )
print(f'Height of Tree: {height(UpperCamelCase )}' , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(UpperCamelCase ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(UpperCamelCase ) + 1 ):
print(f'Level {level}:' , get_nodes_from_left_to_right(UpperCamelCase , level=UpperCamelCase ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(UpperCamelCase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 22 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
_snake_case : Optional[Any] = 8
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Dict=BITS ):
'''simple docstring'''
_a = x.device
_a = (x * 255).int().clamp(0 , 255 )
_a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase )
_a = rearrange(UpperCamelCase , '''d -> d 1 1''' )
_a = rearrange(UpperCamelCase , '''b c h w -> b c 1 h w''' )
_a = ((x & mask) != 0).float()
_a = rearrange(UpperCamelCase , '''b c d h w -> b (c d) h w''' )
_a = bits * 2 - 1
return bits
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Any=BITS ):
'''simple docstring'''
_a = x.device
_a = (x > 0).int()
_a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase , dtype=torch.intaa )
_a = rearrange(UpperCamelCase , '''d -> d 1 1''' )
_a = rearrange(UpperCamelCase , '''b (c d) h w -> b c d h w''' , d=8 )
_a = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' )
return (dec / 255).clamp(0.0 , 1.0 )
def snake_case_ (self : Union[str, Any] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : float = 0.0 , UpperCamelCase : bool = True , UpperCamelCase : Any=None , UpperCamelCase : bool = True , ):
'''simple docstring'''
if self.num_inference_steps is None:
raise ValueError(
'''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
_a = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
_a = self.alphas_cumprod[timestep]
_a = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
_a = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
_a = self.bit_scale
if self.config.clip_sample:
_a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
_a = self._get_variance(UpperCamelCase , UpperCamelCase )
_a = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
_a = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
_a = model_output.device if torch.is_tensor(UpperCamelCase ) else '''cpu'''
_a = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase ).to(UpperCamelCase )
_a = self._get_variance(UpperCamelCase , UpperCamelCase ) ** 0.5 * eta * noise
_a = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase )
def snake_case_ (self : Any , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : str="epsilon" , UpperCamelCase : Dict=None , UpperCamelCase : bool = True , ):
'''simple docstring'''
_a = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
_a , _a = torch.split(UpperCamelCase , sample.shape[1] , dim=1 )
else:
_a = None
# 1. compute alphas, betas
_a = self.alphas_cumprod[t]
_a = self.alphas_cumprod[t - 1] if t > 0 else self.one
_a = 1 - alpha_prod_t
_a = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
_a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
_a = model_output
else:
raise ValueError(f'Unsupported prediction_type {prediction_type}.' )
# 3. Clip "predicted x_0"
_a = self.bit_scale
if self.config.clip_sample:
_a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_a = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
_a = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_a = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_a = 0
if t > 0:
_a = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase ).to(model_output.device )
_a = (self._get_variance(UpperCamelCase , predicted_variance=UpperCamelCase ) ** 0.5) * noise
_a = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase )
class A ( _a ):
def __init__( self : Any , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , lowerCAmelCase_ : Optional[float] = 1.0 , ) -> int:
"""simple docstring"""
super().__init__()
_a = bit_scale
_a = (
ddim_bit_scheduler_step if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ )
@torch.no_grad()
def __call__( self : List[Any] , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 50 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Any , ) -> Union[Tuple, ImagePipelineOutput]:
"""simple docstring"""
_a = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=lowerCAmelCase_ , )
_a = decimal_to_bits(lowerCAmelCase_ ) * self.bit_scale
_a = latents.to(self.device )
self.scheduler.set_timesteps(lowerCAmelCase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
_a = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample
# compute the previous noisy sample x_t -> x_t-1
_a = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample
_a = bits_to_decimal(lowerCAmelCase_ )
if output_type == "pil":
_a = self.numpy_to_pil(lowerCAmelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
_snake_case : Any = 9.8_0665
def snake_case_ (UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float = g ):
'''simple docstring'''
if fluid_density <= 0:
raise ValueError('''Impossible fluid density''' )
if volume < 0:
raise ValueError('''Impossible Object volume''' )
if gravity <= 0:
raise ValueError('''Impossible Gravity''' )
return fluid_density * gravity * volume
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
| 22 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case : Optional[int] = logging.get_logger(__name__)
_snake_case : Any = {
'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json',
'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json',
'junnyu/roformer_chinese_char_small': (
'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json'
),
'junnyu/roformer_chinese_char_base': (
'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json'
),
'junnyu/roformer_small_discriminator': (
'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json'
),
'junnyu/roformer_small_generator': (
'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json'
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class A ( _a ):
lowercase_ = 'roformer'
def __init__( self : str , lowerCAmelCase_ : int=5_00_00 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int=7_68 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : List[str]=30_72 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : int=15_36 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : Dict=1e-12 , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Tuple=True , **lowerCAmelCase_ : Optional[int] , ) -> str:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
_a = vocab_size
_a = hidden_size if embedding_size is None else embedding_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = hidden_act
_a = intermediate_size
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = initializer_range
_a = layer_norm_eps
_a = rotary_value
_a = use_cache
class A ( _a ):
@property
def __lowerCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
_a = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 22 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_snake_case : Dict = logging.get_logger(__name__)
class A ( _a ):
lowercase_ = ['pixel_values']
def __init__( self : List[Any] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : int , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase_ )
_a = size if size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ )
_a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_resize
_a = do_rescale
_a = do_normalize
_a = do_center_crop
_a = crop_size
_a = size
_a = resample
_a = rescale_factor
_a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_a = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "shortest_edge" in size:
_a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
_a = (size['''height'''], size['''width'''])
else:
raise ValueError(F'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' )
return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Dict , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : List[str] , ) -> BatchFeature:
"""simple docstring"""
_a = do_resize if do_resize is not None else self.do_resize
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' , default_to_square=lowerCAmelCase_ )
_a = resample if resample is not None else self.resample
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = size if size is not None else self.size
_a = get_size_dict(lowerCAmelCase_ )
if not is_batched(lowerCAmelCase_ ):
_a = [images]
if not valid_images(lowerCAmelCase_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
_a = [to_numpy_array(lowerCAmelCase_ ) for image in images]
if do_resize:
_a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images]
if do_rescale:
_a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images]
if do_normalize:
_a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images]
_a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
| 22 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class A :
lowercase_ = 42
lowercase_ = 42
class A :
def __init__( self : Optional[Any] , lowerCAmelCase_ : int ) -> str:
"""simple docstring"""
_a = [[] for _ in range(lowerCAmelCase_ )]
_a = size
def __getitem__( self : Any , lowerCAmelCase_ : int ) -> Iterator[Edge]:
"""simple docstring"""
return iter(self._graph[vertex] )
@property
def __lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
return self._size
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Dict:
"""simple docstring"""
if weight not in (0, 1):
raise ValueError('''Edge weight must be either 0 or 1.''' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('''Vertex indexes must be in [0; size).''' )
self._graph[from_vertex].append(Edge(lowerCAmelCase_ , lowerCAmelCase_ ) )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> int | None:
"""simple docstring"""
_a = deque([start_vertex] )
_a = [None] * self.size
_a = 0
while queue:
_a = queue.popleft()
_a = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
_a = current_distance + edge.weight
_a = distances[edge.destination_vertex]
if (
isinstance(lowerCAmelCase_ , lowerCAmelCase_ )
and new_distance >= dest_vertex_distance
):
continue
_a = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('''No path from start_vertex to finish_vertex.''' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 | 1 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
if len(UpperCamelCase ) != 32:
raise ValueError('''Input must be of length 32''' )
_a = B''''''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
_a = format(UpperCamelCase , '''08x''' )[-8:]
_a = B''''''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' )
return little_endian_hex
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
_a = B''''''
for char in message:
bit_string += format(UpperCamelCase , '''08b''' ).encode('''utf-8''' )
_a = format(len(UpperCamelCase ) , '''064b''' ).encode('''utf-8''' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(UpperCamelCase ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
if len(UpperCamelCase ) % 512 != 0:
raise ValueError('''Input must have length that\'s a multiple of 512''' )
for pos in range(0 , len(UpperCamelCase ) , 512 ):
_a = bit_string[pos : pos + 512]
_a = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
_a = format(UpperCamelCase , '''032b''' )
_a = ''''''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(UpperCamelCase , 2 )
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
return (a + b) % 2**32
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
if shift < 0:
raise ValueError('''Shift must be non-negative''' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
_a = preprocess(UpperCamelCase )
_a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
_a = 0X67452301
_a = 0Xefcdab89
_a = 0X98badcfe
_a = 0X10325476
_a = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(UpperCamelCase ):
_a = aa
_a = ba
_a = ca
_a = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
_a = d ^ (b & (c ^ d))
_a = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
_a = c ^ (d & (b ^ c))
_a = (5 * i + 1) % 16
elif i <= 47:
_a = b ^ c ^ d
_a = (3 * i + 5) % 16
else:
_a = c ^ (b | not_aa(UpperCamelCase ))
_a = (7 * i) % 16
_a = (f + a + added_consts[i] + block_words[g]) % 2**32
_a = d
_a = c
_a = b
_a = sum_aa(UpperCamelCase , left_rotate_aa(UpperCamelCase , shift_amounts[i] ) )
# Add hashed chunk to running total
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 |
'''simple docstring'''
from math import pi, sqrt
def snake_case_ (UpperCamelCase : float ):
'''simple docstring'''
if num <= 0:
raise ValueError('''math domain error''' )
if num > 171.5:
raise OverflowError('''math range error''' )
elif num - int(UpperCamelCase ) not in (0, 0.5):
raise NotImplementedError('''num must be an integer or a half-integer''' )
elif num == 0.5:
return sqrt(UpperCamelCase )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def snake_case_ ():
'''simple docstring'''
assert gamma(0.5 ) == sqrt(UpperCamelCase )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
_snake_case : Optional[Any] = 1.0
while num:
_snake_case : Dict = float(input('Gamma of: '))
print(F'''gamma({num}) = {gamma(num)}''')
print('\nEnter 0 to exit...')
| 22 | 1 |
'''simple docstring'''
import math
def snake_case_ (UpperCamelCase : int = 100 ):
'''simple docstring'''
_a = sum(i * i for i in range(1 , n + 1 ) )
_a = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) )
return square_of_sum - sum_of_squares
if __name__ == "__main__":
print(F'''{solution() = }''')
| 22 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : List[Any] ) -> int:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_euler''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_euler''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1
def __lowerCAmelCase ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_dpmpp_2m''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe(
[prompt] , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=lowerCAmelCase_ , )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array(
[0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 22 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case : Optional[int] = logging.get_logger(__name__)
_snake_case : Dict = {
'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json',
}
class A ( _a ):
lowercase_ = 'mra'
def __init__( self : int , lowerCAmelCase_ : Optional[int]=5_02_65 , lowerCAmelCase_ : Union[str, Any]=7_68 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Optional[Any]=30_72 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : List[str]=5_12 , lowerCAmelCase_ : Union[str, Any]=1 , lowerCAmelCase_ : List[Any]=0.0_2 , lowerCAmelCase_ : str=1e-5 , lowerCAmelCase_ : Optional[Any]="absolute" , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Tuple="full" , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : List[str]=0 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Tuple=0 , lowerCAmelCase_ : int=2 , **lowerCAmelCase_ : Optional[int] , ) -> Optional[int]:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
_a = vocab_size
_a = max_position_embeddings
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = initializer_range
_a = type_vocab_size
_a = layer_norm_eps
_a = position_embedding_type
_a = block_per_row
_a = approx_mode
_a = initial_prior_first_n_blocks
_a = initial_prior_diagonal_n_blocks
| 22 |
'''simple docstring'''
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
_snake_case : Any = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
_snake_case : Any = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n'
_snake_case : List[Any] = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n'
def snake_case_ (UpperCamelCase : Tuple ):
'''simple docstring'''
def remove_articles(UpperCamelCase : Optional[int] ):
_a = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE )
return re.sub(UpperCamelCase , ''' ''' , UpperCamelCase )
def white_space_fix(UpperCamelCase : Union[str, Any] ):
return " ".join(text.split() )
def remove_punc(UpperCamelCase : str ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(UpperCamelCase : Tuple ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase ) ) ) )
def snake_case_ (UpperCamelCase : int , UpperCamelCase : Dict ):
'''simple docstring'''
return int(normalize_answer(UpperCamelCase ) == normalize_answer(UpperCamelCase ) )
def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : List[str] ):
'''simple docstring'''
_a = [any(compute_exact(UpperCamelCase , UpperCamelCase ) for ref in refs ) for pred, refs in zip(UpperCamelCase , UpperCamelCase )]
return (sum(UpperCamelCase ) / len(UpperCamelCase )) * 100
def snake_case_ (UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
_a = [rgram for rgrams in rgramslist for rgram in rgrams]
_a = Counter(UpperCamelCase )
_a = Counter(UpperCamelCase )
_a = Counter()
for sgram, scount in sgramcounter.items():
_a = scount * numref
_a = Counter(UpperCamelCase )
_a = Counter()
for cgram, ccount in cgramcounter.items():
_a = ccount * numref
# KEEP
_a = sgramcounter_rep & cgramcounter_rep
_a = keepgramcounter_rep & rgramcounter
_a = sgramcounter_rep & rgramcounter
_a = 0
_a = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(UpperCamelCase ) > 0:
_a = keeptmpscorea / len(UpperCamelCase )
if len(UpperCamelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_a = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_a = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_a = sgramcounter_rep - cgramcounter_rep
_a = delgramcounter_rep - rgramcounter
_a = sgramcounter_rep - rgramcounter
_a = 0
_a = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
if len(UpperCamelCase ) > 0:
_a = deltmpscorea / len(UpperCamelCase )
# ADDITION
_a = set(UpperCamelCase ) - set(UpperCamelCase )
_a = set(UpperCamelCase ) & set(UpperCamelCase )
_a = set(UpperCamelCase ) - set(UpperCamelCase )
_a = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(UpperCamelCase ) > 0:
_a = addtmpscore / len(UpperCamelCase )
if len(UpperCamelCase ) > 0:
_a = addtmpscore / len(UpperCamelCase )
_a = 0
if addscore_precision > 0 or addscore_recall > 0:
_a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ):
'''simple docstring'''
_a = len(UpperCamelCase )
_a = ssent.split(''' ''' )
_a = csent.split(''' ''' )
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
for rsent in rsents:
_a = rsent.split(''' ''' )
_a = []
_a = []
_a = []
ragramslist.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
_a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_a = sum([delascore, delascore, delascore, delascore] ) / 4
_a = sum([addascore, addascore, addascore, addascore] ) / 4
_a = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def snake_case_ (UpperCamelCase : str , UpperCamelCase : bool = True , UpperCamelCase : str = "13a" , UpperCamelCase : bool = True ):
'''simple docstring'''
if lowercase:
_a = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_a = sacrebleu.metrics.bleu._get_tokenizer(UpperCamelCase )()(UpperCamelCase )
else:
_a = sacrebleu.TOKENIZERS[tokenizer]()(UpperCamelCase )
elif tokenizer == "moses":
_a = sacremoses.MosesTokenizer().tokenize(UpperCamelCase , return_str=UpperCamelCase , escape=UpperCamelCase )
elif tokenizer == "penn":
_a = sacremoses.MosesTokenizer().penn_tokenize(UpperCamelCase , return_str=UpperCamelCase )
else:
_a = sentence
if not return_str:
_a = normalized_sent.split()
return normalized_sent
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Dict ):
'''simple docstring'''
if not (len(UpperCamelCase ) == len(UpperCamelCase ) == len(UpperCamelCase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_a = 0
for src, pred, refs in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ):
sari_score += SARIsent(normalize(UpperCamelCase ) , normalize(UpperCamelCase ) , [normalize(UpperCamelCase ) for sent in refs] )
_a = sari_score / len(UpperCamelCase )
return 100 * sari_score
def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : List[str]="exp" , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[int]=False , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=False , ):
'''simple docstring'''
_a = len(references[0] )
if any(len(UpperCamelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a = [[refs[i] for refs in references] for i in range(UpperCamelCase )]
_a = sacrebleu.corpus_bleu(
UpperCamelCase , UpperCamelCase , smooth_method=UpperCamelCase , smooth_value=UpperCamelCase , force=UpperCamelCase , lowercase=UpperCamelCase , use_effective_order=UpperCamelCase , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def __lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any ) -> Dict:
"""simple docstring"""
_a = {}
result.update({'''sari''': compute_sari(sources=lowerCAmelCase_ , predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
result.update({'''exact''': compute_em(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
return result
| 22 | 1 |
'''simple docstring'''
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_snake_case : Union[str, Any] = logging.get_logger(__name__)
_snake_case : Optional[int] = {
'microsoft/conditional-detr-resnet-50': (
'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json'
),
}
class A ( _a ):
lowercase_ = 'conditional_detr'
lowercase_ = ['past_key_values']
lowercase_ = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Dict , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=3_00 , lowerCAmelCase_ : Tuple=6 , lowerCAmelCase_ : Dict=20_48 , lowerCAmelCase_ : int=8 , lowerCAmelCase_ : Union[str, Any]=6 , lowerCAmelCase_ : Optional[int]=20_48 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : List[str]=2_56 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : Optional[int]=0.0_2 , lowerCAmelCase_ : List[Any]=1.0 , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : int="sine" , lowerCAmelCase_ : Optional[Any]="resnet50" , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : str=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : int=0.2_5 , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]:
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
_a = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
_a = backbone_config.get('''model_type''' )
_a = CONFIG_MAPPING[backbone_model_type]
_a = config_class.from_dict(lowerCAmelCase_ )
_a = use_timm_backbone
_a = backbone_config
_a = num_channels
_a = num_queries
_a = d_model
_a = encoder_ffn_dim
_a = encoder_layers
_a = encoder_attention_heads
_a = decoder_ffn_dim
_a = decoder_layers
_a = decoder_attention_heads
_a = dropout
_a = attention_dropout
_a = activation_dropout
_a = activation_function
_a = init_std
_a = init_xavier_std
_a = encoder_layerdrop
_a = decoder_layerdrop
_a = encoder_layers
_a = auxiliary_loss
_a = position_embedding_type
_a = backbone
_a = use_pretrained_backbone
_a = dilation
# Hungarian matcher
_a = class_cost
_a = bbox_cost
_a = giou_cost
# Loss coefficients
_a = mask_loss_coefficient
_a = dice_loss_coefficient
_a = cls_loss_coefficient
_a = bbox_loss_coefficient
_a = giou_loss_coefficient
_a = focal_alpha
super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ )
@property
def __lowerCAmelCase ( self : List[Any] ) -> int:
"""simple docstring"""
return self.encoder_attention_heads
@property
def __lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.d_model
def __lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
_a = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
_a = self.backbone_config.to_dict()
_a = self.__class__.model_type
return output
class A ( _a ):
lowercase_ = version.parse('1.11' )
@property
def __lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''pixel_mask''', {0: '''batch'''}),
] )
@property
def __lowerCAmelCase ( self : str ) -> float:
"""simple docstring"""
return 1e-5
@property
def __lowerCAmelCase ( self : str ) -> int:
"""simple docstring"""
return 12
| 22 |
'''simple docstring'''
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'):
_snake_case : Tuple = {
'linear': PIL.Image.Resampling.BILINEAR,
'bilinear': PIL.Image.Resampling.BILINEAR,
'bicubic': PIL.Image.Resampling.BICUBIC,
'lanczos': PIL.Image.Resampling.LANCZOS,
'nearest': PIL.Image.Resampling.NEAREST,
}
else:
_snake_case : Any = {
'linear': PIL.Image.LINEAR,
'bilinear': PIL.Image.BILINEAR,
'bicubic': PIL.Image.BICUBIC,
'lanczos': PIL.Image.LANCZOS,
'nearest': PIL.Image.NEAREST,
}
def snake_case_ (UpperCamelCase : Optional[int] ):
'''simple docstring'''
_a = (images / 2 + 0.5).clamp(0 , 1 )
_a = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
_a = numpy_to_pil(UpperCamelCase )
return images
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
if images.ndim == 3:
_a = images[None, ...]
_a = (images * 255).round().astype('''uint8''' )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
_a = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images]
else:
_a = [Image.fromarray(UpperCamelCase ) for image in images]
return pil_images
| 22 | 1 |
'''simple docstring'''
import hashlib
import unittest
from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available
from transformers.pipelines import DepthEstimationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
else:
class A :
@staticmethod
def __lowerCAmelCase ( *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
pass
def snake_case_ (UpperCamelCase : Image ):
'''simple docstring'''
_a = hashlib.mda(image.tobytes() )
return m.hexdigest()
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class A ( unittest.TestCase ):
lowercase_ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING
def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> Dict:
"""simple docstring"""
_a = DepthEstimationPipeline(model=lowerCAmelCase_ , image_processor=lowerCAmelCase_ )
return depth_estimator, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Dict:
"""simple docstring"""
_a = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , lowerCAmelCase_ )
import datasets
_a = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' )
_a = depth_estimator(
[
Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ),
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
# RGBA
dataset[0]['''file'''],
# LA
dataset[1]['''file'''],
# L
dataset[2]['''file'''],
] )
self.assertEqual(
[
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
] , lowerCAmelCase_ , )
@require_tf
@unittest.skip('''Depth estimation is not implemented in TF''' )
def __lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
pass
@slow
@require_torch
def __lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
_a = '''Intel/dpt-large'''
_a = pipeline('''depth-estimation''' , model=lowerCAmelCase_ )
_a = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' )
_a = hashimage(outputs['''depth'''] )
# This seems flaky.
# self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977")
self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 2_9.3_0_4 )
self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.6_6_2 )
@require_torch
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
| 22 |
'''simple docstring'''
import requests
def snake_case_ (UpperCamelCase : str , UpperCamelCase : str ):
'''simple docstring'''
_a = {'''Content-Type''': '''application/json'''}
_a = requests.post(UpperCamelCase , json={'''text''': message_body} , headers=UpperCamelCase )
if response.status_code != 200:
_a = (
'''Request to slack returned an error '''
f'{response.status_code}, the response is:\n{response.text}'
)
raise ValueError(UpperCamelCase )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
| 22 | 1 |
'''simple docstring'''
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : Tuple ):
'''simple docstring'''
_a = checkpoint
_a = {}
_a = vae_state_dict['''encoder.conv_in.weight''']
_a = vae_state_dict['''encoder.conv_in.bias''']
_a = vae_state_dict['''encoder.conv_out.weight''']
_a = vae_state_dict['''encoder.conv_out.bias''']
_a = vae_state_dict['''encoder.norm_out.weight''']
_a = vae_state_dict['''encoder.norm_out.bias''']
_a = vae_state_dict['''decoder.conv_in.weight''']
_a = vae_state_dict['''decoder.conv_in.bias''']
_a = vae_state_dict['''decoder.conv_out.weight''']
_a = vae_state_dict['''decoder.conv_out.bias''']
_a = vae_state_dict['''decoder.norm_out.weight''']
_a = vae_state_dict['''decoder.norm_out.bias''']
_a = vae_state_dict['''quant_conv.weight''']
_a = vae_state_dict['''quant_conv.bias''']
_a = vae_state_dict['''post_quant_conv.weight''']
_a = vae_state_dict['''post_quant_conv.bias''']
# Retrieves the keys for the encoder down blocks only
_a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} )
_a = {
layer_id: [key for key in vae_state_dict if f'down.{layer_id}' in key] for layer_id in range(UpperCamelCase )
}
# Retrieves the keys for the decoder up blocks only
_a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} )
_a = {
layer_id: [key for key in vae_state_dict if f'up.{layer_id}' in key] for layer_id in range(UpperCamelCase )
}
for i in range(UpperCamelCase ):
_a = [key for key in down_blocks[i] if f'down.{i}' in key and f'down.{i}.downsample' not in key]
if f'encoder.down.{i}.downsample.conv.weight' in vae_state_dict:
_a = vae_state_dict.pop(
f'encoder.down.{i}.downsample.conv.weight' )
_a = vae_state_dict.pop(
f'encoder.down.{i}.downsample.conv.bias' )
_a = renew_vae_resnet_paths(UpperCamelCase )
_a = {'''old''': f'down.{i}.block', '''new''': f'down_blocks.{i}.resnets'}
assign_to_checkpoint(UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path] , config=UpperCamelCase )
_a = [key for key in vae_state_dict if '''encoder.mid.block''' in key]
_a = 2
for i in range(1 , num_mid_res_blocks + 1 ):
_a = [key for key in mid_resnets if f'encoder.mid.block_{i}' in key]
_a = renew_vae_resnet_paths(UpperCamelCase )
_a = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'}
assign_to_checkpoint(UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path] , config=UpperCamelCase )
_a = [key for key in vae_state_dict if '''encoder.mid.attn''' in key]
_a = renew_vae_attention_paths(UpperCamelCase )
_a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''}
assign_to_checkpoint(UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path] , config=UpperCamelCase )
conv_attn_to_linear(UpperCamelCase )
for i in range(UpperCamelCase ):
_a = num_up_blocks - 1 - i
_a = [
key for key in up_blocks[block_id] if f'up.{block_id}' in key and f'up.{block_id}.upsample' not in key
]
if f'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict:
_a = vae_state_dict[
f'decoder.up.{block_id}.upsample.conv.weight'
]
_a = vae_state_dict[
f'decoder.up.{block_id}.upsample.conv.bias'
]
_a = renew_vae_resnet_paths(UpperCamelCase )
_a = {'''old''': f'up.{block_id}.block', '''new''': f'up_blocks.{i}.resnets'}
assign_to_checkpoint(UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path] , config=UpperCamelCase )
_a = [key for key in vae_state_dict if '''decoder.mid.block''' in key]
_a = 2
for i in range(1 , num_mid_res_blocks + 1 ):
_a = [key for key in mid_resnets if f'decoder.mid.block_{i}' in key]
_a = renew_vae_resnet_paths(UpperCamelCase )
_a = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'}
assign_to_checkpoint(UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path] , config=UpperCamelCase )
_a = [key for key in vae_state_dict if '''decoder.mid.attn''' in key]
_a = renew_vae_attention_paths(UpperCamelCase )
_a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''}
assign_to_checkpoint(UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path] , config=UpperCamelCase )
conv_attn_to_linear(UpperCamelCase )
return new_checkpoint
def snake_case_ (UpperCamelCase : str , UpperCamelCase : str , ):
'''simple docstring'''
_a = requests.get(
''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' )
_a = io.BytesIO(r.content )
_a = OmegaConf.load(UpperCamelCase )
_a = 512
_a = '''cuda''' if torch.cuda.is_available() else '''cpu'''
if checkpoint_path.endswith('''safetensors''' ):
from safetensors import safe_open
_a = {}
with safe_open(UpperCamelCase , framework='''pt''' , device='''cpu''' ) as f:
for key in f.keys():
_a = f.get_tensor(UpperCamelCase )
else:
_a = torch.load(UpperCamelCase , map_location=UpperCamelCase )['''state_dict''']
# Convert the VAE model.
_a = create_vae_diffusers_config(UpperCamelCase , image_size=UpperCamelCase )
_a = custom_convert_ldm_vae_checkpoint(UpperCamelCase , UpperCamelCase )
_a = AutoencoderKL(**UpperCamelCase )
vae.load_state_dict(UpperCamelCase )
vae.save_pretrained(UpperCamelCase )
if __name__ == "__main__":
_snake_case : Any = argparse.ArgumentParser()
parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.')
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.')
_snake_case : Tuple = parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
| 22 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
_snake_case : Tuple = logging.get_logger(__name__)
class A ( _a ):
lowercase_ = ['pixel_values']
def __init__( self : str , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : Any , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase_ )
_a = size if size is not None else {'''shortest_edge''': 2_56}
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
_a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_a = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ )
return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' )
return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Tuple ) -> np.ndarray:
"""simple docstring"""
return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : Union[str, Any] , ) -> Union[str, Any]:
"""simple docstring"""
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = make_list_of_images(lowerCAmelCase_ )
if not valid_images(lowerCAmelCase_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_a = [to_numpy_array(lowerCAmelCase_ ) for image in images]
if do_resize:
_a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images]
if do_rescale:
_a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images]
if do_normalize:
_a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images]
_a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Tuple] = None ) -> Any:
"""simple docstring"""
_a = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowerCAmelCase_ ):
_a = target_sizes.numpy()
_a = []
for idx in range(len(lowerCAmelCase_ ) ):
_a = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase_ )
_a = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase_ )
else:
_a = logits.argmax(dim=1 )
_a = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 22 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class A ( metaclass=_a ):
lowercase_ = ['flax']
def __init__( self : str , *lowerCAmelCase_ : str , **lowerCAmelCase_ : List[Any] ) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : Dict , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Tuple ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : str , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Dict ) -> str:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class A ( metaclass=_a ):
lowercase_ = ['flax']
def __init__( self : List[Any] , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[int] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : int ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class A ( metaclass=_a ):
lowercase_ = ['flax']
def __init__( self : Any , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : List[Any] ) -> Tuple:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : List[Any] ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class A ( metaclass=_a ):
lowercase_ = ['flax']
def __init__( self : List[str] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Dict ) -> Any:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : int , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : int ) -> Any:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class A ( metaclass=_a ):
lowercase_ = ['flax']
def __init__( self : Any , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : List[Any] ) -> List[Any]:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : Any , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Any ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : int , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : str ) -> int:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class A ( metaclass=_a ):
lowercase_ = ['flax']
def __init__( self : Tuple , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : List[str] ) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : str , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : str ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class A ( metaclass=_a ):
lowercase_ = ['flax']
def __init__( self : Optional[Any] , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Dict ) -> List[Any]:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : List[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Optional[int] ) -> Tuple:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : Any , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : str ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class A ( metaclass=_a ):
lowercase_ = ['flax']
def __init__( self : str , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ) -> List[Any]:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ) -> Any:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : List[Any] , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class A ( metaclass=_a ):
lowercase_ = ['flax']
def __init__( self : Dict , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : int , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Optional[int] ) -> Tuple:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : Any , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : str ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class A ( metaclass=_a ):
lowercase_ = ['flax']
def __init__( self : Dict , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : List[Any] ) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Union[str, Any] ) -> int:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class A ( metaclass=_a ):
lowercase_ = ['flax']
def __init__( self : List[str] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : List[Any] ) -> str:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[int] , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Optional[int] ) -> Tuple:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class A ( metaclass=_a ):
lowercase_ = ['flax']
def __init__( self : Dict , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : str ) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : int , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Any:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class A ( metaclass=_a ):
lowercase_ = ['flax']
def __init__( self : List[str] , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Optional[int] ) -> Dict:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : Union[str, Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any ) -> Any:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def __lowerCAmelCase ( cls : Any , *lowerCAmelCase_ : str , **lowerCAmelCase_ : int ) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
| 22 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def snake_case_ (UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : int , UpperCamelCase : Optional[int] = None , ):
'''simple docstring'''
_a = {}
if train_file is not None:
_a = [train_file]
if eval_file is not None:
_a = [eval_file]
if test_file is not None:
_a = [test_file]
_a = datasets.load_dataset('''csv''' , data_files=UpperCamelCase )
_a = list(ds[list(files.keys() )[0]].features.keys() )
_a = features_name.pop(UpperCamelCase )
_a = list(set(ds[list(files.keys() )[0]][label_name] ) )
_a = {label: i for i, label in enumerate(UpperCamelCase )}
_a = tokenizer.model_input_names
_a = {}
if len(UpperCamelCase ) == 1:
for k in files.keys():
_a = ds[k].map(
lambda UpperCamelCase : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' ) , batched=UpperCamelCase , )
elif len(UpperCamelCase ) == 2:
for k in files.keys():
_a = ds[k].map(
lambda UpperCamelCase : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' , ) , batched=UpperCamelCase , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
_a = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
_a = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
_a = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
_snake_case : str = logging.getLogger(__name__)
@dataclass
class A :
lowercase_ = field(metadata={'help': 'Which column contains the label'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the training file'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the development file'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the test file'} )
lowercase_ = field(
default=128 ,metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} ,)
lowercase_ = field(
default=_a ,metadata={'help': 'Overwrite the cached training and evaluation sets'} )
@dataclass
class A :
lowercase_ = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
lowercase_ = field(
default=_a ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
lowercase_ = field(
default=_a ,metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
lowercase_ = field(default=_a ,metadata={'help': 'Set this flag to use fast tokenization.'} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowercase_ = field(
default=_a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,)
def snake_case_ ():
'''simple docstring'''
_a = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
_a , _a , _a = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. Use'
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(
f'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, '
f'16-bits training: {training_args.fpaa}' )
logger.info(f'Training/evaluation parameters {training_args}' )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_a = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_a , _a , _a , _a = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
_a = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase ) , labelaid=UpperCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
_a = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , )
def compute_metrics(UpperCamelCase : EvalPrediction ) -> Dict:
_a = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
_a = TFTrainer(
model=UpperCamelCase , args=UpperCamelCase , train_dataset=UpperCamelCase , eval_dataset=UpperCamelCase , compute_metrics=UpperCamelCase , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_a = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_a = trainer.evaluate()
_a = os.path.join(training_args.output_dir , '''eval_results.txt''' )
with open(UpperCamelCase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(f' {key} = {value}' )
writer.write(f'{key} = {value}\n' )
results.update(UpperCamelCase )
return results
if __name__ == "__main__":
main()
| 22 | 1 |
'''simple docstring'''
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
StableDiffusionControlNetImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class A ( _a ,_a ,_a ,unittest.TestCase ):
lowercase_ = StableDiffusionControlNetImgaImgPipeline
lowercase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'}
lowercase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
lowercase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} )
lowercase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS
def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
_a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
torch.manual_seed(0 )
_a = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
torch.manual_seed(0 )
_a = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , )
torch.manual_seed(0 )
_a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
_a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
_a = CLIPTextModel(lowerCAmelCase_ )
_a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
_a = {
'''unet''': unet,
'''controlnet''': controlnet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any]=0 ) -> List[Any]:
"""simple docstring"""
if str(lowerCAmelCase_ ).startswith('''mps''' ):
_a = torch.manual_seed(lowerCAmelCase_ )
else:
_a = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ )
_a = 2
_a = randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase_ , device=torch.device(lowerCAmelCase_ ) , )
_a = floats_tensor(control_image.shape , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ )
_a = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_a = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert('''RGB''' ).resize((64, 64) )
_a = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
'''image''': image,
'''control_image''': control_image,
}
return inputs
def __lowerCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __lowerCAmelCase ( self : Dict ) -> str:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 )
def __lowerCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
self._test_inference_batch_single_identical(expected_max_diff=2e-3 )
class A ( _a ,_a ,unittest.TestCase ):
lowercase_ = StableDiffusionControlNetImgaImgPipeline
lowercase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'}
lowercase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
lowercase_ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def __lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
_a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
torch.manual_seed(0 )
def init_weights(lowerCAmelCase_ : List[str] ):
if isinstance(lowerCAmelCase_ , torch.nn.Convad ):
torch.nn.init.normal(m.weight )
m.bias.data.fill_(1.0 )
_a = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(lowerCAmelCase_ )
torch.manual_seed(0 )
_a = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(lowerCAmelCase_ )
torch.manual_seed(0 )
_a = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , )
torch.manual_seed(0 )
_a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
_a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
_a = CLIPTextModel(lowerCAmelCase_ )
_a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
_a = MultiControlNetModel([controlneta, controlneta] )
_a = {
'''unet''': unet,
'''controlnet''': controlnet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]=0 ) -> Tuple:
"""simple docstring"""
if str(lowerCAmelCase_ ).startswith('''mps''' ):
_a = torch.manual_seed(lowerCAmelCase_ )
else:
_a = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ )
_a = 2
_a = [
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase_ , device=torch.device(lowerCAmelCase_ ) , ),
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase_ , device=torch.device(lowerCAmelCase_ ) , ),
]
_a = floats_tensor(control_image[0].shape , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ )
_a = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_a = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert('''RGB''' ).resize((64, 64) )
_a = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
'''image''': image,
'''control_image''': control_image,
}
return inputs
def __lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
_a = self.get_dummy_components()
_a = self.pipeline_class(**lowerCAmelCase_ )
pipe.to(lowerCAmelCase_ )
_a = 1_0.0
_a = 4
_a = self.get_dummy_inputs(lowerCAmelCase_ )
_a = steps
_a = scale
_a = pipe(**lowerCAmelCase_ )[0]
_a = self.get_dummy_inputs(lowerCAmelCase_ )
_a = steps
_a = scale
_a = pipe(**lowerCAmelCase_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0]
_a = self.get_dummy_inputs(lowerCAmelCase_ )
_a = steps
_a = scale
_a = pipe(**lowerCAmelCase_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0]
_a = self.get_dummy_inputs(lowerCAmelCase_ )
_a = steps
_a = scale
_a = pipe(**lowerCAmelCase_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_a - output_a ) ) > 1e-3
assert np.sum(np.abs(output_a - output_a ) ) > 1e-3
assert np.sum(np.abs(output_a - output_a ) ) > 1e-3
def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __lowerCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 )
def __lowerCAmelCase ( self : Dict ) -> Dict:
"""simple docstring"""
self._test_inference_batch_single_identical(expected_max_diff=2e-3 )
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
_a = self.get_dummy_components()
_a = self.pipeline_class(**lowerCAmelCase_ )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
with tempfile.TemporaryDirectory() as tmpdir:
try:
# save_pretrained is not implemented for Multi-ControlNet
pipe.save_pretrained(lowerCAmelCase_ )
except NotImplementedError:
pass
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
_a = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' )
_a = StableDiffusionControlNetImgaImgPipeline.from_pretrained(
'''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCAmelCase_ , controlnet=lowerCAmelCase_ )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
_a = torch.Generator(device='''cpu''' ).manual_seed(0 )
_a = '''evil space-punk bird'''
_a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((5_12, 5_12) )
_a = load_image(
'''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((5_12, 5_12) )
_a = pipe(
lowerCAmelCase_ , lowerCAmelCase_ , control_image=lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type='''np''' , num_inference_steps=50 , strength=0.6 , )
_a = output.images[0]
assert image.shape == (5_12, 5_12, 3)
_a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' )
assert np.abs(expected_image - image ).max() < 9e-2
| 22 |
'''simple docstring'''
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A ( _a ,unittest.TestCase ):
lowercase_ = LEDTokenizer
lowercase_ = LEDTokenizerFast
lowercase_ = True
def __lowerCAmelCase ( self : int ) -> List[Any]:
"""simple docstring"""
super().setUp()
_a = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
_a = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) )
_a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
_a = {'''unk_token''': '''<unk>'''}
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowerCAmelCase_ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(lowerCAmelCase_ ) )
def __lowerCAmelCase ( self : Union[str, Any] , **lowerCAmelCase_ : int ) -> Optional[int]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , **lowerCAmelCase_ : Any ) -> int:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> List[str]:
"""simple docstring"""
return "lower newer", "lower newer"
@cached_property
def __lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' )
@cached_property
def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' )
@require_torch
def __lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
_a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
_a = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
_a = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
@require_torch
def __lowerCAmelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
_a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIn('''input_ids''' , lowerCAmelCase_ )
self.assertIn('''attention_mask''' , lowerCAmelCase_ )
self.assertNotIn('''labels''' , lowerCAmelCase_ )
self.assertNotIn('''decoder_attention_mask''' , lowerCAmelCase_ )
@require_torch
def __lowerCAmelCase ( self : List[str] ) -> str:
"""simple docstring"""
_a = [
'''Summary of the text.''',
'''Another summary.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='''max_length''' , return_tensors='''pt''' )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
@require_torch
def __lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(
['''I am a small frog''' * 10_24, '''I am a small frog'''] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertEqual(batch.input_ids.shape , (2, 51_22) )
@require_torch
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a = ['''A long paragraph for summarization.''']
_a = [
'''Summary of the text.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(lowerCAmelCase_ , return_tensors='''pt''' )
_a = tokenizer(text_target=lowerCAmelCase_ , return_tensors='''pt''' )
_a = inputs['''input_ids''']
_a = targets['''input_ids''']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def __lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = ['''Summary of the text.''', '''Another summary.''']
_a = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
_a = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ )
_a = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['''input_ids''']]
_a = tokenizer.pad(lowerCAmelCase_ )
self.assertSequenceEqual(outputs['''global_attention_mask'''] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> Dict:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
_a = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
_a = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
_a = '''A, <mask> AllenNLP sentence.'''
_a = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ )
_a = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ )
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
_a = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
_a = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
| 22 | 1 |
'''simple docstring'''
from jiwer import compute_measures
import datasets
_snake_case : Dict = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n'
_snake_case : List[str] = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n'
_snake_case : List[str] = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def __lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/Word_error_rate''',
] , )
def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[Any]=False ) -> str:
"""simple docstring"""
if concatenate_texts:
return compute_measures(lowerCAmelCase_ , lowerCAmelCase_ )["wer"]
else:
_a = 0
_a = 0
for prediction, reference in zip(lowerCAmelCase_ , lowerCAmelCase_ ):
_a = compute_measures(lowerCAmelCase_ , lowerCAmelCase_ )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 22 |
'''simple docstring'''
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'''split_dict''' , [
SplitDict(),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 , dataset_name='''my_dataset''' )} ),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 )} ),
SplitDict({'''train''': SplitInfo()} ),
] , )
def snake_case_ (UpperCamelCase : SplitDict ):
'''simple docstring'''
_a = split_dict._to_yaml_list()
assert len(UpperCamelCase ) == len(UpperCamelCase )
_a = SplitDict._from_yaml_list(UpperCamelCase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
_a = None
# the split name of split_dict takes over the name of the split info object
_a = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'''split_info''' , [SplitInfo(), SplitInfo(dataset_name=UpperCamelCase ), SplitInfo(dataset_name='''my_dataset''' )] )
def snake_case_ (UpperCamelCase : List[str] ):
'''simple docstring'''
_a = asdict(SplitDict({'''train''': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 22 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
def snake_case_ (UpperCamelCase : Callable[[int | float], int | float] , UpperCamelCase : int | float , UpperCamelCase : int | float , UpperCamelCase : int = 100 , ):
'''simple docstring'''
_a = x_start
_a = fnc(UpperCamelCase )
_a = 0.0
for _ in range(UpperCamelCase ):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
_a = (x_end - x_start) / steps + xa
_a = fnc(UpperCamelCase )
area += abs(fxa + fxa ) * (xa - xa) / 2
# Increment step
_a = xa
_a = fxa
return area
if __name__ == "__main__":
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
return x**3 + x**2
print('f(x) = x^3 + x^2')
print('The area between the curve, x = -5, x = 5 and the x axis is:')
_snake_case : str = 10
while i <= 100000:
print(F'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''')
i *= 10
| 22 |
'''simple docstring'''
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
_snake_case : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
_snake_case : List[str] = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n'
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : int ) -> List[Any]:
"""simple docstring"""
_a = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) )
_a = self.diffusers_dir
shutil.copy(
os.path.join(lowerCAmelCase_ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , )
def __lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_a = '''src/diffusers'''
shutil.rmtree(self.diffusers_dir )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str=None ) -> Union[str, Any]:
"""simple docstring"""
_a = comment + F'\nclass {class_name}(nn.Module):\n' + class_code
if overwrite_result is not None:
_a = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result
_a = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
_a = black.format_str(lowerCAmelCase_ , mode=lowerCAmelCase_ )
_a = os.path.join(self.diffusers_dir , '''new_code.py''' )
with open(lowerCAmelCase_ , '''w''' , newline='''\n''' ) as f:
f.write(lowerCAmelCase_ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase_ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase_ )
with open(lowerCAmelCase_ , '''r''' ) as f:
self.assertTrue(f.read() , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' )
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , )
# With no empty line at the end
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , lowerCAmelCase_ , )
# Copy consistency with rename
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , lowerCAmelCase_ ) , )
# Copy consistency with a really long name
_a = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
F'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}' , F'{long_class_name}SchedulerOutput' , re.sub('''Bert''' , lowerCAmelCase_ , lowerCAmelCase_ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , lowerCAmelCase_ , overwrite_result=re.sub('''DDPM''' , '''Test''' , lowerCAmelCase_ ) , )
| 22 | 1 |
'''simple docstring'''
print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
| 22 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
_snake_case : Tuple = logging.get_logger(__name__)
_snake_case : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_snake_case : List[Any] = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
_snake_case : Union[str, Any] = {
'squeezebert/squeezebert-uncased': 512,
'squeezebert/squeezebert-mnli': 512,
'squeezebert/squeezebert-mnli-headless': 512,
}
_snake_case : Tuple = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class A ( _a ):
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_INIT_CONFIGURATION
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = SqueezeBertTokenizer
def __init__( self : str , lowerCAmelCase_ : str=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[str]="[UNK]" , lowerCAmelCase_ : Union[str, Any]="[SEP]" , lowerCAmelCase_ : Optional[Any]="[PAD]" , lowerCAmelCase_ : Any="[CLS]" , lowerCAmelCase_ : List[str]="[MASK]" , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Optional[int] , ) -> int:
"""simple docstring"""
super().__init__(
lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , )
_a = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , lowerCAmelCase_ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , lowerCAmelCase_ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase_ ) != tokenize_chinese_chars
):
_a = getattr(lowerCAmelCase_ , normalizer_state.pop('''type''' ) )
_a = do_lower_case
_a = strip_accents
_a = tokenize_chinese_chars
_a = normalizer_class(**lowerCAmelCase_ )
_a = do_lower_case
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=None ) -> List[str]:
"""simple docstring"""
_a = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
_a = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ )
return tuple(lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class A :
def __init__( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict=13 , lowerCAmelCase_ : int=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Optional[Any]=99 , lowerCAmelCase_ : Tuple=0 , lowerCAmelCase_ : List[Any]=32 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Tuple=5_12 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : List[Any]=0.0_2 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : str="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=0 , ) -> List[Any]:
"""simple docstring"""
_a = parent
_a = batch_size
_a = seq_length
_a = is_training
_a = use_input_lengths
_a = use_token_type_ids
_a = use_labels
_a = gelu_activation
_a = sinusoidal_embeddings
_a = causal
_a = asm
_a = n_langs
_a = vocab_size
_a = n_special
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_sequence_label_size
_a = initializer_range
_a = num_labels
_a = num_choices
_a = summary_type
_a = use_proj
_a = scope
_a = bos_token_id
def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = random_attention_mask([self.batch_size, self.seq_length] )
_a = None
if self.use_input_lengths:
_a = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
_a = None
if self.use_token_type_ids:
_a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
_a = None
_a = None
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_a = ids_tensor([self.batch_size] , 2 ).float()
_a = ids_tensor([self.batch_size] , self.num_choices )
_a = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def __lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , ) -> str:
"""simple docstring"""
_a = XLMModel(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
_a = model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ )
_a = model(lowerCAmelCase_ , langs=lowerCAmelCase_ )
_a = model(lowerCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , ) -> int:
"""simple docstring"""
_a = XLMWithLMHeadModel(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
_a = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , ) -> int:
"""simple docstring"""
_a = XLMForQuestionAnsweringSimple(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
_a = model(lowerCAmelCase_ )
_a = model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ )
_a = outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , ) -> Tuple:
"""simple docstring"""
_a = XLMForQuestionAnswering(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
_a = model(lowerCAmelCase_ )
_a = model(
lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , )
_a = model(
lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , )
((_a) , ) = result_with_labels.to_tuple()
_a = model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ )
((_a) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , ) -> Dict:
"""simple docstring"""
_a = XLMForSequenceClassification(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
_a = model(lowerCAmelCase_ )
_a = model(lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , ) -> Optional[Any]:
"""simple docstring"""
_a = self.num_labels
_a = XLMForTokenClassification(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
_a = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , ) -> Any:
"""simple docstring"""
_a = self.num_choices
_a = XLMForMultipleChoice(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
_a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self : int ) -> Optional[int]:
"""simple docstring"""
_a = self.prepare_config_and_inputs()
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) = config_and_inputs
_a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths}
return config, inputs_dict
@require_torch
class A ( _a ,_a ,_a ,unittest.TestCase ):
lowercase_ = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
lowercase_ = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
lowercase_ = (
{
'feature-extraction': XLMModel,
'fill-mask': XLMWithLMHeadModel,
'question-answering': XLMForQuestionAnsweringSimple,
'text-classification': XLMForSequenceClassification,
'text-generation': XLMWithLMHeadModel,
'token-classification': XLMForTokenClassification,
'zero-shot': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> Optional[int]:
"""simple docstring"""
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('''Fast''' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int=False ) -> List[Any]:
"""simple docstring"""
_a = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
_a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ )
_a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ )
return inputs_dict
def __lowerCAmelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
_a = XLMModelTester(self )
_a = ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 )
def __lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> Optional[int]:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] ) -> int:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str=False , lowerCAmelCase_ : str=1 ) -> int:
"""simple docstring"""
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertListEqual(
[isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) )
self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(lowerCAmelCase_ ):
# adds PAD dummy token
_a = min_length + idx + 1
_a = min_length + idx + 1
_a = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) )
def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int=False , lowerCAmelCase_ : List[str]=1 ) -> Optional[Any]:
"""simple docstring"""
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertListEqual(
[isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , )
self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ):
# adds PAD dummy token
_a = min_length + idx + 1
_a = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , )
pass
@slow
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a = XLMModel.from_pretrained(lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self : int ) -> Optional[int]:
"""simple docstring"""
_a = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' )
model.to(lowerCAmelCase_ )
_a = torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president
_a = [
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
_a = model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
| 22 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_snake_case : Dict = logging.get_logger(__name__)
class A ( _a ):
lowercase_ = ['pixel_values']
def __init__( self : List[Any] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : int , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase_ )
_a = size if size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ )
_a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_resize
_a = do_rescale
_a = do_normalize
_a = do_center_crop
_a = crop_size
_a = size
_a = resample
_a = rescale_factor
_a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_a = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "shortest_edge" in size:
_a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
_a = (size['''height'''], size['''width'''])
else:
raise ValueError(F'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' )
return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Dict , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : List[str] , ) -> BatchFeature:
"""simple docstring"""
_a = do_resize if do_resize is not None else self.do_resize
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' , default_to_square=lowerCAmelCase_ )
_a = resample if resample is not None else self.resample
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = size if size is not None else self.size
_a = get_size_dict(lowerCAmelCase_ )
if not is_batched(lowerCAmelCase_ ):
_a = [images]
if not valid_images(lowerCAmelCase_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
_a = [to_numpy_array(lowerCAmelCase_ ) for image in images]
if do_resize:
_a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images]
if do_rescale:
_a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images]
if do_normalize:
_a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images]
_a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class A :
def __init__( self : List[str] , lowerCAmelCase_ : Any , ) -> Tuple:
"""simple docstring"""
_a = parent
_a = 13
_a = 7
_a = True
_a = True
_a = False
_a = True
_a = 99
_a = 32
_a = 2
_a = 4
_a = 37
_a = '''gelu'''
_a = 0.1
_a = 0.1
_a = 5_12
_a = 16
_a = 2
_a = 0.0_2
_a = 3
_a = 4
_a = None
def __lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = None
if self.use_input_mask:
_a = random_attention_mask([self.batch_size, self.seq_length] )
_a = None
_a = None
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_a = ids_tensor([self.batch_size] , self.num_choices )
_a = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ) -> List[Any]:
"""simple docstring"""
_a = TFDistilBertModel(config=lowerCAmelCase_ )
_a = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
_a = model(lowerCAmelCase_ )
_a = [input_ids, input_mask]
_a = model(lowerCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
_a = TFDistilBertForMaskedLM(config=lowerCAmelCase_ )
_a = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
_a = model(lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str ) -> List[Any]:
"""simple docstring"""
_a = TFDistilBertForQuestionAnswering(config=lowerCAmelCase_ )
_a = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
}
_a = model(lowerCAmelCase_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
_a = self.num_labels
_a = TFDistilBertForSequenceClassification(lowerCAmelCase_ )
_a = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
_a = model(lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> Dict:
"""simple docstring"""
_a = self.num_choices
_a = TFDistilBertForMultipleChoice(lowerCAmelCase_ )
_a = tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) )
_a = tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) )
_a = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
}
_a = model(lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
_a = self.num_labels
_a = TFDistilBertForTokenClassification(lowerCAmelCase_ )
_a = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
_a = model(lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
_a = self.prepare_config_and_inputs()
((_a) , (_a) , (_a) , (_a) , (_a) , (_a)) = config_and_inputs
_a = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class A ( _a ,_a ,unittest.TestCase ):
lowercase_ = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
lowercase_ = (
{
'feature-extraction': TFDistilBertModel,
'fill-mask': TFDistilBertForMaskedLM,
'question-answering': TFDistilBertForQuestionAnswering,
'text-classification': TFDistilBertForSequenceClassification,
'token-classification': TFDistilBertForTokenClassification,
'zero-shot': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowercase_ = False
lowercase_ = False
def __lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
_a = TFDistilBertModelTester(self )
_a = ConfigTester(self , config_class=lowerCAmelCase_ , dim=37 )
def __lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> str:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase_ )
@slow
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
_a = TFDistilBertModel.from_pretrained(lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
@require_tf
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self : int ) -> Optional[int]:
"""simple docstring"""
_a = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' )
_a = tf.constant([[0, 1, 2, 3, 4, 5]] )
_a = model(lowerCAmelCase_ )[0]
_a = [1, 6, 7_68]
self.assertEqual(output.shape , lowerCAmelCase_ )
_a = tf.constant(
[
[
[0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9],
[0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4],
[0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 )
| 22 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_snake_case : str = {
'configuration_layoutlmv3': [
'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LayoutLMv3Config',
'LayoutLMv3OnnxConfig',
],
'processing_layoutlmv3': ['LayoutLMv3Processor'],
'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[str] = ['LayoutLMv3TokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Optional[int] = [
'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv3ForQuestionAnswering',
'LayoutLMv3ForSequenceClassification',
'LayoutLMv3ForTokenClassification',
'LayoutLMv3Model',
'LayoutLMv3PreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Tuple = [
'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLayoutLMv3ForQuestionAnswering',
'TFLayoutLMv3ForSequenceClassification',
'TFLayoutLMv3ForTokenClassification',
'TFLayoutLMv3Model',
'TFLayoutLMv3PreTrainedModel',
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[Any] = ['LayoutLMv3FeatureExtractor']
_snake_case : Tuple = ['LayoutLMv3ImageProcessor']
if TYPE_CHECKING:
from .configuration_layoutlmva import (
LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP,
LayoutLMvaConfig,
LayoutLMvaOnnxConfig,
)
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_layoutlmva import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
TFLayoutLMvaPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
else:
import sys
_snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 22 | 1 |
'''simple docstring'''
import requests
def snake_case_ (UpperCamelCase : str , UpperCamelCase : str ):
'''simple docstring'''
_a = {'''Content-Type''': '''application/json'''}
_a = requests.post(UpperCamelCase , json={'''text''': message_body} , headers=UpperCamelCase )
if response.status_code != 200:
_a = (
'''Request to slack returned an error '''
f'{response.status_code}, the response is:\n{response.text}'
)
raise ValueError(UpperCamelCase )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
| 22 |
'''simple docstring'''
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class A ( _a ):
lowercase_ = (DDPMParallelScheduler,)
def __lowerCAmelCase ( self : Optional[Any] , **lowerCAmelCase_ : Optional[int] ) -> List[Any]:
"""simple docstring"""
_a = {
'''num_train_timesteps''': 10_00,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**lowerCAmelCase_ )
return config
def __lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCAmelCase_ )
def __lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
self.check_over_configs(thresholding=lowerCAmelCase_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , )
def __lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : str ) -> List[str]:
"""simple docstring"""
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=lowerCAmelCase_ )
def __lowerCAmelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.0_2 ) ) < 1e-5
def __lowerCAmelCase ( self : Dict ) -> str:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = len(lowerCAmelCase_ )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = self.dummy_sample_deter + 0.1
_a = self.dummy_sample_deter - 0.1
_a = samplea.shape[0]
_a = torch.stack([samplea, samplea, samplea] , dim=0 )
_a = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ )
_a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
_a = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) )
_a = torch.sum(torch.abs(lowerCAmelCase_ ) )
_a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2
assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3
def __lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = len(lowerCAmelCase_ )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = torch.manual_seed(0 )
for t in reversed(range(lowerCAmelCase_ ) ):
# 1. predict noise residual
_a = model(lowerCAmelCase_ , lowerCAmelCase_ )
# 2. predict previous mean of sample x_t-1
_a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(lowerCAmelCase_ ) )
_a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config(prediction_type='''v_prediction''' )
_a = scheduler_class(**lowerCAmelCase_ )
_a = len(lowerCAmelCase_ )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = torch.manual_seed(0 )
for t in reversed(range(lowerCAmelCase_ ) ):
# 1. predict noise residual
_a = model(lowerCAmelCase_ , lowerCAmelCase_ )
# 2. predict previous mean of sample x_t-1
_a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(lowerCAmelCase_ ) )
_a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def __lowerCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
_a = scheduler.timesteps
for i, timestep in enumerate(lowerCAmelCase_ ):
if i == len(lowerCAmelCase_ ) - 1:
_a = -1
else:
_a = timesteps[i + 1]
_a = scheduler.previous_timestep(lowerCAmelCase_ )
_a = prev_t.item()
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [1_00, 87, 50, 51, 0]
with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [1_00, 87, 50, 1, 0]
_a = len(lowerCAmelCase_ )
with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [scheduler.config.num_train_timesteps]
with self.assertRaises(
lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
_snake_case : int = '0.21.0'
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 22 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def snake_case_ (UpperCamelCase : dict ):
'''simple docstring'''
return (data["data"], data["target"])
def snake_case_ (UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray ):
'''simple docstring'''
_a = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(UpperCamelCase , UpperCamelCase )
# Predict target for test data
_a = xgb.predict(UpperCamelCase )
_a = predictions.reshape(len(UpperCamelCase ) , 1 )
return predictions
def snake_case_ ():
'''simple docstring'''
_a = fetch_california_housing()
_a , _a = data_handling(UpperCamelCase )
_a , _a , _a , _a = train_test_split(
UpperCamelCase , UpperCamelCase , test_size=0.25 , random_state=1 )
_a = xgboost(UpperCamelCase , UpperCamelCase , UpperCamelCase )
# Error printing
print(f'Mean Absolute Error : {mean_absolute_error(UpperCamelCase , UpperCamelCase )}' )
print(f'Mean Square Error : {mean_squared_error(UpperCamelCase , UpperCamelCase )}' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 22 | 1 |
'''simple docstring'''
class A :
def __init__( self : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ) -> Dict:
"""simple docstring"""
_a = name
_a = value
_a = weight
def __repr__( self : Dict ) -> int:
"""simple docstring"""
return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})'
def __lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
return self.value
def __lowerCAmelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
return self.name
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.weight
def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
return self.value / self.weight
def snake_case_ (UpperCamelCase : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] ):
'''simple docstring'''
_a = []
for i in range(len(UpperCamelCase ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : List[Any] ):
'''simple docstring'''
_a = sorted(UpperCamelCase , key=UpperCamelCase , reverse=UpperCamelCase )
_a = []
_a , _a = 0.0, 0.0
for i in range(len(UpperCamelCase ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def snake_case_ ():
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 |
'''simple docstring'''
import qiskit
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
_a = qiskit.Aer.get_backend('''aer_simulator''' )
_a = qiskit.QuantumCircuit(4 , 2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 , 2 )
qc_ha.cx(1 , 2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 , 1 , 3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 , 0 ) # extract XOR value
qc_ha.measure(3 , 1 ) # extract AND value
# Execute the circuit on the qasm simulator
_a = qiskit.execute(UpperCamelCase , UpperCamelCase , shots=1000 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(UpperCamelCase )
if __name__ == "__main__":
_snake_case : Tuple = half_adder(1, 1)
print(F'''Half Adder Output Qubit Counts: {counts}''')
| 22 | 1 |
'''simple docstring'''
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
if not isinstance(UpperCamelCase , UpperCamelCase ):
_a = f'Input value of [number={number}] must be an integer'
raise TypeError(UpperCamelCase )
if number < 0:
return False
_a = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
if len(UpperCamelCase ) != 32:
raise ValueError('''Input must be of length 32''' )
_a = B''''''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
_a = format(UpperCamelCase , '''08x''' )[-8:]
_a = B''''''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' )
return little_endian_hex
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
_a = B''''''
for char in message:
bit_string += format(UpperCamelCase , '''08b''' ).encode('''utf-8''' )
_a = format(len(UpperCamelCase ) , '''064b''' ).encode('''utf-8''' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(UpperCamelCase ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
if len(UpperCamelCase ) % 512 != 0:
raise ValueError('''Input must have length that\'s a multiple of 512''' )
for pos in range(0 , len(UpperCamelCase ) , 512 ):
_a = bit_string[pos : pos + 512]
_a = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
_a = format(UpperCamelCase , '''032b''' )
_a = ''''''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(UpperCamelCase , 2 )
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
return (a + b) % 2**32
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
if shift < 0:
raise ValueError('''Shift must be non-negative''' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
_a = preprocess(UpperCamelCase )
_a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
_a = 0X67452301
_a = 0Xefcdab89
_a = 0X98badcfe
_a = 0X10325476
_a = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(UpperCamelCase ):
_a = aa
_a = ba
_a = ca
_a = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
_a = d ^ (b & (c ^ d))
_a = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
_a = c ^ (d & (b ^ c))
_a = (5 * i + 1) % 16
elif i <= 47:
_a = b ^ c ^ d
_a = (3 * i + 5) % 16
else:
_a = c ^ (b | not_aa(UpperCamelCase ))
_a = (7 * i) % 16
_a = (f + a + added_consts[i] + block_words[g]) % 2**32
_a = d
_a = c
_a = b
_a = sum_aa(UpperCamelCase , left_rotate_aa(UpperCamelCase , shift_amounts[i] ) )
# Add hashed chunk to running total
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
if num <= 0:
_a = f'{num}: Invalid input, please enter a positive integer.'
raise ValueError(UpperCamelCase )
_a = [True] * (num + 1)
_a = []
_a = 2
_a = int(math.sqrt(UpperCamelCase ) )
while start <= end:
# If start is a prime
if sieve[start] is True:
prime.append(UpperCamelCase )
# Set multiples of start be False
for i in range(start * start , num + 1 , UpperCamelCase ):
if sieve[i] is True:
_a = False
start += 1
for j in range(end + 1 , num + 1 ):
if sieve[j] is True:
prime.append(UpperCamelCase )
return prime
if __name__ == "__main__":
print(prime_sieve(int(input('Enter a positive integer: ').strip())))
| 22 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class A ( unittest.TestCase ):
def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]=7 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=18 , lowerCAmelCase_ : Any=30 , lowerCAmelCase_ : Optional[int]=4_00 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=True , ) -> Optional[Any]:
"""simple docstring"""
_a = size if size is not None else {'''height''': 18, '''width''': 18}
_a = parent
_a = batch_size
_a = num_channels
_a = image_size
_a = min_resolution
_a = max_resolution
_a = do_resize
_a = size
_a = do_normalize
def __lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4],
[-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class A ( _a ,unittest.TestCase ):
lowercase_ = ImageGPTImageProcessor if is_vision_available() else None
def __lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_a = ImageGPTImageProcessingTester(self )
@property
def __lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def __lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase_ , '''clusters''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''size''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''do_normalize''' ) )
def __lowerCAmelCase ( self : List[Any] ) -> List[str]:
"""simple docstring"""
_a = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} )
_a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
def __lowerCAmelCase ( self : str ) -> str:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
_a = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a = os.path.join(lowerCAmelCase_ , '''image_processor.json''' )
image_processor_first.to_json_file(lowerCAmelCase_ )
_a = self.image_processing_class.from_json_file(lowerCAmelCase_ ).to_dict()
_a = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowerCAmelCase_ )
_a = self.image_processing_class.from_pretrained(lowerCAmelCase_ ).to_dict()
_a = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowerCAmelCase_ )
@unittest.skip('''ImageGPT requires clusters at initialization''' )
def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
pass
def snake_case_ ():
'''simple docstring'''
_a = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' )
_a = Image.open(dataset[4]['''file'''] )
_a = Image.open(dataset[5]['''file'''] )
_a = [imagea, imagea]
return images
@require_vision
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_a = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' )
_a = prepare_images()
# test non-batched
_a = image_processing(images[0] , return_tensors='''pt''' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 10_24) )
_a = [3_06, 1_91, 1_91]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCAmelCase_ )
# test batched
_a = image_processing(lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 10_24) )
_a = [3_03, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
import inspect
import unittest
from typing import List
import numpy as np
from transformers import EfficientFormerConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
)
from transformers.models.efficientformer.modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import EfficientFormerImageProcessor
class A :
def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 13 , lowerCAmelCase_ : int = 64 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : int = 1_28 , lowerCAmelCase_ : Any=[16, 32, 64, 1_28] , lowerCAmelCase_ : int = 7 , lowerCAmelCase_ : int = 4 , lowerCAmelCase_ : int = 37 , lowerCAmelCase_ : str = "gelu" , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : int = 10 , lowerCAmelCase_ : float = 0.0_2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : int = 1_28 , lowerCAmelCase_ : List[int] = [2, 2, 2, 2] , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , ) -> Optional[Any]:
"""simple docstring"""
_a = parent
_a = batch_size
_a = image_size
_a = patch_size
_a = num_channels
_a = is_training
_a = use_labels
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = type_sequence_label_size
_a = initializer_range
_a = encoder_stride
_a = num_attention_outputs
_a = embed_dim
_a = embed_dim + 1
_a = resolution
_a = depths
_a = hidden_sizes
_a = dim
_a = mlp_expansion_ratio
def __lowerCAmelCase ( self : str ) -> List[Any]:
"""simple docstring"""
_a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return EfficientFormerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ) -> List[str]:
"""simple docstring"""
_a = TFEfficientFormerModel(config=lowerCAmelCase_ )
_a = model(lowerCAmelCase_ , training=lowerCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ) -> Tuple:
"""simple docstring"""
_a = self.type_sequence_label_size
_a = TFEfficientFormerForImageClassification(lowerCAmelCase_ )
_a = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_a = 1
_a = TFEfficientFormerForImageClassification(lowerCAmelCase_ )
_a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_a = model(lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __lowerCAmelCase ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
_a = self.prepare_config_and_inputs()
_a , _a , _a = config_and_inputs
_a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class A ( _a ,_a ,unittest.TestCase ):
lowercase_ = (
(
TFEfficientFormerModel,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerForImageClassification,
)
if is_tf_available()
else ()
)
lowercase_ = (
{
'feature-extraction': TFEfficientFormerModel,
'image-classification': (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
),
}
if is_tf_available()
else {}
)
lowercase_ = False
lowercase_ = False
lowercase_ = False
lowercase_ = False
lowercase_ = False
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
_a = TFEfficientFormerModelTester(self )
_a = ConfigTester(
self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 )
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''EfficientFormer does not use inputs_embeds''' )
def __lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason='''EfficientFormer does not support input and output embeddings''' )
def __lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : int ) -> Optional[int]:
"""simple docstring"""
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a = model_class(lowerCAmelCase_ )
_a = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_a = [*signature.parameters.keys()]
_a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> List[str]:
"""simple docstring"""
def check_hidden_states_output(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] ):
_a = model_class(lowerCAmelCase_ )
_a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ )
_a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_a = getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ )
if hasattr(self.model_tester , '''encoder_seq_length''' ):
_a = self.model_tester.encoder_seq_length
if hasattr(self.model_tester , '''chunk_length''' ) and self.model_tester.chunk_length > 1:
_a = seq_length * self.model_tester.chunk_length
else:
_a = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
if config.is_encoder_decoder:
_a = outputs.decoder_hidden_states
self.asseretIsInstance(lowerCAmelCase_ , (list, tuple) )
self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ )
_a = getattr(self.model_tester , '''seq_length''' , lowerCAmelCase_ )
_a = getattr(self.model_tester , '''decoder_seq_length''' , lowerCAmelCase_ )
self.assertListEqual(
list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , )
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a = True
check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_a = True
check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False ) -> Dict:
"""simple docstring"""
_a = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
if return_labels:
if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def __lowerCAmelCase ( self : Optional[int] ) -> int:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase_ )
@unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''' )
def __lowerCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ )
@slow
def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a = TFEfficientFormerModel.from_pretrained(lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> List[str]:
"""simple docstring"""
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
_a = True
_a = getattr(self.model_tester , '''seq_length''' , lowerCAmelCase_ )
_a = getattr(self.model_tester , '''encoder_seq_length''' , lowerCAmelCase_ )
_a = getattr(self.model_tester , '''key_length''' , lowerCAmelCase_ )
_a = getattr(self.model_tester , '''chunk_length''' , lowerCAmelCase_ )
if chunk_length is not None and hasattr(self.model_tester , '''num_hashes''' ):
_a = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
_a = True
_a = False
_a = True
_a = model_class(lowerCAmelCase_ )
_a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ )
_a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
_a = True
_a = model_class(lowerCAmelCase_ )
_a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ )
_a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs )
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , )
else:
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , )
def __lowerCAmelCase ( self : int ) -> Optional[int]:
"""simple docstring"""
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Prepare our model
_a = model_class(lowerCAmelCase_ )
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
_a = {
key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase_ )
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
_a = model(lowerCAmelCase_ )
self.assertTrue(outputs_dict is not None )
def snake_case_ ():
'''simple docstring'''
_a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class A ( unittest.TestCase ):
@cached_property
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
return (
EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''' )
if is_vision_available()
else None
)
@slow
def __lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_a = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''' )
_a = self.default_image_processor
_a = prepare_img()
_a = image_processor(images=lowerCAmelCase_ , return_tensors='''tf''' )
# forward pass
_a = model(**lowerCAmelCase_ , training=lowerCAmelCase_ )
# verify the logits
_a = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase_ )
_a = tf.constant([-0.0_5_5_5, 0.4_8_2_5, -0.0_8_5_2] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
@slow
def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
_a = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained(
'''snap-research/efficientformer-l1-300''' )
_a = self.default_image_processor
_a = prepare_img()
_a = image_processor(images=lowerCAmelCase_ , return_tensors='''tf''' )
# forward pass
_a = model(**lowerCAmelCase_ , training=lowerCAmelCase_ )
# verify the logits
_a = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase_ )
_a = tf.constant([-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
| 22 |
'''simple docstring'''
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
_a = AutoTokenizer.from_pretrained('''google/mt5-small''' )
_a = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
_a = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
_a = shift_tokens_right(lowerCAmelCase_ , model.config.pad_token_id , model.config.decoder_start_token_id )
_a = model(lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_ ).logits
_a = optax.softmax_cross_entropy(lowerCAmelCase_ , onehot(lowerCAmelCase_ , logits.shape[-1] ) ).mean()
_a = -(labels.shape[-1] * loss.item())
_a = -8_4.9_1_2_7
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 22 | 1 |
'''simple docstring'''
def snake_case_ (UpperCamelCase : int = 200_0000 ):
'''simple docstring'''
_a = [0 for i in range(n + 1 )]
_a = 1
_a = 1
for i in range(2 , int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i , n + 1 , UpperCamelCase ):
_a = 1
_a = 0
for i in range(UpperCamelCase ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(F'''{solution() = }''')
| 22 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
_snake_case : Optional[Any] = 8
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Dict=BITS ):
'''simple docstring'''
_a = x.device
_a = (x * 255).int().clamp(0 , 255 )
_a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase )
_a = rearrange(UpperCamelCase , '''d -> d 1 1''' )
_a = rearrange(UpperCamelCase , '''b c h w -> b c 1 h w''' )
_a = ((x & mask) != 0).float()
_a = rearrange(UpperCamelCase , '''b c d h w -> b (c d) h w''' )
_a = bits * 2 - 1
return bits
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Any=BITS ):
'''simple docstring'''
_a = x.device
_a = (x > 0).int()
_a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase , dtype=torch.intaa )
_a = rearrange(UpperCamelCase , '''d -> d 1 1''' )
_a = rearrange(UpperCamelCase , '''b (c d) h w -> b c d h w''' , d=8 )
_a = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' )
return (dec / 255).clamp(0.0 , 1.0 )
def snake_case_ (self : Union[str, Any] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : float = 0.0 , UpperCamelCase : bool = True , UpperCamelCase : Any=None , UpperCamelCase : bool = True , ):
'''simple docstring'''
if self.num_inference_steps is None:
raise ValueError(
'''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
_a = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
_a = self.alphas_cumprod[timestep]
_a = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
_a = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
_a = self.bit_scale
if self.config.clip_sample:
_a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
_a = self._get_variance(UpperCamelCase , UpperCamelCase )
_a = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
_a = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
_a = model_output.device if torch.is_tensor(UpperCamelCase ) else '''cpu'''
_a = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase ).to(UpperCamelCase )
_a = self._get_variance(UpperCamelCase , UpperCamelCase ) ** 0.5 * eta * noise
_a = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase )
def snake_case_ (self : Any , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : str="epsilon" , UpperCamelCase : Dict=None , UpperCamelCase : bool = True , ):
'''simple docstring'''
_a = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
_a , _a = torch.split(UpperCamelCase , sample.shape[1] , dim=1 )
else:
_a = None
# 1. compute alphas, betas
_a = self.alphas_cumprod[t]
_a = self.alphas_cumprod[t - 1] if t > 0 else self.one
_a = 1 - alpha_prod_t
_a = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
_a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
_a = model_output
else:
raise ValueError(f'Unsupported prediction_type {prediction_type}.' )
# 3. Clip "predicted x_0"
_a = self.bit_scale
if self.config.clip_sample:
_a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_a = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
_a = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_a = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_a = 0
if t > 0:
_a = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase ).to(model_output.device )
_a = (self._get_variance(UpperCamelCase , predicted_variance=UpperCamelCase ) ** 0.5) * noise
_a = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase )
class A ( _a ):
def __init__( self : Any , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , lowerCAmelCase_ : Optional[float] = 1.0 , ) -> int:
"""simple docstring"""
super().__init__()
_a = bit_scale
_a = (
ddim_bit_scheduler_step if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ )
@torch.no_grad()
def __call__( self : List[Any] , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 50 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Any , ) -> Union[Tuple, ImagePipelineOutput]:
"""simple docstring"""
_a = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=lowerCAmelCase_ , )
_a = decimal_to_bits(lowerCAmelCase_ ) * self.bit_scale
_a = latents.to(self.device )
self.scheduler.set_timesteps(lowerCAmelCase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
_a = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample
# compute the previous noisy sample x_t -> x_t-1
_a = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample
_a = bits_to_decimal(lowerCAmelCase_ )
if output_type == "pil":
_a = self.numpy_to_pil(lowerCAmelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
_snake_case : Dict = logging.get_logger(__name__)
_snake_case : int = {
'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json',
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class A ( _a ):
lowercase_ = 'dpt'
def __init__( self : List[Any] , lowerCAmelCase_ : int=7_68 , lowerCAmelCase_ : str=12 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : List[Any]=30_72 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : List[str]=0.0_2 , lowerCAmelCase_ : Any=1e-12 , lowerCAmelCase_ : List[Any]=3_84 , lowerCAmelCase_ : Optional[Any]=16 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Dict=[2, 5, 8, 11] , lowerCAmelCase_ : Optional[Any]="project" , lowerCAmelCase_ : int=[4, 2, 1, 0.5] , lowerCAmelCase_ : Optional[Any]=[96, 1_92, 3_84, 7_68] , lowerCAmelCase_ : List[Any]=2_56 , lowerCAmelCase_ : Optional[int]=-1 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Any=0.4 , lowerCAmelCase_ : List[str]=2_55 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Tuple=[1, 10_24, 24, 24] , lowerCAmelCase_ : Optional[int]=[0, 1] , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : Dict , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase_ )
_a = hidden_size
_a = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info('''Initializing the config with a `BiT` backbone.''' )
_a = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
}
_a = BitConfig(**lowerCAmelCase_ )
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
logger.info('''Initializing the config with a `BiT` backbone.''' )
_a = BitConfig(**lowerCAmelCase_ )
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
_a = backbone_config
else:
raise ValueError(
F'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' )
_a = backbone_featmap_shape
_a = neck_ignore_stages
if readout_type != "project":
raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' )
else:
_a = None
_a = None
_a = []
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = initializer_range
_a = layer_norm_eps
_a = image_size
_a = patch_size
_a = num_channels
_a = qkv_bias
_a = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' )
_a = readout_type
_a = reassemble_factors
_a = neck_hidden_sizes
_a = fusion_hidden_size
_a = head_in_index
_a = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
_a = use_auxiliary_head
_a = auxiliary_loss_weight
_a = semantic_loss_ignore_index
_a = semantic_classifier_dropout
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
"""simple docstring"""
_a = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
_a = self.backbone_config.to_dict()
_a = self.__class__.model_type
return output
| 22 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case : Optional[int] = logging.get_logger(__name__)
_snake_case : Any = {
'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json',
'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json',
'junnyu/roformer_chinese_char_small': (
'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json'
),
'junnyu/roformer_chinese_char_base': (
'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json'
),
'junnyu/roformer_small_discriminator': (
'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json'
),
'junnyu/roformer_small_generator': (
'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json'
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class A ( _a ):
lowercase_ = 'roformer'
def __init__( self : str , lowerCAmelCase_ : int=5_00_00 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int=7_68 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : List[str]=30_72 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : int=15_36 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : Dict=1e-12 , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Tuple=True , **lowerCAmelCase_ : Optional[int] , ) -> str:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
_a = vocab_size
_a = hidden_size if embedding_size is None else embedding_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = hidden_act
_a = intermediate_size
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = initializer_range
_a = layer_norm_eps
_a = rotary_value
_a = use_cache
class A ( _a ):
@property
def __lowerCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
_a = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 22 | 1 |
'''simple docstring'''
from typing import Dict
import numpy as np
import torch
from . import residue_constants as rc
from .tensor_utils import tensor_tree_map, tree_map
def snake_case_ (UpperCamelCase : Dict[str, torch.Tensor] ):
'''simple docstring'''
_a = []
_a = []
_a = []
for rt in rc.restypes:
_a = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]]
restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] )
_a = {name: i for i, name in enumerate(UpperCamelCase )}
restype_atomaa_to_atomaa_list.append(
[(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] )
restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] )
# Add dummy mapping for restype 'UNK'
restype_atomaa_to_atomaa_list.append([0] * 14 )
restype_atomaa_to_atomaa_list.append([0] * 37 )
restype_atomaa_mask_list.append([0.0] * 14 )
_a = torch.tensor(
UpperCamelCase , dtype=torch.intaa , device=protein['''aatype'''].device , )
_a = torch.tensor(
UpperCamelCase , dtype=torch.intaa , device=protein['''aatype'''].device , )
_a = torch.tensor(
UpperCamelCase , dtype=torch.floataa , device=protein['''aatype'''].device , )
_a = protein['''aatype'''].to(torch.long )
# create the mapping for (residx, atom14) --> atom37, i.e. an array
# with shape (num_res, 14) containing the atom37 indices for this protein
_a = restype_atomaa_to_atomaa[protein_aatype]
_a = restype_atomaa_mask[protein_aatype]
_a = residx_atomaa_mask
_a = residx_atomaa_to_atomaa.long()
# create the gather indices for mapping back
_a = restype_atomaa_to_atomaa[protein_aatype]
_a = residx_atomaa_to_atomaa.long()
# create the corresponding mask
_a = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device )
for restype, restype_letter in enumerate(rc.restypes ):
_a = rc.restype_atoa[restype_letter]
_a = rc.residue_atoms[restype_name]
for atom_name in atom_names:
_a = rc.atom_order[atom_name]
_a = 1
_a = restype_atomaa_mask[protein_aatype]
_a = residx_atomaa_mask
return protein
def snake_case_ (UpperCamelCase : Dict[str, torch.Tensor] ):
'''simple docstring'''
_a = tree_map(lambda UpperCamelCase : torch.tensor(UpperCamelCase , device=batch['''aatype'''].device ) , UpperCamelCase , np.ndarray )
_a = tensor_tree_map(lambda UpperCamelCase : np.array(UpperCamelCase ) , make_atomaa_masks(UpperCamelCase ) )
return out
| 22 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class A :
lowercase_ = 42
lowercase_ = 42
class A :
def __init__( self : Optional[Any] , lowerCAmelCase_ : int ) -> str:
"""simple docstring"""
_a = [[] for _ in range(lowerCAmelCase_ )]
_a = size
def __getitem__( self : Any , lowerCAmelCase_ : int ) -> Iterator[Edge]:
"""simple docstring"""
return iter(self._graph[vertex] )
@property
def __lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
return self._size
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Dict:
"""simple docstring"""
if weight not in (0, 1):
raise ValueError('''Edge weight must be either 0 or 1.''' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('''Vertex indexes must be in [0; size).''' )
self._graph[from_vertex].append(Edge(lowerCAmelCase_ , lowerCAmelCase_ ) )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> int | None:
"""simple docstring"""
_a = deque([start_vertex] )
_a = [None] * self.size
_a = 0
while queue:
_a = queue.popleft()
_a = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
_a = current_distance + edge.weight
_a = distances[edge.destination_vertex]
if (
isinstance(lowerCAmelCase_ , lowerCAmelCase_ )
and new_distance >= dest_vertex_distance
):
continue
_a = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('''No path from start_vertex to finish_vertex.''' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case : Optional[int] = logging.get_logger(__name__)
_snake_case : Any = {
'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json',
'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json',
'junnyu/roformer_chinese_char_small': (
'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json'
),
'junnyu/roformer_chinese_char_base': (
'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json'
),
'junnyu/roformer_small_discriminator': (
'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json'
),
'junnyu/roformer_small_generator': (
'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json'
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class A ( _a ):
lowercase_ = 'roformer'
def __init__( self : str , lowerCAmelCase_ : int=5_00_00 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int=7_68 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : List[str]=30_72 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : int=15_36 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : Dict=1e-12 , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Tuple=True , **lowerCAmelCase_ : Optional[int] , ) -> str:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
_a = vocab_size
_a = hidden_size if embedding_size is None else embedding_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = hidden_act
_a = intermediate_size
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = initializer_range
_a = layer_norm_eps
_a = rotary_value
_a = use_cache
class A ( _a ):
@property
def __lowerCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
_a = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 22 |
'''simple docstring'''
from math import pi, sqrt
def snake_case_ (UpperCamelCase : float ):
'''simple docstring'''
if num <= 0:
raise ValueError('''math domain error''' )
if num > 171.5:
raise OverflowError('''math range error''' )
elif num - int(UpperCamelCase ) not in (0, 0.5):
raise NotImplementedError('''num must be an integer or a half-integer''' )
elif num == 0.5:
return sqrt(UpperCamelCase )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def snake_case_ ():
'''simple docstring'''
assert gamma(0.5 ) == sqrt(UpperCamelCase )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
_snake_case : Optional[Any] = 1.0
while num:
_snake_case : Dict = float(input('Gamma of: '))
print(F'''gamma({num}) = {gamma(num)}''')
print('\nEnter 0 to exit...')
| 22 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
_snake_case : str = {
'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'],
'processing_speech_to_text': ['Speech2TextProcessor'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Any = ['Speech2TextTokenizer']
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[str] = ['Speech2TextFeatureExtractor']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Optional[Any] = [
'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFSpeech2TextForConditionalGeneration',
'TFSpeech2TextModel',
'TFSpeech2TextPreTrainedModel',
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[Any] = [
'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Speech2TextForConditionalGeneration',
'Speech2TextModel',
'Speech2TextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
_snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 22 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : List[Any] ) -> int:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_euler''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_euler''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1
def __lowerCAmelCase ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_dpmpp_2m''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe(
[prompt] , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=lowerCAmelCase_ , )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array(
[0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 22 | 1 |
'''simple docstring'''
from math import pi, sqrt
def snake_case_ (UpperCamelCase : float ):
'''simple docstring'''
if num <= 0:
raise ValueError('''math domain error''' )
if num > 171.5:
raise OverflowError('''math range error''' )
elif num - int(UpperCamelCase ) not in (0, 0.5):
raise NotImplementedError('''num must be an integer or a half-integer''' )
elif num == 0.5:
return sqrt(UpperCamelCase )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def snake_case_ ():
'''simple docstring'''
assert gamma(0.5 ) == sqrt(UpperCamelCase )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
_snake_case : Optional[Any] = 1.0
while num:
_snake_case : Dict = float(input('Gamma of: '))
print(F'''gamma({num}) = {gamma(num)}''')
print('\nEnter 0 to exit...')
| 22 |
'''simple docstring'''
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
_snake_case : Any = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
_snake_case : Any = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n'
_snake_case : List[Any] = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n'
def snake_case_ (UpperCamelCase : Tuple ):
'''simple docstring'''
def remove_articles(UpperCamelCase : Optional[int] ):
_a = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE )
return re.sub(UpperCamelCase , ''' ''' , UpperCamelCase )
def white_space_fix(UpperCamelCase : Union[str, Any] ):
return " ".join(text.split() )
def remove_punc(UpperCamelCase : str ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(UpperCamelCase : Tuple ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase ) ) ) )
def snake_case_ (UpperCamelCase : int , UpperCamelCase : Dict ):
'''simple docstring'''
return int(normalize_answer(UpperCamelCase ) == normalize_answer(UpperCamelCase ) )
def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : List[str] ):
'''simple docstring'''
_a = [any(compute_exact(UpperCamelCase , UpperCamelCase ) for ref in refs ) for pred, refs in zip(UpperCamelCase , UpperCamelCase )]
return (sum(UpperCamelCase ) / len(UpperCamelCase )) * 100
def snake_case_ (UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
_a = [rgram for rgrams in rgramslist for rgram in rgrams]
_a = Counter(UpperCamelCase )
_a = Counter(UpperCamelCase )
_a = Counter()
for sgram, scount in sgramcounter.items():
_a = scount * numref
_a = Counter(UpperCamelCase )
_a = Counter()
for cgram, ccount in cgramcounter.items():
_a = ccount * numref
# KEEP
_a = sgramcounter_rep & cgramcounter_rep
_a = keepgramcounter_rep & rgramcounter
_a = sgramcounter_rep & rgramcounter
_a = 0
_a = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(UpperCamelCase ) > 0:
_a = keeptmpscorea / len(UpperCamelCase )
if len(UpperCamelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_a = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_a = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_a = sgramcounter_rep - cgramcounter_rep
_a = delgramcounter_rep - rgramcounter
_a = sgramcounter_rep - rgramcounter
_a = 0
_a = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
if len(UpperCamelCase ) > 0:
_a = deltmpscorea / len(UpperCamelCase )
# ADDITION
_a = set(UpperCamelCase ) - set(UpperCamelCase )
_a = set(UpperCamelCase ) & set(UpperCamelCase )
_a = set(UpperCamelCase ) - set(UpperCamelCase )
_a = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(UpperCamelCase ) > 0:
_a = addtmpscore / len(UpperCamelCase )
if len(UpperCamelCase ) > 0:
_a = addtmpscore / len(UpperCamelCase )
_a = 0
if addscore_precision > 0 or addscore_recall > 0:
_a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ):
'''simple docstring'''
_a = len(UpperCamelCase )
_a = ssent.split(''' ''' )
_a = csent.split(''' ''' )
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
for rsent in rsents:
_a = rsent.split(''' ''' )
_a = []
_a = []
_a = []
ragramslist.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
_a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_a = sum([delascore, delascore, delascore, delascore] ) / 4
_a = sum([addascore, addascore, addascore, addascore] ) / 4
_a = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def snake_case_ (UpperCamelCase : str , UpperCamelCase : bool = True , UpperCamelCase : str = "13a" , UpperCamelCase : bool = True ):
'''simple docstring'''
if lowercase:
_a = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_a = sacrebleu.metrics.bleu._get_tokenizer(UpperCamelCase )()(UpperCamelCase )
else:
_a = sacrebleu.TOKENIZERS[tokenizer]()(UpperCamelCase )
elif tokenizer == "moses":
_a = sacremoses.MosesTokenizer().tokenize(UpperCamelCase , return_str=UpperCamelCase , escape=UpperCamelCase )
elif tokenizer == "penn":
_a = sacremoses.MosesTokenizer().penn_tokenize(UpperCamelCase , return_str=UpperCamelCase )
else:
_a = sentence
if not return_str:
_a = normalized_sent.split()
return normalized_sent
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Dict ):
'''simple docstring'''
if not (len(UpperCamelCase ) == len(UpperCamelCase ) == len(UpperCamelCase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_a = 0
for src, pred, refs in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ):
sari_score += SARIsent(normalize(UpperCamelCase ) , normalize(UpperCamelCase ) , [normalize(UpperCamelCase ) for sent in refs] )
_a = sari_score / len(UpperCamelCase )
return 100 * sari_score
def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : List[str]="exp" , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[int]=False , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=False , ):
'''simple docstring'''
_a = len(references[0] )
if any(len(UpperCamelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a = [[refs[i] for refs in references] for i in range(UpperCamelCase )]
_a = sacrebleu.corpus_bleu(
UpperCamelCase , UpperCamelCase , smooth_method=UpperCamelCase , smooth_value=UpperCamelCase , force=UpperCamelCase , lowercase=UpperCamelCase , use_effective_order=UpperCamelCase , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def __lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any ) -> Dict:
"""simple docstring"""
_a = {}
result.update({'''sari''': compute_sari(sources=lowerCAmelCase_ , predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
result.update({'''exact''': compute_em(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
return result
| 22 | 1 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
_snake_case : Union[str, Any] = logging.get_logger(__name__)
_snake_case : Any = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
_snake_case : Union[str, Any] = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
_a = {}
with open(UpperCamelCase , '''r''' ) as file:
for line_number, line in enumerate(UpperCamelCase ):
_a = line.strip()
if line:
_a = line.split()
_a = line_number
_a = words[0]
_a = value
return result
def snake_case_ (UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
for attribute in key.split('''.''' ):
_a = getattr(UpperCamelCase , UpperCamelCase )
_a = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(UpperCamelCase ):
_a = PARAM_MAPPING[full_name.split('''.''' )[-1]]
_a = '''param'''
if weight_type is not None and weight_type != "param":
_a = getattr(UpperCamelCase , UpperCamelCase ).shape
elif weight_type is not None and weight_type == "param":
_a = hf_pointer
for attribute in hf_param_name.split('''.''' ):
_a = getattr(UpperCamelCase , UpperCamelCase )
_a = shape_pointer.shape
# let's reduce dimension
_a = value[0]
else:
_a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_a = value
elif weight_type == "weight_g":
_a = value
elif weight_type == "weight_v":
_a = value
elif weight_type == "bias":
_a = value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
_a = getattr(UpperCamelCase , UpperCamelCase )
_a = value
else:
_a = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : int ):
'''simple docstring'''
_a = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(UpperCamelCase ):
_a = PARAM_MAPPING[full_name.split('''.''' )[-1]]
_a = '''param'''
if weight_type is not None and weight_type != "param":
_a = '''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
_a = '''.'''.join([key, hf_param_name] )
else:
_a = key
_a = value if '''lm_head''' in full_key else value[0]
_snake_case : Tuple = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : str=None ):
'''simple docstring'''
_a = False
for key, mapped_key in MAPPING.items():
_a = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
_a = True
if "*" in mapped_key:
_a = name.split(UpperCamelCase )[0].split('''.''' )[-2]
_a = mapped_key.replace('''*''' , UpperCamelCase )
if "weight_g" in name:
_a = '''weight_g'''
elif "weight_v" in name:
_a = '''weight_v'''
elif "bias" in name:
_a = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_a = '''weight'''
else:
_a = None
if hf_dict is not None:
rename_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
else:
set_recursively(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
return is_used
return is_used
def snake_case_ (UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : Any ):
'''simple docstring'''
_a = []
_a = fairseq_model.state_dict()
_a = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
_a = False
if "conv_layers" in name:
load_conv_layer(
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , hf_model.config.feat_extract_norm == '''group''' , )
_a = True
else:
_a = load_wavaveca_layer(UpperCamelCase , UpperCamelCase , UpperCamelCase )
if not is_used:
unused_weights.append(UpperCamelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def snake_case_ (UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Tuple , UpperCamelCase : int ):
'''simple docstring'''
_a = full_name.split('''conv_layers.''' )[-1]
_a = name.split('''.''' )
_a = int(items[0] )
_a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(UpperCamelCase )
@torch.no_grad()
def snake_case_ (UpperCamelCase : Any , UpperCamelCase : Dict , UpperCamelCase : Dict=None , UpperCamelCase : Dict=None , UpperCamelCase : Any=True , UpperCamelCase : Any=False ):
'''simple docstring'''
if config_path is not None:
_a = WavaVecaConfig.from_pretrained(UpperCamelCase )
else:
_a = WavaVecaConfig()
if is_seq_class:
_a = read_txt_into_dict(UpperCamelCase )
_a = idalabel
_a = WavaVecaForSequenceClassification(UpperCamelCase )
_a = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=UpperCamelCase , return_attention_mask=UpperCamelCase , )
feature_extractor.save_pretrained(UpperCamelCase )
elif is_finetuned:
if dict_path:
_a = Dictionary.load(UpperCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_a = target_dict.pad_index
_a = target_dict.bos_index
_a = target_dict.eos_index
_a = len(target_dict.symbols )
_a = os.path.join(UpperCamelCase , '''vocab.json''' )
if not os.path.isdir(UpperCamelCase ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(UpperCamelCase ) )
return
os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase )
_a = target_dict.indices
# fairseq has the <pad> and <s> switched
_a = 0
_a = 1
with open(UpperCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(UpperCamelCase , UpperCamelCase )
_a = WavaVecaCTCTokenizer(
UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=UpperCamelCase , )
_a = True if config.feat_extract_norm == '''layer''' else False
_a = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=UpperCamelCase , return_attention_mask=UpperCamelCase , )
_a = WavaVecaProcessor(feature_extractor=UpperCamelCase , tokenizer=UpperCamelCase )
processor.save_pretrained(UpperCamelCase )
_a = WavaVecaForCTC(UpperCamelCase )
else:
_a = WavaVecaForPreTraining(UpperCamelCase )
if is_finetuned or is_seq_class:
_a , _a , _a = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
_a = argparse.Namespace(task='''audio_pretraining''' )
_a = fairseq.tasks.setup_task(UpperCamelCase )
_a , _a , _a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCamelCase )
_a = model[0].eval()
recursively_load_weights(UpperCamelCase , UpperCamelCase , not is_finetuned )
hf_wavavec.save_pretrained(UpperCamelCase )
if __name__ == "__main__":
_snake_case : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
_snake_case : str = parser.parse_args()
_snake_case : List[str] = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 22 |
'''simple docstring'''
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'):
_snake_case : Tuple = {
'linear': PIL.Image.Resampling.BILINEAR,
'bilinear': PIL.Image.Resampling.BILINEAR,
'bicubic': PIL.Image.Resampling.BICUBIC,
'lanczos': PIL.Image.Resampling.LANCZOS,
'nearest': PIL.Image.Resampling.NEAREST,
}
else:
_snake_case : Any = {
'linear': PIL.Image.LINEAR,
'bilinear': PIL.Image.BILINEAR,
'bicubic': PIL.Image.BICUBIC,
'lanczos': PIL.Image.LANCZOS,
'nearest': PIL.Image.NEAREST,
}
def snake_case_ (UpperCamelCase : Optional[int] ):
'''simple docstring'''
_a = (images / 2 + 0.5).clamp(0 , 1 )
_a = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
_a = numpy_to_pil(UpperCamelCase )
return images
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
if images.ndim == 3:
_a = images[None, ...]
_a = (images * 255).round().astype('''uint8''' )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
_a = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images]
else:
_a = [Image.fromarray(UpperCamelCase ) for image in images]
return pil_images
| 22 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_snake_case : str = {
'configuration_layoutlmv3': [
'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LayoutLMv3Config',
'LayoutLMv3OnnxConfig',
],
'processing_layoutlmv3': ['LayoutLMv3Processor'],
'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[str] = ['LayoutLMv3TokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Optional[int] = [
'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv3ForQuestionAnswering',
'LayoutLMv3ForSequenceClassification',
'LayoutLMv3ForTokenClassification',
'LayoutLMv3Model',
'LayoutLMv3PreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Tuple = [
'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLayoutLMv3ForQuestionAnswering',
'TFLayoutLMv3ForSequenceClassification',
'TFLayoutLMv3ForTokenClassification',
'TFLayoutLMv3Model',
'TFLayoutLMv3PreTrainedModel',
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[Any] = ['LayoutLMv3FeatureExtractor']
_snake_case : Tuple = ['LayoutLMv3ImageProcessor']
if TYPE_CHECKING:
from .configuration_layoutlmva import (
LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP,
LayoutLMvaConfig,
LayoutLMvaOnnxConfig,
)
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_layoutlmva import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
TFLayoutLMvaPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
else:
import sys
_snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 22 |
'''simple docstring'''
import requests
def snake_case_ (UpperCamelCase : str , UpperCamelCase : str ):
'''simple docstring'''
_a = {'''Content-Type''': '''application/json'''}
_a = requests.post(UpperCamelCase , json={'''text''': message_body} , headers=UpperCamelCase )
if response.status_code != 200:
_a = (
'''Request to slack returned an error '''
f'{response.status_code}, the response is:\n{response.text}'
)
raise ValueError(UpperCamelCase )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
| 22 | 1 |
'''simple docstring'''
def snake_case_ (UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float , ):
'''simple docstring'''
_a = [redshift, radiation_density, matter_density, dark_energy]
if any(p < 0 for p in parameters ):
raise ValueError('''All input parameters must be positive''' )
if any(p > 1 for p in parameters[1:4] ):
raise ValueError('''Relative densities cannot be greater than one''' )
else:
_a = 1 - (matter_density + radiation_density + dark_energy)
_a = (
radiation_density * (redshift + 1) ** 4
+ matter_density * (redshift + 1) ** 3
+ curvature * (redshift + 1) ** 2
+ dark_energy
)
_a = hubble_constant * e_a ** (1 / 2)
return hubble
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# demo LCDM approximation
_snake_case : List[str] = 0.3
print(
hubble_parameter(
hubble_constant=68.3,
radiation_density=1E-4,
matter_density=matter_density,
dark_energy=1 - matter_density,
redshift=0,
)
)
| 22 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
_snake_case : Tuple = logging.get_logger(__name__)
class A ( _a ):
lowercase_ = ['pixel_values']
def __init__( self : str , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : Any , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase_ )
_a = size if size is not None else {'''shortest_edge''': 2_56}
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
_a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_a = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ )
return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' )
return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Tuple ) -> np.ndarray:
"""simple docstring"""
return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : Union[str, Any] , ) -> Union[str, Any]:
"""simple docstring"""
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = make_list_of_images(lowerCAmelCase_ )
if not valid_images(lowerCAmelCase_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_a = [to_numpy_array(lowerCAmelCase_ ) for image in images]
if do_resize:
_a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images]
if do_rescale:
_a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images]
if do_normalize:
_a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images]
_a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Tuple] = None ) -> Any:
"""simple docstring"""
_a = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowerCAmelCase_ ):
_a = target_sizes.numpy()
_a = []
for idx in range(len(lowerCAmelCase_ ) ):
_a = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase_ )
_a = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase_ )
else:
_a = logits.argmax(dim=1 )
_a = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 22 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_snake_case : List[Any] = {
'configuration_squeezebert': [
'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SqueezeBertConfig',
'SqueezeBertOnnxConfig',
],
'tokenization_squeezebert': ['SqueezeBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[str] = ['SqueezeBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[str] = [
'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'SqueezeBertForMaskedLM',
'SqueezeBertForMultipleChoice',
'SqueezeBertForQuestionAnswering',
'SqueezeBertForSequenceClassification',
'SqueezeBertForTokenClassification',
'SqueezeBertModel',
'SqueezeBertModule',
'SqueezeBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
_snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 22 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def snake_case_ (UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : int , UpperCamelCase : Optional[int] = None , ):
'''simple docstring'''
_a = {}
if train_file is not None:
_a = [train_file]
if eval_file is not None:
_a = [eval_file]
if test_file is not None:
_a = [test_file]
_a = datasets.load_dataset('''csv''' , data_files=UpperCamelCase )
_a = list(ds[list(files.keys() )[0]].features.keys() )
_a = features_name.pop(UpperCamelCase )
_a = list(set(ds[list(files.keys() )[0]][label_name] ) )
_a = {label: i for i, label in enumerate(UpperCamelCase )}
_a = tokenizer.model_input_names
_a = {}
if len(UpperCamelCase ) == 1:
for k in files.keys():
_a = ds[k].map(
lambda UpperCamelCase : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' ) , batched=UpperCamelCase , )
elif len(UpperCamelCase ) == 2:
for k in files.keys():
_a = ds[k].map(
lambda UpperCamelCase : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' , ) , batched=UpperCamelCase , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
_a = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
_a = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
_a = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
_snake_case : str = logging.getLogger(__name__)
@dataclass
class A :
lowercase_ = field(metadata={'help': 'Which column contains the label'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the training file'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the development file'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the test file'} )
lowercase_ = field(
default=128 ,metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} ,)
lowercase_ = field(
default=_a ,metadata={'help': 'Overwrite the cached training and evaluation sets'} )
@dataclass
class A :
lowercase_ = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
lowercase_ = field(
default=_a ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
lowercase_ = field(
default=_a ,metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
lowercase_ = field(default=_a ,metadata={'help': 'Set this flag to use fast tokenization.'} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowercase_ = field(
default=_a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,)
def snake_case_ ():
'''simple docstring'''
_a = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
_a , _a , _a = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. Use'
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(
f'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, '
f'16-bits training: {training_args.fpaa}' )
logger.info(f'Training/evaluation parameters {training_args}' )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_a = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_a , _a , _a , _a = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
_a = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase ) , labelaid=UpperCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
_a = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , )
def compute_metrics(UpperCamelCase : EvalPrediction ) -> Dict:
_a = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
_a = TFTrainer(
model=UpperCamelCase , args=UpperCamelCase , train_dataset=UpperCamelCase , eval_dataset=UpperCamelCase , compute_metrics=UpperCamelCase , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_a = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_a = trainer.evaluate()
_a = os.path.join(training_args.output_dir , '''eval_results.txt''' )
with open(UpperCamelCase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(f' {key} = {value}' )
writer.write(f'{key} = {value}\n' )
results.update(UpperCamelCase )
return results
if __name__ == "__main__":
main()
| 22 | 1 |
'''simple docstring'''
from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : str=1e-12 ):
'''simple docstring'''
_a = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase , axis=1 ) , a_min=UpperCamelCase ) ).T
_a = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase , axis=1 ) , a_min=UpperCamelCase ) ).T
return jnp.matmul(UpperCamelCase , norm_emb_a.T )
class A ( nn.Module ):
lowercase_ = 42
lowercase_ = jnp.floataa
def __lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_a = FlaxCLIPVisionModule(self.config.vision_config )
_a = nn.Dense(self.config.projection_dim , use_bias=lowerCAmelCase_ , dtype=self.dtype )
_a = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) )
_a = self.param(
'''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) )
_a = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) )
_a = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) )
def __call__( self : Any , lowerCAmelCase_ : int ) -> List[str]:
"""simple docstring"""
_a = self.vision_model(lowerCAmelCase_ )[1]
_a = self.visual_projection(lowerCAmelCase_ )
_a = jax_cosine_distance(lowerCAmelCase_ , self.special_care_embeds )
_a = jax_cosine_distance(lowerCAmelCase_ , self.concept_embeds )
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
_a = 0.0
_a = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
_a = jnp.round(lowerCAmelCase_ , 3 )
_a = jnp.any(special_scores > 0 , axis=1 , keepdims=lowerCAmelCase_ )
# Use a lower threshold if an image has any special care concept
_a = is_special_care * 0.0_1
_a = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
_a = jnp.round(lowerCAmelCase_ , 3 )
_a = jnp.any(concept_scores > 0 , axis=1 )
return has_nsfw_concepts
class A ( _a ):
lowercase_ = CLIPConfig
lowercase_ = 'clip_input'
lowercase_ = FlaxStableDiffusionSafetyCheckerModule
def __init__( self : Optional[int] , lowerCAmelCase_ : CLIPConfig , lowerCAmelCase_ : Optional[Tuple] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : jnp.dtype = jnp.floataa , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Union[str, Any] , ) -> Optional[Any]:
"""simple docstring"""
if input_shape is None:
_a = (1, 2_24, 2_24, 3)
_a = self.module_class(config=lowerCAmelCase_ , dtype=lowerCAmelCase_ , **lowerCAmelCase_ )
super().__init__(lowerCAmelCase_ , lowerCAmelCase_ , input_shape=lowerCAmelCase_ , seed=lowerCAmelCase_ , dtype=lowerCAmelCase_ , _do_init=_do_init )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : jax.random.KeyArray , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : FrozenDict = None ) -> FrozenDict:
"""simple docstring"""
_a = jax.random.normal(lowerCAmelCase_ , lowerCAmelCase_ )
_a , _a = jax.random.split(lowerCAmelCase_ )
_a = {'''params''': params_rng, '''dropout''': dropout_rng}
_a = self.module.init(lowerCAmelCase_ , lowerCAmelCase_ )['''params''']
return random_params
def __call__( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : dict = None , ) -> int:
"""simple docstring"""
_a = jnp.transpose(lowerCAmelCase_ , (0, 2, 3, 1) )
return self.module.apply(
{'''params''': params or self.params} , jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) , rngs={} , )
| 22 |
'''simple docstring'''
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A ( _a ,unittest.TestCase ):
lowercase_ = LEDTokenizer
lowercase_ = LEDTokenizerFast
lowercase_ = True
def __lowerCAmelCase ( self : int ) -> List[Any]:
"""simple docstring"""
super().setUp()
_a = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
_a = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) )
_a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
_a = {'''unk_token''': '''<unk>'''}
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowerCAmelCase_ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(lowerCAmelCase_ ) )
def __lowerCAmelCase ( self : Union[str, Any] , **lowerCAmelCase_ : int ) -> Optional[int]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , **lowerCAmelCase_ : Any ) -> int:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> List[str]:
"""simple docstring"""
return "lower newer", "lower newer"
@cached_property
def __lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' )
@cached_property
def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' )
@require_torch
def __lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
_a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
_a = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
_a = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
@require_torch
def __lowerCAmelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
_a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIn('''input_ids''' , lowerCAmelCase_ )
self.assertIn('''attention_mask''' , lowerCAmelCase_ )
self.assertNotIn('''labels''' , lowerCAmelCase_ )
self.assertNotIn('''decoder_attention_mask''' , lowerCAmelCase_ )
@require_torch
def __lowerCAmelCase ( self : List[str] ) -> str:
"""simple docstring"""
_a = [
'''Summary of the text.''',
'''Another summary.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='''max_length''' , return_tensors='''pt''' )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
@require_torch
def __lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(
['''I am a small frog''' * 10_24, '''I am a small frog'''] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertEqual(batch.input_ids.shape , (2, 51_22) )
@require_torch
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a = ['''A long paragraph for summarization.''']
_a = [
'''Summary of the text.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(lowerCAmelCase_ , return_tensors='''pt''' )
_a = tokenizer(text_target=lowerCAmelCase_ , return_tensors='''pt''' )
_a = inputs['''input_ids''']
_a = targets['''input_ids''']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def __lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = ['''Summary of the text.''', '''Another summary.''']
_a = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
_a = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ )
_a = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['''input_ids''']]
_a = tokenizer.pad(lowerCAmelCase_ )
self.assertSequenceEqual(outputs['''global_attention_mask'''] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> Dict:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
_a = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
_a = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
_a = '''A, <mask> AllenNLP sentence.'''
_a = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ )
_a = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ )
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
_a = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
_a = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
| 22 | 1 |
'''simple docstring'''
import argparse
import glob
import logging
import os
import time
from argparse import Namespace
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from torch.utils.data import DataLoader, TensorDataset
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes, glue_tasks_num_labels
from transformers import glue_processors as processors
_snake_case : Any = logging.getLogger(__name__)
class A ( _a ):
lowercase_ = 'sequence-classification'
def __init__( self : Tuple , lowerCAmelCase_ : List[str] ) -> Optional[int]:
"""simple docstring"""
if type(lowerCAmelCase_ ) == dict:
_a = Namespace(**lowerCAmelCase_ )
_a = glue_output_modes[hparams.task]
_a = glue_tasks_num_labels[hparams.task]
super().__init__(lowerCAmelCase_ , lowerCAmelCase_ , self.mode )
def __lowerCAmelCase ( self : Any , **lowerCAmelCase_ : Any ) -> int:
"""simple docstring"""
return self.model(**lowerCAmelCase_ )
def __lowerCAmelCase ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Union[str, Any]:
"""simple docstring"""
_a = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
_a = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None
_a = self(**lowerCAmelCase_ )
_a = outputs[0]
_a = self.trainer.lr_schedulers[0]['''scheduler''']
_a = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]}
return {"loss": loss, "log": tensorboard_logs}
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
_a = self.hparams
_a = processors[args.task]()
_a = processor.get_labels()
for mode in ["train", "dev"]:
_a = self._feature_file(lowerCAmelCase_ )
if os.path.exists(lowerCAmelCase_ ) and not args.overwrite_cache:
logger.info('''Loading features from cached file %s''' , lowerCAmelCase_ )
else:
logger.info('''Creating features from dataset file at %s''' , args.data_dir )
_a = (
processor.get_dev_examples(args.data_dir )
if mode == '''dev'''
else processor.get_train_examples(args.data_dir )
)
_a = convert_examples_to_features(
lowerCAmelCase_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , )
logger.info('''Saving features into cached file %s''' , lowerCAmelCase_ )
torch.save(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : bool = False ) -> DataLoader:
"""simple docstring"""
_a = '''dev''' if mode == '''test''' else mode
_a = self._feature_file(lowerCAmelCase_ )
logger.info('''Loading features from cached file %s''' , lowerCAmelCase_ )
_a = torch.load(lowerCAmelCase_ )
_a = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
_a = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
_a = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
if self.hparams.glue_output_mode == "classification":
_a = torch.tensor([f.label for f in features] , dtype=torch.long )
elif self.hparams.glue_output_mode == "regression":
_a = torch.tensor([f.label for f in features] , dtype=torch.float )
return DataLoader(
TensorDataset(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , batch_size=lowerCAmelCase_ , shuffle=lowerCAmelCase_ , )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Any ) -> Optional[int]:
"""simple docstring"""
_a = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
_a = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None
_a = self(**lowerCAmelCase_ )
_a , _a = outputs[:2]
_a = logits.detach().cpu().numpy()
_a = inputs['''labels'''].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Any ) -> tuple:
"""simple docstring"""
_a = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item()
_a = np.concatenate([x['''pred'''] for x in outputs] , axis=0 )
if self.hparams.glue_output_mode == "classification":
_a = np.argmax(lowerCAmelCase_ , axis=1 )
elif self.hparams.glue_output_mode == "regression":
_a = np.squeeze(lowerCAmelCase_ )
_a = np.concatenate([x['''target'''] for x in outputs] , axis=0 )
_a = [[] for _ in range(out_label_ids.shape[0] )]
_a = [[] for _ in range(out_label_ids.shape[0] )]
_a = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , lowerCAmelCase_ , lowerCAmelCase_ )}
_a = dict(results.items() )
_a = results
return ret, preds_list, out_label_list
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : list ) -> dict:
"""simple docstring"""
_a , _a , _a = self._eval_end(lowerCAmelCase_ )
_a = ret['''log''']
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : str ) -> dict:
"""simple docstring"""
_a , _a , _a = self._eval_end(lowerCAmelCase_ )
_a = ret['''log''']
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def __lowerCAmelCase ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> List[Any]:
"""simple docstring"""
BaseTransformer.add_model_specific_args(lowerCAmelCase_ , lowerCAmelCase_ )
parser.add_argument(
'''--max_seq_length''' , default=1_28 , type=lowerCAmelCase_ , help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) , )
parser.add_argument(
'''--task''' , default='''''' , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The GLUE task to run''' , )
parser.add_argument(
'''--gpus''' , default=0 , type=lowerCAmelCase_ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , )
parser.add_argument(
'''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' )
return parser
def snake_case_ ():
'''simple docstring'''
_a = argparse.ArgumentParser()
add_generic_args(UpperCamelCase , os.getcwd() )
_a = GLUETransformer.add_model_specific_args(UpperCamelCase , os.getcwd() )
_a = parser.parse_args()
# If output_dir not provided, a folder will be generated in pwd
if args.output_dir is None:
_a = os.path.join(
'''./results''' , f'{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}' , )
os.makedirs(args.output_dir )
_a = GLUETransformer(UpperCamelCase )
_a = generic_train(UpperCamelCase , UpperCamelCase )
# Optionally, predict on dev set and write to output_dir
if args.do_predict:
_a = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=UpperCamelCase ) )
_a = model.load_from_checkpoint(checkpoints[-1] )
return trainer.test(UpperCamelCase )
if __name__ == "__main__":
main()
| 22 |
'''simple docstring'''
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'''split_dict''' , [
SplitDict(),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 , dataset_name='''my_dataset''' )} ),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 )} ),
SplitDict({'''train''': SplitInfo()} ),
] , )
def snake_case_ (UpperCamelCase : SplitDict ):
'''simple docstring'''
_a = split_dict._to_yaml_list()
assert len(UpperCamelCase ) == len(UpperCamelCase )
_a = SplitDict._from_yaml_list(UpperCamelCase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
_a = None
# the split name of split_dict takes over the name of the split info object
_a = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'''split_info''' , [SplitInfo(), SplitInfo(dataset_name=UpperCamelCase ), SplitInfo(dataset_name='''my_dataset''' )] )
def snake_case_ (UpperCamelCase : List[str] ):
'''simple docstring'''
_a = asdict(SplitDict({'''train''': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 22 | 1 |
'''simple docstring'''
import numpy
# List of input, output pairs
_snake_case : Tuple = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
_snake_case : str = (((515, 22, 13), 555), ((61, 35, 49), 150))
_snake_case : Optional[Any] = [2, 4, 1, 5]
_snake_case : List[Any] = len(train_data)
_snake_case : str = 0.009
def snake_case_ (UpperCamelCase : Any , UpperCamelCase : Tuple="train" ):
'''simple docstring'''
return calculate_hypothesis_value(UpperCamelCase , UpperCamelCase ) - output(
UpperCamelCase , UpperCamelCase )
def snake_case_ (UpperCamelCase : List[str] ):
'''simple docstring'''
_a = 0
for i in range(len(UpperCamelCase ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def snake_case_ (UpperCamelCase : int , UpperCamelCase : Optional[int] ):
'''simple docstring'''
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def snake_case_ (UpperCamelCase : str , UpperCamelCase : int ):
'''simple docstring'''
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def snake_case_ (UpperCamelCase : int , UpperCamelCase : Union[str, Any]=m ):
'''simple docstring'''
_a = 0
for i in range(UpperCamelCase ):
if index == -1:
summation_value += _error(UpperCamelCase )
else:
summation_value += _error(UpperCamelCase ) * train_data[i][0][index]
return summation_value
def snake_case_ (UpperCamelCase : Dict ):
'''simple docstring'''
_a = summation_of_cost_derivative(UpperCamelCase , UpperCamelCase ) / m
return cost_derivative_value
def snake_case_ ():
'''simple docstring'''
global parameter_vector
# Tune these values to set a tolerance value for predicted output
_a = 0.000002
_a = 0
_a = 0
while True:
j += 1
_a = [0, 0, 0, 0]
for i in range(0 , len(UpperCamelCase ) ):
_a = get_cost_derivative(i - 1 )
_a = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
UpperCamelCase , UpperCamelCase , atol=UpperCamelCase , rtol=UpperCamelCase , ):
break
_a = temp_parameter_vector
print(('''Number of iterations:''', j) )
def snake_case_ ():
'''simple docstring'''
for i in range(len(UpperCamelCase ) ):
print(('''Actual output value:''', output(UpperCamelCase , '''test''' )) )
print(('''Hypothesis output:''', calculate_hypothesis_value(UpperCamelCase , '''test''' )) )
if __name__ == "__main__":
run_gradient_descent()
print('\nTesting gradient descent for a linear hypothesis function.\n')
test_gradient_descent()
| 22 |
'''simple docstring'''
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
_snake_case : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
_snake_case : List[str] = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n'
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : int ) -> List[Any]:
"""simple docstring"""
_a = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) )
_a = self.diffusers_dir
shutil.copy(
os.path.join(lowerCAmelCase_ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , )
def __lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_a = '''src/diffusers'''
shutil.rmtree(self.diffusers_dir )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str=None ) -> Union[str, Any]:
"""simple docstring"""
_a = comment + F'\nclass {class_name}(nn.Module):\n' + class_code
if overwrite_result is not None:
_a = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result
_a = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
_a = black.format_str(lowerCAmelCase_ , mode=lowerCAmelCase_ )
_a = os.path.join(self.diffusers_dir , '''new_code.py''' )
with open(lowerCAmelCase_ , '''w''' , newline='''\n''' ) as f:
f.write(lowerCAmelCase_ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase_ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase_ )
with open(lowerCAmelCase_ , '''r''' ) as f:
self.assertTrue(f.read() , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' )
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , )
# With no empty line at the end
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , lowerCAmelCase_ , )
# Copy consistency with rename
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , lowerCAmelCase_ ) , )
# Copy consistency with a really long name
_a = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
F'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}' , F'{long_class_name}SchedulerOutput' , re.sub('''Bert''' , lowerCAmelCase_ , lowerCAmelCase_ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , lowerCAmelCase_ , overwrite_result=re.sub('''DDPM''' , '''Test''' , lowerCAmelCase_ ) , )
| 22 | 1 |
'''simple docstring'''
import baseaa
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
return baseaa.baaencode(string.encode('''utf-8''' ) )
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
return baseaa.baadecode(UpperCamelCase ).decode('''utf-8''' )
if __name__ == "__main__":
_snake_case : Optional[int] = 'Hello World!'
_snake_case : Optional[Any] = baseaa_encode(test)
print(encoded)
_snake_case : Optional[Any] = baseaa_decode(encoded)
print(decoded)
| 22 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
_snake_case : Tuple = logging.get_logger(__name__)
_snake_case : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_snake_case : List[Any] = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
_snake_case : Union[str, Any] = {
'squeezebert/squeezebert-uncased': 512,
'squeezebert/squeezebert-mnli': 512,
'squeezebert/squeezebert-mnli-headless': 512,
}
_snake_case : Tuple = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class A ( _a ):
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_INIT_CONFIGURATION
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = SqueezeBertTokenizer
def __init__( self : str , lowerCAmelCase_ : str=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[str]="[UNK]" , lowerCAmelCase_ : Union[str, Any]="[SEP]" , lowerCAmelCase_ : Optional[Any]="[PAD]" , lowerCAmelCase_ : Any="[CLS]" , lowerCAmelCase_ : List[str]="[MASK]" , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Optional[int] , ) -> int:
"""simple docstring"""
super().__init__(
lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , )
_a = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , lowerCAmelCase_ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , lowerCAmelCase_ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase_ ) != tokenize_chinese_chars
):
_a = getattr(lowerCAmelCase_ , normalizer_state.pop('''type''' ) )
_a = do_lower_case
_a = strip_accents
_a = tokenize_chinese_chars
_a = normalizer_class(**lowerCAmelCase_ )
_a = do_lower_case
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=None ) -> List[str]:
"""simple docstring"""
_a = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
_a = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ )
return tuple(lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case : Optional[int] = logging.get_logger(__name__)
_snake_case : str = {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json'
),
}
class A ( _a ):
lowercase_ = 'dpr'
def __init__( self : Any , lowerCAmelCase_ : Any=3_05_22 , lowerCAmelCase_ : Tuple=7_68 , lowerCAmelCase_ : Union[str, Any]=12 , lowerCAmelCase_ : str=12 , lowerCAmelCase_ : List[str]=30_72 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[Any]=5_12 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Optional[Any]=0.0_2 , lowerCAmelCase_ : Any=1e-12 , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : Optional[Any]="absolute" , lowerCAmelCase_ : int = 0 , **lowerCAmelCase_ : Any , ) -> Dict:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = hidden_act
_a = intermediate_size
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = initializer_range
_a = layer_norm_eps
_a = projection_dim
_a = position_embedding_type
| 22 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_snake_case : Dict = logging.get_logger(__name__)
class A ( _a ):
lowercase_ = ['pixel_values']
def __init__( self : List[Any] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : int , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase_ )
_a = size if size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ )
_a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_resize
_a = do_rescale
_a = do_normalize
_a = do_center_crop
_a = crop_size
_a = size
_a = resample
_a = rescale_factor
_a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_a = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "shortest_edge" in size:
_a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
_a = (size['''height'''], size['''width'''])
else:
raise ValueError(F'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' )
return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Dict , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : List[str] , ) -> BatchFeature:
"""simple docstring"""
_a = do_resize if do_resize is not None else self.do_resize
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' , default_to_square=lowerCAmelCase_ )
_a = resample if resample is not None else self.resample
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = size if size is not None else self.size
_a = get_size_dict(lowerCAmelCase_ )
if not is_batched(lowerCAmelCase_ ):
_a = [images]
if not valid_images(lowerCAmelCase_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
_a = [to_numpy_array(lowerCAmelCase_ ) for image in images]
if do_resize:
_a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images]
if do_rescale:
_a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images]
if do_normalize:
_a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images]
_a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
import functools
import logging
import os
import sys
import threading
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
import huggingface_hub.utils as hf_hub_utils
from tqdm import auto as tqdm_lib
_snake_case : Union[str, Any] = threading.Lock()
_snake_case : Optional[logging.Handler] = None
_snake_case : Dict = {
'debug': logging.DEBUG,
'info': logging.INFO,
'warning': logging.WARNING,
'error': logging.ERROR,
'critical': logging.CRITICAL,
}
_snake_case : int = logging.WARNING
_snake_case : Tuple = True
def snake_case_ ():
'''simple docstring'''
_a = os.getenv('''TRANSFORMERS_VERBOSITY''' , UpperCamelCase )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
f'Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, '
f'has to be one of: { ", ".join(log_levels.keys() ) }' )
return _default_log_level
def snake_case_ ():
'''simple docstring'''
return __name__.split('''.''' )[0]
def snake_case_ ():
'''simple docstring'''
return logging.getLogger(_get_library_name() )
def snake_case_ ():
'''simple docstring'''
global _default_handler
with _lock:
if _default_handler:
# This library has already configured the library root logger.
return
_a = logging.StreamHandler() # Set sys.stderr as stream.
_a = sys.stderr.flush
# Apply our default configuration to the library root logger.
_a = _get_library_root_logger()
library_root_logger.addHandler(_default_handler )
library_root_logger.setLevel(_get_default_logging_level() )
_a = False
def snake_case_ ():
'''simple docstring'''
global _default_handler
with _lock:
if not _default_handler:
return
_a = _get_library_root_logger()
library_root_logger.removeHandler(_default_handler )
library_root_logger.setLevel(logging.NOTSET )
_a = None
def snake_case_ ():
'''simple docstring'''
return log_levels
def snake_case_ (UpperCamelCase : Optional[str] = None ):
'''simple docstring'''
if name is None:
_a = _get_library_name()
_configure_library_root_logger()
return logging.getLogger(UpperCamelCase )
def snake_case_ ():
'''simple docstring'''
_configure_library_root_logger()
return _get_library_root_logger().getEffectiveLevel()
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
_configure_library_root_logger()
_get_library_root_logger().setLevel(UpperCamelCase )
def snake_case_ ():
'''simple docstring'''
return set_verbosity(UpperCamelCase )
def snake_case_ ():
'''simple docstring'''
return set_verbosity(UpperCamelCase )
def snake_case_ ():
'''simple docstring'''
return set_verbosity(UpperCamelCase )
def snake_case_ ():
'''simple docstring'''
return set_verbosity(UpperCamelCase )
def snake_case_ ():
'''simple docstring'''
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().removeHandler(_default_handler )
def snake_case_ ():
'''simple docstring'''
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().addHandler(_default_handler )
def snake_case_ (UpperCamelCase : logging.Handler ):
'''simple docstring'''
_configure_library_root_logger()
assert handler is not None
_get_library_root_logger().addHandler(UpperCamelCase )
def snake_case_ (UpperCamelCase : logging.Handler ):
'''simple docstring'''
_configure_library_root_logger()
assert handler is not None and handler not in _get_library_root_logger().handlers
_get_library_root_logger().removeHandler(UpperCamelCase )
def snake_case_ ():
'''simple docstring'''
_configure_library_root_logger()
_a = False
def snake_case_ ():
'''simple docstring'''
_configure_library_root_logger()
_a = True
def snake_case_ ():
'''simple docstring'''
_a = _get_library_root_logger().handlers
for handler in handlers:
_a = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' )
handler.setFormatter(UpperCamelCase )
def snake_case_ ():
'''simple docstring'''
_a = _get_library_root_logger().handlers
for handler in handlers:
handler.setFormatter(UpperCamelCase )
def snake_case_ (self : List[str] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Optional[int] ):
'''simple docstring'''
_a = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , UpperCamelCase )
if no_advisory_warnings:
return
self.warning(*UpperCamelCase , **UpperCamelCase )
_snake_case : Any = warning_advice
@functools.lru_cache(UpperCamelCase )
def snake_case_ (self : List[str] , *UpperCamelCase : List[Any] , **UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
self.warning(*UpperCamelCase , **UpperCamelCase )
_snake_case : Optional[int] = warning_once
class A :
def __init__( self : Optional[Any] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Optional[Any] ) -> int: # pylint: disable=unused-argument
"""simple docstring"""
_a = args[0] if args else None
def __iter__( self : str ) -> Any:
"""simple docstring"""
return iter(self._iterator )
def __getattr__( self : List[str] , lowerCAmelCase_ : str ) -> str:
"""simple docstring"""
def empty_fn(*lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : List[str] ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self : List[Any] ) -> int:
"""simple docstring"""
return self
def __exit__( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any ) -> Tuple:
"""simple docstring"""
return
class A :
def __call__( self : Optional[Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : str ) -> List[Any]:
"""simple docstring"""
if _tqdm_active:
return tqdm_lib.tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ )
else:
return EmptyTqdm(*lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : str , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Optional[Any] ) -> Any:
"""simple docstring"""
_a = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> str:
"""simple docstring"""
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
_snake_case : Any = _tqdm_cls()
def snake_case_ ():
'''simple docstring'''
global _tqdm_active
return bool(_tqdm_active )
def snake_case_ ():
'''simple docstring'''
global _tqdm_active
_a = True
hf_hub_utils.enable_progress_bars()
def snake_case_ ():
'''simple docstring'''
global _tqdm_active
_a = False
hf_hub_utils.disable_progress_bars()
| 22 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_snake_case : str = {
'configuration_layoutlmv3': [
'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LayoutLMv3Config',
'LayoutLMv3OnnxConfig',
],
'processing_layoutlmv3': ['LayoutLMv3Processor'],
'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[str] = ['LayoutLMv3TokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Optional[int] = [
'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv3ForQuestionAnswering',
'LayoutLMv3ForSequenceClassification',
'LayoutLMv3ForTokenClassification',
'LayoutLMv3Model',
'LayoutLMv3PreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Tuple = [
'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLayoutLMv3ForQuestionAnswering',
'TFLayoutLMv3ForSequenceClassification',
'TFLayoutLMv3ForTokenClassification',
'TFLayoutLMv3Model',
'TFLayoutLMv3PreTrainedModel',
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[Any] = ['LayoutLMv3FeatureExtractor']
_snake_case : Tuple = ['LayoutLMv3ImageProcessor']
if TYPE_CHECKING:
from .configuration_layoutlmva import (
LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP,
LayoutLMvaConfig,
LayoutLMvaOnnxConfig,
)
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_layoutlmva import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
TFLayoutLMvaPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
else:
import sys
_snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 22 | 1 |
'''simple docstring'''
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
_snake_case : Any = logging.get_logger(__name__)
class A ( _a ):
lowercase_ = 'AutoTokenizer'
lowercase_ = ['tokenizer']
lowercase_ = {
'semantic_prompt': 1,
'coarse_prompt': 2,
'fine_prompt': 2,
}
def __init__( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=None ) -> Dict:
"""simple docstring"""
super().__init__(lowerCAmelCase_ )
_a = speaker_embeddings
@classmethod
def __lowerCAmelCase ( cls : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]="speaker_embeddings_path.json" , **lowerCAmelCase_ : Any ) -> str:
"""simple docstring"""
if speaker_embeddings_dict_path is not None:
_a = get_file_from_repo(
lowerCAmelCase_ , lowerCAmelCase_ , subfolder=kwargs.pop('''subfolder''' , lowerCAmelCase_ ) , cache_dir=kwargs.pop('''cache_dir''' , lowerCAmelCase_ ) , force_download=kwargs.pop('''force_download''' , lowerCAmelCase_ ) , proxies=kwargs.pop('''proxies''' , lowerCAmelCase_ ) , resume_download=kwargs.pop('''resume_download''' , lowerCAmelCase_ ) , local_files_only=kwargs.pop('''local_files_only''' , lowerCAmelCase_ ) , use_auth_token=kwargs.pop('''use_auth_token''' , lowerCAmelCase_ ) , revision=kwargs.pop('''revision''' , lowerCAmelCase_ ) , )
if speaker_embeddings_path is None:
logger.warning(
F'`{os.path.join(lowerCAmelCase_ , lowerCAmelCase_ )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.' )
_a = None
else:
with open(lowerCAmelCase_ ) as speaker_embeddings_json:
_a = json.load(lowerCAmelCase_ )
else:
_a = None
_a = AutoTokenizer.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
return cls(tokenizer=lowerCAmelCase_ , speaker_embeddings=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any]="speaker_embeddings_path.json" , lowerCAmelCase_ : Dict="speaker_embeddings" , lowerCAmelCase_ : bool = False , **lowerCAmelCase_ : List[str] , ) -> str:
"""simple docstring"""
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ , '''v2''' ) , exist_ok=lowerCAmelCase_ )
_a = {}
_a = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
_a = self._load_voice_preset(lowerCAmelCase_ )
_a = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict['''repo_or_path'''] , lowerCAmelCase_ , F'{prompt_key}_{key}' ) , voice_preset[key] , allow_pickle=lowerCAmelCase_ , )
_a = os.path.join(lowerCAmelCase_ , F'{prompt_key}_{key}.npy' )
_a = tmp_dict
with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , '''w''' ) as fp:
json.dump(lowerCAmelCase_ , lowerCAmelCase_ )
super().save_pretrained(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : str = None , **lowerCAmelCase_ : Union[str, Any] ) -> Any:
"""simple docstring"""
_a = self.speaker_embeddings[voice_preset]
_a = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
F'Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].' )
_a = get_file_from_repo(
self.speaker_embeddings.get('''repo_or_path''' , '''/''' ) , voice_preset_paths[key] , subfolder=kwargs.pop('''subfolder''' , lowerCAmelCase_ ) , cache_dir=kwargs.pop('''cache_dir''' , lowerCAmelCase_ ) , force_download=kwargs.pop('''force_download''' , lowerCAmelCase_ ) , proxies=kwargs.pop('''proxies''' , lowerCAmelCase_ ) , resume_download=kwargs.pop('''resume_download''' , lowerCAmelCase_ ) , local_files_only=kwargs.pop('''local_files_only''' , lowerCAmelCase_ ) , use_auth_token=kwargs.pop('''use_auth_token''' , lowerCAmelCase_ ) , revision=kwargs.pop('''revision''' , lowerCAmelCase_ ) , )
if path is None:
raise ValueError(
F'`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.' )
_a = np.load(lowerCAmelCase_ )
return voice_preset_dict
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Optional[dict] = None ) -> Any:
"""simple docstring"""
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(F'Voice preset unrecognized, missing {key} as a key.' )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' )
def __call__( self : Union[str, Any] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Dict="pt" , lowerCAmelCase_ : Dict=2_56 , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=False , **lowerCAmelCase_ : int , ) -> str:
"""simple docstring"""
if voice_preset is not None and not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
if (
isinstance(lowerCAmelCase_ , lowerCAmelCase_ )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
_a = self._load_voice_preset(lowerCAmelCase_ )
else:
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and not voice_preset.endswith('''.npz''' ):
_a = voice_preset + '''.npz'''
_a = np.load(lowerCAmelCase_ )
if voice_preset is not None:
self._validate_voice_preset_dict(lowerCAmelCase_ , **lowerCAmelCase_ )
_a = BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
_a = self.tokenizer(
lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , padding='''max_length''' , max_length=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , **lowerCAmelCase_ , )
if voice_preset is not None:
_a = voice_preset
return encoded_text
| 22 |
'''simple docstring'''
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class A ( _a ):
lowercase_ = (DDPMParallelScheduler,)
def __lowerCAmelCase ( self : Optional[Any] , **lowerCAmelCase_ : Optional[int] ) -> List[Any]:
"""simple docstring"""
_a = {
'''num_train_timesteps''': 10_00,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**lowerCAmelCase_ )
return config
def __lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCAmelCase_ )
def __lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
self.check_over_configs(thresholding=lowerCAmelCase_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , )
def __lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : str ) -> List[str]:
"""simple docstring"""
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=lowerCAmelCase_ )
def __lowerCAmelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.0_2 ) ) < 1e-5
def __lowerCAmelCase ( self : Dict ) -> str:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = len(lowerCAmelCase_ )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = self.dummy_sample_deter + 0.1
_a = self.dummy_sample_deter - 0.1
_a = samplea.shape[0]
_a = torch.stack([samplea, samplea, samplea] , dim=0 )
_a = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ )
_a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
_a = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) )
_a = torch.sum(torch.abs(lowerCAmelCase_ ) )
_a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2
assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3
def __lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = len(lowerCAmelCase_ )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = torch.manual_seed(0 )
for t in reversed(range(lowerCAmelCase_ ) ):
# 1. predict noise residual
_a = model(lowerCAmelCase_ , lowerCAmelCase_ )
# 2. predict previous mean of sample x_t-1
_a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(lowerCAmelCase_ ) )
_a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config(prediction_type='''v_prediction''' )
_a = scheduler_class(**lowerCAmelCase_ )
_a = len(lowerCAmelCase_ )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = torch.manual_seed(0 )
for t in reversed(range(lowerCAmelCase_ ) ):
# 1. predict noise residual
_a = model(lowerCAmelCase_ , lowerCAmelCase_ )
# 2. predict previous mean of sample x_t-1
_a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(lowerCAmelCase_ ) )
_a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def __lowerCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
_a = scheduler.timesteps
for i, timestep in enumerate(lowerCAmelCase_ ):
if i == len(lowerCAmelCase_ ) - 1:
_a = -1
else:
_a = timesteps[i + 1]
_a = scheduler.previous_timestep(lowerCAmelCase_ )
_a = prev_t.item()
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [1_00, 87, 50, 51, 0]
with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [1_00, 87, 50, 1, 0]
_a = len(lowerCAmelCase_ )
with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [scheduler.config.num_train_timesteps]
with self.assertRaises(
lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
import argparse
from collections import defaultdict
import yaml
_snake_case : int = 'docs/source/en/_toctree.yml'
def snake_case_ (UpperCamelCase : List[Any] ):
'''simple docstring'''
_a = defaultdict(UpperCamelCase )
for doc in model_doc:
counts[doc["local"]] += 1
_a = [key for key, value in counts.items() if value > 1]
_a = []
for duplicate_key in duplicates:
_a = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} )
if len(UpperCamelCase ) > 1:
raise ValueError(
f'{duplicate_key} is present several times in the documentation table of content at '
'''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the '''
'''others.''' )
# Only add this once
new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] )
# Sort
return sorted(UpperCamelCase , key=lambda UpperCamelCase : s["title"].lower() )
def snake_case_ (UpperCamelCase : Any=False ):
'''simple docstring'''
with open(UpperCamelCase , encoding='''utf-8''' ) as f:
_a = yaml.safe_load(f.read() )
# Get to the API doc
_a = 0
while content[api_idx]["title"] != "API":
api_idx += 1
_a = content[api_idx]['''sections''']
# Then to the model doc
_a = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
_a = api_doc[model_idx]['''sections''']
_a = [(idx, section) for idx, section in enumerate(UpperCamelCase ) if '''sections''' in section]
_a = False
for idx, modality_doc in modalities_docs:
_a = modality_doc['''sections''']
_a = clean_model_doc_toc(UpperCamelCase )
if old_modality_doc != new_modality_doc:
_a = True
if overwrite:
_a = new_modality_doc
if diff:
if overwrite:
_a = model_doc
_a = api_doc
with open(UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(yaml.dump(UpperCamelCase , allow_unicode=UpperCamelCase ) )
else:
raise ValueError(
'''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' )
if __name__ == "__main__":
_snake_case : str = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
_snake_case : Optional[int] = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 22 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def snake_case_ (UpperCamelCase : dict ):
'''simple docstring'''
return (data["data"], data["target"])
def snake_case_ (UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray ):
'''simple docstring'''
_a = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(UpperCamelCase , UpperCamelCase )
# Predict target for test data
_a = xgb.predict(UpperCamelCase )
_a = predictions.reshape(len(UpperCamelCase ) , 1 )
return predictions
def snake_case_ ():
'''simple docstring'''
_a = fetch_california_housing()
_a , _a = data_handling(UpperCamelCase )
_a , _a , _a , _a = train_test_split(
UpperCamelCase , UpperCamelCase , test_size=0.25 , random_state=1 )
_a = xgboost(UpperCamelCase , UpperCamelCase , UpperCamelCase )
# Error printing
print(f'Mean Absolute Error : {mean_absolute_error(UpperCamelCase , UpperCamelCase )}' )
print(f'Mean Square Error : {mean_squared_error(UpperCamelCase , UpperCamelCase )}' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 22 | 1 |
'''simple docstring'''
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
_snake_case : str = logging.get_logger(__name__)
def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
try:
with open(UpperCamelCase , '''rb''' ) as flax_state_f:
_a = from_bytes(UpperCamelCase , flax_state_f.read() )
except UnpicklingError as e:
try:
with open(UpperCamelCase ) as f:
if f.read().startswith('''version''' ):
raise OSError(
'''You seem to have cloned a repository without having git-lfs installed. Please'''
''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the'''
''' folder you cloned.''' )
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ' )
return load_flax_weights_in_pytorch_model(UpperCamelCase , UpperCamelCase )
def snake_case_ (UpperCamelCase : Any , UpperCamelCase : int ):
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
# check if we have bf16 weights
_a = flatten_dict(jax.tree_util.tree_map(lambda UpperCamelCase : x.dtype == jnp.bfloataa , UpperCamelCase ) ).values()
if any(UpperCamelCase ):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '''
'''before loading those in PyTorch model.''' )
_a = jax.tree_util.tree_map(
lambda UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCamelCase )
_a = ''''''
_a = flatten_dict(UpperCamelCase , sep='''.''' )
_a = pt_model.state_dict()
# keep track of unexpected & missing keys
_a = []
_a = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
_a = flax_key_tuple.split('''.''' )
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
_a = flax_key_tuple_array[:-1] + ['''weight''']
_a = jnp.transpose(UpperCamelCase , (3, 2, 0, 1) )
elif flax_key_tuple_array[-1] == "kernel":
_a = flax_key_tuple_array[:-1] + ['''weight''']
_a = flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
_a = flax_key_tuple_array[:-1] + ['''weight''']
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(UpperCamelCase ):
_a = (
flax_key_tuple_string.replace('''_0''' , '''.0''' )
.replace('''_1''' , '''.1''' )
.replace('''_2''' , '''.2''' )
.replace('''_3''' , '''.3''' )
.replace('''_4''' , '''.4''' )
.replace('''_5''' , '''.5''' )
.replace('''_6''' , '''.6''' )
.replace('''_7''' , '''.7''' )
.replace('''_8''' , '''.8''' )
.replace('''_9''' , '''.9''' )
)
_a = '''.'''.join(UpperCamelCase )
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '
f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
else:
# add weight to pytorch dict
_a = np.asarray(UpperCamelCase ) if not isinstance(UpperCamelCase , np.ndarray ) else flax_tensor
_a = torch.from_numpy(UpperCamelCase )
# remove from missing keys
missing_keys.remove(UpperCamelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(UpperCamelCase )
pt_model.load_state_dict(UpperCamelCase )
# re-transform missing_keys to list
_a = list(UpperCamelCase )
if len(UpperCamelCase ) > 0:
logger.warning(
'''Some weights of the Flax model were not used when initializing the PyTorch model'''
f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'
f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'
''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'''
f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'
''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'''
''' FlaxBertForSequenceClassification model).''' )
if len(UpperCamelCase ) > 0:
logger.warning(
f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'
f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'
''' use it for predictions and inference.''' )
return pt_model
| 22 |
'''simple docstring'''
import qiskit
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
_a = qiskit.Aer.get_backend('''aer_simulator''' )
_a = qiskit.QuantumCircuit(4 , 2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 , 2 )
qc_ha.cx(1 , 2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 , 1 , 3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 , 0 ) # extract XOR value
qc_ha.measure(3 , 1 ) # extract AND value
# Execute the circuit on the qasm simulator
_a = qiskit.execute(UpperCamelCase , UpperCamelCase , shots=1000 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(UpperCamelCase )
if __name__ == "__main__":
_snake_case : Tuple = half_adder(1, 1)
print(F'''Half Adder Output Qubit Counts: {counts}''')
| 22 | 1 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def snake_case_ (UpperCamelCase : str = "AAPL" ):
'''simple docstring'''
_a = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'
_a = BeautifulSoup(requests.get(UpperCamelCase ).text , '''html.parser''' )
_a = '''My(6px) Pos(r) smartphone_Mt(6px)'''
return soup.find('''div''' , class_=class_ ).find('''span''' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
| 22 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
if len(UpperCamelCase ) != 32:
raise ValueError('''Input must be of length 32''' )
_a = B''''''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
_a = format(UpperCamelCase , '''08x''' )[-8:]
_a = B''''''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' )
return little_endian_hex
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
_a = B''''''
for char in message:
bit_string += format(UpperCamelCase , '''08b''' ).encode('''utf-8''' )
_a = format(len(UpperCamelCase ) , '''064b''' ).encode('''utf-8''' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(UpperCamelCase ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
if len(UpperCamelCase ) % 512 != 0:
raise ValueError('''Input must have length that\'s a multiple of 512''' )
for pos in range(0 , len(UpperCamelCase ) , 512 ):
_a = bit_string[pos : pos + 512]
_a = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
_a = format(UpperCamelCase , '''032b''' )
_a = ''''''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(UpperCamelCase , 2 )
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
return (a + b) % 2**32
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
if shift < 0:
raise ValueError('''Shift must be non-negative''' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
_a = preprocess(UpperCamelCase )
_a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
_a = 0X67452301
_a = 0Xefcdab89
_a = 0X98badcfe
_a = 0X10325476
_a = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(UpperCamelCase ):
_a = aa
_a = ba
_a = ca
_a = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
_a = d ^ (b & (c ^ d))
_a = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
_a = c ^ (d & (b ^ c))
_a = (5 * i + 1) % 16
elif i <= 47:
_a = b ^ c ^ d
_a = (3 * i + 5) % 16
else:
_a = c ^ (b | not_aa(UpperCamelCase ))
_a = (7 * i) % 16
_a = (f + a + added_consts[i] + block_words[g]) % 2**32
_a = d
_a = c
_a = b
_a = sum_aa(UpperCamelCase , left_rotate_aa(UpperCamelCase , shift_amounts[i] ) )
# Add hashed chunk to running total
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 | 1 |
'''simple docstring'''
import copy
import json
import os
import tempfile
from transformers import is_torch_available
from .test_configuration_utils import config_common_kwargs
class A ( _a ):
def __init__( self : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : Optional[int] ) -> Dict:
"""simple docstring"""
_a = parent
_a = config_class
_a = has_text_modality
_a = kwargs
_a = common_properties
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
_a = self.config_class(**self.inputs_dict )
_a = (
['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers''']
if self.common_properties is None
else self.common_properties
)
# Add common fields for text models
if self.has_text_modality:
common_properties.extend(['''vocab_size'''] )
# Test that config has the common properties as getters
for prop in common_properties:
self.parent.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) , msg=F'`{prop}` does not exist' )
# Test that config has the common properties as setter
for idx, name in enumerate(lowerCAmelCase_ ):
try:
setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
self.parent.assertEqual(
getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ , msg=F'`{name} value {idx} expected, but was {getattr(lowerCAmelCase_ , lowerCAmelCase_ )}' )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
# Test if config class can be called with Config(prop_name=..)
for idx, name in enumerate(lowerCAmelCase_ ):
try:
_a = self.config_class(**{name: idx} )
self.parent.assertEqual(
getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ , msg=F'`{name} value {idx} expected, but was {getattr(lowerCAmelCase_ , lowerCAmelCase_ )}' )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
_a = self.config_class(**self.inputs_dict )
_a = json.loads(config.to_json_string() )
for key, value in self.inputs_dict.items():
self.parent.assertEqual(obj[key] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
_a = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a = os.path.join(lowerCAmelCase_ , '''config.json''' )
config_first.to_json_file(lowerCAmelCase_ )
_a = self.config_class.from_json_file(lowerCAmelCase_ )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def __lowerCAmelCase ( self : List[Any] ) -> Any:
"""simple docstring"""
_a = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
config_first.save_pretrained(lowerCAmelCase_ )
_a = self.config_class.from_pretrained(lowerCAmelCase_ )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def __lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
_a = self.config_class(**self.inputs_dict )
_a = '''test'''
with tempfile.TemporaryDirectory() as tmpdirname:
_a = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ )
config_first.save_pretrained(lowerCAmelCase_ )
_a = self.config_class.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
_a = self.config_class(**self.inputs_dict , num_labels=5 )
self.parent.assertEqual(len(config.idalabel ) , 5 )
self.parent.assertEqual(len(config.labelaid ) , 5 )
_a = 3
self.parent.assertEqual(len(config.idalabel ) , 3 )
self.parent.assertEqual(len(config.labelaid ) , 3 )
def __lowerCAmelCase ( self : Optional[Any] ) -> str:
"""simple docstring"""
if self.config_class.is_composition:
return
_a = self.config_class()
self.parent.assertIsNotNone(lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] ) -> Tuple:
"""simple docstring"""
_a = copy.deepcopy(lowerCAmelCase_ )
_a = self.config_class(**lowerCAmelCase_ )
_a = []
for key, value in config_common_kwargs.items():
if key == "torch_dtype":
if not is_torch_available():
continue
else:
import torch
if config.torch_dtype != torch.floataa:
wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) )
elif getattr(lowerCAmelCase_ , lowerCAmelCase_ ) != value:
wrong_values.append((key, getattr(lowerCAmelCase_ , lowerCAmelCase_ ), value) )
if len(lowerCAmelCase_ ) > 0:
_a = '''\n'''.join([F'- {v[0]}: got {v[1]} instead of {v[2]}' for v in wrong_values] )
raise ValueError(F'The following keys were not properly set in the config:\n{errors}' )
def __lowerCAmelCase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.create_and_test_config_to_json_string()
self.create_and_test_config_to_json_file()
self.create_and_test_config_from_and_save_pretrained()
self.create_and_test_config_from_and_save_pretrained_subfolder()
self.create_and_test_config_with_num_labels()
self.check_config_can_be_init_without_params()
self.check_config_arguments_init()
| 22 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class A ( unittest.TestCase ):
def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]=7 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=18 , lowerCAmelCase_ : Any=30 , lowerCAmelCase_ : Optional[int]=4_00 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=True , ) -> Optional[Any]:
"""simple docstring"""
_a = size if size is not None else {'''height''': 18, '''width''': 18}
_a = parent
_a = batch_size
_a = num_channels
_a = image_size
_a = min_resolution
_a = max_resolution
_a = do_resize
_a = size
_a = do_normalize
def __lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4],
[-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class A ( _a ,unittest.TestCase ):
lowercase_ = ImageGPTImageProcessor if is_vision_available() else None
def __lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_a = ImageGPTImageProcessingTester(self )
@property
def __lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def __lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase_ , '''clusters''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''size''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''do_normalize''' ) )
def __lowerCAmelCase ( self : List[Any] ) -> List[str]:
"""simple docstring"""
_a = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} )
_a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
def __lowerCAmelCase ( self : str ) -> str:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
_a = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a = os.path.join(lowerCAmelCase_ , '''image_processor.json''' )
image_processor_first.to_json_file(lowerCAmelCase_ )
_a = self.image_processing_class.from_json_file(lowerCAmelCase_ ).to_dict()
_a = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowerCAmelCase_ )
_a = self.image_processing_class.from_pretrained(lowerCAmelCase_ ).to_dict()
_a = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowerCAmelCase_ )
@unittest.skip('''ImageGPT requires clusters at initialization''' )
def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
pass
def snake_case_ ():
'''simple docstring'''
_a = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' )
_a = Image.open(dataset[4]['''file'''] )
_a = Image.open(dataset[5]['''file'''] )
_a = [imagea, imagea]
return images
@require_vision
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_a = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' )
_a = prepare_images()
# test non-batched
_a = image_processing(images[0] , return_tensors='''pt''' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 10_24) )
_a = [3_06, 1_91, 1_91]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCAmelCase_ )
# test batched
_a = image_processing(lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 10_24) )
_a = [3_03, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
_a = (boundary[1] - boundary[0]) / steps
_a = boundary[0]
_a = boundary[1]
_a = make_points(UpperCamelCase , UpperCamelCase , UpperCamelCase )
_a = 0.0
y += (h / 2.0) * f(UpperCamelCase )
for i in x_i:
# print(i)
y += h * f(UpperCamelCase )
y += (h / 2.0) * f(UpperCamelCase )
return y
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ):
'''simple docstring'''
_a = a + h
while x < (b - h):
yield x
_a = x + h
def snake_case_ (UpperCamelCase : str ): # enter your function here
'''simple docstring'''
_a = (x - 0) * (x - 0)
return y
def snake_case_ ():
'''simple docstring'''
_a = 0.0 # Lower bound of integration
_a = 1.0 # Upper bound of integration
_a = 10.0 # define number of steps or resolution
_a = [a, b] # define boundary of integration
_a = method_a(UpperCamelCase , UpperCamelCase )
print(f'y = {y}' )
if __name__ == "__main__":
main()
| 22 |
'''simple docstring'''
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
_a = AutoTokenizer.from_pretrained('''google/mt5-small''' )
_a = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
_a = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
_a = shift_tokens_right(lowerCAmelCase_ , model.config.pad_token_id , model.config.decoder_start_token_id )
_a = model(lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_ ).logits
_a = optax.softmax_cross_entropy(lowerCAmelCase_ , onehot(lowerCAmelCase_ , logits.shape[-1] ) ).mean()
_a = -(labels.shape[-1] * loss.item())
_a = -8_4.9_1_2_7
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 22 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : List[Any] ) -> int:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_euler''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_euler''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1
def __lowerCAmelCase ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_dpmpp_2m''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe(
[prompt] , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=lowerCAmelCase_ , )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array(
[0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 22 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
_snake_case : Optional[Any] = 8
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Dict=BITS ):
'''simple docstring'''
_a = x.device
_a = (x * 255).int().clamp(0 , 255 )
_a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase )
_a = rearrange(UpperCamelCase , '''d -> d 1 1''' )
_a = rearrange(UpperCamelCase , '''b c h w -> b c 1 h w''' )
_a = ((x & mask) != 0).float()
_a = rearrange(UpperCamelCase , '''b c d h w -> b (c d) h w''' )
_a = bits * 2 - 1
return bits
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Any=BITS ):
'''simple docstring'''
_a = x.device
_a = (x > 0).int()
_a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase , dtype=torch.intaa )
_a = rearrange(UpperCamelCase , '''d -> d 1 1''' )
_a = rearrange(UpperCamelCase , '''b (c d) h w -> b c d h w''' , d=8 )
_a = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' )
return (dec / 255).clamp(0.0 , 1.0 )
def snake_case_ (self : Union[str, Any] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : float = 0.0 , UpperCamelCase : bool = True , UpperCamelCase : Any=None , UpperCamelCase : bool = True , ):
'''simple docstring'''
if self.num_inference_steps is None:
raise ValueError(
'''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
_a = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
_a = self.alphas_cumprod[timestep]
_a = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
_a = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
_a = self.bit_scale
if self.config.clip_sample:
_a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
_a = self._get_variance(UpperCamelCase , UpperCamelCase )
_a = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
_a = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
_a = model_output.device if torch.is_tensor(UpperCamelCase ) else '''cpu'''
_a = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase ).to(UpperCamelCase )
_a = self._get_variance(UpperCamelCase , UpperCamelCase ) ** 0.5 * eta * noise
_a = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase )
def snake_case_ (self : Any , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : str="epsilon" , UpperCamelCase : Dict=None , UpperCamelCase : bool = True , ):
'''simple docstring'''
_a = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
_a , _a = torch.split(UpperCamelCase , sample.shape[1] , dim=1 )
else:
_a = None
# 1. compute alphas, betas
_a = self.alphas_cumprod[t]
_a = self.alphas_cumprod[t - 1] if t > 0 else self.one
_a = 1 - alpha_prod_t
_a = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
_a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
_a = model_output
else:
raise ValueError(f'Unsupported prediction_type {prediction_type}.' )
# 3. Clip "predicted x_0"
_a = self.bit_scale
if self.config.clip_sample:
_a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_a = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
_a = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_a = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_a = 0
if t > 0:
_a = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase ).to(model_output.device )
_a = (self._get_variance(UpperCamelCase , predicted_variance=UpperCamelCase ) ** 0.5) * noise
_a = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase )
class A ( _a ):
def __init__( self : Any , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , lowerCAmelCase_ : Optional[float] = 1.0 , ) -> int:
"""simple docstring"""
super().__init__()
_a = bit_scale
_a = (
ddim_bit_scheduler_step if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ )
@torch.no_grad()
def __call__( self : List[Any] , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 50 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Any , ) -> Union[Tuple, ImagePipelineOutput]:
"""simple docstring"""
_a = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=lowerCAmelCase_ , )
_a = decimal_to_bits(lowerCAmelCase_ ) * self.bit_scale
_a = latents.to(self.device )
self.scheduler.set_timesteps(lowerCAmelCase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
_a = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample
# compute the previous noisy sample x_t -> x_t-1
_a = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample
_a = bits_to_decimal(lowerCAmelCase_ )
if output_type == "pil":
_a = self.numpy_to_pil(lowerCAmelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
def snake_case_ (UpperCamelCase : list[int] , UpperCamelCase : int ):
'''simple docstring'''
_a = len(UpperCamelCase )
_a = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
_a = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
_a = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
_a = subset[i - 1][j]
if arr[i - 1] <= j:
_a = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case : Optional[int] = logging.get_logger(__name__)
_snake_case : Any = {
'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json',
'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json',
'junnyu/roformer_chinese_char_small': (
'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json'
),
'junnyu/roformer_chinese_char_base': (
'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json'
),
'junnyu/roformer_small_discriminator': (
'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json'
),
'junnyu/roformer_small_generator': (
'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json'
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class A ( _a ):
lowercase_ = 'roformer'
def __init__( self : str , lowerCAmelCase_ : int=5_00_00 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int=7_68 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : List[str]=30_72 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : int=15_36 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : Dict=1e-12 , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Tuple=True , **lowerCAmelCase_ : Optional[int] , ) -> str:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
_a = vocab_size
_a = hidden_size if embedding_size is None else embedding_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = hidden_act
_a = intermediate_size
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = initializer_range
_a = layer_norm_eps
_a = rotary_value
_a = use_cache
class A ( _a ):
@property
def __lowerCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
_a = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 22 | 1 |
'''simple docstring'''
import requests
_snake_case : Union[str, Any] = 'https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey='
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
_a = requests.get(_NEWS_API + bbc_news_api_key ).json()
# each article in the list is a dict
for i, article in enumerate(bbc_news_page['''articles'''] , 1 ):
print(f'{i}.) {article["title"]}' )
if __name__ == "__main__":
fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
| 22 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class A :
lowercase_ = 42
lowercase_ = 42
class A :
def __init__( self : Optional[Any] , lowerCAmelCase_ : int ) -> str:
"""simple docstring"""
_a = [[] for _ in range(lowerCAmelCase_ )]
_a = size
def __getitem__( self : Any , lowerCAmelCase_ : int ) -> Iterator[Edge]:
"""simple docstring"""
return iter(self._graph[vertex] )
@property
def __lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
return self._size
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Dict:
"""simple docstring"""
if weight not in (0, 1):
raise ValueError('''Edge weight must be either 0 or 1.''' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('''Vertex indexes must be in [0; size).''' )
self._graph[from_vertex].append(Edge(lowerCAmelCase_ , lowerCAmelCase_ ) )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> int | None:
"""simple docstring"""
_a = deque([start_vertex] )
_a = [None] * self.size
_a = 0
while queue:
_a = queue.popleft()
_a = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
_a = current_distance + edge.weight
_a = distances[edge.destination_vertex]
if (
isinstance(lowerCAmelCase_ , lowerCAmelCase_ )
and new_distance >= dest_vertex_distance
):
continue
_a = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('''No path from start_vertex to finish_vertex.''' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 | 1 |
'''simple docstring'''
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('3.8'):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def snake_case_ (UpperCamelCase : Any , UpperCamelCase : List[Any]=False ):
'''simple docstring'''
try:
_a = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_a = default
else:
# KEY is set, convert it to True or False.
try:
_a = strtobool(UpperCamelCase )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f'If set, {key} must be yes or no.' )
return _value
_snake_case : Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False)
_snake_case : List[str] = parse_flag_from_env('RUN_REMOTE', default=False)
_snake_case : str = parse_flag_from_env('RUN_LOCAL', default=True)
_snake_case : int = parse_flag_from_env('RUN_PACKAGED', default=True)
# Compression
_snake_case : Any = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4')
_snake_case : Optional[Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr')
_snake_case : Optional[int] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard')
# Audio
_snake_case : Any = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'),
reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ',
)
# Beam
_snake_case : int = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'),
reason='test requires apache-beam and a compatible dill version',
)
# Dill-cloudpickle compatibility
_snake_case : Any = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('0.3.2'),
reason='test requires dill>0.3.2 for cloudpickle compatibility',
)
# Windows
_snake_case : Optional[Any] = pytest.mark.skipif(
sys.platform == 'win32',
reason='test should not be run on Windows',
)
def snake_case_ (UpperCamelCase : List[str] ):
'''simple docstring'''
try:
import faiss # noqa
except ImportError:
_a = unittest.skip('''test requires faiss''' )(UpperCamelCase )
return test_case
def snake_case_ (UpperCamelCase : List[Any] ):
'''simple docstring'''
try:
import regex # noqa
except ImportError:
_a = unittest.skip('''test requires regex''' )(UpperCamelCase )
return test_case
def snake_case_ (UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
try:
import elasticsearch # noqa
except ImportError:
_a = unittest.skip('''test requires elasticsearch''' )(UpperCamelCase )
return test_case
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
try:
import sqlalchemy # noqa
except ImportError:
_a = unittest.skip('''test requires sqlalchemy''' )(UpperCamelCase )
return test_case
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
if not config.TORCH_AVAILABLE:
_a = unittest.skip('''test requires PyTorch''' )(UpperCamelCase )
return test_case
def snake_case_ (UpperCamelCase : Dict ):
'''simple docstring'''
if not config.TF_AVAILABLE:
_a = unittest.skip('''test requires TensorFlow''' )(UpperCamelCase )
return test_case
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
if not config.JAX_AVAILABLE:
_a = unittest.skip('''test requires JAX''' )(UpperCamelCase )
return test_case
def snake_case_ (UpperCamelCase : List[str] ):
'''simple docstring'''
if not config.PIL_AVAILABLE:
_a = unittest.skip('''test requires Pillow''' )(UpperCamelCase )
return test_case
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
try:
import transformers # noqa F401
except ImportError:
return unittest.skip('''test requires transformers''' )(UpperCamelCase )
else:
return test_case
def snake_case_ (UpperCamelCase : Tuple ):
'''simple docstring'''
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip('''test requires tiktoken''' )(UpperCamelCase )
else:
return test_case
def snake_case_ (UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
try:
import spacy # noqa F401
except ImportError:
return unittest.skip('''test requires spacy''' )(UpperCamelCase )
else:
return test_case
def snake_case_ (UpperCamelCase : Optional[Any] ):
'''simple docstring'''
def _require_spacy_model(UpperCamelCase : Tuple ):
try:
import spacy # noqa F401
spacy.load(UpperCamelCase )
except ImportError:
return unittest.skip('''test requires spacy''' )(UpperCamelCase )
except OSError:
return unittest.skip('''test requires spacy model \'{}\''''.format(UpperCamelCase ) )(UpperCamelCase )
else:
return test_case
return _require_spacy_model
def snake_case_ (UpperCamelCase : List[Any] ):
'''simple docstring'''
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip('''test requires pyspark''' )(UpperCamelCase )
else:
return test_case
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip('''test requires joblibspark''' )(UpperCamelCase )
else:
return test_case
def snake_case_ (UpperCamelCase : Tuple ):
'''simple docstring'''
if not _run_slow_tests or _run_slow_tests == 0:
_a = unittest.skip('''test is slow''' )(UpperCamelCase )
return test_case
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
if not _run_local_tests or _run_local_tests == 0:
_a = unittest.skip('''test is local''' )(UpperCamelCase )
return test_case
def snake_case_ (UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
if not _run_packaged_tests or _run_packaged_tests == 0:
_a = unittest.skip('''test is packaged''' )(UpperCamelCase )
return test_case
def snake_case_ (UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
if not _run_remote_tests or _run_remote_tests == 0:
_a = unittest.skip('''test requires remote''' )(UpperCamelCase )
return test_case
def snake_case_ (*UpperCamelCase : str ):
'''simple docstring'''
def decorate(cls : List[str] ):
for name, fn in cls.__dict__.items():
if callable(UpperCamelCase ) and name.startswith('''test''' ):
for decorator in decorators:
_a = decorator(UpperCamelCase )
setattr(cls , UpperCamelCase , UpperCamelCase )
return cls
return decorate
class A ( _a ):
pass
class A ( _a ):
lowercase_ = 0
lowercase_ = 1
lowercase_ = 2
@contextmanager
def snake_case_ (UpperCamelCase : Tuple=OfflineSimulationMode.CONNECTION_FAILS , UpperCamelCase : Tuple=1e-16 ):
'''simple docstring'''
_a = requests.Session().request
def timeout_request(UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ):
# Change the url to an invalid url so that the connection hangs
_a = '''https://10.255.255.1'''
if kwargs.get('''timeout''' ) is None:
raise RequestWouldHangIndefinitelyError(
f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' )
_a = timeout
try:
return online_request(UpperCamelCase , UpperCamelCase , **UpperCamelCase )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
_a = url
_a = e.args[0]
_a = (max_retry_error.args[0].replace('''10.255.255.1''' , f'OfflineMock[{url}]' ),)
_a = (max_retry_error,)
raise
def raise_connection_error(UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , **UpperCamelCase : Dict ):
raise requests.ConnectionError('''Offline mode is enabled.''' , request=UpperCamelCase )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch('''requests.Session.send''' , UpperCamelCase ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch('''requests.Session.request''' , UpperCamelCase ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch('''datasets.config.HF_DATASETS_OFFLINE''' , UpperCamelCase ):
yield
else:
raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' )
@contextmanager
def snake_case_ (*UpperCamelCase : int , **UpperCamelCase : List[Any] ):
'''simple docstring'''
_a = str(Path().resolve() )
with tempfile.TemporaryDirectory(*UpperCamelCase , **UpperCamelCase ) as tmp_dir:
try:
os.chdir(UpperCamelCase )
yield
finally:
os.chdir(UpperCamelCase )
@contextmanager
def snake_case_ ():
'''simple docstring'''
import gc
gc.collect()
_a = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def snake_case_ ():
'''simple docstring'''
import gc
gc.collect()
_a = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
return deepcopy(UpperCamelCase ).integers(0 , 100 , 10 ).tolist() == deepcopy(UpperCamelCase ).integers(0 , 100 , 10 ).tolist()
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
import decorator
from requests.exceptions import HTTPError
def _wrapper(UpperCamelCase : int , *UpperCamelCase : Optional[int] , **UpperCamelCase : Union[str, Any] ):
try:
return func(*UpperCamelCase , **UpperCamelCase )
except HTTPError as err:
if str(UpperCamelCase ).startswith('''500''' ) or str(UpperCamelCase ).startswith('''502''' ):
pytest.xfail(str(UpperCamelCase ) )
raise err
return decorator.decorator(_wrapper , UpperCamelCase )
class A :
def __init__( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] ) -> Dict:
"""simple docstring"""
_a = returncode
_a = stdout
_a = stderr
async def snake_case_ (UpperCamelCase : Any , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
while True:
_a = await stream.readline()
if line:
callback(UpperCamelCase )
else:
break
async def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=None , UpperCamelCase : Dict=None , UpperCamelCase : int=False , UpperCamelCase : Any=False ):
'''simple docstring'''
if echo:
print('''\nRunning: ''' , ''' '''.join(UpperCamelCase ) )
_a = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=UpperCamelCase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
_a = []
_a = []
def tee(UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : List[str] , UpperCamelCase : str="" ):
_a = line.decode('''utf-8''' ).rstrip()
sink.append(UpperCamelCase )
if not quiet:
print(UpperCamelCase , UpperCamelCase , file=UpperCamelCase )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda UpperCamelCase : tee(UpperCamelCase , UpperCamelCase , sys.stdout , label='''stdout:''' ) ),
_read_stream(p.stderr , lambda UpperCamelCase : tee(UpperCamelCase , UpperCamelCase , sys.stderr , label='''stderr:''' ) ),
] , timeout=UpperCamelCase , )
return _RunOutput(await p.wait() , UpperCamelCase , UpperCamelCase )
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Tuple=None , UpperCamelCase : Union[str, Any]=180 , UpperCamelCase : Dict=False , UpperCamelCase : List[Any]=True ):
'''simple docstring'''
_a = asyncio.get_event_loop()
_a = loop.run_until_complete(
_stream_subprocess(UpperCamelCase , env=UpperCamelCase , stdin=UpperCamelCase , timeout=UpperCamelCase , quiet=UpperCamelCase , echo=UpperCamelCase ) )
_a = ''' '''.join(UpperCamelCase )
if result.returncode > 0:
_a = '''\n'''.join(result.stderr )
raise RuntimeError(
f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n'
f'The combined stderr from workers follows:\n{stderr}' )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(f'\'{cmd_str}\' produced no output.' )
return result
def snake_case_ ():
'''simple docstring'''
_a = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' )
_a = re.sub(R'''^gw''' , '''''' , UpperCamelCase , 0 , re.M )
return int(UpperCamelCase )
def snake_case_ ():
'''simple docstring'''
_a = 2_9500
_a = pytest_xdist_worker_id()
return port + uniq_delta
| 22 |
'''simple docstring'''
from math import pi, sqrt
def snake_case_ (UpperCamelCase : float ):
'''simple docstring'''
if num <= 0:
raise ValueError('''math domain error''' )
if num > 171.5:
raise OverflowError('''math range error''' )
elif num - int(UpperCamelCase ) not in (0, 0.5):
raise NotImplementedError('''num must be an integer or a half-integer''' )
elif num == 0.5:
return sqrt(UpperCamelCase )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def snake_case_ ():
'''simple docstring'''
assert gamma(0.5 ) == sqrt(UpperCamelCase )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
_snake_case : Optional[Any] = 1.0
while num:
_snake_case : Dict = float(input('Gamma of: '))
print(F'''gamma({num}) = {gamma(num)}''')
print('\nEnter 0 to exit...')
| 22 | 1 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
_a = 0
def __lowerCAmelCase ( self : str ) -> str:
"""simple docstring"""
_a = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
_a = Path(lowerCAmelCase_ ) / '''preprocessor_config.json'''
_a = Path(lowerCAmelCase_ ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(lowerCAmelCase_ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(lowerCAmelCase_ , '''w''' ) )
_a = AutoImageProcessor.from_pretrained(lowerCAmelCase_ )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] ) -> Any:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
_a = Path(lowerCAmelCase_ ) / '''preprocessor_config.json'''
_a = Path(lowerCAmelCase_ ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(lowerCAmelCase_ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(lowerCAmelCase_ , '''w''' ) )
_a = AutoImageProcessor.from_pretrained(lowerCAmelCase_ )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> List[str]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
_a = CLIPConfig()
# Create a dummy config file with image_proceesor_type
_a = Path(lowerCAmelCase_ ) / '''preprocessor_config.json'''
_a = Path(lowerCAmelCase_ ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(lowerCAmelCase_ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(lowerCAmelCase_ , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
_a = AutoImageProcessor.from_pretrained(lowerCAmelCase_ ).to_dict()
config_dict.pop('''image_processor_type''' )
_a = CLIPImageProcessor(**lowerCAmelCase_ )
# save in new folder
model_config.save_pretrained(lowerCAmelCase_ )
config.save_pretrained(lowerCAmelCase_ )
_a = AutoImageProcessor.from_pretrained(lowerCAmelCase_ )
# make sure private variable is not incorrectly saved
_a = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
_a = Path(lowerCAmelCase_ ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(lowerCAmelCase_ , '''w''' ) , )
_a = AutoImageProcessor.from_pretrained(lowerCAmelCase_ )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
with self.assertRaisesRegex(
lowerCAmelCase_ , '''clip-base is not a local folder and is not a valid model identifier''' ):
_a = AutoImageProcessor.from_pretrained('''clip-base''' )
def __lowerCAmelCase ( self : Optional[int] ) -> int:
"""simple docstring"""
with self.assertRaisesRegex(
lowerCAmelCase_ , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
_a = AutoImageProcessor.from_pretrained(lowerCAmelCase_ , revision='''aaaaaa''' )
def __lowerCAmelCase ( self : List[str] ) -> Any:
"""simple docstring"""
with self.assertRaisesRegex(
lowerCAmelCase_ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
_a = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
with self.assertRaises(lowerCAmelCase_ ):
_a = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(lowerCAmelCase_ ):
_a = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=lowerCAmelCase_ )
_a = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=lowerCAmelCase_ )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(lowerCAmelCase_ )
_a = AutoImageProcessor.from_pretrained(lowerCAmelCase_ , trust_remote_code=lowerCAmelCase_ )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def __lowerCAmelCase ( self : List[str] ) -> Any:
"""simple docstring"""
try:
AutoConfig.register('''custom''' , lowerCAmelCase_ )
AutoImageProcessor.register(lowerCAmelCase_ , lowerCAmelCase_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(lowerCAmelCase_ ):
AutoImageProcessor.register(lowerCAmelCase_ , lowerCAmelCase_ )
with tempfile.TemporaryDirectory() as tmpdirname:
_a = Path(lowerCAmelCase_ ) / '''preprocessor_config.json'''
_a = Path(lowerCAmelCase_ ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(lowerCAmelCase_ , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(lowerCAmelCase_ , '''w''' ) )
_a = CustomImageProcessor.from_pretrained(lowerCAmelCase_ )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(lowerCAmelCase_ )
_a = AutoImageProcessor.from_pretrained(lowerCAmelCase_ )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def __lowerCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
class A ( _a ):
lowercase_ = True
try:
AutoConfig.register('''custom''' , lowerCAmelCase_ )
AutoImageProcessor.register(lowerCAmelCase_ , lowerCAmelCase_ )
# If remote code is not set, the default is to use local
_a = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
_a = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=lowerCAmelCase_ )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
_a = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=lowerCAmelCase_ )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(lowerCAmelCase_ , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 22 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : List[Any] ) -> int:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_euler''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_euler''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1
def __lowerCAmelCase ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_dpmpp_2m''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe(
[prompt] , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=lowerCAmelCase_ , )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array(
[0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 22 | 1 |
'''simple docstring'''
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
_snake_case : Tuple = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8')
_snake_case : Optional[Any] = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode('utf-8').split()
_snake_case : Optional[int] = '|'.join(sys.argv[1:])
_snake_case : Optional[int] = re.compile(RF'''^({joined_dirs}).*?\.py$''')
_snake_case : List[Any] = [x for x in modified_files if regex.match(x)]
print(' '.join(relevant_modified_files), end='')
| 22 |
'''simple docstring'''
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
_snake_case : Any = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
_snake_case : Any = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n'
_snake_case : List[Any] = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n'
def snake_case_ (UpperCamelCase : Tuple ):
'''simple docstring'''
def remove_articles(UpperCamelCase : Optional[int] ):
_a = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE )
return re.sub(UpperCamelCase , ''' ''' , UpperCamelCase )
def white_space_fix(UpperCamelCase : Union[str, Any] ):
return " ".join(text.split() )
def remove_punc(UpperCamelCase : str ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(UpperCamelCase : Tuple ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase ) ) ) )
def snake_case_ (UpperCamelCase : int , UpperCamelCase : Dict ):
'''simple docstring'''
return int(normalize_answer(UpperCamelCase ) == normalize_answer(UpperCamelCase ) )
def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : List[str] ):
'''simple docstring'''
_a = [any(compute_exact(UpperCamelCase , UpperCamelCase ) for ref in refs ) for pred, refs in zip(UpperCamelCase , UpperCamelCase )]
return (sum(UpperCamelCase ) / len(UpperCamelCase )) * 100
def snake_case_ (UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
_a = [rgram for rgrams in rgramslist for rgram in rgrams]
_a = Counter(UpperCamelCase )
_a = Counter(UpperCamelCase )
_a = Counter()
for sgram, scount in sgramcounter.items():
_a = scount * numref
_a = Counter(UpperCamelCase )
_a = Counter()
for cgram, ccount in cgramcounter.items():
_a = ccount * numref
# KEEP
_a = sgramcounter_rep & cgramcounter_rep
_a = keepgramcounter_rep & rgramcounter
_a = sgramcounter_rep & rgramcounter
_a = 0
_a = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(UpperCamelCase ) > 0:
_a = keeptmpscorea / len(UpperCamelCase )
if len(UpperCamelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_a = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_a = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_a = sgramcounter_rep - cgramcounter_rep
_a = delgramcounter_rep - rgramcounter
_a = sgramcounter_rep - rgramcounter
_a = 0
_a = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
if len(UpperCamelCase ) > 0:
_a = deltmpscorea / len(UpperCamelCase )
# ADDITION
_a = set(UpperCamelCase ) - set(UpperCamelCase )
_a = set(UpperCamelCase ) & set(UpperCamelCase )
_a = set(UpperCamelCase ) - set(UpperCamelCase )
_a = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(UpperCamelCase ) > 0:
_a = addtmpscore / len(UpperCamelCase )
if len(UpperCamelCase ) > 0:
_a = addtmpscore / len(UpperCamelCase )
_a = 0
if addscore_precision > 0 or addscore_recall > 0:
_a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ):
'''simple docstring'''
_a = len(UpperCamelCase )
_a = ssent.split(''' ''' )
_a = csent.split(''' ''' )
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
for rsent in rsents:
_a = rsent.split(''' ''' )
_a = []
_a = []
_a = []
ragramslist.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
_a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_a = sum([delascore, delascore, delascore, delascore] ) / 4
_a = sum([addascore, addascore, addascore, addascore] ) / 4
_a = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def snake_case_ (UpperCamelCase : str , UpperCamelCase : bool = True , UpperCamelCase : str = "13a" , UpperCamelCase : bool = True ):
'''simple docstring'''
if lowercase:
_a = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_a = sacrebleu.metrics.bleu._get_tokenizer(UpperCamelCase )()(UpperCamelCase )
else:
_a = sacrebleu.TOKENIZERS[tokenizer]()(UpperCamelCase )
elif tokenizer == "moses":
_a = sacremoses.MosesTokenizer().tokenize(UpperCamelCase , return_str=UpperCamelCase , escape=UpperCamelCase )
elif tokenizer == "penn":
_a = sacremoses.MosesTokenizer().penn_tokenize(UpperCamelCase , return_str=UpperCamelCase )
else:
_a = sentence
if not return_str:
_a = normalized_sent.split()
return normalized_sent
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Dict ):
'''simple docstring'''
if not (len(UpperCamelCase ) == len(UpperCamelCase ) == len(UpperCamelCase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_a = 0
for src, pred, refs in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ):
sari_score += SARIsent(normalize(UpperCamelCase ) , normalize(UpperCamelCase ) , [normalize(UpperCamelCase ) for sent in refs] )
_a = sari_score / len(UpperCamelCase )
return 100 * sari_score
def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : List[str]="exp" , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[int]=False , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=False , ):
'''simple docstring'''
_a = len(references[0] )
if any(len(UpperCamelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a = [[refs[i] for refs in references] for i in range(UpperCamelCase )]
_a = sacrebleu.corpus_bleu(
UpperCamelCase , UpperCamelCase , smooth_method=UpperCamelCase , smooth_value=UpperCamelCase , force=UpperCamelCase , lowercase=UpperCamelCase , use_effective_order=UpperCamelCase , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def __lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any ) -> Dict:
"""simple docstring"""
_a = {}
result.update({'''sari''': compute_sari(sources=lowerCAmelCase_ , predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
result.update({'''exact''': compute_em(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
return result
| 22 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_snake_case : str = logging.get_logger(__name__)
_snake_case : Tuple = {'vocab_file': 'sentencepiece.model'}
_snake_case : List[Any] = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
}
_snake_case : str = {
'google/rembert': 256,
}
class A ( _a ):
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]="[CLS]" , lowerCAmelCase_ : Any="[SEP]" , lowerCAmelCase_ : Dict="[UNK]" , lowerCAmelCase_ : Tuple="[SEP]" , lowerCAmelCase_ : List[str]="[PAD]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : Optional[Any]="[MASK]" , **lowerCAmelCase_ : List[Any] , ) -> int:
"""simple docstring"""
super().__init__(
do_lower_case=lowerCAmelCase_ , remove_space=lowerCAmelCase_ , keep_accents=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , )
_a = do_lower_case
_a = remove_space
_a = keep_accents
_a = vocab_file
_a = spm.SentencePieceProcessor()
self.sp_model.Load(lowerCAmelCase_ )
@property
def __lowerCAmelCase ( self : str ) -> Any:
"""simple docstring"""
return len(self.sp_model )
def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
_a = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : List[Any] ) -> List[Any]:
"""simple docstring"""
_a = self.__dict__.copy()
_a = None
return state
def __setstate__( self : Optional[Any] , lowerCAmelCase_ : List[Any] ) -> int:
"""simple docstring"""
_a = d
_a = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str]=False ) -> Tuple:
"""simple docstring"""
_a = self.sp_model.EncodeAsPieces(lowerCAmelCase_ )
return pieces
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Dict ) -> Union[str, Any]:
"""simple docstring"""
return self.sp_model.PieceToId(lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> int:
"""simple docstring"""
return self.sp_model.IdToPiece(lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Any ) -> Union[str, Any]:
"""simple docstring"""
_a = self.sp_model.decode_pieces(lowerCAmelCase_ )
return out_string
def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1]
return [1] + ([0] * len(lowerCAmelCase_ )) + [1]
def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(lowerCAmelCase_ ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCAmelCase_ ) )
return
_a = os.path.join(
lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ):
copyfile(self.vocab_file , lowerCAmelCase_ )
return (out_vocab_file,)
| 22 |
'''simple docstring'''
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'):
_snake_case : Tuple = {
'linear': PIL.Image.Resampling.BILINEAR,
'bilinear': PIL.Image.Resampling.BILINEAR,
'bicubic': PIL.Image.Resampling.BICUBIC,
'lanczos': PIL.Image.Resampling.LANCZOS,
'nearest': PIL.Image.Resampling.NEAREST,
}
else:
_snake_case : Any = {
'linear': PIL.Image.LINEAR,
'bilinear': PIL.Image.BILINEAR,
'bicubic': PIL.Image.BICUBIC,
'lanczos': PIL.Image.LANCZOS,
'nearest': PIL.Image.NEAREST,
}
def snake_case_ (UpperCamelCase : Optional[int] ):
'''simple docstring'''
_a = (images / 2 + 0.5).clamp(0 , 1 )
_a = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
_a = numpy_to_pil(UpperCamelCase )
return images
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
if images.ndim == 3:
_a = images[None, ...]
_a = (images * 255).round().astype('''uint8''' )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
_a = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images]
else:
_a = [Image.fromarray(UpperCamelCase ) for image in images]
return pil_images
| 22 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case : Optional[int] = logging.get_logger(__name__)
_snake_case : str = {
'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json',
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class A ( _a ):
lowercase_ = 'yolos'
def __init__( self : int , lowerCAmelCase_ : Dict=7_68 , lowerCAmelCase_ : List[Any]=12 , lowerCAmelCase_ : str=12 , lowerCAmelCase_ : Any=30_72 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : Optional[Any]=0.0 , lowerCAmelCase_ : Any=0.0_2 , lowerCAmelCase_ : Any=1e-12 , lowerCAmelCase_ : Any=[5_12, 8_64] , lowerCAmelCase_ : Dict=16 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=1_00 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[Any]=0.1 , **lowerCAmelCase_ : Optional[Any] , ) -> Any:
"""simple docstring"""
super().__init__(**lowerCAmelCase_ )
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = initializer_range
_a = layer_norm_eps
_a = image_size
_a = patch_size
_a = num_channels
_a = qkv_bias
_a = num_detection_tokens
_a = use_mid_position_embeddings
_a = auxiliary_loss
# Hungarian matcher
_a = class_cost
_a = bbox_cost
_a = giou_cost
# Loss coefficients
_a = bbox_loss_coefficient
_a = giou_loss_coefficient
_a = eos_coefficient
class A ( _a ):
lowercase_ = version.parse('1.11' )
@property
def __lowerCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def __lowerCAmelCase ( self : Tuple ) -> float:
"""simple docstring"""
return 1e-4
@property
def __lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return 12
| 22 |
'''simple docstring'''
import requests
def snake_case_ (UpperCamelCase : str , UpperCamelCase : str ):
'''simple docstring'''
_a = {'''Content-Type''': '''application/json'''}
_a = requests.post(UpperCamelCase , json={'''text''': message_body} , headers=UpperCamelCase )
if response.status_code != 200:
_a = (
'''Request to slack returned an error '''
f'{response.status_code}, the response is:\n{response.text}'
)
raise ValueError(UpperCamelCase )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
| 22 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case : List[Any] = logging.get_logger(__name__)
def snake_case_ (UpperCamelCase : Dict ):
'''simple docstring'''
if "resnet-50" in model_name:
_a = ResNetConfig.from_pretrained('''microsoft/resnet-50''' )
elif "resnet-101" in model_name:
_a = ResNetConfig.from_pretrained('''microsoft/resnet-101''' )
else:
raise ValueError('''Model name should include either resnet50 or resnet101''' )
_a = DetrConfig(use_timm_backbone=UpperCamelCase , backbone_config=UpperCamelCase )
# set label attributes
_a = '''panoptic''' in model_name
if is_panoptic:
_a = 250
else:
_a = 91
_a = '''huggingface/label-files'''
_a = '''coco-detection-id2label.json'''
_a = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) )
_a = {int(UpperCamelCase ): v for k, v in idalabel.items()}
_a = idalabel
_a = {v: k for k, v in idalabel.items()}
return config, is_panoptic
def snake_case_ (UpperCamelCase : Optional[int] ):
'''simple docstring'''
_a = []
# stem
# fmt: off
rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') )
rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') )
rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') )
rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') )
rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') )
# stages
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
# shortcut
if layer_idx == 0:
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight',
) )
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight',
) )
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias',
) )
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean',
) )
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var',
) )
# 3 convs
for i in range(3 ):
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight',
) )
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight',
) )
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias',
) )
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean',
) )
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var',
) )
# fmt: on
for i in range(config.encoder_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(
f'transformer.encoder.layers.{i}.self_attn.out_proj.weight',
f'encoder.layers.{i}.self_attn.out_proj.weight',
) )
rename_keys.append(
(f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') )
rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight') )
rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias') )
rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight') )
rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias') )
rename_keys.append(
(f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') )
rename_keys.append(
(f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias') )
rename_keys.append(
(f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight') )
rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias') )
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(
f'transformer.decoder.layers.{i}.self_attn.out_proj.weight',
f'decoder.layers.{i}.self_attn.out_proj.weight',
) )
rename_keys.append(
(f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') )
rename_keys.append(
(
f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight',
f'decoder.layers.{i}.encoder_attn.out_proj.weight',
) )
rename_keys.append(
(
f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias',
f'decoder.layers.{i}.encoder_attn.out_proj.bias',
) )
rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight') )
rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias') )
rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight') )
rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias') )
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') )
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias') )
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') )
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') )
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight') )
rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias') )
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
('''input_proj.weight''', '''input_projection.weight'''),
('''input_proj.bias''', '''input_projection.bias'''),
('''query_embed.weight''', '''query_position_embeddings.weight'''),
('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''),
('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''),
('''class_embed.weight''', '''class_labels_classifier.weight'''),
('''class_embed.bias''', '''class_labels_classifier.bias'''),
('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''),
('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''),
('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''),
('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''),
('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''),
('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''),
] )
return rename_keys
def snake_case_ (UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] ):
'''simple docstring'''
_a = state_dict.pop(UpperCamelCase )
_a = val
def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any]=False ):
'''simple docstring'''
_a = ''''''
if is_panoptic:
_a = '''detr.'''
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
_a = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' )
_a = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' )
# next, add query, keys and values (in that order) to the state dict
_a = in_proj_weight[:256, :]
_a = in_proj_bias[:256]
_a = in_proj_weight[256:512, :]
_a = in_proj_bias[256:512]
_a = in_proj_weight[-256:, :]
_a = in_proj_bias[-256:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
_a = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' )
_a = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' )
# next, add query, keys and values (in that order) to the state dict
_a = in_proj_weight[:256, :]
_a = in_proj_bias[:256]
_a = in_proj_weight[256:512, :]
_a = in_proj_bias[256:512]
_a = in_proj_weight[-256:, :]
_a = in_proj_bias[-256:]
# read in weights + bias of input projection layer of cross-attention
_a = state_dict.pop(
f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' )
_a = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' )
# next, add query, keys and values (in that order) of cross-attention to the state dict
_a = in_proj_weight_cross_attn[:256, :]
_a = in_proj_bias_cross_attn[:256]
_a = in_proj_weight_cross_attn[256:512, :]
_a = in_proj_bias_cross_attn[256:512]
_a = in_proj_weight_cross_attn[-256:, :]
_a = in_proj_bias_cross_attn[-256:]
def snake_case_ ():
'''simple docstring'''
_a = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
_a = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw )
return im
@torch.no_grad()
def snake_case_ (UpperCamelCase : int , UpperCamelCase : Tuple=None , UpperCamelCase : int=False ):
'''simple docstring'''
_a , _a = get_detr_config(UpperCamelCase )
# load original model from torch hub
_a = {
'''detr-resnet-50''': '''detr_resnet50''',
'''detr-resnet-101''': '''detr_resnet101''',
}
logger.info(f'Converting model {model_name}...' )
_a = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=UpperCamelCase ).eval()
_a = detr.state_dict()
# rename keys
for src, dest in create_rename_keys(UpperCamelCase ):
if is_panoptic:
_a = '''detr.''' + src
rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase )
# query, key and value matrices need special treatment
read_in_q_k_v(UpperCamelCase , is_panoptic=UpperCamelCase )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
_a = '''detr.model.''' if is_panoptic else '''model.'''
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith('''detr''' )
and not key.startswith('''class_labels_classifier''' )
and not key.startswith('''bbox_predictor''' )
):
_a = state_dict.pop(UpperCamelCase )
_a = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
_a = state_dict.pop(UpperCamelCase )
_a = val
elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ):
continue
else:
_a = state_dict.pop(UpperCamelCase )
_a = val
else:
if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ):
_a = state_dict.pop(UpperCamelCase )
_a = val
# finally, create HuggingFace model and load state dict
_a = DetrForSegmentation(UpperCamelCase ) if is_panoptic else DetrForObjectDetection(UpperCamelCase )
model.load_state_dict(UpperCamelCase )
model.eval()
# verify our conversion on an image
_a = '''coco_panoptic''' if is_panoptic else '''coco_detection'''
_a = DetrImageProcessor(format=UpperCamelCase )
_a = processor(images=prepare_img() , return_tensors='''pt''' )
_a = encoding['''pixel_values''']
_a = detr(UpperCamelCase )
_a = model(UpperCamelCase )
assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-3 )
assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-3 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' )
Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase )
model.save_pretrained(UpperCamelCase )
processor.save_pretrained(UpperCamelCase )
if push_to_hub:
# Upload model and image processor to the hub
logger.info('''Uploading PyTorch model and image processor to the hub...''' )
model.push_to_hub(f'nielsr/{model_name}' )
processor.push_to_hub(f'nielsr/{model_name}' )
if __name__ == "__main__":
_snake_case : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='detr-resnet-50',
type=str,
choices=['detr-resnet-50', 'detr-resnet-101'],
help='Name of the DETR model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.')
_snake_case : Optional[int] = parser.parse_args()
convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 22 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
_snake_case : Tuple = logging.get_logger(__name__)
class A ( _a ):
lowercase_ = ['pixel_values']
def __init__( self : str , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : Any , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase_ )
_a = size if size is not None else {'''shortest_edge''': 2_56}
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
_a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_a = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ )
return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' )
return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Tuple ) -> np.ndarray:
"""simple docstring"""
return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : Union[str, Any] , ) -> Union[str, Any]:
"""simple docstring"""
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = make_list_of_images(lowerCAmelCase_ )
if not valid_images(lowerCAmelCase_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_a = [to_numpy_array(lowerCAmelCase_ ) for image in images]
if do_resize:
_a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images]
if do_rescale:
_a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images]
if do_normalize:
_a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images]
_a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Tuple] = None ) -> Any:
"""simple docstring"""
_a = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowerCAmelCase_ ):
_a = target_sizes.numpy()
_a = []
for idx in range(len(lowerCAmelCase_ ) ):
_a = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase_ )
_a = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase_ )
else:
_a = logits.argmax(dim=1 )
_a = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 22 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class A ( _a ,unittest.TestCase ):
lowercase_ = KandinskyImgaImgPipeline
lowercase_ = ['prompt', 'image_embeds', 'negative_image_embeds', 'image']
lowercase_ = [
'prompt',
'negative_prompt',
'image_embeds',
'negative_image_embeds',
'image',
]
lowercase_ = [
'generator',
'height',
'width',
'strength',
'guidance_scale',
'negative_prompt',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
lowercase_ = False
@property
def __lowerCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> str:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Dict ) -> Optional[int]:
"""simple docstring"""
return self.time_input_dim
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> str:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
return 1_00
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
_a = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
_a = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
_a = MultilingualCLIP(lowerCAmelCase_ )
_a = text_encoder.eval()
return text_encoder
@property
def __lowerCAmelCase ( self : List[str] ) -> Tuple:
"""simple docstring"""
torch.manual_seed(0 )
_a = {
'''in_channels''': 4,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''text_image''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''text_image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
_a = UNetaDConditionModel(**lowerCAmelCase_ )
return model
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> int:
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def __lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
_a = VQModel(**self.dummy_movq_kwargs )
return model
def __lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
_a = self.dummy_text_encoder
_a = self.dummy_tokenizer
_a = self.dummy_unet
_a = self.dummy_movq
_a = {
'''num_train_timesteps''': 10_00,
'''beta_schedule''': '''linear''',
'''beta_start''': 0.0_0_0_8_5,
'''beta_end''': 0.0_1_2,
'''clip_sample''': False,
'''set_alpha_to_one''': False,
'''steps_offset''': 0,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
}
_a = DDIMScheduler(**lowerCAmelCase_ )
_a = {
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=0 ) -> List[str]:
"""simple docstring"""
_a = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ )
_a = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase_ )
# create init_image
_a = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ )
_a = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_a = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert('''RGB''' ).resize((2_56, 2_56) )
if str(lowerCAmelCase_ ).startswith('''mps''' ):
_a = torch.manual_seed(lowerCAmelCase_ )
else:
_a = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ )
_a = {
'''prompt''': '''horse''',
'''image''': init_image,
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''generator''': generator,
'''height''': 64,
'''width''': 64,
'''num_inference_steps''': 10,
'''guidance_scale''': 7.0,
'''strength''': 0.2,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
_a = '''cpu'''
_a = self.get_dummy_components()
_a = self.pipeline_class(**lowerCAmelCase_ )
_a = pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
_a = pipe(**self.get_dummy_inputs(lowerCAmelCase_ ) )
_a = output.images
_a = pipe(
**self.get_dummy_inputs(lowerCAmelCase_ ) , return_dict=lowerCAmelCase_ , )[0]
_a = image[0, -3:, -3:, -1]
_a = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_a = np.array(
[0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : Optional[Any] ) -> Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinsky/kandinsky_img2img_frog.npy''' )
_a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' )
_a = '''A red cartoon frog, 4k'''
_a = KandinskyPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa )
pipe_prior.to(lowerCAmelCase_ )
_a = KandinskyImgaImgPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa )
_a = pipeline.to(lowerCAmelCase_ )
pipeline.set_progress_bar_config(disable=lowerCAmelCase_ )
_a = torch.Generator(device='''cpu''' ).manual_seed(0 )
_a , _a = pipe_prior(
lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
_a = pipeline(
lowerCAmelCase_ , image=lowerCAmelCase_ , image_embeds=lowerCAmelCase_ , negative_image_embeds=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type='''np''' , )
_a = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ )
| 22 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def snake_case_ (UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : int , UpperCamelCase : Optional[int] = None , ):
'''simple docstring'''
_a = {}
if train_file is not None:
_a = [train_file]
if eval_file is not None:
_a = [eval_file]
if test_file is not None:
_a = [test_file]
_a = datasets.load_dataset('''csv''' , data_files=UpperCamelCase )
_a = list(ds[list(files.keys() )[0]].features.keys() )
_a = features_name.pop(UpperCamelCase )
_a = list(set(ds[list(files.keys() )[0]][label_name] ) )
_a = {label: i for i, label in enumerate(UpperCamelCase )}
_a = tokenizer.model_input_names
_a = {}
if len(UpperCamelCase ) == 1:
for k in files.keys():
_a = ds[k].map(
lambda UpperCamelCase : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' ) , batched=UpperCamelCase , )
elif len(UpperCamelCase ) == 2:
for k in files.keys():
_a = ds[k].map(
lambda UpperCamelCase : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' , ) , batched=UpperCamelCase , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
_a = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
_a = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
_a = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
_snake_case : str = logging.getLogger(__name__)
@dataclass
class A :
lowercase_ = field(metadata={'help': 'Which column contains the label'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the training file'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the development file'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the test file'} )
lowercase_ = field(
default=128 ,metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} ,)
lowercase_ = field(
default=_a ,metadata={'help': 'Overwrite the cached training and evaluation sets'} )
@dataclass
class A :
lowercase_ = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
lowercase_ = field(
default=_a ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
lowercase_ = field(
default=_a ,metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
lowercase_ = field(default=_a ,metadata={'help': 'Set this flag to use fast tokenization.'} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowercase_ = field(
default=_a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,)
def snake_case_ ():
'''simple docstring'''
_a = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
_a , _a , _a = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. Use'
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(
f'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, '
f'16-bits training: {training_args.fpaa}' )
logger.info(f'Training/evaluation parameters {training_args}' )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_a = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_a , _a , _a , _a = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
_a = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase ) , labelaid=UpperCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
_a = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , )
def compute_metrics(UpperCamelCase : EvalPrediction ) -> Dict:
_a = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
_a = TFTrainer(
model=UpperCamelCase , args=UpperCamelCase , train_dataset=UpperCamelCase , eval_dataset=UpperCamelCase , compute_metrics=UpperCamelCase , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_a = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_a = trainer.evaluate()
_a = os.path.join(training_args.output_dir , '''eval_results.txt''' )
with open(UpperCamelCase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(f' {key} = {value}' )
writer.write(f'{key} = {value}\n' )
results.update(UpperCamelCase )
return results
if __name__ == "__main__":
main()
| 22 | 1 |
'''simple docstring'''
def snake_case_ (UpperCamelCase : list , UpperCamelCase : list , UpperCamelCase : int ):
'''simple docstring'''
_a = len(UpperCamelCase )
_a = [[0] * n for i in range(UpperCamelCase )]
for i in range(UpperCamelCase ):
_a = y_points[i]
for i in range(2 , UpperCamelCase ):
for j in range(UpperCamelCase , UpperCamelCase ):
_a = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 |
'''simple docstring'''
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A ( _a ,unittest.TestCase ):
lowercase_ = LEDTokenizer
lowercase_ = LEDTokenizerFast
lowercase_ = True
def __lowerCAmelCase ( self : int ) -> List[Any]:
"""simple docstring"""
super().setUp()
_a = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
_a = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) )
_a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
_a = {'''unk_token''': '''<unk>'''}
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowerCAmelCase_ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(lowerCAmelCase_ ) )
def __lowerCAmelCase ( self : Union[str, Any] , **lowerCAmelCase_ : int ) -> Optional[int]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , **lowerCAmelCase_ : Any ) -> int:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> List[str]:
"""simple docstring"""
return "lower newer", "lower newer"
@cached_property
def __lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' )
@cached_property
def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' )
@require_torch
def __lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
_a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
_a = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
_a = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
@require_torch
def __lowerCAmelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
_a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIn('''input_ids''' , lowerCAmelCase_ )
self.assertIn('''attention_mask''' , lowerCAmelCase_ )
self.assertNotIn('''labels''' , lowerCAmelCase_ )
self.assertNotIn('''decoder_attention_mask''' , lowerCAmelCase_ )
@require_torch
def __lowerCAmelCase ( self : List[str] ) -> str:
"""simple docstring"""
_a = [
'''Summary of the text.''',
'''Another summary.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='''max_length''' , return_tensors='''pt''' )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
@require_torch
def __lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(
['''I am a small frog''' * 10_24, '''I am a small frog'''] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertEqual(batch.input_ids.shape , (2, 51_22) )
@require_torch
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a = ['''A long paragraph for summarization.''']
_a = [
'''Summary of the text.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(lowerCAmelCase_ , return_tensors='''pt''' )
_a = tokenizer(text_target=lowerCAmelCase_ , return_tensors='''pt''' )
_a = inputs['''input_ids''']
_a = targets['''input_ids''']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def __lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = ['''Summary of the text.''', '''Another summary.''']
_a = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
_a = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ )
_a = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['''input_ids''']]
_a = tokenizer.pad(lowerCAmelCase_ )
self.assertSequenceEqual(outputs['''global_attention_mask'''] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> Dict:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
_a = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
_a = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
_a = '''A, <mask> AllenNLP sentence.'''
_a = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ )
_a = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ )
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
_a = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
_a = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
| 22 | 1 |
'''simple docstring'''
from typing import Dict
from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
get_torch_dist_unique_port,
require_torch_multi_gpu,
require_torch_neuroncore,
)
from transformers.training_args import ParallelMode
from transformers.utils import logging
_snake_case : Any = logging.get_logger(__name__)
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
from transformers import Trainer
class A ( _a ):
def __init__( self : Any , lowerCAmelCase_ : int = 1_01 ) -> Dict:
"""simple docstring"""
_a = length
def __len__( self : Optional[Any] ) -> Any:
"""simple docstring"""
return self.length
def __getitem__( self : Tuple , lowerCAmelCase_ : List[Any] ) -> int:
"""simple docstring"""
return i
class A :
def __call__( self : List[str] , lowerCAmelCase_ : Any ) -> str:
"""simple docstring"""
return {"input_ids": torch.tensor(lowerCAmelCase_ ), "labels": torch.tensor(lowerCAmelCase_ )}
class A ( nn.Module ):
def __init__( self : Any ) -> Tuple:
"""simple docstring"""
super().__init__()
# Add some (unused) params otherwise DDP will complain.
_a = nn.Linear(1_20 , 80 )
def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]=None ) -> int:
"""simple docstring"""
if labels is not None:
return torch.tensor(0.0 , device=input_ids.device ), input_ids
else:
return input_ids
class A ( _a ):
@require_torch_neuroncore
def __lowerCAmelCase ( self : Dict ) -> List[str]:
"""simple docstring"""
_a = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split()
_a = self.get_auto_remove_tmp_dir()
_a = F'--output_dir {output_dir}'.split()
_a = ['''torchrun'''] + distributed_args + args
execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() )
# successful return here == success - any errors would have caused an error in the sub-call
class A ( _a ):
@require_torch_multi_gpu
def __lowerCAmelCase ( self : Optional[Any] ) -> int:
"""simple docstring"""
_a = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split()
_a = self.get_auto_remove_tmp_dir()
_a = F'--output_dir {output_dir}'.split()
_a = ['''torchrun'''] + distributed_args + args
execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() )
# successful return here == success - any errors would have caused an error in the sub-call
if __name__ == "__main__":
# The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
#
# PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py
_snake_case : List[str] = HfArgumentParser((TrainingArguments,))
_snake_case : Optional[Any] = parser.parse_args_into_dataclasses()[0]
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, '''
F'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}'''
)
# Essentially, what we want to verify in the distributed case is that we get all samples back,
# in the right order. (this is crucial for prediction for instance)
for dataset_length in [101, 40, 7]:
_snake_case : Any = DummyDataset(dataset_length)
def snake_case_ (UpperCamelCase : EvalPrediction ):
'''simple docstring'''
_a = list(range(len(UpperCamelCase ) ) )
_a = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential
if not success and training_args.local_rank == 0:
logger.warning(
'''Predictions and/or labels do not match expected results:\n - predictions: '''
f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' )
return {"success": success}
_snake_case : Optional[Any] = Trainer(
model=DummyModel(),
args=training_args,
data_collator=DummyDataCollator(),
eval_dataset=dataset,
compute_metrics=compute_metrics,
)
_snake_case : str = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
_snake_case : int = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
_snake_case : Any = 2
_snake_case : Optional[Any] = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
_snake_case : Optional[int] = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
_snake_case : Optional[Any] = None
| 22 |
'''simple docstring'''
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'''split_dict''' , [
SplitDict(),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 , dataset_name='''my_dataset''' )} ),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 )} ),
SplitDict({'''train''': SplitInfo()} ),
] , )
def snake_case_ (UpperCamelCase : SplitDict ):
'''simple docstring'''
_a = split_dict._to_yaml_list()
assert len(UpperCamelCase ) == len(UpperCamelCase )
_a = SplitDict._from_yaml_list(UpperCamelCase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
_a = None
# the split name of split_dict takes over the name of the split info object
_a = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'''split_info''' , [SplitInfo(), SplitInfo(dataset_name=UpperCamelCase ), SplitInfo(dataset_name='''my_dataset''' )] )
def snake_case_ (UpperCamelCase : List[str] ):
'''simple docstring'''
_a = asdict(SplitDict({'''train''': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 22 | 1 |
'''simple docstring'''
import re
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
return [char.split() for char in re.split(R'''[^ a-z A-Z 0-9 \s]''' , str_ )]
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
_a = split_input(str_ )
return "".join(
[''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] )
def snake_case_ (UpperCamelCase : str , UpperCamelCase : bool , UpperCamelCase : str ):
'''simple docstring'''
try:
_a = split_input(UpperCamelCase )
if upper:
_a = ''''''.join(
[
separator.join([char.upper() for char in sub_str] )
for sub_str in string_split
] )
else:
_a = ''''''.join(
[
separator.join([char.lower() for char in sub_str] )
for sub_str in string_split
] )
return res_str
except IndexError:
return "not valid string"
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
return to_simple_case(UpperCamelCase )
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
try:
_a = to_simple_case(UpperCamelCase )
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def snake_case_ (UpperCamelCase : str , UpperCamelCase : bool ):
'''simple docstring'''
return to_complex_case(UpperCamelCase , UpperCamelCase , '''_''' )
def snake_case_ (UpperCamelCase : str , UpperCamelCase : bool ):
'''simple docstring'''
return to_complex_case(UpperCamelCase , UpperCamelCase , '''-''' )
if __name__ == "__main__":
__import__('doctest').testmod()
| 22 |
'''simple docstring'''
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
_snake_case : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
_snake_case : List[str] = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n'
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : int ) -> List[Any]:
"""simple docstring"""
_a = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) )
_a = self.diffusers_dir
shutil.copy(
os.path.join(lowerCAmelCase_ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , )
def __lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_a = '''src/diffusers'''
shutil.rmtree(self.diffusers_dir )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str=None ) -> Union[str, Any]:
"""simple docstring"""
_a = comment + F'\nclass {class_name}(nn.Module):\n' + class_code
if overwrite_result is not None:
_a = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result
_a = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
_a = black.format_str(lowerCAmelCase_ , mode=lowerCAmelCase_ )
_a = os.path.join(self.diffusers_dir , '''new_code.py''' )
with open(lowerCAmelCase_ , '''w''' , newline='''\n''' ) as f:
f.write(lowerCAmelCase_ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase_ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase_ )
with open(lowerCAmelCase_ , '''r''' ) as f:
self.assertTrue(f.read() , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' )
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , )
# With no empty line at the end
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , lowerCAmelCase_ , )
# Copy consistency with rename
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , lowerCAmelCase_ ) , )
# Copy consistency with a really long name
_a = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
F'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}' , F'{long_class_name}SchedulerOutput' , re.sub('''Bert''' , lowerCAmelCase_ , lowerCAmelCase_ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , lowerCAmelCase_ , overwrite_result=re.sub('''DDPM''' , '''Test''' , lowerCAmelCase_ ) , )
| 22 | 1 |
'''simple docstring'''
import torch
from transformers import CamembertForMaskedLM, CamembertTokenizer
def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : Optional[int]=5 ):
'''simple docstring'''
assert masked_input.count('''<mask>''' ) == 1
_a = torch.tensor(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ).unsqueeze(0 ) # Batch size 1
_a = model(UpperCamelCase )[0] # The last hidden-state is the first element of the output tuple
_a = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
_a = logits[0, masked_index, :]
_a = logits.softmax(dim=0 )
_a , _a = prob.topk(k=UpperCamelCase , dim=0 )
_a = ''' '''.join(
[tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(UpperCamelCase ) )] )
_a = tokenizer.mask_token
_a = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ):
_a = predicted_token_bpe.replace('''\u2581''' , ''' ''' )
if " {0}".format(UpperCamelCase ) in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(''' {0}'''.format(UpperCamelCase ) , UpperCamelCase ),
values[index].item(),
predicted_token,
) )
else:
topk_filled_outputs.append(
(
masked_input.replace(UpperCamelCase , UpperCamelCase ),
values[index].item(),
predicted_token,
) )
return topk_filled_outputs
_snake_case : Optional[Any] = CamembertTokenizer.from_pretrained('camembert-base')
_snake_case : str = CamembertForMaskedLM.from_pretrained('camembert-base')
model.eval()
_snake_case : str = 'Le camembert est <mask> :)'
print(fill_mask(masked_input, model, tokenizer, topk=3))
| 22 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
_snake_case : Tuple = logging.get_logger(__name__)
_snake_case : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_snake_case : List[Any] = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
_snake_case : Union[str, Any] = {
'squeezebert/squeezebert-uncased': 512,
'squeezebert/squeezebert-mnli': 512,
'squeezebert/squeezebert-mnli-headless': 512,
}
_snake_case : Tuple = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class A ( _a ):
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_INIT_CONFIGURATION
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = SqueezeBertTokenizer
def __init__( self : str , lowerCAmelCase_ : str=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[str]="[UNK]" , lowerCAmelCase_ : Union[str, Any]="[SEP]" , lowerCAmelCase_ : Optional[Any]="[PAD]" , lowerCAmelCase_ : Any="[CLS]" , lowerCAmelCase_ : List[str]="[MASK]" , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Optional[int] , ) -> int:
"""simple docstring"""
super().__init__(
lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , )
_a = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , lowerCAmelCase_ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , lowerCAmelCase_ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase_ ) != tokenize_chinese_chars
):
_a = getattr(lowerCAmelCase_ , normalizer_state.pop('''type''' ) )
_a = do_lower_case
_a = strip_accents
_a = tokenize_chinese_chars
_a = normalizer_class(**lowerCAmelCase_ )
_a = do_lower_case
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=None ) -> List[str]:
"""simple docstring"""
_a = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
_a = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ )
return tuple(lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def snake_case_ (UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : int , UpperCamelCase : Optional[int] = None , ):
'''simple docstring'''
_a = {}
if train_file is not None:
_a = [train_file]
if eval_file is not None:
_a = [eval_file]
if test_file is not None:
_a = [test_file]
_a = datasets.load_dataset('''csv''' , data_files=UpperCamelCase )
_a = list(ds[list(files.keys() )[0]].features.keys() )
_a = features_name.pop(UpperCamelCase )
_a = list(set(ds[list(files.keys() )[0]][label_name] ) )
_a = {label: i for i, label in enumerate(UpperCamelCase )}
_a = tokenizer.model_input_names
_a = {}
if len(UpperCamelCase ) == 1:
for k in files.keys():
_a = ds[k].map(
lambda UpperCamelCase : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' ) , batched=UpperCamelCase , )
elif len(UpperCamelCase ) == 2:
for k in files.keys():
_a = ds[k].map(
lambda UpperCamelCase : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' , ) , batched=UpperCamelCase , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
_a = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
_a = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
_a = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
_snake_case : str = logging.getLogger(__name__)
@dataclass
class A :
lowercase_ = field(metadata={'help': 'Which column contains the label'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the training file'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the development file'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the test file'} )
lowercase_ = field(
default=128 ,metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} ,)
lowercase_ = field(
default=_a ,metadata={'help': 'Overwrite the cached training and evaluation sets'} )
@dataclass
class A :
lowercase_ = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
lowercase_ = field(
default=_a ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
lowercase_ = field(
default=_a ,metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
lowercase_ = field(default=_a ,metadata={'help': 'Set this flag to use fast tokenization.'} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowercase_ = field(
default=_a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,)
def snake_case_ ():
'''simple docstring'''
_a = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
_a , _a , _a = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. Use'
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(
f'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, '
f'16-bits training: {training_args.fpaa}' )
logger.info(f'Training/evaluation parameters {training_args}' )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_a = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_a , _a , _a , _a = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
_a = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase ) , labelaid=UpperCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
_a = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , )
def compute_metrics(UpperCamelCase : EvalPrediction ) -> Dict:
_a = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
_a = TFTrainer(
model=UpperCamelCase , args=UpperCamelCase , train_dataset=UpperCamelCase , eval_dataset=UpperCamelCase , compute_metrics=UpperCamelCase , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_a = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_a = trainer.evaluate()
_a = os.path.join(training_args.output_dir , '''eval_results.txt''' )
with open(UpperCamelCase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(f' {key} = {value}' )
writer.write(f'{key} = {value}\n' )
results.update(UpperCamelCase )
return results
if __name__ == "__main__":
main()
| 22 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_snake_case : Dict = logging.get_logger(__name__)
class A ( _a ):
lowercase_ = ['pixel_values']
def __init__( self : List[Any] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : int , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase_ )
_a = size if size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ )
_a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_resize
_a = do_rescale
_a = do_normalize
_a = do_center_crop
_a = crop_size
_a = size
_a = resample
_a = rescale_factor
_a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_a = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "shortest_edge" in size:
_a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
_a = (size['''height'''], size['''width'''])
else:
raise ValueError(F'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' )
return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Dict , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : List[str] , ) -> BatchFeature:
"""simple docstring"""
_a = do_resize if do_resize is not None else self.do_resize
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' , default_to_square=lowerCAmelCase_ )
_a = resample if resample is not None else self.resample
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = size if size is not None else self.size
_a = get_size_dict(lowerCAmelCase_ )
if not is_batched(lowerCAmelCase_ ):
_a = [images]
if not valid_images(lowerCAmelCase_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
_a = [to_numpy_array(lowerCAmelCase_ ) for image in images]
if do_resize:
_a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images]
if do_rescale:
_a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images]
if do_normalize:
_a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images]
_a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
_snake_case : Tuple = logging.get_logger(__name__)
class A ( _a ):
lowercase_ = ['pixel_values']
def __init__( self : str , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : Any , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase_ )
_a = size if size is not None else {'''shortest_edge''': 2_56}
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
_a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_a = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ )
return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' )
return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Tuple ) -> np.ndarray:
"""simple docstring"""
return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : Union[str, Any] , ) -> Union[str, Any]:
"""simple docstring"""
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = make_list_of_images(lowerCAmelCase_ )
if not valid_images(lowerCAmelCase_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_a = [to_numpy_array(lowerCAmelCase_ ) for image in images]
if do_resize:
_a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images]
if do_rescale:
_a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images]
if do_normalize:
_a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images]
_a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Tuple] = None ) -> Any:
"""simple docstring"""
_a = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowerCAmelCase_ ):
_a = target_sizes.numpy()
_a = []
for idx in range(len(lowerCAmelCase_ ) ):
_a = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase_ )
_a = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase_ )
else:
_a = logits.argmax(dim=1 )
_a = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 22 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_snake_case : str = {
'configuration_layoutlmv3': [
'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LayoutLMv3Config',
'LayoutLMv3OnnxConfig',
],
'processing_layoutlmv3': ['LayoutLMv3Processor'],
'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[str] = ['LayoutLMv3TokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Optional[int] = [
'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv3ForQuestionAnswering',
'LayoutLMv3ForSequenceClassification',
'LayoutLMv3ForTokenClassification',
'LayoutLMv3Model',
'LayoutLMv3PreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Tuple = [
'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLayoutLMv3ForQuestionAnswering',
'TFLayoutLMv3ForSequenceClassification',
'TFLayoutLMv3ForTokenClassification',
'TFLayoutLMv3Model',
'TFLayoutLMv3PreTrainedModel',
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[Any] = ['LayoutLMv3FeatureExtractor']
_snake_case : Tuple = ['LayoutLMv3ImageProcessor']
if TYPE_CHECKING:
from .configuration_layoutlmva import (
LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP,
LayoutLMvaConfig,
LayoutLMvaOnnxConfig,
)
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_layoutlmva import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
TFLayoutLMvaPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
else:
import sys
_snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 22 | 1 |
'''simple docstring'''
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'''split_dict''' , [
SplitDict(),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 , dataset_name='''my_dataset''' )} ),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 )} ),
SplitDict({'''train''': SplitInfo()} ),
] , )
def snake_case_ (UpperCamelCase : SplitDict ):
'''simple docstring'''
_a = split_dict._to_yaml_list()
assert len(UpperCamelCase ) == len(UpperCamelCase )
_a = SplitDict._from_yaml_list(UpperCamelCase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
_a = None
# the split name of split_dict takes over the name of the split info object
_a = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'''split_info''' , [SplitInfo(), SplitInfo(dataset_name=UpperCamelCase ), SplitInfo(dataset_name='''my_dataset''' )] )
def snake_case_ (UpperCamelCase : List[str] ):
'''simple docstring'''
_a = asdict(SplitDict({'''train''': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 22 |
'''simple docstring'''
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class A ( _a ):
lowercase_ = (DDPMParallelScheduler,)
def __lowerCAmelCase ( self : Optional[Any] , **lowerCAmelCase_ : Optional[int] ) -> List[Any]:
"""simple docstring"""
_a = {
'''num_train_timesteps''': 10_00,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**lowerCAmelCase_ )
return config
def __lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCAmelCase_ )
def __lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
self.check_over_configs(thresholding=lowerCAmelCase_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , )
def __lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : str ) -> List[str]:
"""simple docstring"""
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=lowerCAmelCase_ )
def __lowerCAmelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.0_2 ) ) < 1e-5
def __lowerCAmelCase ( self : Dict ) -> str:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = len(lowerCAmelCase_ )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = self.dummy_sample_deter + 0.1
_a = self.dummy_sample_deter - 0.1
_a = samplea.shape[0]
_a = torch.stack([samplea, samplea, samplea] , dim=0 )
_a = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ )
_a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
_a = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) )
_a = torch.sum(torch.abs(lowerCAmelCase_ ) )
_a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2
assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3
def __lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = len(lowerCAmelCase_ )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = torch.manual_seed(0 )
for t in reversed(range(lowerCAmelCase_ ) ):
# 1. predict noise residual
_a = model(lowerCAmelCase_ , lowerCAmelCase_ )
# 2. predict previous mean of sample x_t-1
_a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(lowerCAmelCase_ ) )
_a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config(prediction_type='''v_prediction''' )
_a = scheduler_class(**lowerCAmelCase_ )
_a = len(lowerCAmelCase_ )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = torch.manual_seed(0 )
for t in reversed(range(lowerCAmelCase_ ) ):
# 1. predict noise residual
_a = model(lowerCAmelCase_ , lowerCAmelCase_ )
# 2. predict previous mean of sample x_t-1
_a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(lowerCAmelCase_ ) )
_a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def __lowerCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
_a = scheduler.timesteps
for i, timestep in enumerate(lowerCAmelCase_ ):
if i == len(lowerCAmelCase_ ) - 1:
_a = -1
else:
_a = timesteps[i + 1]
_a = scheduler.previous_timestep(lowerCAmelCase_ )
_a = prev_t.item()
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [1_00, 87, 50, 51, 0]
with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [1_00, 87, 50, 1, 0]
_a = len(lowerCAmelCase_ )
with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [scheduler.config.num_train_timesteps]
with self.assertRaises(
lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
from __future__ import annotations
def snake_case_ (UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ):
'''simple docstring'''
if days_between_payments <= 0:
raise ValueError('''days_between_payments must be > 0''' )
if daily_interest_rate < 0:
raise ValueError('''daily_interest_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * daily_interest_rate * days_between_payments
def snake_case_ (UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float , ):
'''simple docstring'''
if number_of_compounding_periods <= 0:
raise ValueError('''number_of_compounding_periods must be > 0''' )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def snake_case_ (UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float , ):
'''simple docstring'''
if number_of_years <= 0:
raise ValueError('''number_of_years must be > 0''' )
if nominal_annual_percentage_rate < 0:
raise ValueError('''nominal_annual_percentage_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return compound_interest(
UpperCamelCase , nominal_annual_percentage_rate / 365 , number_of_years * 365 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def snake_case_ (UpperCamelCase : dict ):
'''simple docstring'''
return (data["data"], data["target"])
def snake_case_ (UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray ):
'''simple docstring'''
_a = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(UpperCamelCase , UpperCamelCase )
# Predict target for test data
_a = xgb.predict(UpperCamelCase )
_a = predictions.reshape(len(UpperCamelCase ) , 1 )
return predictions
def snake_case_ ():
'''simple docstring'''
_a = fetch_california_housing()
_a , _a = data_handling(UpperCamelCase )
_a , _a , _a , _a = train_test_split(
UpperCamelCase , UpperCamelCase , test_size=0.25 , random_state=1 )
_a = xgboost(UpperCamelCase , UpperCamelCase , UpperCamelCase )
# Error printing
print(f'Mean Absolute Error : {mean_absolute_error(UpperCamelCase , UpperCamelCase )}' )
print(f'Mean Square Error : {mean_squared_error(UpperCamelCase , UpperCamelCase )}' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 22 | 1 |
'''simple docstring'''
def snake_case_ (UpperCamelCase : int = 10**9 ):
'''simple docstring'''
_a = 1
_a = 2
_a = 0
_a = 0
_a = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
_a = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(F'''{solution() = }''')
| 22 |
'''simple docstring'''
import qiskit
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
_a = qiskit.Aer.get_backend('''aer_simulator''' )
_a = qiskit.QuantumCircuit(4 , 2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 , 2 )
qc_ha.cx(1 , 2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 , 1 , 3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 , 0 ) # extract XOR value
qc_ha.measure(3 , 1 ) # extract AND value
# Execute the circuit on the qasm simulator
_a = qiskit.execute(UpperCamelCase , UpperCamelCase , shots=1000 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(UpperCamelCase )
if __name__ == "__main__":
_snake_case : Tuple = half_adder(1, 1)
print(F'''Half Adder Output Qubit Counts: {counts}''')
| 22 | 1 |
'''simple docstring'''
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
_a = inspect.getfile(accelerate.test_utils )
_a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] )
_a = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] )
_a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] )
@require_multi_gpu
def __lowerCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
print(F'Found {torch.cuda.device_count()} devices.' )
_a = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() )
@require_multi_gpu
def __lowerCAmelCase ( self : Any ) -> Dict:
"""simple docstring"""
print(F'Found {torch.cuda.device_count()} devices.' )
_a = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path]
print(F'Command: {cmd}' )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() )
@require_multi_gpu
def __lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
_a = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() )
@require_multi_gpu
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
print(F'Found {torch.cuda.device_count()} devices, using 2 devices only' )
_a = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ):
execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() )
if __name__ == "__main__":
_snake_case : str = Accelerator()
_snake_case : str = (accelerator.state.process_index + 2, 10)
_snake_case : Optional[Any] = torch.randint(0, 10, shape).to(accelerator.device)
_snake_case : Dict = ''
_snake_case : Optional[int] = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
_snake_case : str = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
_snake_case : int = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 22 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
if len(UpperCamelCase ) != 32:
raise ValueError('''Input must be of length 32''' )
_a = B''''''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
_a = format(UpperCamelCase , '''08x''' )[-8:]
_a = B''''''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' )
return little_endian_hex
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
_a = B''''''
for char in message:
bit_string += format(UpperCamelCase , '''08b''' ).encode('''utf-8''' )
_a = format(len(UpperCamelCase ) , '''064b''' ).encode('''utf-8''' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(UpperCamelCase ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
if len(UpperCamelCase ) % 512 != 0:
raise ValueError('''Input must have length that\'s a multiple of 512''' )
for pos in range(0 , len(UpperCamelCase ) , 512 ):
_a = bit_string[pos : pos + 512]
_a = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
_a = format(UpperCamelCase , '''032b''' )
_a = ''''''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(UpperCamelCase , 2 )
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
return (a + b) % 2**32
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
if shift < 0:
raise ValueError('''Shift must be non-negative''' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def snake_case_ (UpperCamelCase : bytes ):
'''simple docstring'''
_a = preprocess(UpperCamelCase )
_a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
_a = 0X67452301
_a = 0Xefcdab89
_a = 0X98badcfe
_a = 0X10325476
_a = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(UpperCamelCase ):
_a = aa
_a = ba
_a = ca
_a = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
_a = d ^ (b & (c ^ d))
_a = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
_a = c ^ (d & (b ^ c))
_a = (5 * i + 1) % 16
elif i <= 47:
_a = b ^ c ^ d
_a = (3 * i + 5) % 16
else:
_a = c ^ (b | not_aa(UpperCamelCase ))
_a = (7 * i) % 16
_a = (f + a + added_consts[i] + block_words[g]) % 2**32
_a = d
_a = c
_a = b
_a = sum_aa(UpperCamelCase , left_rotate_aa(UpperCamelCase , shift_amounts[i] ) )
# Add hashed chunk to running total
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = sum_aa(UpperCamelCase , UpperCamelCase )
_a = reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 | 1 |
'''simple docstring'''
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
_snake_case : List[Any] = logging.get_logger(__name__)
def snake_case_ (UpperCamelCase : np.ndarray , UpperCamelCase : Union[int, Iterable[int]] , UpperCamelCase : bool , UpperCamelCase : int ):
'''simple docstring'''
def constraint_to_multiple_of(UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Optional[Any]=0 , UpperCamelCase : Tuple=None ):
_a = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
_a = math.floor(val / multiple ) * multiple
if x < min_val:
_a = math.ceil(val / multiple ) * multiple
return x
_a = (output_size, output_size) if isinstance(UpperCamelCase , UpperCamelCase ) else output_size
_a , _a = get_image_size(UpperCamelCase )
_a , _a = output_size
# determine new height and width
_a = output_height / input_height
_a = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
_a = scale_width
else:
# fit height
_a = scale_height
_a = constraint_to_multiple_of(scale_height * input_height , multiple=UpperCamelCase )
_a = constraint_to_multiple_of(scale_width * input_width , multiple=UpperCamelCase )
return (new_height, new_width)
class A ( _a ):
lowercase_ = ['pixel_values']
def __init__( self : int , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : List[Any] , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase_ )
_a = size if size is not None else {'''height''': 3_84, '''width''': 3_84}
_a = get_size_dict(lowerCAmelCase_ )
_a = do_resize
_a = size
_a = keep_aspect_ratio
_a = ensure_multiple_of
_a = resample
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_a = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' )
_a = get_resize_output_image_size(
lowerCAmelCase_ , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=lowerCAmelCase_ , multiple=lowerCAmelCase_ , )
return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Any , ) -> List[Any]:
"""simple docstring"""
return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Tuple , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : float = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : List[str] , ) -> PIL.Image.Image:
"""simple docstring"""
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(lowerCAmelCase_ )
_a = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
_a = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
_a = resample if resample is not None else self.resample
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = make_list_of_images(lowerCAmelCase_ )
if not valid_images(lowerCAmelCase_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_a = [to_numpy_array(lowerCAmelCase_ ) for image in images]
if do_resize:
_a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images]
if do_rescale:
_a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images]
if do_normalize:
_a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images]
_a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Tuple] = None ) -> Union[str, Any]:
"""simple docstring"""
_a = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowerCAmelCase_ ):
_a = target_sizes.numpy()
_a = []
for idx in range(len(lowerCAmelCase_ ) ):
_a = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase_ )
_a = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase_ )
else:
_a = logits.argmax(dim=1 )
_a = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 22 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class A ( unittest.TestCase ):
def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]=7 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=18 , lowerCAmelCase_ : Any=30 , lowerCAmelCase_ : Optional[int]=4_00 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=True , ) -> Optional[Any]:
"""simple docstring"""
_a = size if size is not None else {'''height''': 18, '''width''': 18}
_a = parent
_a = batch_size
_a = num_channels
_a = image_size
_a = min_resolution
_a = max_resolution
_a = do_resize
_a = size
_a = do_normalize
def __lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4],
[-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class A ( _a ,unittest.TestCase ):
lowercase_ = ImageGPTImageProcessor if is_vision_available() else None
def __lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_a = ImageGPTImageProcessingTester(self )
@property
def __lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def __lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase_ , '''clusters''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''size''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''do_normalize''' ) )
def __lowerCAmelCase ( self : List[Any] ) -> List[str]:
"""simple docstring"""
_a = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} )
_a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
def __lowerCAmelCase ( self : str ) -> str:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
_a = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a = os.path.join(lowerCAmelCase_ , '''image_processor.json''' )
image_processor_first.to_json_file(lowerCAmelCase_ )
_a = self.image_processing_class.from_json_file(lowerCAmelCase_ ).to_dict()
_a = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowerCAmelCase_ )
_a = self.image_processing_class.from_pretrained(lowerCAmelCase_ ).to_dict()
_a = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowerCAmelCase_ )
@unittest.skip('''ImageGPT requires clusters at initialization''' )
def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
pass
def snake_case_ ():
'''simple docstring'''
_a = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' )
_a = Image.open(dataset[4]['''file'''] )
_a = Image.open(dataset[5]['''file'''] )
_a = [imagea, imagea]
return images
@require_vision
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_a = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' )
_a = prepare_images()
# test non-batched
_a = image_processing(images[0] , return_tensors='''pt''' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 10_24) )
_a = [3_06, 1_91, 1_91]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCAmelCase_ )
# test batched
_a = image_processing(lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 10_24) )
_a = [3_03, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
def snake_case_ (UpperCamelCase : list , UpperCamelCase : list ):
'''simple docstring'''
_validate_point(UpperCamelCase )
_validate_point(UpperCamelCase )
if len(UpperCamelCase ) != len(UpperCamelCase ):
raise ValueError('''Both points must be in the same n-dimensional space''' )
return float(sum(abs(a - b ) for a, b in zip(UpperCamelCase , UpperCamelCase ) ) )
def snake_case_ (UpperCamelCase : list[float] ):
'''simple docstring'''
if point:
if isinstance(UpperCamelCase , UpperCamelCase ):
for item in point:
if not isinstance(UpperCamelCase , (int, float) ):
_a = (
'''Expected a list of numbers as input, found '''
f'{type(UpperCamelCase ).__name__}'
)
raise TypeError(UpperCamelCase )
else:
_a = f'Expected a list of numbers as input, found {type(UpperCamelCase ).__name__}'
raise TypeError(UpperCamelCase )
else:
raise ValueError('''Missing an input''' )
def snake_case_ (UpperCamelCase : list , UpperCamelCase : list ):
'''simple docstring'''
_validate_point(UpperCamelCase )
_validate_point(UpperCamelCase )
if len(UpperCamelCase ) != len(UpperCamelCase ):
raise ValueError('''Both points must be in the same n-dimensional space''' )
return float(sum(abs(x - y ) for x, y in zip(UpperCamelCase , UpperCamelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 |
'''simple docstring'''
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
_a = AutoTokenizer.from_pretrained('''google/mt5-small''' )
_a = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
_a = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
_a = shift_tokens_right(lowerCAmelCase_ , model.config.pad_token_id , model.config.decoder_start_token_id )
_a = model(lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_ ).logits
_a = optax.softmax_cross_entropy(lowerCAmelCase_ , onehot(lowerCAmelCase_ , logits.shape[-1] ) ).mean()
_a = -(labels.shape[-1] * loss.item())
_a = -8_4.9_1_2_7
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 22 | 1 |
'''simple docstring'''
from math import factorial
_snake_case : Optional[int] = {str(d): factorial(d) for d in range(10)}
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
return sum(DIGIT_FACTORIAL[d] for d in str(UpperCamelCase ) )
def snake_case_ ():
'''simple docstring'''
_a = 7 * factorial(9 ) + 1
return sum(i for i in range(3 , UpperCamelCase ) if sum_of_digit_factorial(UpperCamelCase ) == i )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 22 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
_snake_case : Optional[Any] = 8
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Dict=BITS ):
'''simple docstring'''
_a = x.device
_a = (x * 255).int().clamp(0 , 255 )
_a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase )
_a = rearrange(UpperCamelCase , '''d -> d 1 1''' )
_a = rearrange(UpperCamelCase , '''b c h w -> b c 1 h w''' )
_a = ((x & mask) != 0).float()
_a = rearrange(UpperCamelCase , '''b c d h w -> b (c d) h w''' )
_a = bits * 2 - 1
return bits
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Any=BITS ):
'''simple docstring'''
_a = x.device
_a = (x > 0).int()
_a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase , dtype=torch.intaa )
_a = rearrange(UpperCamelCase , '''d -> d 1 1''' )
_a = rearrange(UpperCamelCase , '''b (c d) h w -> b c d h w''' , d=8 )
_a = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' )
return (dec / 255).clamp(0.0 , 1.0 )
def snake_case_ (self : Union[str, Any] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : float = 0.0 , UpperCamelCase : bool = True , UpperCamelCase : Any=None , UpperCamelCase : bool = True , ):
'''simple docstring'''
if self.num_inference_steps is None:
raise ValueError(
'''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
_a = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
_a = self.alphas_cumprod[timestep]
_a = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
_a = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
_a = self.bit_scale
if self.config.clip_sample:
_a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
_a = self._get_variance(UpperCamelCase , UpperCamelCase )
_a = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
_a = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
_a = model_output.device if torch.is_tensor(UpperCamelCase ) else '''cpu'''
_a = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase ).to(UpperCamelCase )
_a = self._get_variance(UpperCamelCase , UpperCamelCase ) ** 0.5 * eta * noise
_a = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase )
def snake_case_ (self : Any , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : str="epsilon" , UpperCamelCase : Dict=None , UpperCamelCase : bool = True , ):
'''simple docstring'''
_a = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
_a , _a = torch.split(UpperCamelCase , sample.shape[1] , dim=1 )
else:
_a = None
# 1. compute alphas, betas
_a = self.alphas_cumprod[t]
_a = self.alphas_cumprod[t - 1] if t > 0 else self.one
_a = 1 - alpha_prod_t
_a = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
_a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
_a = model_output
else:
raise ValueError(f'Unsupported prediction_type {prediction_type}.' )
# 3. Clip "predicted x_0"
_a = self.bit_scale
if self.config.clip_sample:
_a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_a = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
_a = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_a = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_a = 0
if t > 0:
_a = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase ).to(model_output.device )
_a = (self._get_variance(UpperCamelCase , predicted_variance=UpperCamelCase ) ** 0.5) * noise
_a = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase )
class A ( _a ):
def __init__( self : Any , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , lowerCAmelCase_ : Optional[float] = 1.0 , ) -> int:
"""simple docstring"""
super().__init__()
_a = bit_scale
_a = (
ddim_bit_scheduler_step if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ )
@torch.no_grad()
def __call__( self : List[Any] , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 50 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Any , ) -> Union[Tuple, ImagePipelineOutput]:
"""simple docstring"""
_a = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=lowerCAmelCase_ , )
_a = decimal_to_bits(lowerCAmelCase_ ) * self.bit_scale
_a = latents.to(self.device )
self.scheduler.set_timesteps(lowerCAmelCase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
_a = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample
# compute the previous noisy sample x_t -> x_t-1
_a = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample
_a = bits_to_decimal(lowerCAmelCase_ )
if output_type == "pil":
_a = self.numpy_to_pil(lowerCAmelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCAmelCase_ )
| 22 | 1 |
'''simple docstring'''
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields
from enum import Enum
from typing import Any, ContextManager, List, Tuple
import numpy as np
from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class A ( _a ):
def __get__( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any]=None ) -> Optional[Any]:
"""simple docstring"""
if obj is None:
return self
if self.fget is None:
raise AttributeError('''unreadable attribute''' )
_a = '''__cached_''' + self.fget.__name__
_a = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
if cached is None:
_a = self.fget(lowerCAmelCase_ )
setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
return cached
def snake_case_ (UpperCamelCase : List[str] ):
'''simple docstring'''
_a = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(f'invalid truth value {val!r}' )
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
if is_torch_fx_proxy(UpperCamelCase ):
return True
if is_torch_available():
import torch
if isinstance(UpperCamelCase , torch.Tensor ):
return True
if is_tf_available():
import tensorflow as tf
if isinstance(UpperCamelCase , tf.Tensor ):
return True
if is_flax_available():
import jax.numpy as jnp
from jax.core import Tracer
if isinstance(UpperCamelCase , (jnp.ndarray, Tracer) ):
return True
return isinstance(UpperCamelCase , np.ndarray )
def snake_case_ (UpperCamelCase : Optional[int] ):
'''simple docstring'''
return isinstance(UpperCamelCase , np.ndarray )
def snake_case_ (UpperCamelCase : Tuple ):
'''simple docstring'''
return _is_numpy(UpperCamelCase )
def snake_case_ (UpperCamelCase : List[Any] ):
'''simple docstring'''
import torch
return isinstance(UpperCamelCase , torch.Tensor )
def snake_case_ (UpperCamelCase : Tuple ):
'''simple docstring'''
return False if not is_torch_available() else _is_torch(UpperCamelCase )
def snake_case_ (UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
import torch
return isinstance(UpperCamelCase , torch.device )
def snake_case_ (UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
return False if not is_torch_available() else _is_torch_device(UpperCamelCase )
def snake_case_ (UpperCamelCase : List[Any] ):
'''simple docstring'''
import torch
if isinstance(UpperCamelCase , UpperCamelCase ):
if hasattr(UpperCamelCase , UpperCamelCase ):
_a = getattr(UpperCamelCase , UpperCamelCase )
else:
return False
return isinstance(UpperCamelCase , torch.dtype )
def snake_case_ (UpperCamelCase : Tuple ):
'''simple docstring'''
return False if not is_torch_available() else _is_torch_dtype(UpperCamelCase )
def snake_case_ (UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
import tensorflow as tf
return isinstance(UpperCamelCase , tf.Tensor )
def snake_case_ (UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
return False if not is_tf_available() else _is_tensorflow(UpperCamelCase )
def snake_case_ (UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(UpperCamelCase , '''is_symbolic_tensor''' ):
return tf.is_symbolic_tensor(UpperCamelCase )
return type(UpperCamelCase ) == tf.Tensor
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCamelCase )
def snake_case_ (UpperCamelCase : List[Any] ):
'''simple docstring'''
import jax.numpy as jnp # noqa: F811
return isinstance(UpperCamelCase , jnp.ndarray )
def snake_case_ (UpperCamelCase : Optional[Any] ):
'''simple docstring'''
return False if not is_flax_available() else _is_jax(UpperCamelCase )
def snake_case_ (UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
if isinstance(UpperCamelCase , (dict, UserDict) ):
return {k: to_py_obj(UpperCamelCase ) for k, v in obj.items()}
elif isinstance(UpperCamelCase , (list, tuple) ):
return [to_py_obj(UpperCamelCase ) for o in obj]
elif is_tf_tensor(UpperCamelCase ):
return obj.numpy().tolist()
elif is_torch_tensor(UpperCamelCase ):
return obj.detach().cpu().tolist()
elif is_jax_tensor(UpperCamelCase ):
return np.asarray(UpperCamelCase ).tolist()
elif isinstance(UpperCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays
return obj.tolist()
else:
return obj
def snake_case_ (UpperCamelCase : Optional[int] ):
'''simple docstring'''
if isinstance(UpperCamelCase , (dict, UserDict) ):
return {k: to_numpy(UpperCamelCase ) for k, v in obj.items()}
elif isinstance(UpperCamelCase , (list, tuple) ):
return np.array(UpperCamelCase )
elif is_tf_tensor(UpperCamelCase ):
return obj.numpy()
elif is_torch_tensor(UpperCamelCase ):
return obj.detach().cpu().numpy()
elif is_jax_tensor(UpperCamelCase ):
return np.asarray(UpperCamelCase )
else:
return obj
class A ( _a ):
def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
_a = fields(self )
# Safety and consistency checks
if not len(lowerCAmelCase_ ):
raise ValueError(F'{self.__class__.__name__} has no fields.' )
if not all(field.default is None for field in class_fields[1:] ):
raise ValueError(F'{self.__class__.__name__} should not have more than one required field.' )
_a = getattr(self , class_fields[0].name )
_a = all(getattr(self , field.name ) is None for field in class_fields[1:] )
if other_fields_are_none and not is_tensor(lowerCAmelCase_ ):
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
_a = first_field.items()
_a = True
else:
try:
_a = iter(lowerCAmelCase_ )
_a = True
except TypeError:
_a = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(lowerCAmelCase_ ):
if (
not isinstance(lowerCAmelCase_ , (list, tuple) )
or not len(lowerCAmelCase_ ) == 2
or not isinstance(element[0] , lowerCAmelCase_ )
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
_a = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
F'Cannot set key/value for {element}. It needs to be a tuple (key, value).' )
break
setattr(self , element[0] , element[1] )
if element[1] is not None:
_a = element[1]
elif first_field is not None:
_a = first_field
else:
for field in class_fields:
_a = getattr(self , field.name )
if v is not None:
_a = v
def __delitem__( self : Any , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Any ) -> List[str]:
"""simple docstring"""
raise Exception(F'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' )
def __lowerCAmelCase ( self : Optional[int] , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
raise Exception(F'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' )
def __lowerCAmelCase ( self : Optional[Any] , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
raise Exception(F'You cannot use ``pop`` on a {self.__class__.__name__} instance.' )
def __lowerCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : str ) -> List[Any]:
"""simple docstring"""
raise Exception(F'You cannot use ``update`` on a {self.__class__.__name__} instance.' )
def __getitem__( self : Dict , lowerCAmelCase_ : Optional[Any] ) -> int:
"""simple docstring"""
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
_a = dict(self.items() )
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(lowerCAmelCase_ , lowerCAmelCase_ )
super().__setattr__(lowerCAmelCase_ , lowerCAmelCase_ )
def __setitem__( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ) -> Optional[Any]:
"""simple docstring"""
super().__setitem__(lowerCAmelCase_ , lowerCAmelCase_ )
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple[Any]:
"""simple docstring"""
return tuple(self[k] for k in self.keys() )
class A ( _a ,_a ):
@classmethod
def __lowerCAmelCase ( cls : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]:
"""simple docstring"""
raise ValueError(
F'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' )
class A ( _a ):
lowercase_ = 'longest'
lowercase_ = 'max_length'
lowercase_ = 'do_not_pad'
class A ( _a ):
lowercase_ = 'pt'
lowercase_ = 'tf'
lowercase_ = 'np'
lowercase_ = 'jax'
class A :
def __init__( self : str , lowerCAmelCase_ : List[ContextManager] ) -> Tuple:
"""simple docstring"""
_a = context_managers
_a = ExitStack()
def __enter__( self : str ) -> List[str]:
"""simple docstring"""
for context_manager in self.context_managers:
self.stack.enter_context(lowerCAmelCase_ )
def __exit__( self : List[Any] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : List[Any] ) -> str:
"""simple docstring"""
self.stack.__exit__(*lowerCAmelCase_ , **lowerCAmelCase_ )
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
_a = infer_framework(UpperCamelCase )
if framework == "tf":
_a = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
_a = inspect.signature(model_class.forward ) # PyTorch models
else:
_a = inspect.signature(model_class.__call__ ) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
_a = model_class.__name__
_a = infer_framework(UpperCamelCase )
if framework == "tf":
_a = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
_a = inspect.signature(model_class.forward ) # PyTorch models
else:
_a = inspect.signature(model_class.__call__ ) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def snake_case_ (UpperCamelCase : MutableMapping , UpperCamelCase : str = "" , UpperCamelCase : str = "." ):
'''simple docstring'''
def _flatten_dict(UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]="" , UpperCamelCase : List[Any]="." ):
for k, v in d.items():
_a = str(UpperCamelCase ) + delimiter + str(UpperCamelCase ) if parent_key else k
if v and isinstance(UpperCamelCase , UpperCamelCase ):
yield from flatten_dict(UpperCamelCase , UpperCamelCase , delimiter=UpperCamelCase ).items()
else:
yield key, v
return dict(_flatten_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) )
@contextmanager
def snake_case_ (UpperCamelCase : Optional[Any] , UpperCamelCase : bool = False ):
'''simple docstring'''
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def snake_case_ (UpperCamelCase : Optional[Any] , UpperCamelCase : Any=None ):
'''simple docstring'''
if is_numpy_array(UpperCamelCase ):
return np.transpose(UpperCamelCase , axes=UpperCamelCase )
elif is_torch_tensor(UpperCamelCase ):
return array.T if axes is None else array.permute(*UpperCamelCase )
elif is_tf_tensor(UpperCamelCase ):
import tensorflow as tf
return tf.transpose(UpperCamelCase , perm=UpperCamelCase )
elif is_jax_tensor(UpperCamelCase ):
return jnp.transpose(UpperCamelCase , axes=UpperCamelCase )
else:
raise ValueError(f'Type not supported for transpose: {type(UpperCamelCase )}.' )
def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] ):
'''simple docstring'''
if is_numpy_array(UpperCamelCase ):
return np.reshape(UpperCamelCase , UpperCamelCase )
elif is_torch_tensor(UpperCamelCase ):
return array.reshape(*UpperCamelCase )
elif is_tf_tensor(UpperCamelCase ):
import tensorflow as tf
return tf.reshape(UpperCamelCase , UpperCamelCase )
elif is_jax_tensor(UpperCamelCase ):
return jnp.reshape(UpperCamelCase , UpperCamelCase )
else:
raise ValueError(f'Type not supported for reshape: {type(UpperCamelCase )}.' )
def snake_case_ (UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int]=None ):
'''simple docstring'''
if is_numpy_array(UpperCamelCase ):
return np.squeeze(UpperCamelCase , axis=UpperCamelCase )
elif is_torch_tensor(UpperCamelCase ):
return array.squeeze() if axis is None else array.squeeze(dim=UpperCamelCase )
elif is_tf_tensor(UpperCamelCase ):
import tensorflow as tf
return tf.squeeze(UpperCamelCase , axis=UpperCamelCase )
elif is_jax_tensor(UpperCamelCase ):
return jnp.squeeze(UpperCamelCase , axis=UpperCamelCase )
else:
raise ValueError(f'Type not supported for squeeze: {type(UpperCamelCase )}.' )
def snake_case_ (UpperCamelCase : Optional[Any] , UpperCamelCase : Any ):
'''simple docstring'''
if is_numpy_array(UpperCamelCase ):
return np.expand_dims(UpperCamelCase , UpperCamelCase )
elif is_torch_tensor(UpperCamelCase ):
return array.unsqueeze(dim=UpperCamelCase )
elif is_tf_tensor(UpperCamelCase ):
import tensorflow as tf
return tf.expand_dims(UpperCamelCase , axis=UpperCamelCase )
elif is_jax_tensor(UpperCamelCase ):
return jnp.expand_dims(UpperCamelCase , axis=UpperCamelCase )
else:
raise ValueError(f'Type not supported for expand_dims: {type(UpperCamelCase )}.' )
def snake_case_ (UpperCamelCase : int ):
'''simple docstring'''
if is_numpy_array(UpperCamelCase ):
return np.size(UpperCamelCase )
elif is_torch_tensor(UpperCamelCase ):
return array.numel()
elif is_tf_tensor(UpperCamelCase ):
import tensorflow as tf
return tf.size(UpperCamelCase )
elif is_jax_tensor(UpperCamelCase ):
return array.size
else:
raise ValueError(f'Type not supported for expand_dims: {type(UpperCamelCase )}.' )
def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] ):
'''simple docstring'''
for key, value in auto_map.items():
if isinstance(UpperCamelCase , (tuple, list) ):
_a = [f'{repo_id}--{v}' if (v is not None and '''--''' not in v) else v for v in value]
elif value is not None and "--" not in value:
_a = f'{repo_id}--{value}'
return auto_map
def snake_case_ (UpperCamelCase : Optional[int] ):
'''simple docstring'''
for base_class in inspect.getmro(UpperCamelCase ):
_a = base_class.__module__
_a = base_class.__name__
if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel":
return "tf"
elif module.startswith('''torch''' ) or name == "PreTrainedModel":
return "pt"
elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(f'Could not infer framework from class {model_class}.' )
| 22 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case : Optional[int] = logging.get_logger(__name__)
_snake_case : Any = {
'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json',
'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json',
'junnyu/roformer_chinese_char_small': (
'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json'
),
'junnyu/roformer_chinese_char_base': (
'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json'
),
'junnyu/roformer_small_discriminator': (
'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json'
),
'junnyu/roformer_small_generator': (
'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json'
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class A ( _a ):
lowercase_ = 'roformer'
def __init__( self : str , lowerCAmelCase_ : int=5_00_00 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int=7_68 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : List[str]=30_72 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : int=15_36 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : Dict=1e-12 , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Tuple=True , **lowerCAmelCase_ : Optional[int] , ) -> str:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
_a = vocab_size
_a = hidden_size if embedding_size is None else embedding_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = hidden_act
_a = intermediate_size
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = initializer_range
_a = layer_norm_eps
_a = rotary_value
_a = use_cache
class A ( _a ):
@property
def __lowerCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
_a = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 22 | 1 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class A ( _a ):
lowercase_ = 'WhisperFeatureExtractor'
lowercase_ = 'WhisperTokenizer'
def __init__( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str ) -> List[Any]:
"""simple docstring"""
super().__init__(lowerCAmelCase_ , lowerCAmelCase_ )
_a = self.feature_extractor
_a = False
def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Dict=True ) -> List[Any]:
"""simple docstring"""
return self.tokenizer.get_decoder_prompt_ids(task=lowerCAmelCase_ , language=lowerCAmelCase_ , no_timestamps=lowerCAmelCase_ )
def __call__( self : Any , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : List[str] ) -> Dict:
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*lowerCAmelCase_ , **lowerCAmelCase_ )
_a = kwargs.pop('''audio''' , lowerCAmelCase_ )
_a = kwargs.pop('''sampling_rate''' , lowerCAmelCase_ )
_a = kwargs.pop('''text''' , lowerCAmelCase_ )
if len(lowerCAmelCase_ ) > 0:
_a = args[0]
_a = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
_a = self.feature_extractor(lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ )
if text is not None:
_a = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ )
if text is None:
return inputs
elif audio is None:
return encodings
else:
_a = encodings['''input_ids''']
return inputs
def __lowerCAmelCase ( self : str , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : int ) -> Any:
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str="np" ) -> Dict:
"""simple docstring"""
return self.tokenizer.get_prompt_ids(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ )
| 22 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class A :
lowercase_ = 42
lowercase_ = 42
class A :
def __init__( self : Optional[Any] , lowerCAmelCase_ : int ) -> str:
"""simple docstring"""
_a = [[] for _ in range(lowerCAmelCase_ )]
_a = size
def __getitem__( self : Any , lowerCAmelCase_ : int ) -> Iterator[Edge]:
"""simple docstring"""
return iter(self._graph[vertex] )
@property
def __lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
return self._size
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Dict:
"""simple docstring"""
if weight not in (0, 1):
raise ValueError('''Edge weight must be either 0 or 1.''' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('''Vertex indexes must be in [0; size).''' )
self._graph[from_vertex].append(Edge(lowerCAmelCase_ , lowerCAmelCase_ ) )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> int | None:
"""simple docstring"""
_a = deque([start_vertex] )
_a = [None] * self.size
_a = 0
while queue:
_a = queue.popleft()
_a = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
_a = current_distance + edge.weight
_a = distances[edge.destination_vertex]
if (
isinstance(lowerCAmelCase_ , lowerCAmelCase_ )
and new_distance >= dest_vertex_distance
):
continue
_a = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('''No path from start_vertex to finish_vertex.''' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 | 1 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class A :
def __init__( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : Union[str, Any]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Any=99 , lowerCAmelCase_ : Any=36 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : int=37 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Tuple=5_12 , lowerCAmelCase_ : List[Any]=16 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[int]=0.0_2 , lowerCAmelCase_ : List[str]=6 , lowerCAmelCase_ : Dict=6 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Optional[int]=10_00 , ) -> List[Any]:
"""simple docstring"""
_a = parent
_a = batch_size
_a = num_channels
_a = image_size
_a = patch_size
_a = is_training
_a = use_input_mask
_a = use_token_type_ids
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = type_sequence_label_size
_a = initializer_range
_a = coordinate_size
_a = shape_size
_a = num_labels
_a = num_choices
_a = scope
_a = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
_a = text_seq_length
_a = (image_size // patch_size) ** 2 + 1
_a = self.text_seq_length + self.image_seq_length
def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
_a = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
_a = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
_a = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
_a = bbox[i, j, 3]
_a = bbox[i, j, 1]
_a = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
_a = bbox[i, j, 2]
_a = bbox[i, j, 0]
_a = tmp_coordinate
_a = tf.constant(lowerCAmelCase_ )
_a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_a = None
if self.use_input_mask:
_a = random_attention_mask([self.batch_size, self.text_seq_length] )
_a = None
if self.use_token_type_ids:
_a = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
_a = None
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
_a = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] ) -> str:
"""simple docstring"""
_a = TFLayoutLMvaModel(config=lowerCAmelCase_ )
# text + image
_a = model(lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , training=lowerCAmelCase_ )
_a = model(
lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , training=lowerCAmelCase_ , )
_a = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , training=lowerCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
_a = model(lowerCAmelCase_ , training=lowerCAmelCase_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
_a = model({'''pixel_values''': pixel_values} , training=lowerCAmelCase_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_a = self.num_labels
_a = TFLayoutLMvaForSequenceClassification(config=lowerCAmelCase_ )
_a = model(
lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] ) -> Dict:
"""simple docstring"""
_a = self.num_labels
_a = TFLayoutLMvaForTokenClassification(config=lowerCAmelCase_ )
_a = model(
lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] ) -> int:
"""simple docstring"""
_a = 2
_a = TFLayoutLMvaForQuestionAnswering(config=lowerCAmelCase_ )
_a = model(
lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , training=lowerCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self : List[Any] ) -> Any:
"""simple docstring"""
_a = self.prepare_config_and_inputs()
((_a) , (_a) , (_a) , (_a) , (_a) , (_a) , (_a) , (_a)) = config_and_inputs
_a = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''pixel_values''': pixel_values,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_tf
class A ( _a ,_a ,unittest.TestCase ):
lowercase_ = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
lowercase_ = (
{'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
lowercase_ = False
lowercase_ = False
lowercase_ = False
def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple ) -> Optional[Any]:
"""simple docstring"""
return True
def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str=False ) -> dict:
"""simple docstring"""
_a = copy.deepcopy(lowerCAmelCase_ )
if model_class in get_values(lowerCAmelCase_ ):
_a = {
k: tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(lowerCAmelCase_ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(lowerCAmelCase_ ):
_a = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(lowerCAmelCase_ ):
_a = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
_a = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(lowerCAmelCase_ ):
_a = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(lowerCAmelCase_ ):
_a = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
_a = TFLayoutLMvaModelTester(self )
_a = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 )
def __lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a = model_class(lowerCAmelCase_ )
if getattr(lowerCAmelCase_ , '''hf_compute_loss''' , lowerCAmelCase_ ):
# The number of elements in the loss should be the same as the number of elements in the label
_a = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
_a = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCAmelCase_ )[0]
]
_a = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
_a = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
_a = prepared_for_class.pop('''input_ids''' )
_a = model(lowerCAmelCase_ , **lowerCAmelCase_ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
_a = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
_a = prepared_for_class.pop('''input_ids''' )
if "labels" in prepared_for_class:
_a = prepared_for_class['''labels'''].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
_a = -1_00
_a = tf.convert_to_tensor(lowerCAmelCase_ )
_a = model(lowerCAmelCase_ , **lowerCAmelCase_ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
_a = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
_a = model(lowerCAmelCase_ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
_a = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
# Get keys that were added with the _prepare_for_class function
_a = prepared_for_class.keys() - inputs_dict.keys()
_a = inspect.signature(model.call ).parameters
_a = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
_a = {0: '''input_ids'''}
for label_key in label_keys:
_a = signature_names.index(lowerCAmelCase_ )
_a = label_key
_a = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
_a = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
_a = prepared_for_class[value]
_a = tuple(lowerCAmelCase_ )
# Send to model
_a = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def __lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_a = type
self.model_tester.create_and_check_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple ) -> Tuple:
"""simple docstring"""
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
@slow
def __lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a = TFLayoutLMvaModel.from_pretrained(lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
def snake_case_ ():
'''simple docstring'''
_a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
class A ( unittest.TestCase ):
@cached_property
def __lowerCAmelCase ( self : Dict ) -> Dict:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase_ ) if is_vision_available() else None
@slow
def __lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_a = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' )
_a = self.default_image_processor
_a = prepare_img()
_a = image_processor(images=lowerCAmelCase_ , return_tensors='''tf''' ).pixel_values
_a = tf.constant([[1, 2]] )
_a = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
_a = model(input_ids=lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , training=lowerCAmelCase_ )
# verify the logits
_a = (1, 1_99, 7_68)
self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase_ )
_a = tf.constant(
[[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
| 22 |
'''simple docstring'''
from math import pi, sqrt
def snake_case_ (UpperCamelCase : float ):
'''simple docstring'''
if num <= 0:
raise ValueError('''math domain error''' )
if num > 171.5:
raise OverflowError('''math range error''' )
elif num - int(UpperCamelCase ) not in (0, 0.5):
raise NotImplementedError('''num must be an integer or a half-integer''' )
elif num == 0.5:
return sqrt(UpperCamelCase )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def snake_case_ ():
'''simple docstring'''
assert gamma(0.5 ) == sqrt(UpperCamelCase )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
_snake_case : Optional[Any] = 1.0
while num:
_snake_case : Dict = float(input('Gamma of: '))
print(F'''gamma({num}) = {gamma(num)}''')
print('\nEnter 0 to exit...')
| 22 | 1 |
'''simple docstring'''
from argparse import ArgumentParser
from .env import EnvironmentCommand
def snake_case_ ():
'''simple docstring'''
_a = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' )
_a = parser.add_subparsers(help='''diffusers-cli command helpers''' )
# Register commands
EnvironmentCommand.register_subcommand(UpperCamelCase )
# Let's go
_a = parser.parse_args()
if not hasattr(UpperCamelCase , '''func''' ):
parser.print_help()
exit(1 )
# Run
_a = args.func(UpperCamelCase )
service.run()
if __name__ == "__main__":
main()
| 22 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : List[Any] ) -> int:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_euler''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_euler''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1
def __lowerCAmelCase ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
_a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
_a = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
sd_pipe.set_scheduler('''sample_dpmpp_2m''' )
_a = '''A painting of a squirrel eating a burger'''
_a = torch.manual_seed(0 )
_a = sd_pipe(
[prompt] , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=lowerCAmelCase_ , )
_a = output.images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_a = np.array(
[0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 22 | 1 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
from accelerate.commands.config import get_config_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.test import test_command_parser
from accelerate.commands.tpu import tpu_command_parser
def snake_case_ ():
'''simple docstring'''
_a = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=UpperCamelCase )
_a = parser.add_subparsers(help='''accelerate command helpers''' )
# Register commands
get_config_parser(subparsers=UpperCamelCase )
env_command_parser(subparsers=UpperCamelCase )
launch_command_parser(subparsers=UpperCamelCase )
tpu_command_parser(subparsers=UpperCamelCase )
test_command_parser(subparsers=UpperCamelCase )
# Let's go
_a = parser.parse_args()
if not hasattr(UpperCamelCase , '''func''' ):
parser.print_help()
exit(1 )
# Run
args.func(UpperCamelCase )
if __name__ == "__main__":
main()
| 22 |
'''simple docstring'''
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
_snake_case : Any = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
_snake_case : Any = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n'
_snake_case : List[Any] = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n'
def snake_case_ (UpperCamelCase : Tuple ):
'''simple docstring'''
def remove_articles(UpperCamelCase : Optional[int] ):
_a = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE )
return re.sub(UpperCamelCase , ''' ''' , UpperCamelCase )
def white_space_fix(UpperCamelCase : Union[str, Any] ):
return " ".join(text.split() )
def remove_punc(UpperCamelCase : str ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(UpperCamelCase : Tuple ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase ) ) ) )
def snake_case_ (UpperCamelCase : int , UpperCamelCase : Dict ):
'''simple docstring'''
return int(normalize_answer(UpperCamelCase ) == normalize_answer(UpperCamelCase ) )
def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : List[str] ):
'''simple docstring'''
_a = [any(compute_exact(UpperCamelCase , UpperCamelCase ) for ref in refs ) for pred, refs in zip(UpperCamelCase , UpperCamelCase )]
return (sum(UpperCamelCase ) / len(UpperCamelCase )) * 100
def snake_case_ (UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
_a = [rgram for rgrams in rgramslist for rgram in rgrams]
_a = Counter(UpperCamelCase )
_a = Counter(UpperCamelCase )
_a = Counter()
for sgram, scount in sgramcounter.items():
_a = scount * numref
_a = Counter(UpperCamelCase )
_a = Counter()
for cgram, ccount in cgramcounter.items():
_a = ccount * numref
# KEEP
_a = sgramcounter_rep & cgramcounter_rep
_a = keepgramcounter_rep & rgramcounter
_a = sgramcounter_rep & rgramcounter
_a = 0
_a = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(UpperCamelCase ) > 0:
_a = keeptmpscorea / len(UpperCamelCase )
if len(UpperCamelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_a = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_a = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_a = sgramcounter_rep - cgramcounter_rep
_a = delgramcounter_rep - rgramcounter
_a = sgramcounter_rep - rgramcounter
_a = 0
_a = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
if len(UpperCamelCase ) > 0:
_a = deltmpscorea / len(UpperCamelCase )
# ADDITION
_a = set(UpperCamelCase ) - set(UpperCamelCase )
_a = set(UpperCamelCase ) & set(UpperCamelCase )
_a = set(UpperCamelCase ) - set(UpperCamelCase )
_a = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(UpperCamelCase ) > 0:
_a = addtmpscore / len(UpperCamelCase )
if len(UpperCamelCase ) > 0:
_a = addtmpscore / len(UpperCamelCase )
_a = 0
if addscore_precision > 0 or addscore_recall > 0:
_a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ):
'''simple docstring'''
_a = len(UpperCamelCase )
_a = ssent.split(''' ''' )
_a = csent.split(''' ''' )
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
for rsent in rsents:
_a = rsent.split(''' ''' )
_a = []
_a = []
_a = []
ragramslist.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
_a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_a = sum([delascore, delascore, delascore, delascore] ) / 4
_a = sum([addascore, addascore, addascore, addascore] ) / 4
_a = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def snake_case_ (UpperCamelCase : str , UpperCamelCase : bool = True , UpperCamelCase : str = "13a" , UpperCamelCase : bool = True ):
'''simple docstring'''
if lowercase:
_a = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_a = sacrebleu.metrics.bleu._get_tokenizer(UpperCamelCase )()(UpperCamelCase )
else:
_a = sacrebleu.TOKENIZERS[tokenizer]()(UpperCamelCase )
elif tokenizer == "moses":
_a = sacremoses.MosesTokenizer().tokenize(UpperCamelCase , return_str=UpperCamelCase , escape=UpperCamelCase )
elif tokenizer == "penn":
_a = sacremoses.MosesTokenizer().penn_tokenize(UpperCamelCase , return_str=UpperCamelCase )
else:
_a = sentence
if not return_str:
_a = normalized_sent.split()
return normalized_sent
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Dict ):
'''simple docstring'''
if not (len(UpperCamelCase ) == len(UpperCamelCase ) == len(UpperCamelCase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_a = 0
for src, pred, refs in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ):
sari_score += SARIsent(normalize(UpperCamelCase ) , normalize(UpperCamelCase ) , [normalize(UpperCamelCase ) for sent in refs] )
_a = sari_score / len(UpperCamelCase )
return 100 * sari_score
def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : List[str]="exp" , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[int]=False , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=False , ):
'''simple docstring'''
_a = len(references[0] )
if any(len(UpperCamelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a = [[refs[i] for refs in references] for i in range(UpperCamelCase )]
_a = sacrebleu.corpus_bleu(
UpperCamelCase , UpperCamelCase , smooth_method=UpperCamelCase , smooth_value=UpperCamelCase , force=UpperCamelCase , lowercase=UpperCamelCase , use_effective_order=UpperCamelCase , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def __lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any ) -> Dict:
"""simple docstring"""
_a = {}
result.update({'''sari''': compute_sari(sources=lowerCAmelCase_ , predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
result.update({'''exact''': compute_em(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
return result
| 22 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_snake_case : Dict = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Any = ['MLukeTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
_snake_case : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 22 |
'''simple docstring'''
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'):
_snake_case : Tuple = {
'linear': PIL.Image.Resampling.BILINEAR,
'bilinear': PIL.Image.Resampling.BILINEAR,
'bicubic': PIL.Image.Resampling.BICUBIC,
'lanczos': PIL.Image.Resampling.LANCZOS,
'nearest': PIL.Image.Resampling.NEAREST,
}
else:
_snake_case : Any = {
'linear': PIL.Image.LINEAR,
'bilinear': PIL.Image.BILINEAR,
'bicubic': PIL.Image.BICUBIC,
'lanczos': PIL.Image.LANCZOS,
'nearest': PIL.Image.NEAREST,
}
def snake_case_ (UpperCamelCase : Optional[int] ):
'''simple docstring'''
_a = (images / 2 + 0.5).clamp(0 , 1 )
_a = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
_a = numpy_to_pil(UpperCamelCase )
return images
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
if images.ndim == 3:
_a = images[None, ...]
_a = (images * 255).round().astype('''uint8''' )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
_a = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images]
else:
_a = [Image.fromarray(UpperCamelCase ) for image in images]
return pil_images
| 22 | 1 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def snake_case_ (UpperCamelCase : List[Any] ):
'''simple docstring'''
_a = 384
if "tiny" in model_name:
_a = [3, 3, 9, 3]
_a = [96, 192, 384, 768]
if "small" in model_name:
_a = [3, 3, 27, 3]
_a = [96, 192, 384, 768]
if "base" in model_name:
_a = [3, 3, 27, 3]
_a = [128, 256, 512, 1024]
_a = 512
if "large" in model_name:
_a = [3, 3, 27, 3]
_a = [192, 384, 768, 1536]
_a = 768
if "xlarge" in model_name:
_a = [3, 3, 27, 3]
_a = [256, 512, 1024, 2048]
_a = 1024
# set label information
_a = 150
_a = '''huggingface/label-files'''
_a = '''ade20k-id2label.json'''
_a = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) )
_a = {int(UpperCamelCase ): v for k, v in idalabel.items()}
_a = {v: k for k, v in idalabel.items()}
_a = ConvNextConfig(
depths=UpperCamelCase , hidden_sizes=UpperCamelCase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] )
_a = UperNetConfig(
backbone_config=UpperCamelCase , auxiliary_in_channels=UpperCamelCase , num_labels=UpperCamelCase , idalabel=UpperCamelCase , labelaid=UpperCamelCase , )
return config
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
_a = []
# fmt: off
# stem
rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') )
rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') )
rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') )
rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') )
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') )
if i > 0:
rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') )
rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') )
rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') )
rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') )
rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') )
rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') )
# decode head
rename_keys.extend(
[
('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''),
('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''),
('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''),
('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''),
] )
# fmt: on
return rename_keys
def snake_case_ (UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : str ):
'''simple docstring'''
_a = dct.pop(UpperCamelCase )
_a = val
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] ):
'''simple docstring'''
_a = {
'''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''',
'''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''',
'''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''',
'''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''',
'''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''',
}
_a = model_name_to_url[model_name]
_a = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location='''cpu''' )['''state_dict''']
_a = get_upernet_config(UpperCamelCase )
_a = UperNetForSemanticSegmentation(UpperCamelCase )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
_a = state_dict.pop(UpperCamelCase )
if "bn" in key:
_a = key.replace('''bn''' , '''batch_norm''' )
_a = val
# rename keys
_a = create_rename_keys(UpperCamelCase )
for src, dest in rename_keys:
rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase )
model.load_state_dict(UpperCamelCase )
# verify on image
_a = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'''
_a = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ).convert('''RGB''' )
_a = SegformerImageProcessor()
_a = processor(UpperCamelCase , return_tensors='''pt''' ).pixel_values
with torch.no_grad():
_a = model(UpperCamelCase )
if model_name == "upernet-convnext-tiny":
_a = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] )
elif model_name == "upernet-convnext-small":
_a = torch.tensor(
[[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] )
elif model_name == "upernet-convnext-base":
_a = torch.tensor(
[[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] )
elif model_name == "upernet-convnext-large":
_a = torch.tensor(
[[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] )
elif model_name == "upernet-convnext-xlarge":
_a = torch.tensor(
[[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] )
print('''Logits:''' , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase , atol=1e-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCamelCase )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(UpperCamelCase )
if push_to_hub:
print(f'Pushing model and processor for {model_name} to hub' )
model.push_to_hub(f'openmmlab/{model_name}' )
processor.push_to_hub(f'openmmlab/{model_name}' )
if __name__ == "__main__":
_snake_case : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='upernet-convnext-tiny',
type=str,
choices=[F'''upernet-convnext-{size}''' for size in ['tiny', 'small', 'base', 'large', 'xlarge']],
help='Name of the ConvNext UperNet model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
_snake_case : Dict = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 22 |
'''simple docstring'''
import requests
def snake_case_ (UpperCamelCase : str , UpperCamelCase : str ):
'''simple docstring'''
_a = {'''Content-Type''': '''application/json'''}
_a = requests.post(UpperCamelCase , json={'''text''': message_body} , headers=UpperCamelCase )
if response.status_code != 200:
_a = (
'''Request to slack returned an error '''
f'{response.status_code}, the response is:\n{response.text}'
)
raise ValueError(UpperCamelCase )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
| 22 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_snake_case : str = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Any = ['PerceiverFeatureExtractor']
_snake_case : Optional[int] = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : str = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
_snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 22 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
_snake_case : Tuple = logging.get_logger(__name__)
class A ( _a ):
lowercase_ = ['pixel_values']
def __init__( self : str , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : Any , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase_ )
_a = size if size is not None else {'''shortest_edge''': 2_56}
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
_a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_a = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ )
return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray:
"""simple docstring"""
_a = get_size_dict(lowerCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' )
return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Tuple ) -> np.ndarray:
"""simple docstring"""
return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : Union[str, Any] , ) -> Union[str, Any]:
"""simple docstring"""
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = make_list_of_images(lowerCAmelCase_ )
if not valid_images(lowerCAmelCase_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_a = [to_numpy_array(lowerCAmelCase_ ) for image in images]
if do_resize:
_a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images]
if do_rescale:
_a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images]
if do_normalize:
_a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images]
_a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Tuple] = None ) -> Any:
"""simple docstring"""
_a = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowerCAmelCase_ ):
_a = target_sizes.numpy()
_a = []
for idx in range(len(lowerCAmelCase_ ) ):
_a = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase_ )
_a = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase_ )
else:
_a = logits.argmax(dim=1 )
_a = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 22 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_snake_case : Optional[int] = {
'configuration_roberta_prelayernorm': [
'ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP',
'RobertaPreLayerNormConfig',
'RobertaPreLayerNormOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : str = [
'ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST',
'RobertaPreLayerNormForCausalLM',
'RobertaPreLayerNormForMaskedLM',
'RobertaPreLayerNormForMultipleChoice',
'RobertaPreLayerNormForQuestionAnswering',
'RobertaPreLayerNormForSequenceClassification',
'RobertaPreLayerNormForTokenClassification',
'RobertaPreLayerNormModel',
'RobertaPreLayerNormPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Union[str, Any] = [
'TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRobertaPreLayerNormForCausalLM',
'TFRobertaPreLayerNormForMaskedLM',
'TFRobertaPreLayerNormForMultipleChoice',
'TFRobertaPreLayerNormForQuestionAnswering',
'TFRobertaPreLayerNormForSequenceClassification',
'TFRobertaPreLayerNormForTokenClassification',
'TFRobertaPreLayerNormMainLayer',
'TFRobertaPreLayerNormModel',
'TFRobertaPreLayerNormPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[Any] = [
'FlaxRobertaPreLayerNormForCausalLM',
'FlaxRobertaPreLayerNormForMaskedLM',
'FlaxRobertaPreLayerNormForMultipleChoice',
'FlaxRobertaPreLayerNormForQuestionAnswering',
'FlaxRobertaPreLayerNormForSequenceClassification',
'FlaxRobertaPreLayerNormForTokenClassification',
'FlaxRobertaPreLayerNormModel',
'FlaxRobertaPreLayerNormPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP,
RobertaPreLayerNormConfig,
RobertaPreLayerNormOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaPreLayerNormForCausalLM,
RobertaPreLayerNormForMaskedLM,
RobertaPreLayerNormForMultipleChoice,
RobertaPreLayerNormForQuestionAnswering,
RobertaPreLayerNormForSequenceClassification,
RobertaPreLayerNormForTokenClassification,
RobertaPreLayerNormModel,
RobertaPreLayerNormPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta_prelayernorm import (
TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaPreLayerNormForCausalLM,
TFRobertaPreLayerNormForMaskedLM,
TFRobertaPreLayerNormForMultipleChoice,
TFRobertaPreLayerNormForQuestionAnswering,
TFRobertaPreLayerNormForSequenceClassification,
TFRobertaPreLayerNormForTokenClassification,
TFRobertaPreLayerNormMainLayer,
TFRobertaPreLayerNormModel,
TFRobertaPreLayerNormPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormPreTrainedModel,
)
else:
import sys
_snake_case : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 22 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def snake_case_ (UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : int , UpperCamelCase : Optional[int] = None , ):
'''simple docstring'''
_a = {}
if train_file is not None:
_a = [train_file]
if eval_file is not None:
_a = [eval_file]
if test_file is not None:
_a = [test_file]
_a = datasets.load_dataset('''csv''' , data_files=UpperCamelCase )
_a = list(ds[list(files.keys() )[0]].features.keys() )
_a = features_name.pop(UpperCamelCase )
_a = list(set(ds[list(files.keys() )[0]][label_name] ) )
_a = {label: i for i, label in enumerate(UpperCamelCase )}
_a = tokenizer.model_input_names
_a = {}
if len(UpperCamelCase ) == 1:
for k in files.keys():
_a = ds[k].map(
lambda UpperCamelCase : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' ) , batched=UpperCamelCase , )
elif len(UpperCamelCase ) == 2:
for k in files.keys():
_a = ds[k].map(
lambda UpperCamelCase : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' , ) , batched=UpperCamelCase , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
_a = {k: v for k, v in ex.items() if k in input_names}
_a = labelaid[ex[label_name]]
yield (d, label)
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
_a = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
_a = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
_a = (
tf.data.Dataset.from_generator(
UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
_a = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
_snake_case : str = logging.getLogger(__name__)
@dataclass
class A :
lowercase_ = field(metadata={'help': 'Which column contains the label'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the training file'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the development file'} )
lowercase_ = field(default=_a ,metadata={'help': 'The path of the test file'} )
lowercase_ = field(
default=128 ,metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} ,)
lowercase_ = field(
default=_a ,metadata={'help': 'Overwrite the cached training and evaluation sets'} )
@dataclass
class A :
lowercase_ = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
lowercase_ = field(
default=_a ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
lowercase_ = field(
default=_a ,metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
lowercase_ = field(default=_a ,metadata={'help': 'Set this flag to use fast tokenization.'} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowercase_ = field(
default=_a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,)
def snake_case_ ():
'''simple docstring'''
_a = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
_a , _a , _a = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. Use'
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(
f'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, '
f'16-bits training: {training_args.fpaa}' )
logger.info(f'Training/evaluation parameters {training_args}' )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_a = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_a , _a , _a , _a = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
_a = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase ) , labelaid=UpperCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
_a = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , )
def compute_metrics(UpperCamelCase : EvalPrediction ) -> Dict:
_a = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
_a = TFTrainer(
model=UpperCamelCase , args=UpperCamelCase , train_dataset=UpperCamelCase , eval_dataset=UpperCamelCase , compute_metrics=UpperCamelCase , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_a = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_a = trainer.evaluate()
_a = os.path.join(training_args.output_dir , '''eval_results.txt''' )
with open(UpperCamelCase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(f' {key} = {value}' )
writer.write(f'{key} = {value}\n' )
results.update(UpperCamelCase )
return results
if __name__ == "__main__":
main()
| 22 | 1 |
'''simple docstring'''
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_a = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
_a = AutoTokenizer.from_pretrained('''xlm-roberta-base''' )
_a = '''The dog is cute and lives in the garden house'''
_a = jnp.array([tokenizer.encode(lowerCAmelCase_ )] )
_a = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim
_a = jnp.array(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] )
_a = model(lowerCAmelCase_ )['''last_hidden_state''']
self.assertEqual(output.shape , lowerCAmelCase_ )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] , lowerCAmelCase_ , atol=1e-3 ) )
| 22 |
'''simple docstring'''
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A ( _a ,unittest.TestCase ):
lowercase_ = LEDTokenizer
lowercase_ = LEDTokenizerFast
lowercase_ = True
def __lowerCAmelCase ( self : int ) -> List[Any]:
"""simple docstring"""
super().setUp()
_a = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
_a = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) )
_a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
_a = {'''unk_token''': '''<unk>'''}
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowerCAmelCase_ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(lowerCAmelCase_ ) )
def __lowerCAmelCase ( self : Union[str, Any] , **lowerCAmelCase_ : int ) -> Optional[int]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , **lowerCAmelCase_ : Any ) -> int:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> List[str]:
"""simple docstring"""
return "lower newer", "lower newer"
@cached_property
def __lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' )
@cached_property
def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' )
@require_torch
def __lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
_a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
_a = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
_a = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
@require_torch
def __lowerCAmelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
_a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIn('''input_ids''' , lowerCAmelCase_ )
self.assertIn('''attention_mask''' , lowerCAmelCase_ )
self.assertNotIn('''labels''' , lowerCAmelCase_ )
self.assertNotIn('''decoder_attention_mask''' , lowerCAmelCase_ )
@require_torch
def __lowerCAmelCase ( self : List[str] ) -> str:
"""simple docstring"""
_a = [
'''Summary of the text.''',
'''Another summary.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='''max_length''' , return_tensors='''pt''' )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
@require_torch
def __lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(
['''I am a small frog''' * 10_24, '''I am a small frog'''] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertEqual(batch.input_ids.shape , (2, 51_22) )
@require_torch
def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
_a = ['''A long paragraph for summarization.''']
_a = [
'''Summary of the text.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(lowerCAmelCase_ , return_tensors='''pt''' )
_a = tokenizer(text_target=lowerCAmelCase_ , return_tensors='''pt''' )
_a = inputs['''input_ids''']
_a = targets['''input_ids''']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def __lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = ['''Summary of the text.''', '''Another summary.''']
_a = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
_a = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ )
_a = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['''input_ids''']]
_a = tokenizer.pad(lowerCAmelCase_ )
self.assertSequenceEqual(outputs['''global_attention_mask'''] , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> Dict:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
_a = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
_a = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
_a = '''A, <mask> AllenNLP sentence.'''
_a = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ )
_a = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ )
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
_a = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
_a = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
| 22 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.